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A simple improvement of a differentiable classification result

for complete submanifolds

By Ezequiel R. Barbosa
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Abstract. We consider Mn, n ≥ 3, an n-dimensional complete sub-

manifold of a Riemannian manifold (M
n+p

, g). We prove that if for all point
x ∈ Mn the following inequality is satisfied

S ≤ 8

3

„
Kmin −

1

4
Kmax

«
+

n2H2

n− 1
,

with strictly inequality at one point, where S and H denote the squared norm
of the second fundamental form and the mean curvature of Mn respectively,
then Mn is either diffeomorphic to a spherical space form or the Euclidean
space Rn. In particular, if Mn is simply connected, then Mn is either diffeo-
morphic to the sphere Sn or the Euclidean space Rn.

1. Introduction and main result.

Let Mn be an n-dimensional submanifold of an (n + p)-dimensional Rieman-
nian manifold (M

n+p
, g). Here we assume that n ≥ 2. For an arbitrary fixed

point x ∈ Mn, we choose an orthonormal local frame field {e1, . . . , en+p} in M
n+p

such that {e1, . . . , en} is tangent to Mn. Let {ω1, . . . , ωn+p} the dual frame field
of {e1, . . . , en+p}. Let Rm and Rm be the Riemannian curvature tensors of Mn

and M
n+p

respectively, and h the second fundamental form of Mn. Then

Rm =
n∑

i,j,k,l=1

Rijklωi ⊗ ωj ⊗ ωk ⊗ ωl,

Rm =
n+p∑

i,j,k,l=1

Rijklωi ⊗ ωj ⊗ ωk ⊗ ωl

and

2010 Mathematics Subject Classification. Primary 53C40; Secondary 53C20, 53C44.

Key Words and Phrases. submanifold, second fundamental form, differentiable sphere
theorem, Ricci flow, sectional curvature.

http://dx.doi.org/10.2969/jmsj/06530787


788 E. R. Barbosa

h =
n+p∑

α=n+1

n∑

i,j=1

hα
ijωi ⊗ ωj ⊗ eα.

The Riemann curvature tensors Rm, Rm and the second fundamental form h are
related by the Gauss equation:

Rijkl = Rijkl +
n+p∑

α=n+1

(
hα

ikhα
jl − hα

ilh
α
jk

)
. (1)

The squared norm S of the second fundamental form and the mean curvature H

of Mn are given by

S :=
n+p∑

α=n+1

n∑

i,j=1

(
hα

ij

)2

and

H =
1
n

∣∣∣∣
n+p∑

α=n+1

n∑

i=1

hα
iieα

∣∣∣∣.

Suppose, for a moment, (M
n+p

, g) has constant curvature c. From Gauss equation,
we obtain

Rg = n(n− 1)c + n2H2 − S,

where Rg is the scalar curvature of (Mn, g) and g is the induced metric of g.
Hence, in this case, we find that

Rg ≥ n2(n− 2)H2

n− 1
+ (n + 1)(n− 2)c

if and only if

S ≤ n2H2

n− 1
+ 2c.

Note that if n = 2, then the Gauss curvature is nonnegative if and only if S ≤
(n2H2/(n− 1)) + 2c. In 1936, J. J. Stoker [10] proved the following theorem.
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Theorem 1.1 (J. J. Stoker - 1936). Assume that M2 is a complete subman-
ifold of the Euclidean space R3. If the Gaussian curvature K is positive, the M2

is either diffeomorphic to the sphere S2 or the Euclidean space R2.

In 1971, do Carmo and Lima [5] improved the above theorem:

Theorem 1.2 (do Carmo, Lima - 1971). Assume that M2 is a complete
submanifold of the Euclidean space R3. If the Gaussian curvature K is nonnega-
tive, and positive at one point, then M2 is either diffeomorphic to the sphere S2

or the Euclidean space R2.

One can find some related results about the geometry and topology of manifolds
with a curvature satisfying some strictly inequality at one point, e.g., in [8], [9],
[12]. In this paper, we want to discuss a result like Theorem 1.2 that improves
a result like Theorem 1.1. Before state our main result, let we make a definition.
Denote by Kx(π) the sectional curvature of Mn for tangent 2-plane π ⊂ TxMn

at point x ∈ Mn, Kx(π) the sectional curvature of M
n+p

for tangent 2-plane
π ⊂ TxM

n+p
at point x ∈ M

n+p
. Set

Kmin(x) := min
π⊂TxM

n+p
Kx(π)

and

Kmax(x) := max
π⊂TxM

n+p
Kx(π).

The following theorem was proved by Hong-Wei Xu and Juan-Ru Gu [11] (see
Theorem 1.1 in [11]).

