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Visible actions on flag varieties of type D

and a generalization of the Cartan decomposition
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Abstract. We give a generalization of the Cartan decomposition for
connected compact Lie groups motivated by the work on visible actions of
T. Kobayashi [J. Math. Soc. Japan, 2007] for type A group. This paper
extends his results to type D group. First, we classify a pair of Levi subgroups
(L, H) of a simple compact Lie group G of type D such that G = LGσH
where σ is a Chevalley–Weyl involution. This gives the visibility of the L-
action on the generalized flag variety G/H as well as that of the H-action on
G/L and of the G-action on (G×G)/(L×H). Second, we find a generalized
Cartan decomposition G = LBH with B in Gσ by using the herringbone stitch
method which was introduced by Kobayashi in his 2007 paper. Applications
to multiplicity-free theorems of representations are also discussed.

1. Introduction and statement of main results.

The aim of this paper is to classify all the pairs of Levi subgroups (L,H)
of connected compact simple Lie groups of type D with the following property:
G = LGσH where σ is a Chevalley–Weyl involution of G (Definition 2.1). The
motivation for considering this kind of decomposition is the theory of visible actions
on complex manifolds introduced by T. Kobayashi ([Ko2]), and the decomposition
G = LGσH serves as a basis to generalize the Cartan decomposition to the non-
symmetric setting. (We refer to [He], [Ho], [Ma2] and [Ko4] and references
therein for some aspects of the Cartan decomposition from geometric and group
theoretic viewpoints.)

A generalization of the Cartan decomposition for symmetric pairs has been
used in various contexts including analysis on symmetric spaces, however, there
were no analogous results for non-symmetric cases before Kobayashi’s paper [Ko4].
Motivated by visible actions on complex manifolds ([Ko1], [Ko2]), he completely
determined the pairs of Levi subgroups

(L,H) = (U(n1)× · · · ×U(nk),U(m1)× · · · ×U(ml))
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of the unitary group G = U(n) such that the multiplication mapping L×O(n)×
H → G is surjective. Further he developed a method to find a suitable subset B

of O(n) which gives the following decomposition (a generalized Cartan decompo-
sition, see [Ko4]):

G = LBH.

In view of this decomposition theory, we consider the following problems: Let G

be a connected compact Lie group, t a Cartan subalgebra, and σ a Chevalley–Weyl
involution of G with respect to t.

1) Classify all the pairs of Levi subgroups L and H with respect to t such that
the multiplication map ψ : L×Gσ ×H → G is surjective.

2) Find a “good” representative B ⊂ Gσ such that G = LBH in the case ψ is
surjective.

We call such a decomposition G = LBH a generalized Cartan decomposition.
Here we note that the role of the subgroups H and L is symmetric.

The surjectivity of ψ implies that the subgroup L acts on the flag variety
G/H in a (strongly) visible fashion (see Definition 5.1). At the same time the H-
action on G/L, and the diagonal G-action on (G×G)/(L×H) are strongly visible.
Then Kobayashi’s theory leads us to three multiplicity-free theorems (triunity à
la [Ko1]):

Restriction G ↓ L : IndG
H(Cλ)|L,

Restriction G ↓ H : IndG
L (Cλ)|H ,

Tensor product : IndG
H(Cλ)⊗ IndG

L (Cµ).

Here IndG
H(Cλ) denotes a holomorphically induced representation of G from a

character Cλ of H by the Borel–Weil theorem. See [Ko1], [Ko2], [Ko3] for the
general theory on the application of visible actions (including the vector bundle
setting), and also Section 5 for the compact simple Lie groups of type D.

In this article, we solve the aforementioned problems for connected compact
simple Lie groups G of type D. That is, we give a complete list of the pairs of Levi
subgroups that admit generalized Cartan decompositions, by using the herringbone
stitch method that Kobayashi introduced in [Ko4].

In order to state our main results, we label the Dynkin diagram of type Dn

as follows:
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α1 α2 α3 αn−3 αn−2

αn

αn−1

• • • • •
•A

AA
A

•}}}}

Diagram 1.1.

For a subset Π′ of the set Π of simple roots, we denote by LΠ′ the Levi
subgroup whose root system is generated by Π′. For example, L∅ is a maximal
torus of G and L{αp}c = U(p) × SO(2(n − p)) for G = SO(2n) (1 ≤ p ≤ n − 2).
Here (Π′)c denotes Π \Π′.

Theorem 1.1. Let G be a connected compact simple Lie group of type Dn

(n ≥ 4), σ a Chevalley–Weyl involution, Π′, Π′′ two proper subsets of Π, and
LΠ′ , LΠ′′ the corresponding Levi subgroups. Then the following two conditions on
{Π′,Π′′} are equivalent.

( i ) G = LΠ′ G
σ LΠ′′ .

( ii ) One of the conditions below holds up to switch of the factors Π′ and Π′′ :

I. (Π′)c = {αi}, (Π′′)c = {αj}, i ∈ {n− 1, n}, j ∈ {1, 2, 3, n− 1, n},
II. (Π′)c = {αi}, (Π′′)c ⊂ {αj , αk}, i ∈ {n− 1, n}, j, k ∈ {1, n− 1, n},
III. (Π′)c = {αi}, (Π′′)c ⊂ {αj , αk}, i ∈ {n− 1, n}, j, k ∈ {1, 2},
IV. (Π′)c = {α1}, (Π′′)c ⊂ {αj , αk}, either j or k ∈ {n− 1, n},
V. (Π′)c = {αi}, (Π′′)c ⊂ {α2, αj}, n = 4, (i, j) = (3, 4) or (4, 3).

Here Gφ := {g ∈ G : φ(g) = g} for an automorphism φ of G. We did not
intend to make the above cases I–V be exclusive, that is, there is a small overlap
among Cases I, II and III.

As a corollary, we obtain three multiplicity-free theorems for type D groups
(see Corollary 5.4 for the restriction to Levi subgroups and Corollary 5.5 for the
tensor product representations).

This article is organized as follows. In Section 2, we see that Theorem 1.1 is
reduced to the standard Levi subgroups of a matrix group G = SO(2n) without any
loss of generality. In Section 3, we prove that (ii) implies (i). Furthermore, we find
explicitly a slice B that gives a generalized Cartan decomposition G = LΠ′ B LΠ′′ .
The converse implication on (ii) ⇒ (i) is proved in Section 4 by using the invariant
theory for quivers. An application to multiplicity-free representations is discussed
in Section 5.

Acknowledgments. The author wishes to express his deep gratitude to
Professor Toshiyuki Kobayashi for much advice and encouragement. He is also
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grateful to Dr. Atsumu Sasaki, Dr. Takayuki Okuda and Dr. Yoshiki Oshima for
all the help they gave him.

2. Reduction and matrix realization.

2.1. Reduction.
In this subsection, we show that the surjectivity of ψ : L×Gσ ×H → G de-

pends on neither the coverings of the group G nor the choice of Cartan subalgebras
and Chevalley–Weyl involutions. This consideration reduces a proof of Theorem
1.1 to the case G = SO(2n).

We firstly recall the definition of a Chevalley–Weyl involution of a connected
compact Lie group, and then we show the independence of the coverings.

Definition 2.1. Let G be a connected compact Lie group and σ an involu-
tion of G. We call σ a Chevalley–Weyl involution if there exists a maximal torus
T of G such that σ(t) = t−1 for every t ∈ T .

Proposition 2.2. Let G be a connected compact semisimple Lie group, G̃

its universal covering group, φ : G̃ → G the covering homomorphism, and σ (resp.
σ̃) a Chevalley–Weyl involution with respect to a maximal torus T (resp. T̃ ) of G

(resp. G̃) such that the following diagram commutes.

G
σ−−−−→ G

φ

x φ

x
G̃

σ̃−−−−→ G̃

Then for any subsets Π′,Π′′ of the set of simple roots Π of the Lie algebra g of G,
G = LΠ′ G

σ LΠ′′ holds if and only if G̃ = L̃φ∗Π′G̃
σ̃L̃φ∗Π′′ does. Here, φ∗ denotes

the natural induced map from φ, LΠ′ (resp. LΠ′′) the Levi subgroup of G whose root
system is generated by Π′ (resp. Π′′), and L̃φ∗Π′ (resp. L̃φ∗Π′′) the Levi subgroup
of G̃ whose root system is generated by φ∗Π′ (resp. φ∗Π′′).

Proof. Let ZG̃ denote the center of G̃. Assume G = LΠ′ G
σ LΠ′′ . Since

Gσ ⊂ φ(T̃ · G̃σ̃), we have φ(L̃φ∗Π′G
σ̃L̃φ∗Π′′) = LΠ′ G

σ LΠ′′ = G. Then we obtain
G̃ = ZG̃ · (L̃φ∗Π′G

σ̃L̃φ∗Π′′) = L̃φ∗Π′G
σ̃L̃φ∗Π′′ .

Conversely, assume G̃ = L̃φ∗Π′G
σ̃L̃φ∗Π′′ . Then we have G = LΠ′ φ(G̃σ̃) LΠ′′

because φ is surjective. Since φ(G̃σ̃) ⊂ Gσ, we obtain G = LΠ′ G
σ LΠ′′ . ¤

Further, we can see that Theorem 1.1 is independent of the choice of Cartan
subalgebras and Chevalley–Weyl involutions because any two Cartan subalgebras
are conjugate to each other by an inner automorphism, and any two Chevalley–
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Weyl involutions of the same Cartan subalgebra t are conjugate to each other by
the adjoint action of exp(t) (see [Wo]). For these reasons, we may and do work
with the matrix group SO(2n), and fix a Cartan subalgebra and a Chevalley–Weyl
involution as in the next subsection.

2.2. Matrix realization.
Throughont this article, we realize G = SO(2n) as a matrix group as follows:

G := {g ∈ SL(2n,C) : tgJ2ng = J2n, tgg = I2n}, (2.2.1)

where Jm is defined by

Jm :=




1
1

O
. ..

O
1




∈ GL(m,R).

Then, the corresponding Lie algebra of G forms

g := {X ∈ sl(2n,C) : tXJ2n + J2nX = O, tX + X = O}.

We take a Cartan subalgebra t of g as diagonal matrices:

t =
⊕

1≤i≤n

R
√−1Hi,

where Hi := Ei,i−E2n+1−i,2n+1−i.
We define

σ : G → G, g 7→ ḡ, (2.2.2)

where ḡ denotes the complex conjugate of g ∈ G. The differential of σ is denoted
by the same letter. This involutive automorphism σ is a Chevalley–Weyl involution
with respect to t.

We let {εi}1≤i≤n ⊂ (t⊗RC)∗ be the dual basis of {Hi}1≤i≤n. Then we define
a set of simple roots Π := {α1, . . . , αn} by
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αi := εi − εi+1 (1 ≤ i ≤ n− 1), αn := εn−1 + εn.

Let n = n1 + · · · + nk be a partition of n with n1, . . . , nk−1 > 0 and nk ≥ 0. We
put

si :=
∑

1≤p≤i

np (1 ≤ i ≤ k − 1),

Π′ := Π \ {αsi ∈ Π : 1 ≤ i ≤ k − 1},

and denote by LΠ′ the Levi subgroup whose root system is generated by Π′. In
the matrix realization, LΠ′ takes the form:

LΠ′ = U(n1)× · · · ×U(nk−1)× SO(2nk)

=








A1

. . .
Ak−1

B

Jnk−1Ak−1J
−1
nk−1

. . .
Jn1A1J

−1
n1




: Ai ∈ U(ni), B ∈ SO(2nk)





.

(2.2.3)

Here, we note that the pair (G, LΠ′) forms a symmetric pair if and only if Π\Π′ =
{α1}, {αn} or {αn−1}. For a later purpose, we give explicit involutions τ1, µ and
µξ of G of which the connected component of fixed point subgroups are L{α1}c ,
L{αn}c and L{αn−1}c .

L{α1}c = (Gτ1)0, τ1 : G → G, g 7→ I1,2(n−1),1gI1,2(n−1),1, (2.2.4)

L{αn}c = Gµ, µ : G → G, g 7→ In,ngIn,n, (2.2.5)

L{αn−1}c = Gµξ

, µξ = ξ ◦ µ ◦ ξ : G → G (see (2.2.7)), (2.2.6)

where K0 denotes the connected component of K containing the identity ele-
ment for a Lie group K, and I1,2(n−1),1 and In,n are defined by I1,2(n−1),1 :=
diag(1,−1, . . . ,−1, 1) and In,n := diag(1, . . . , 1︸ ︷︷ ︸

n

,−1, . . . ,−1︸ ︷︷ ︸
n

).

The Dynkin diagram of type Dn has an outer automorphism of order two,
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which switches αn−1 and αn. This outer automorphism is induced from the fol-
lowing involution of G.

ξ : G → G, x → gξxg−1
ξ , (2.2.7)

where gξ :=




n n+1

1 ˇ ˇ
. . .

1
0 1
1 0

1
. . .

1




.

Note that for any Π′ ⊂ Π, ξ(LΠ′) coincides with LΠ′′ where Π′′ is obtained from
Π′ by replacing αn−1 with αn. We also note that ξ preserves Gσ.

To obtain a generalized Cartan decomposition by the herringbone stitch
method ([Ko4]), we will use an involutive automorphism τp of G (1 ≤ p ≤ n− 1)
given by

τp : G → G, g 7→ Ip,2(n−p),pgIp,2(n−p),g (2.2.8)

where Ip,2(n−p),p := diag(1, . . . , 1︸ ︷︷ ︸
p

,−1, . . . ,−1︸ ︷︷ ︸
2(n−p)

, 1, . . . , 1︸ ︷︷ ︸
p

). Then the connected com-

ponent of the fixed point subgroup Gτp is given by

SO(2p)× SO(2(n− p))

:=








A B

S

C D


 :

(
A B
C D

)
∈ SO(2p), S ∈ SO(2(n− p))





. (2.2.9)

3. Generalized Cartan decomposition.

In this section, we give a proof of the implication (ii) ⇒ (i) in Theorem
1.1. The idea is to use the herringbone stitch method that reduces unknown
decompositions for non-symmetric pairs to the known Cartan decomposition for
symmetric pairs. For this, we divide the proof to six cases (Subsections 3.1–3.6).
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3.1. Decomposition for the symmetric case (Case I-1).
In this subsection we recall a well-known fact on the Cartan decomposition

for the symmetric case ([Ho, Theorem 6.10], [Ma3, Theorem 1]) and deal with
Case I with i, j ∈ {n− 1, n}.

Fact 3.1. Let K be a connected compact Lie group with Lie algebra k and
two involutions τ , τ ′ (τ2 = (τ ′)2 = id). Let H and H ′ be subgroups of K such that

(Kτ )0 ⊂ H ⊂ Kτ and (Kτ ′)0 ⊂ H ′ ⊂ Kτ ′ .

We take a maximal abelian subspace b in

k−τ,−τ ′ := {X ∈ k : τ(X) = τ ′(X) = −X}

and write B for the connected abelian subgroup with Lie algebra b.
Suppose that ττ ′ is semisimple on the center z of k. Then we have

K = HBH ′.

We shall apply Fact 3.1 to Case I with i, j ∈ {n− 1, n} in Theorem 1.1. Let

(Π′)c = Π \Π′ = {αn}, (Π′′)c = Π \Π′′ = {αn−1}. (3.1.1)

(See Diagram 1.1 for the label of the Dynkin diagram.) Then, both (G, LΠ′)
and (G, LΠ′′) are symmetric pairs with µ and µξ = ξ ◦ µ ◦ ξ the corresponding
involutions respectively (see (2.2.5) and (2.2.7) for the definitions of µ and ξ). We
take maximal abelian subspaces b ⊂ g−µ and b′ ⊂ g−µ,−µξ

as follows:

b :=
⊕

1≤i≤[n/2]

R(E2i−1,2n−2i+1−E2i,2n−2i+2−E2n−2i+1,2i−1 +E2n−2i+2,2i),

(3.1.2)

b′ := b ∩ ξ(b).