Theorem 1.3 (Hong-Wei Xu and Juan-Ru Gu - 2010). Assume that Mn is
a complete submanifold and, for all point x ∈ M ,

S <
8
3

(
Kmin − 1

4
Kmax

)
+

n2H2

n− 1
. (2)

Then Mn is either diffeomorphic to a spherical space form or the Euclidean space
Rn. In particular, if Mn is simply connected, then Mn is either diffeomorphic to
the sphere Sn or the Euclidean space Rn.

The above result is interesting because when Mn is a compact submanifold of
codimension zero, Theorem 1.3 reduces to the differentiable pinching theorem of
Brendle and Schoen [4]. Another hand, L. Ni and B. Wilking, combining Theorem
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3.1 and Theorem 3.2 in [8], provide a classification, up to diffeomorphism, of
all compact Riemannian manifolds that are almost strictly (1/4)-pinched in the
pointwise sense. We define almost strictly (1/4)-pinched manifold in the pointwise
sense, in the following way: we say that (M, g) is almost strictly (1/4)-pinched
in the pointwise sense if 0 ≤ K(π1) ≤ 4K(π2) for all points x ∈ M and all two-
dimensional planes π1, π2 ⊂ TxM , and there exists a point p ∈ M such that
K(π1) < 4K(π2) for all two-dimensional planes π1, π2 ⊂ TpM .

Therefore it is natural to ask whether the Theorem 1.3 can also be achieved
by improving the inequality (2). Our main result is the following:

Theorem 1.4. Assume that Mn is a complete submanifold and, for all point
x ∈ Mn,

S ≤ 8
3

(
Kmin − 1

4
Kmax

)
+

n2H2

n− 1
,

with strictly inequality at one point, then Mn is either diffeomorphic to a spherical
space form or the Euclidean space Rn. In particular, if Mn is simply connected,
then Mn is either diffeomorphic to the sphere Sn or the Euclidean space Rn.

Theorem 1.4 has been presented at the Workshop “Geometric Analysis”,
IMPA - Institut Fourier at Rio de Janeiro - Brazil, November 16–26, 2010. Note
that Theorem 1.4 improves the Theorem 1.3 in the sense that inequality (2) can
be assumed equality and the same conclusion of Theorem 1.3 follows.

Acknowledgments. This work is supported by CNPq-Brazil.

2. Proof of Theorem 1.4.

We divide the proof in a few steps. The first one is exactly the Lemma 4.1 in
[11]. For convenience, we will post here the proof of that lemma.

Step 1: Let Mn be an n-dimensional submanifold of an (n + p)-dimensional
Riemannian manifold (M

n+p
, g), and π a tangent 2-plane in TxMn at point x ∈

Mn. Choose an orthonormal two-frame {e1, e2} at x such that π = span{e1, e2}.
Then

Kx(π) ≥ 1
2

(
2Kmin(x) +

n2H2

n− 1
− S

)
+

n+p∑
α=n+1

n∑

j>i,(i,j) 6=(1,2)

(hα
ij)

2.

Proof. We extend the orthonormal two-frame {e1, e2} to an orthonormal
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frame {e1, . . . , en+p} such that {e1, . . . , en} are tangent to Mn. Setting Sα =∑n
i,j=1(h

α
ij)

2, we have

( n∑

i=1

hα
ii

)2

= (n− 1)
[ n∑

i=1

(
hα

ii

)2 +
n∑

i 6=j

(
hα

ij

)2 +
1

n− 1

( n∑

i=1

hα
ii

)2

− Sα

]
. (3)

Note that

( n∑

i=1

hα
ii

)2

≤ (n− 1)
[(

hα
11 + hα

22

)2 +
n∑

i>2

(
hα

ii

)2
]

= (n− 1)
[ n∑

i=1

(
hα

ii

)2 + 2hα
11h

α
22

]
.

This together with (3) implies

2hα
11h

α
22 ≥

n∑

i 6=j

(
hα

ij

)2 +
1

n− 1

( n∑

i=1

hα
ii

)2

− Sα. (4)

From the Gauss equation (1) and (4) we get

K(π) = R1212 +
n+p∑

α=n+1

[
hα

11h
α
22 − (hα

12)
2
]

≥
n+p∑

α=n+1

[ n∑

j>2

(
hα

1j

)2 +
n∑

j>2

(
hα

2j

)2 +
n∑

j>i>2

(
hα

ij

)2
]

+
1
2

(
n2H2

n− 1
− S

)
+ Kmin

=
1
2

(
2Kmin +

n2H2

n− 1
− S

)
+

n+p∑
α=n+1

n∑

j>i,(i,j) 6=(1,2)

(
hα

ij

)2
. ¤

Next step, we use the same idea of the proof of Theorem 4.1 in [11]. We just
make small changes in the statement of that theorem that are important to the
step 3.