We note that both b and b′ are contained in gσ where σ is the complex conjugation
(2.2.2). Using Fact 3.1, we obtain the following proposition.

Proposition 3.2 (Generalized Cartan decomposition). Let G = SO(2n)
and LΠ′ , LΠ′′ be as in (3.1.1), and define B := exp(b), B′ := exp(b′) for b, b′ as
in (3.1.2). Then we have the following three decompositions of G.
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G = LΠ′ B LΠ′

= LΠ′′ ξ(B) LΠ′′

= LΠ′ B
′ LΠ′′ .

3.2. Decomposition for Case I-2.
In this subsection, we deal with the following case:

(Π′)c = {αi}, (Π′′)c = {α3} (i = n− 1 or n).

Since ξ switches the role of n − 1 and n, G = LΠ′ G
σ LΠ′′ holds for i = n if and

only if so does for i = n− 1 (see (2.2.7) for the definition of ξ). Thus, we may and
do assume i = n without loss of generality, and put

L := L{αn}c(= U(n)), (3.2.1)

H := L{α3}c(= U(3)× SO(2n− 6)),

for simplicity. We also note that the equality G = LGσH follows for n = 4 from
Case II in Theorem 1.1. (See Subsection 3.3.)

First, let us take a symmetric subgroup G′G′′ = (Gτ6)0 containing H where
G′ := SO(6)×I2n−6 and G′′ := I6×SO(2n−6)(⊂ H) (see (2.2.8) for the definition
of τ6). We define a maximal abelian subspace b′ of g−τ6,−µ by

b′ :=





⊕

1≤j≤3

R(Ej,n+j −En+j,j −En+1−j,2n+1−j +E2n+1−j,n+1−j) (n ≥ 6),

⊕

1≤j≤2

R(Ej,n+j −En+j,j −En+1−j,2n+1−j +E2n+1−j,n+1−j) (n = 5).

(3.2.2)

Then we give a decomposition of G by using Fact 3.1 as follows.

G = L exp(b′)(G′G′′). (3.2.3)

Second, we consider the centralizer of b′. We define an abelian subgroup T ′′ by
T ′′ := exp(t′′) where
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t′′ :=





⊕

1≤i≤3

R
√−1(Ei,i−E2n+1−i,2n+1−i−En+1−i,n+1−i +En+i,n+i) (n ≥ 6),

⊕

1≤i≤2

R
√−1(Ei,i−E11−i,11−i−E6−i,6−i +E5+i,5+i)

⊕ R√−1(E3,3−E8,8)
(n = 5).

A simple matrix computation shows that b′ commutes with t′′.

Lemma 3.3. ZG(b′) ⊃ T ′′.

Third, we consider the double coset decomposition of G′ by (G′)µ and a
maximal torus T ′ := G′ ∩ exp(t) of G′, which consists of diagonal matrices. For
this, we decompose the Lie algebra g′ of G′ as follows.

g′ = (g′)µ ⊕ (g′)−µ.

It is easy to see that (g′)−µ is rewritten as

(g′)−µ =
⋃

g∈T ′
Ad(g)(g′)−µ,σ.

Then we can find that the exponential mapping

exp :
⋃

g∈T ′
Ad(g)(g−µ,σ) → G′/(G′)µ

is surjective. Thus we have

G′ = T ′ exp(g−µ,σ)(G′)µ. (3.2.4)

We are ready to give a proof of a generalized Cartan decomposition for Case I
with (i, j) = (n, 3).

Proposition 3.4 (Generalized Cartan decomposition). Let G = SO(2n)
and L, H be as in (3.2.1). We set B := exp(b′) exp(g−µ,σ) (see (3.2.2) for the
definition of b′). Then we have

G = LBH.

Proof. In the following proof, we use the herringbone stitch method intro-
duced by Kobayashi ([Ko4]).
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G = L exp(b′)(G′G′′) by (3.2.3)

= L exp(b′)T ′ exp(g−µ,σ)(G′)µG′′ by (3.2.4)

= L exp(b′)T ′ exp(g−µ,σ)H by (G′)µG′′ = H. (3.2.5)

Since T ′ and T ′′ satisfy T ′ exp(g−µ,σ)H = T ′′ exp(g−µ,σ)H, we can continue the
decomposition (3.2.5) as follows.

(3.2.5) = L exp(b′)T ′′ exp(g−µ,σ)H

= LT ′′ exp(b′) exp(g−µ,σ)H by Lemma 3.3

= L exp(b′) exp(g−µ,σ)H

= LBH. ¤

Here is a herringbone stitch which we have used for L\G/H in Case I with
i = n, j = 3.

T ′⊂
G′ ·G′′
⊃ ⊃

G (G′)µ

⊂
L

Figure 3.2.

3.3. Decomposition for Case II.
In this subsection we deal with the following case:

(Π′)c = {αi}, (Π′′)c = {αj , αk} (i ∈ {n− 1, n}, j 6= k and j, k ∈ {1, n− 1, n}).

Since ξ (see (2.2.7) for the definition of ξ) switches the role of n − 1 and n, and
L{α1,αn}c is conjugate to L{αn−1,αn}c by an element of Gσ where σ is the complex
conjugation (2.2.2), G = LΠ′ G

σ LΠ′′ holds for (i, j, k) = (n, 1, n) if and only
if so does for each of the other triples (i, j, k). Thus, we may and do assume
(i, j, k) = (n, 1, n) without any loss of generality, and put

L := L{αn}c(= U(n)), (3.3.1)

H := L{α1,αn}c(= U(1)×U(n− 1)),
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for simplicity. The goal of this subsection is to prove

G = L exp(b′)DH, (3.3.2)

where the subspace b′ and the subset D are defined by

b′ :=
⊕

1≤i≤[n/2]

R(E2i−1,2n−2i+1−E2i,2n−2i+2−E2n−2i+1,2i−1 +E2n−2i+2,2i),

(3.3.3)

D := D1D2 · · ·D[(n−1)/2] (3.3.4)

for Dj := exp(R(E2j−1,2j+1−E2j+1, 2j−1 − E2n−2j,2n−2j+2 +E2n−2j+2,2n−2j))
(1 ≤ j ≤ [(n− 1)/2]). This subspace b′ is a maximal abelian subspace of g−µ.

As the first step to the goal, we use Proposition 3.2 and then obtain

G = L exp(b′)L. (3.3.5)

Second, we consider the centralizer of b′. We omit details of the proof of the
following lemma since it follows from a simple matrix computation.

Lemma 3.5. ZG(b′) ⊃ K :=
{

(SU(2))m (n = 2m),
(SU(2))m ×U(1) (n = 2m + 1).

Here, we realize the subgroup K as block diagonal matrices in G.

Third, we consider the double coset decomposition of L by K and H.

Lemma 3.6. L = KDH.

Proof. The following proof is due to [Sa3]. Let us identify L/H with CPn

in the natural way. Here, we note that D ·H/H is identified with a subset

{
[z1 : · · · : zn] ∈ CPn : zk ∈ R (1 ≤ k ≤ n) and z2l = 0

(
1 ≤ l ≤

[
n

2

])}

of CPn. We shall show the equality K · D · H/H = L/H for two cases n = 2m

and n = 2m + 1 separately.

• Case 1: n = 2m. Since the SU(2)-action on S3 is transitive, for any [z1 : · · · :
z2m] ∈ CPn, there exists g = (g1, . . . , gm) ∈ K such that
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g · [z1 : · · · : z2m] = [g1 · (z1 : z2) : · · · : gm · (z2m−1 : z2m)]

=
[(√|z1|2 + |z2|2 : 0

)
: · · · : (√|z2m−1|2 + |z2m|2 : 0

)]

∈ D ·H/H.

Thus, we obtain K ·D ·H/H = L/H.
• Case 2: n = 2m + 1. As similar to the case n = 2m, for any [z1 : · · · : z2m :

z2m+1] ∈ CPn, we can find an element h = (h1, . . . , hm) of the commutator
subgroup Kss = [K,K] satisfying

h · [z1 : · · · : z2m] =
[(√|z1|2 + |z2|2 : 0

)
: · · · : (√|z2m−1|2 + |z2m|2 : 0

)]
.