Step 2: Let Mn be an n(≥ 4)-dimensional submanifold of an (n + p)-
dimensional Riemannian manifold (M

n+p
, g). Then, for all point x ∈ Mn, all

orthonormal four-frame {e1, e2, e3, e4} ⊂ TxMn, and all λ, µ ∈ [−1, 1],
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R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424 − 2λµR1234

≥ 1
2
(1 + λ2 + µ2 + (λµ)2)

(
8
3

(
Kmin − 1

4
Kmax

)
+

n2H2

n− 1
− S

)
.

Proof. From Berger’s inequality (see [7]), we have

∣∣Rijkl

∣∣ ≤ 2
3
(
Kmax −Kmin

)
.

Hence, from equation (1), we obtain

|R1234| =
∣∣∣∣R1234 +

n+p∑
α=n+1

(
hα

13h
α
24 − hα

14h
α
23

)∣∣∣∣

≤ 2
3
(
Kmax −Kmin

)
+

n+p∑
α=n+1

∣∣hα
13h

α
24 − hα

14h
α
23

∣∣.

This together with Step 1 implies

R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424 − 2λµR1234

≥ 1
2
(1 + λ2 + µ2 + (λµ)2)

(
2Kmin +

n2H2

n− 1
− S

)

+
n+p∑

α=n+1

n∑

j>i,(i,j) 6=(1,3)

(
hα

ij

)2 + λ2

n+p∑
α=n+1

n∑

j>i,(i,j) 6=(1,4)

(
hα

ij

)2

+ µ2

n+p∑
α=n+1

n∑

j>i,(i,j) 6=(2,3)

(
hα

ij

)2 + (λµ)2
n+p∑

α=n+1

n∑

j>i,(i,j) 6=(2,4)

(
hα

ij

)2

− 2|λµ|
[
2
3
(
Kmax −Kmin

)
+

n+p∑
α=n+1

∣∣hα
13h

α
24 − hα

14h
α
23

∣∣
]

≥ 1
2
(1 + λ2 + µ2 + (λµ)2)

(
2Kmin +

n2H2

n− 1
− S

)

+
n+p∑

α=n+1

[
(hα

14)
2 + λ2(hα

13)
2 + µ2(hα

24)
2 + (λµ)2(hα

23)
2
]

− 2|λµ|
[
2
3
(
Kmax −Kmin

)]− 2|λµ|
n+p∑

α=n+1

∣∣hα
13h

α
24

∣∣− 2|λµ|
n+p∑

α=n+1

∣∣hα
14h

α
23

∣∣.
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Note that

(hα
14)

2 + (λµ)2(hα
23)

2 ≥ 2|λµ||hα
14h

α
23|,

λ2(hα
13)

2 + µ2(hα
24)

2 ≥ 2|λµ||hα
13h

α
24|

and

−4|λµ| ≥ −(1 + λ2 + µ2 + (λµ)2).

Hence,

R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424 − 2λµR1234

≥ 1
2
(1 + λ2 + µ2 + (λµ)2)

(
8
3

(
Kmin − 1

4
Kmax

)
+

n2H2

n− 1
− S

)
. ¤

The next step is the most important here. It is the differential to improve the
Theorem 1.3.

Step 3: Let Mn be an n(≥ 4)-dimensional compact submanifold of an (n+p)-
dimensional Riemannian manifold (M

n+p
, g). Assume that, for all point x ∈ Mn,

S ≤ 8
3

(
Kmin − 1

4
Kmax

)
+

n2H2

n− 1
,

with strictly inequality at one point p0 ∈ Mn. Then, there exists a metric on Mn

such that, for all point x ∈ TxMn, all orthonormal four-frame {e1, e2, e3, e4} ⊂
TxMn, and all λ, µ ∈ [−1, 1],

R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424 − 2λµR1234 > 0.

Proof. It follows from Step 2 and from the strictly inequality

S(p0) <
8
3

(
Kmin − 1

4
Kmax

)
+

n2H(p0)2

n− 1

that for all orthonormal four-frame {e1, e2, e3, e4} ⊂ Tp0M
n, and all λ, µ ∈ [−1, 1],

R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424 − 2λµR1234 > 0.
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Another hand, from Step 2 and work [4] due to Brendle-Schoen, (Mn, g0) × R2

possesses nonnegative isotropic curvature, where g0 denotes the induced metric of
g. Let g(t) be the solution to the Ricci flow on Mn with initial metric g0 and
maximal interval of definition [0, T ). From the S. Brendle and R. Schoen’s work
[4], we have that, for all 0 ≤ t < T , (Mn, g(t)) × R2 has nonnegative isotropic
curvature. Another hand, from the S. Brendle and R. Schoen’s work [3], given
0 < t < T and λ, µ ∈ [−1, 1], the set of all four-frames {e1, e2, e3, e4} that are
orthonormal with respect to g(t) and satisfy

Rg(t)(e1, e3, e1, e3) + λ2Rg(t)(e1, e4, e1, e4) + µ2Rg(t)(e2, e3, e2, e3)

+ λ2µ2Rg(t)(e2, e4, e2, e4)− 2λµRg(t)(e1, e2, e3, e4) = 0

is invariant under parallel transport. Hence, if (Mn, g(t)) × R2, 0 < t < T ,
does not have positive isotropic curvature, it follows from the invariance under
parallel transport that there is a four-frame {e1(t), e2(t), e3(t), e4(t)} ⊂ Tp0M

n

and λ(t), µ(t) ∈ [−1, 1] for which

Rg(t)(e1(t), e3(t), e1(t), e3(t)) + λ(t)2Rg(t)(e1(t), e4(t), e1(t), e4(t))

+ µ(t)2Rg(t)(e2(t), e3(t), e2(t), e3(t)) + λ(t)2µ(t)2Rg(t)(e2(t), e4(t), e2(t), e4(t))

− 2λ(t)µ(t)Rg(t)(e1(t), e2(t), e3(t), e4(t)) = 0.

Hence, if for each 0 < t < T , (Mn, g(t)) × R2 does not have positive isotropic
curvature, we obtain a time dependent four-frame {e1(t), e2(t), e3(t), e4(t)} at p0

and a family λ(t), µ(t) ⊂ [−1, 1] satisfying the equality above. We can choose a
sequence of times ti → 0 as i → +∞ for which the corresponding sequence of
four-frames converge to an orthonormal four-frame {e1, e2, e3, e4} ⊂ Tp0M

n at p0

with respect to the metric g0. Since [−1, 1] is compact, there exists two points
λ0, µ0 ∈ [−1, 1] such that, passing to a subsequence if necessary, λ(ti) → λ0 and
µ(ti) → µ0. Thus, we find an orthonormal four-frame {e1, e2, e3, e4} ⊂ Tp0M

n

with respect to the metric g0 and two points λ0, µ0 ∈ [−1, 1] such that

Rg0(e1, e3, e1, e3) + λ2
0Rg0(e1, e4, e1, e4) + µ2

0Rg0(e2, e3, e2, e3)

+ λ2
0µ

2
0Rg0(e2, e4, e2, e4)− 2λ0µ0Rg0(e1, e2, e3, e4) = 0.

This is a contradiction. Therefore, there exist t > 0 such that (Mn, g(t)) × R2

possesses positive isotropic curvature. ¤

Final Step: It follows from Step 1 that the sectional curvatures of (Mn, g0) is
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nonnegative and there exists a point p0 ∈ Mn such that Kp0(π) > 0 for all 2-plane
π ⊂ Tp0M

n.
1. Suppose that Mn (n ≥ 3) is complete and non-compact. It follows from

Perelman’s Soul Theorem (see [9]) that Mn is diffeomorphic to the Euclidean space
Rn, since the sectional curvatures of (Mn, g0) is nonnegative and there exists a
point p0 ∈ Mn such that Kp0(π) > 0 for all 2-plane π ⊂ Tp0M

n.
2. Suppose that Mn is compact and n = 3. It follows from Step 1 that

Ricg0 ≥ 0 on Mn and there exists a point p0 ∈ Mn such that Ricg0 > 0 at this
point, since the sectional curvatures of (Mn, g0) is nonnegative and there exists a
point p0 ∈ Mn such that Kp0(π) > 0 for all 2-plane π ⊂ Tp0M

n. From a theorem
due to T. Aubin [1], we construct a Riemannian metric h on M3 such that Rich > 0
on M3. Hence, from a classification result of compact 3-dimensional manifolds
with positive Ricci curvature due to R. Hamilton [6] we have the manifold M3 is
diffeomorphic to a spherical space form.

3. Suppose that Mn is compact and n ≥ 4. From Step 3, there exists a metric
h0 on M such that (Mn, h0) × R2 possesses positive isotropic curvature. From a
result of Brendle and Schoen, the normalized Ricci flow

∂

∂t
h(t) = −2Rich(t) +

2
n

rh(t)h(t)

where rh(t) denotes the mean value of the scalar curvature of h(t), with initial
metric h0 exists for all time and converges to a constant curvature metric as
t → +∞. Hence, Mn is diffeomorphic to a spherical space form. ¤
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