We then put θ := arg(z2m+1) and g := (h, e−
√−1θ) ∈ K, and obtain

g · [z1 : · · · : z2m : z2m+1]

=
[(√|z1|2 + |z2|2 : 0

)
: · · · : (√|z2m−1|2 + |z2m|2 : 0

)
: |z2m+1|

]

∈ D ·H/H.

Hence we have K ·D ·H/H = L/H. ¤

We are ready to give a proof of a generalized Cartan decomposition (3.3.2).

Proposition 3.7 (Generalized Cartan decomposition). Let G = SO(2n)
and L, H be as in (3.3.1). We put B := exp(b′)D (see (3.3.3) and (3.3.4) for the
definitions of b′ and D). Then we have G = LBH.

Proof.

G = L exp(b′)L by (3.3.5)

= L exp(b′)KDH by Lemma 3.6

= LK exp(b′)DH by Lemma 3.5

= LBH. ¤

Here is a herringbone stitch which we have used for L\G/H in Case II with
(i, j, k) = (n, 1, n).
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K

⊃
⊂

L
⊃

G H
⊂

L

Figure 3.3.

3.4. Decomposition for Case III.
In this subsection we deal with the following case:

(Π′)c = {αi}, (Π′′)c = {α1, α2} (i = n− 1 or n).

As in the beginning of Subsection 3.2, we may and do assume i = n without loss
of generality, and put

L := L{αn}c(= U(n)), (3.4.1)

H := L{α1,α2}c(= U(1)×U(1)× SO(2n− 4)),

for simplicity. This subsection aims for showing

G = L exp(b′) exp(b′′)H, (3.4.2)

where the subspaces b′ and b′′ are defined by

b′ :=
⊕

i=1,2

R (Ei,n+i−En+i,i−En+1−i,2n+1−i +E2n+1−i,n+1−i), (3.4.3)

b′′ := R(E1,2−E2,1−E2n−1,2n +E2n,2n−1)

⊕ R(E1,2n−1−E2n−1,1−E2,2n +E2n,2). (3.4.4)

First, we take a symmetric subgroup (Gτ4)0 = G′G′′ containing H where
G′ := SO(4) × I2n−4 and G′′ := I4 × SO(2n − 4)(⊂ H). In light that b′ is a
maximal abelian subspace of g−τ4,−µ, we see from Fact 3.1 that

G = L exp(b′)(G′G′′). (3.4.5)

Next we consider the double coset decomposition of G′ by a symmetric subgroup
T ′ defined by T ′ := (G′)τ1

0 . The point here is that T ′ satisfies T ′G′′ = H. Applying
Fact 3.1 to (G′, τ1|G′ , τ1|G′), we have
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G′ = T ′ exp(b′′)T ′. (3.4.6)

We are ready to give a proof of a generalized Cartan decomposition (3.4.2) by
using the herringbone stitch method.

Proposition 3.8 (Generalized Cartan decomposition). Let G = SO(2n)
and L,H be as in (3.4.1). We put B := exp(b′) exp(b′′) (see (3.4.3) and (3.4.4)
for the definitions of b′ and b′′). Then we have G = LBH.

Proof.

G = L exp(b′)(G′G′′) by (3.4.5)

= L exp(b′)(T ′ exp(b′′)T ′)G′′ by (3.4.6)

= L exp(b′)T ′ exp(b′′)H by T ′G′′ = H. (3.4.7)

We define

T ′′ := exp
( ⊕

i=1,2

R
√−1((Ei,i−E2n+1−i,2n+1−i)− (En+1−i,n+1−i−En+i,n+i))

)
.

Then T ′ and T ′′ satisfy the following equality:

T ′ exp(b′′)H = T ′′ exp(b′′)H,

and T ′′ centralizes b′. From this, we can continue the decomposition as follows.

(3.4.7) = L exp(b′)T ′′ exp(b′′)H

= LT ′′ exp(b′) exp(b′′)H

= LBH. ¤

Here is a herringbone stitch which we have used for L\G/H in Case III with
i = n.

T ′⊂
G′ ·G′′
⊃ ⊃

G
T ′

⊂
L

Figure 3.4.
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3.5. Decomposition for Case IV.
In this subsection we deal with the following case:

(Π′)c = {α1}, (Π′′)c = {αj , αk} (1 ≤ j ≤ n and k = n− 1 or n).

As in the beginning of Subsection 3.2, we may and do assume k = n without loss
of generality, and put

L := L{α1}c(= U(1)× SO(2n− 2)), (3.5.1)

H := L{αj ,αn}c(= U(j)×U(n− j)),

for simplicity. The goal of this subsection is to prove

G = L exp(b′) exp(b′′)H, (3.5.2)

where the subspaces b′ and b′′ are defined by

b′ :=
⊕

i=1,2

R(E1,n+i−1−En+i−2,1−En+2−i,2n +E2n,n+2−i), (3.5.3)

b′′ := R(E1,2n+1−j −E2n+1−j,1−Ej,2n +E2n,j)

⊕ R(Ej+1,n+1−En+1,j+1−En,2n−j +E2n−j,n). (3.5.4)

Then b′ and b′′ are maximal abelian subspaces of g−τ1,−τj and (gτj )−(τ1τn−1),−µ

respectively. We apply Fact 3.1 to (G, τ1, τj), and then obtain

G = L exp(b′)(Gτj )0. (3.5.5)

Next we consider the double coset decomposition of (Gτj )0 by H and a subgroup
L′ of Gτj ∩ L given by

L′ := I2 × SO(2j − 2)× SO(2(n− j)− 2)× I2

=








1 0
A B

E F
1 0
0 1

G H
C D

0 1




:

(
A B
C D

)
∈ SO(2j − 2),

(
E F
G H

)
∈ SO(2(n− j)− 2)





.
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The point here is that L′ centralizes b′. Applying Fact 3.1 to ((Gτj )0, τ1τn−1, µ),
we get

(Gτj )0 = (Gτj ,(τ1τn−1))0 exp(b′′)Gτj ,µ. (3.5.6)

Further, it is easy to see (Gτj ,(τ1τn−1))0 exp(b′′)Gτj ,µ = L′ exp(b′′)Gτj ,µ. Thus we
have

(Gτj )0 = L′ exp(b′′)Gτj ,µ. (3.5.7)

We are ready to give a proof of a generalized Cartan decomposition (3.5.2) by
using the herringbone stitch method.

Proposition 3.9 (Generalized Cartan decomposition). Let G = SO(2n)
and L,H be as in (3.5.1), and put B := exp(b′) exp(b′′) (see (3.5.3) and (3.5.4)
for the definitions of b′ and b′′). Then we have G = LBH.

Proof.

G = L exp(b′)(Gτj )0 by (3.5.5)

= L exp(b′)(L′ exp(b′′)Gτj ,µ) by (3.5.7)

= L exp(b′)(L′ exp(b′′)H) by Gτj ,µ = H

= LL′ exp(b′) exp(b′′)H by L′ ⊂ ZG(b′)

= LBH. ¤

Here is a herringbone stitch which we have used for L\G/H in Case IV with
k = n.

L′⊂
(Gτj )0
⊃ ⊃

G H
⊂

L

Figure 3.5.

3.6. Decomposition for Case V.
In this subsection, we deal with the following case for G = SO(8):

(Π′)c = {αi}, (Π′′)c = {α2, αj} ((i, j) = (3, 4) or (4, 3)).
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We may assume (i, j) = (4, 3) without any loss of generality since ξ(L{α4}c) =
L{α3}c and ξ(L{α2,α3}c) = L{α2,α4}c . For simplicity, we put

L := L{α4}c(= U(4)), (3.6.1)

H := L{α2,α3}c(= ξ(U(2)×U(2))).

The goal of this subsection is to prove

G = L exp(a)ξ(B′′B′)H, (3.6.2)

where the subspace a and the subgroups B′, B′′ are defined by

a := R(E1,7−E2,8−E7,1 +E8,2), (3.6.3)

B′ := exp(R(E1,4−E4,1−E5,8 +E8,5)⊕ R(E2,3−E3,2−E6,7 +E7,6)), (3.6.4)

B′′ := exp(R(E1,3−E3,1−E6,8 +E8,6)). (3.6.5)

Then a is a maximal abelian subspace of g−µ,−µξ

.
First, we decompose G by using Proposition 3.2 as follows.

G = L exp(a)ξ(L). (3.6.6)

Next, we recall a generalized Cartan decomposition for type A group ([Ko4, The-
orem 3.1]). We set H ′ := SU(2) × U(1) × U(1) ⊂ L which is realized as block
diagonal matrices and T :=

{(
e
√−1θI4 O

O e−
√−1θI4

)
∈ L : θ ∈ R

}
. Then we have

Lemma 3.10 ([Ko4, Theorem 3.1]). L = (H ′T )B′′B′ξ(H).

Further, we can see that L = (H ′T )B′′B′ξ(H) = H ′B′′B′ξ(H) since T is the
center of L, and thus we have the following decomposition of ξ(L).

ξ(L) = H ′ξ(B′′B′)H. (3.6.7)

Here, we note ξ(H ′) = H ′.
We are ready to give a proof of a generalized Cartan decomposition (3.6.2).

Proposition 3.11 (Generalized Cartan decomposition). Let G = SO(8)
and L,H be as in (3.6.1). Put B := exp(a)ξ(B′′B′) (see (3.6.3), (3.6.4) and
(3.6.5) for the definitions of a, B′ and B′′). Then we have G = LBH.
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Proof.

G = L exp(a)ξ(L) by (3.6.6)

= L exp(a)(H ′ξ(B′′B′)H) by (3.6.7)

= LH ′ exp(a)ξ(B′′B′)H by H ′ ⊂ ZG(a)

= LBH. ¤

Here is a herringbone stitch which we have used for L\G/H in Case V.

H ′⊂
ξ(L)
⊃ ⊃

G H
⊂

L

Figure 3.6.

4. Application of invariant theory.

In this section, we prove that (i) implies (ii) in Theorem 1.1. The idea of the
proof is to use invariants of quivers. Although Lemmas 4.1, 4.2 and 4.3 are parallel
to [Ko4, Lemmas 6.1, 6.2 and 6.3] respectively, we give proofs of these lemmas
for the sake of completeness. This section could be read independently of Section
3 which gives a proof on the opposite implication of (ii) ⇒ (i) in Theorem 1.1.

4.1. Invariants of quivers.
Let σ : M(N,C) → M(N,C) be the complex conjugation with respect to

M(N,R).

Lemma 4.1 (c.f. [Ko4, Lemma 6.1]). Let G ⊂ GL(N,C) be a σ-stable
subgroup, R ∈ M(N,R), and L a subgroup of G. If there exists g ∈ G such that

Ad(L)(Ad(g)R) ∩M(N,R) = ∅, (4.1.1)

then G 6= LGσGR. Here GR := {h ∈ G : hRh−1 = R}.

Proof. Let us observe that Ad(GσGR)R = Ad(Gσ)R ⊂ M(N,R). Then,
the condition (4.1.1) implies Ad(Lg)R∩Ad(GσGR)R = ∅, and thus Lg∩GσGR =
∅. Therefore we have g /∈ LGσGR. ¤

We return to the case G = SO(2n). Let k, r ≥ 2 be integers. We fix a partition
n = n1 + · · · + nk of a positive integer n with n1, . . . , nk−1 > 0 and nk ≥ 0, and
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consider a loop i0 → i1 → · · · → ir such that

is ∈
{{1, . . . , 2k − 1} (nk 6= 0),

{1, . . . , k − 1, k + 1, . . . , 2k − 1} (nk = 0),

and i0 = ir, is−1 6= is (1 ≤ s ≤ r). Correspondingly to this loop, we define a
non-linear mapping

Ai0···ir : M(2n,C) →
{

M(ni0 ,C) (i0 = ir 6= k)

M(2nk,C) (i0 = ir = k)

as follows: Let P ∈ M(2n,C), and we write P as (Pij)1≤i,j≤2k−1 in the block
matrix form corresponding to the partition 2n = n1 + · · ·+ nk−1 + 2nk + nk−1 +
· · ·+ n1 of 2n such that

Pij ∈





M(ni, nj ;C) (i, j 6= k),

M(2nk, nj ;C) (i = k, j 6= k),

M(ni, 2nk;C) (i 6= k, j = k),

M(2nk,C) (i = j = k),

(4.1.2)

where n2k−i := ni (1 ≤ i ≤ k). We define P̃ij and Ai0···ir
(P ) by

P̃ij :=





Pij (i + j ≤ 2k),

Jni
tP2k−j,2k−iJnj

(i + j > 2k, i, j 6= k),

J2nk
tP2k−j,kJnj

(i = k, j > k),

Jni
tPk,2k−iJ2nk

(i > k, j = k).

Ai0···ir (P ) := P̃i0i1 P̃i1i2 · · · P̃ir−1ir .

Then for any l = (l1, . . . , lk−1, lk) ∈ L := U(n1) × · · · × U(nk−1) × SO(2nk) (see
(2.2.3) in Section 2 for the realization as matrices), a direct computation shows

˜(Ad(l)P )ij = liP̃ij l
−1
j (4.1.3)

where ls ∈ U(ns) (1 ≤ s ≤ k − 1), lk ∈ SO(2nk). The equation (4.1.3) leads us to
the following lemma (c.f. [Ko4, Lemma 6.2]):
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Lemma 4.2. If there exists a loop i0 → i1 → · · · → ir such that at least one
of the coefficients of the characteristic polynomial det(λIni0

− Ai0···ir
(P )) is not

real, then

Ad(L)P ∩M(2n,R) = ∅.

Proof. From (4.1.3), we can see that the characteristic polynomial of
Ai0···ir

(P ) is invariant under the conjugation by L. Therefore if there exists
l ∈ L such that Ad(l)P ∈ M(2n,R) and thus the characteristic polynomial of
Ai0···ir (Ad(l)P ) is real, then that of Ai0···ir (P ) is also a real polynomial. By con-
traposition, our lemma holds. ¤

By using Lemmas 4.1 and 4.2, we obtain the next lemma (c.f. [Ko4, Lemma
6.3]):

Lemma 4.3. Let n = n1 + · · · + nk be a partition and L = U(n1) × · · · ×
U(nk−1) × SO(2nk) the corresponding Levi subgroup of SO(2n). Let us suppose
that R is a block diagonal matrix :

R :=




R1

R2

. . .
R2k−1




,

where Rs, R2k−s ∈ M(ns,R) (1 ≤ s ≤ k − 1), and Rk ∈ M(2nk,R) (the last
condition makes sense when nk 6= 0).

If there exist X ∈ so(2n) and a loop i0 → · · · → ir such that

det
(
λIni0

−Ai0···ir
([X, R])

)
/∈ R[λ],

then the multiplication map L×Gσ ×GR → G is not surjective. Here, [X, R] :=
XR−RX.

Proof. Let us set P (ε) := Ad(exp(εX))R. It suffices to show

det
(
λIni0

−Ai0···ir (P (ε))
)

/∈ R[λ]

for some ε > 0. We set Q := [X, R]. The matrix P (ε) depends real analytically
on ε, and we have
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P (ε) = R + εQ + O(ε2),

as ε tends to 0. In particular, if i 6= j then the (i, j)-block of matrix Pij(ε) ∈
M(ni, nj ;C) satisfies

Pij(ε) = εQij + O(ε2) as ε tends to 0.

Then, we have

det
(
λIni0

−Ai0···ir
(P (ε))

)
= det

(
λIni0

− εrQ̃i0i1 · · · Q̃ir−1ir
+ O(εr+1)

)

= det
(
λIni0

− εrAi0···ir
(Q) + O(εr+1)

)

=
ni0∑
s=0

λni0−sεsrhs(ε), (4.1.4)

where hs(ε) (0 ≤ s ≤ ni0) are real analytic functions of ε such that

det
(
λIni0

−Ai0···ir
(Q)

)
=

ni0∑
s=0

λni0−shs(0).

From our assumption, this polynomial has complex coefficients, namely, there ex-
ists s such that hs(0) /∈ R. It follows from (4.1.4) that det(λIni0

−Ai0···ir (P (ε))) /∈
R[λ] for any sufficiently small ε. Hence, we have shown the lemma. ¤

4.2. Necessary conditions for G = LGσH.
Throughout this subsection, we set

(G,L, H) = (SO(2n), U(n1)× · · · ×U(nk−1)× SO(2nk),

U(m1)× · · · ×U(ml−1)× SO(2ml)),

where n = n1+· · ·+nk = m1+· · ·+ml with ni,mj > 0 (1 ≤ i ≤ k−1, 1 ≤ j ≤ l−1)
and nk, ml ≥ 0. We give necessary conditions on (L,H) (resp. (L, ξ(H))) under
which G = LGσH (resp. G = LGσξ(H)) holds. We divide the proof into six cases
(Propositions 4.4–4.9).

Proposition 4.4. G 6= LGσH if one of the following two conditions is
satisfied.

k ≥ 4, m1 = 1. (4.2.1)
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k ≥ 3, nk 6= 0, m1 = 1. (4.2.2)

Proposition 4.5. G 6= LGσH if nk, ml 6= 0, n1, m1 ≥ 2.

Proposition 4.6. G 6= LGσH if k = 2, n1 ≥ 4, n2 ≥ 2, ml = 0.

Proposition 4.7. G 6= LGσH if k = 3, max{n1, n2} ≥ 2, n3 6= 0, ml = 0.

Proposition 4.8. G 6= LGσH if k = 3, n1, n2 ≥ 2, n3 = ml = 0.

Proposition 4.9. G 6= LGσξ(H) if n ≥ 5, k = 3, n1, n2 ≥ 2, nk = ml = 0.

Proof of Proposition 4.4. We note that the following two inclusive re-
lations reduce a proof of Proposition 4.4 to the case k = 3, l = 2, n3 6= 0 and
m1 = 1:

L ⊂
{

U(n1)×U(n2 + · · ·+ nk−2)× SO(2(nk−1 + nk)) (k ≥ 4),

U(n1)×U(n2 + · · ·+ nk−1)× SO(2nk) (k ≥ 3, nk 6= 0),

H ⊂ U(1)× SO(2(m2 + · · ·+ ml)).

We shall show that G 6= LGσH if k = 3, l = 2, n3 6= 0 and m1 = 1. Under this
condition, (G,L, H) takes the form:

(G,L, H) = (SO(2n),U(n1)×U(n2)× SO(n3),U(1)× SO(2n− 2)).

Let 1 → 2 → 5 → 3 → 1 be a loop and define a diagonal matrix R by R :=
diag(1, 0, . . . , 0,−1). Then, GR coincides with H. We fix u ∈ C and define X =
(Xij)1≤i,j≤5 ∈ so(2n) in the block matrix form corresponding to the partition
2n = n1 + n2 + 2n3 + n2 + n1 as (4.1.2):

X12 :=
( −u

O

)
∈ M(n1, n2;C), X14 :=

(−1
O

)
∈ M(n1, n2;C),

X31 :=




1
O

1


 ∈ M(2n3, n1;C).

We define the block entries X11, X15, X22, X23, X24, X32, X33, X34, X42, X43, X44,
X51 and X55 to be zero matrices. The remaining block entries are automatically
determined by the definition (2.2.1) of G = SO(2n). Then, Q := [X, R] has the
following block entries.
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Q12 =
(

u

O

)
∈ M(n1, n2;C), Q14 =

(
1

O

)
∈ M(n1, n2;C),

Q31 =




1
O

1


 ∈ M(2n3, n1;C).

By a simple matrix computation, we have

A12531(Q) = Q12Jn2
tQ14Jn1Jn1

tQ31J2n3Q31 =

(
2u

O
)

,

and thus the characteristic polynomial det(λIn1 −A12531(Q)) = λn1 − 2uλn1−1 is
not defined over R if u is not real. By using Lemma 4.3, we obtain G 6= LGσH. ¤

Proof of Proposition 4.5. We can reduce a proof of Proposition 4.5 to
the case k = l = 2, m1 ≥ n1 ≥ 2 and n2, m2 6= 0 because the following two
inclusive relations hold:

• U(n1)× · · · ×U(nk−1)× SO(2nk) is contained in

{
U(n1 + n2)× SO(2(n3 + · · ·+ nk)) (k ≥ 4),

U(n1)× SO(2(n2 + · · ·+ nk)) (nk 6= 0, n1 ≥ 2),

• U(m1)× · · · ×U(ml−1)× SO(2ml) ⊂ U(m1)× SO(2(m2 + · · ·+ ml)).

We shall show G 6= LGσH in the case k = l = 2, m1 ≥ n1 ≥ 2 and n2, m2 6= 0.
Let 1 → 2 → 3 → 1 be a loop and define a diagonal matrix R by

R := diag
(− 1,

n1−2︷ ︸︸ ︷
1, . . . , 1,−1,

m1−n1︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0,

m1−n1︷ ︸︸ ︷
−1, . . . ,−1, 1,

n1−2︷ ︸︸ ︷
−1, . . . ,−1, 1

)
.

Then, GR is conjugate to H by an element of Gσ. We fix u ∈ C and define
X = (Xij)1≤i,j≤3 ∈ so(2n) in the block matrix form corresponding to the partition
2n = n1 + 2n2 + n1 as (4.1.2):

X12 :=




u 0

O O
0 1


 ∈ M(n1, 2n2;C), X31 :=




1

O
−1


 ∈ M(n1,C).
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We define the block entries X11, X22 and X33 to be zero matrices. The remaining
block entries of X are determined automatically by (2.2.1). Then Q := [X, R] has
the following block entries.

Q12 =




u 0

O O
0 1


 , Q31 =



−2

O
2


 .

A simple matrix computation shows

A1231(Q) = Q12J2n2
tQ12Jn1Q31 =



−2u

O
2u


 ,

and we find that det(λIn1 − A1231(Q)) = λn1 − 4u2λn1−2 /∈ R[λ] if u2 /∈ R. By
Lemma 4.3, we have proved G 6= LGσH. ¤

Proof of Proposition 4.6. Clearly H is contained in U(n) under the
condition of Proposition 4.6. Hence, it is enough to prove the following:

G 6= LGσH if k = l = 2, n1 ≥ 4, n2 ≥ 2, m2 = 0. (4.2.3)

Let 1 → 2 → 3 → 1 be a loop and define a diagonal matrix R as follows.

R := diag(

n1−2︷ ︸︸ ︷
1, . . . , 1,−1,−1,−1,−1,

n2−2︷ ︸︸ ︷
1, . . . , 1,

n2−2︷ ︸︸ ︷
−1, . . . ,−1, 1, 1, 1, 1,

n1−2︷ ︸︸ ︷
−1, . . . ,−1).

Then GR is conjugate to H by an element of Gσ. Let us fix u ∈ C and define
X = (Xij)1≤i,j≤3 ∈ so(2n) in the block matrix form corresponding to the partition
2n = n1 + 2n2 + n1 as (4.1.2):

X12 :=




u
1

O
1

1




, X31 :=




−1
1

O
−1

1




,

where X12 ∈ M(n1, 2n2;C), X31 ∈ M(n1,C). We define the block entries X11, X22
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and X33 to be zero matrices. The remaining block entries of X are automatically
determined by (2.2.1). Then Q := [X, R] has the following block entries:

Q12 =




−2u
−2

O
2

2




, Q31 =




2
−2

O
−2

2




.

By a simple matrix computation, we have

A1231(Q) = Q12J2n2
tQ12Jn1Q31 = 8




−u
1

O
1
−u




,

and thus det(λIn1 −A1231(Q)) = λn1−4(λ2 + 64u)2 /∈ R[λ] if u /∈ R. From Lemma
4.3, we obtain G 6= LGσH. ¤

Proof of Proposition 4.7. For Proposition 4.7, it is enough to show
that

G 6= LGσH if k = 3, l = 2, n2 ≥ 2, n3 6= 0, m2 = 0. (4.2.4)

Under this condition, (G,L, H) takes the form:

(G,L, H) = (SO(2n),U(n1)×U(n2)× SO(2n3),U(n)) (n2 ≥ 2).

Let 1 → 2 → 3 → 4 → 1 be a loop and define a diagonal matrix R as follows.

R := diag(

n1+n2−1︷ ︸︸ ︷
1, . . . , 1 ,−1,−1,

n3−1︷ ︸︸ ︷
1, . . . , 1,

n3−1︷ ︸︸ ︷
−1, . . . ,−1, 1, 1,

n1+n2−1︷ ︸︸ ︷
−1, . . . ,−1).

We note that GR is conjugate to H by an element of Gσ. Let us fix u ∈ C and
define X = (Xij)1≤i,j≤5 ∈ so(2n) in the block matrix form corresponding to the
partition 2n = n1 + n2 + 2n3 + n2 + n1 as (4.1.2):
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X12 :=
(

1
O

)
∈ M(n1, n2;C), X23 :=




u

O
1


 ∈ M(n2, 2n3;C),

X41 :=
(

O
−1

)
∈ M(n2, n1;C).

We define the block entries X11, X13, X15, X22, X24, X31, X33, X35, X42, X44,
X51, X53 and X55 to be zero matrices. The remaining block entries of X are
automatically determined by (2.2.1). Then, Q := [X, R] has the following block
entries:

Q12 =
( −2
O

)
, Q23 =



−2u

O
2


 , Q41 =

(
O

−2

)
.

A simple matrix computation shows

A12341(Q) = Q12Q23J2n3
tQ23Jn2Q41 =

(−16u

O

)
,

and thus we obtain det(λIn1−A12341(Q)) = λn1 +16uλn1−1 /∈ R[λ] if u /∈ R. From
Lemma 4.3, we have proved G 6= LGσH. ¤

Proof of Proposition 4.8. Under the condition of Proposition 4.8, H is
contained in U(n). Hence it is enough to show the following:

G 6= LGσH if k = 3, l = 2, n1, n2 ≥ 2, n3 = m2 = 0.

Let 1 → 4 → 2 → 5 → 1 be a loop and define R by

R := diag(

n︷ ︸︸ ︷
1, . . . , 1,

n︷ ︸︸ ︷
−1, . . . ,−1).

Then, GR = H. Let us fix u ∈ C and define X = (Xij)1≤i,j≤5 ∈ so(2n) in the
block matrix form corresponding to the partition 2n = n1 + n2 + 2n3 + n2 + n1 as
(4.1.2):

X14 :=



−u −1

O
−1 −1


 ∈ M(n1, n2;C), X42 :=



−1

O
1


 ∈ M(n2,C),
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X51 :=



−1

O
1


 ∈ M(n1,C).

We define X11, X12, X21, X22, X44, X45, X54 and X55 to be zero matrices. The
remaining block entries of X are automatically determined by (2.2.1). Here we
note that none of the block entries X13, X23, X31, X33, X34, X35, X43 and X53

exists since n3 = 0. Then Q := [X, R] has the following block entries:

Q14 =




2u 2

O
2 2


 , Q42 =



−2

O
2


 , Q51 =



−2

O
2


 .

A simple matrix computation shows

A14251(Q) = Q14Q42Jm2
tQ14Jm1Q51 =




16(u− 1)

O
16(u− 1)


 ,

and thus, det(λIn1 − A14251(Q)) = λn1−2(λ − 16(u − 1))2 /∈ R[λ] if u /∈ R. From
Lemma 4.3, we get G 6= LGσH. ¤

Proof of Proposition 4.9. We may assume n2 ≥ n1. It suffices to show
that G 6= LGσξ(H) if k = 3, l = 2, n1 ≥ 2, n2 ≥ 3 and n3 = m2 = 0. Let 1 →

4 → 2 → 5 → 1 be a loop and define R by R := diag(

n−1︷ ︸︸ ︷
1, . . . , 1,−1, 1,

n−1︷ ︸︸ ︷
−1, . . . ,−1).

Then, GR = ξ(H). Let us fix u ∈ C and define X = (Xij)1≤i,j≤5 ∈ so(2n) in the
block matrix form corresponding to the partition 2n = n1 + n2 + 2n3 + n2 + n1 as
(4.1.2):

X14 :=




0 − u −1

O
0 − 1 −1


 ∈ M(n1, n2;C),

X42 :=




0 0 0
−1 0 0

O
0 1 0


 ∈ M(n2,C), X51 :=



−1

O
1


 ∈ M(n1,C).
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The remaining block entries of X are defined in the same way as in the proof of
Proposition 4.8. Then Q := [X, R] has the following block entries.

Q14 =




0 2u 2

O
0 2 2


 , Q42 =




0 0 0
−2 0 0

O
0 2 0


 , Q51 =



−2

O
2


 .

By a simple matrix computation, we have

A14251(Q) = Q14Q42Jm2
tQ14Jm1Q51 =




16(u− 1)

O
16(u− 1)


 ,

and find that det(λIn1 − A14251(Q)) = λn1−2(λ − 16(u − 1))2 /∈ R[λ] if u /∈ R.
From Lemma 4.3, we have proved G 6= LGσξ(H). ¤

4.3. Completion of the proof of Theorem 1.1.
We complete the proof of the implication (i) ⇒ (ii) in Theorem 1.1 (Proposi-

tion 4.10) by using Propositions 4.4–4.9. For a given partition n = n1 + · · · + nk

with n1, . . . , nk−1 > 0 and nk ≥ 0, we have a Levi subgroup LΠ′ = U(n1)× · · · ×
U(nk−1)× SO(2nk) of SO(2n), which is associated to the subset

Π′ := Π \
{

αi ∈ Π : i =
j∑

s=1

ns, 1 ≤ j ≤ k − 1
}

of the set of simple roots Π (see Diagram 1.1 for the label of the Dynkin diagram).

Proposition 4.10. Let G be the special orthogonal group SO(2n) (n ≥ 4),
σ a Chevalley–Weyl involution, Π′, Π′′ subsets of the set of simple roots Π, and
LΠ′ , LΠ′′ the corresponding Levi subgroups. Then we have

G 6= LΠ′ G
σ LΠ′′ (4.3.1)

if one of the following conditions up to switch of Π′ and Π′′ is satisfied (1 ≤ i, j,

k ≤ n) :

(I) Either (Π′)c or (Π′′)c contains more than two elements.
(II) Both (Π′)c and (Π′′)c contain two elements.
(III) Both (Π′)c and (Π′′)c contain some simple root other than α1, αn−1, αn.



960 Y. Tanaka

(IV) #(Π′)c = 2, (Π′′)c = {αi}, and i /∈ {1, n− 1, n}.
(V) #(Π′)c = 2, (Π′′)c = {α1}, and (Π′)c contains neither αn−1 nor αn.
(VI) (Π′)c = {αi}, (Π′′)c = {αj}, i /∈ {1, 2, 3, n− 1, n}, j ∈ {n− 1, n}.
(VII) (n ≥ 5) (Π′)c = {αi, αj}, (Π′′)c = {αk}, i 6= j, k ∈ {n − 1, n}, and

(i, j) 6= (1, 2), (1, n− 1), (1, n), (n− 1, n).
(VIII) (n = 4) (Π′)c = {αi, α2}, (Π′′)c = {αi}, i ∈ {3, 4}.

Proof. We note the following:

(1) The role of LΠ′ and LΠ′′ is symmetric.
(2) G 6= LΠ′ G

σ LΠ′′ holds if and only if G 6= ξ(LΠ′)Gσξ(LΠ′′) does.

First, we can see that (I) implies (4.3.1) by combining (4.2.1) of Proposition 4.4
with Propositions 4.5 and 4.7. Second, Proposition 4.5 implies that (4.3.1) holds
under each of the conditions (II), (III) and (IV). Third, we can see the condition
(V) implies (4.3.1) by using (4.2.2) of Proposition 4.4. Fourth, we can also see
that the condition (VI) implies (4.3.1) by Proposition 4.6. Fifth, by combining
Proposition 4.7 with Propositions 4.8 and 4.9, we can see that (4.3.1) holds under
the condition (VII). Finally, it follows from Proposition 4.8 that the condition
(VIII) implies (4.3.1). ¤

5. Application to representation theory.

In this section, we shall see our generalized Cartan decomposition leads to
three multiplicity-free representations by using the framework of visible actions
(“triunity” à la [Ko1]). The concept of (strongly) visible actions on complex
manifolds was introduced by T. Kobayashi. Let us recall the definition ([Ko2]).

Definition 5.1. We say a biholomorphic action of a Lie group G on a
complex manifold D is strongly visible if the following two conditions are satisfied:

(1) There exists a real submanifold S such that (we call S a “slice”)

D′ := G · S is an open subset of D.

(2) There exists an antiholomorphic diffeomorphism σ of D′ such that

σ|S = idS ,

σ(G · x) = G · x for any x ∈ D′.

Definition 5.2. In the above setting, we say the action of G on D is S-
visible. This terminology will be used also if S is just a subset of D.
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Let G be a compact Lie group and L,H its Levi subgroups. Then G/L, G/H

and (G × G)/(L × H) are complex manifolds. If the triple (G,L, H) satisfies
G = LGσH, the following three group-actions are all strongly visible:

Ly G/H

H y G/L

diag(G)y (G×G)/(L×H).

The following theorem ([Ko3]) leads us to multiplicity-free representations:

Theorem 5.3. Let G be a Lie group and V a G-equivalent Hermitian holo-
morphic vector bundle on a connected complex manifold D. If the following three
conditions from (1) to (3) are satisfied, then any unitary representation that can
be embedded in the vector space O(D,V) of holomorphic sections of V decomposes
multiplicity-freely :

(1) The action of G on D is S-visible. That is, there exists a subset S ⊂ D

satisfying the conditions given in Definition 5.1. Further, there exists an au-
tomorphism σ̂ of G such that σ(g · x) = σ̂(g) · σ(x) for any g ∈ G and x ∈ D′.

(2) For any x ∈ S, the fiber Vx at x decomposes as the multiplicity free sum
of irreducible unitary representations of the isotropy subgroup Gx. Let Vx =⊕

1≤i≤n(x) V(i)
x denote the irreducible decomposition of Vx.

(3) σ lifts to an antiholomorphic automorphism σ̃ of V and satisfies σ̃(V(i)
x ) = V(i)

x

(1 ≤ i ≤ n(x)) for each x ∈ S.

Although our application is limited to finite dimensional representations, it
is noteworthy that this theorem works for both compact and non-compact com-
plex manifolds, for both finite and infinite dimensional representations, and for
both discrete and continuous spectra. See, for example, [Ko1] and [Ko6]. [Ko1]
deals with finite dimensional representations whereas the latter deals with infinite
dimensional representations (not necessarily highest weight modules).

Now we return to the case where G is a connected compact Lie group of
type Dn. The fundamental weights ω1, . . . , ωn with respect to the set of simple
roots α1, . . . , αn are given as follows (see Diagram 1.1 for the label of the Dynkin
diagram).

ωi = α1 + 2α2 + · · ·+ (i− 1)αi−1 + i(αi + αi+1 + · · ·+ αl−2),

+
1
2
i(αn−1 + αn) (1 ≤ i < n− 1),
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ωn−1 =
1
2

(
α1 + 2α2 + · · ·+ (n− 2)αn−2 +

1
2
nαn−1 +

1
2
(n− 2)αn

)
,

ωn =
1
2

(
α1 + 2α2 + · · ·+ (n− 2)αn−2 +

1
2
(n− 2)αn−1 +

1
2
nαn

)
.

By using the Borel–Weil theory together with Theorem 5.3 and our generalized
Cartan decompositions, we obtain the following Corollaries 5.4 and 5.5.

Corollary 5.4 (Corollary of Theorem 1.1). If the pair (L, λ) is an entry in
the Tables 5-1, 5-2 or 5-3, then the restriction πλ|L of the irreducible representation
πλ of G with highest weight λ to L decomposes multiplicity-freely.

maximal parabolic type

Levi subgroup L highest weight λ

L{αl}c aω1,

aω2,

aω3,

aωn−2,

aωl

L{α1}c aωi

L{α2}c , aωl

L{α3}c

L{αj}c aω1

Table 5-1.

non-maximal parabolic type

Levi subgroup L highest weight λ

L{αn}c , aω1 + bωl,

L{αn−1}c aω1 + bω2,

aωn−2 + bωl

L{α1}c aωi + bωl

L{α1,α2}c , aωl

L{α1,αn}c ,

L{α1,αn−1}c ,

L{αn−1,αn}c

L{αj ,αn}c , aω1

L{αj ,αn−1}c

Table 5-2.

Here, l = n− 1 or n and i, j, a, b are integers satisfying 1 ≤ i, j ≤ n and 0 ≤ a, b.
The following Table 5-3 is only for n = 4 ((i, j) = (3, 4) or (4, 3)) :

non-maximal parabolic type

L λ

L{αi}c aω2 + bωj

L{α2,αi}c aωj

Table 5-3.
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Corollary 5.5 (Corollary of Theorem 1.1). The tensor product representa-
tion πλ⊗πµ of any two irreducible representations πλ, πµ of G with highest weights
(λ, µ) listed in the below Tables 5-4 or 5-5 decomposes as a multiplicity-free sum
of irreducible representations of G.

maximal parabolic type

pair of highest weights (λ, µ)
(aωk, bω1),
(aωk, bω2),
(aωk, bω3),

(aωk, bωn−2),
(aωk, bωl),
(aω1, bωi)

Table 5-4.

non-maximal parabolic type

n pair of highest weights (λ, µ)
n ≥ 4 (aωk, bωn−2 + cωl),

(aωk, bω1 + cωl),
(aωk, bω1 + cω2),
(aω1, bωi + cωl)

n = 4 (aω4, bω2 + cω3),
(aω3, bω2 + cω4)

Table 5-5.

Here, k, l ∈ {n− 1, n}, 1 ≤ i ≤ n and a, b, c are arbitrary non-negative integers.

We note that the condition (2) of Theorem 5.3 is automatically satisfied since
the fiber of a holomorphic vector bundle is one-dimensional in the setting of the
Borel–Weil Theory. We also note that we can take the complex conjugation as σ

in Theorem 5.3.

Remark 5.6. P. Littelmann ([Li2]) classified all the pairs of maximal
parabolic subgroups (Pω, Pω′) of any simple Lie group G over any algebraically
closed field of characteristic zero such that the corresponding tensor products
nω⊗mω′ (n and m are arbitrary non-negative integers) decomposes multiplicity-
freely where ω and ω′ are fundamental weights. (His classification is exactly Table
5-4 and does not include Table 5-5 in the Dn case.) Moreover, he found the branch-
ing rules of nω⊗mω′ and the restriction of nω to the maximal Levi subgroup Lω′

of Pω′ for any pair (ω, ω′) that admits a G-spherical action on G/Pω × G/Pω′

by using the generalized Littlewood–Richardson rule ([Li1]). From his formula,
we can immediately see that such restriction nω|Lω′ is also multiplicity-free and
obtain the same list as Table 5-1 (but not Tables 5-2 and 5-3) in the Dn case.

Remark 5.7. J. R. Stembridge ([St2]) gave a complete list of pairs of high-
est weights with the corresponding tensor product representation multiplicity-free
for any complex simple Lie algebra. His method is combinatorial. He also clas-
sified multiplicity-free restrictions to Levi subalgebras for all complex simple Lie
algebras. Our approach has given a geometric proof of a part of his work based
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on generalized Cartan decompositions.

We have listed an application of Theorem 5.3 only for the line bundle case.
As in [Ko1] for type A groups, we think there is a good room for a generalization
to the vector bundle case also for type D groups.
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