Correction of a proof in the paper "Approximate roots, toric resolutions and deformations of a plane branch"

[The original paper is in this journal, Vol. 62 (2010), 975-1004]

By Pedro Daniel González Pérez

(Received Nov. 9, 2011)

Abstract. We correct the proof of Theorem 3.8 in [GP2].
The proof of Theorem 3.8 in [GP2] is not correct from the sentence starting at line 5 to the end of line 14 of page 995 . The correction is done by the replacing this part by the following:

If $\alpha(x) F_{1}^{\eta_{1}} \cdots F_{j-1}^{\eta_{j-1}}$ with $\operatorname{ord}_{x} \alpha(x)=\eta_{0} \geq 0$, is a term appearing in the $\left(F_{1}, \ldots, F_{j}\right)$-expansions of F_{j+1}, different from $F_{j}^{N_{j}}$ and $\alpha_{0}^{(j)}(x) F_{1}^{\eta_{1}^{(j)}} \cdots F_{j-1}^{\eta_{j-1}^{(j)}}$, then the straight line condition implies that

$$
\begin{equation*}
\left(1 / E_{j}\right) N_{j} \bar{B}_{j}<\left(1 / E_{j}\right)\left(\eta_{0} \bar{B}_{0}+\cdots+\eta_{j-1} \bar{B}_{j-1}\right) . \tag{1}
\end{equation*}
$$

The inequality (1) is strict since $\sum_{i=0}^{j-1} \eta_{i} \bar{B}_{i} \neq \sum_{i=0}^{j-1} \eta_{i}^{(j)} \bar{B}_{i}$ by the numerical properties of the semigroup Γ generated by $\bar{B}_{0}, \ldots, \bar{B}_{G}$, see Lemma 1.15.

We re-embed the germ $(C, 0)$ defined by $F=0$, in $\left(\mathbf{C}^{G+1}, 0\right)$ by setting

$$
\begin{equation*}
u_{0}=x, u_{1}=F_{1}, \ldots, u_{G}=F_{G} . \tag{2}
\end{equation*}
$$

We also set the weight of u_{i} equal to \bar{B}_{i}, for $i=0, \ldots, G$. The equations defining the embedding of $(C, 0)$ are obtained by making the replacement (2) in the $\left(F_{1}, \ldots, F_{j}\right)$-expansion of F_{j+1} for $j=1, \ldots, G$. The inequalities of the form (1) together with $N_{j} \bar{B}_{j}=\sum_{i=0}^{j-1} \eta_{i}^{(j)} \bar{B}_{i}$ for $j=1, \ldots, G$ and $N_{j} \bar{B}_{j}<\bar{B}_{j+1}$ for $j=1, \ldots, G-1$, are precisely the weight conditions on the equations of defining the embedding $(C, 0) \subset\left(\mathbf{C}^{G+1}, 0\right)$ indicated in Proposition 39 of $[\mathbf{G P}]$. By the proof of Theorem 6.1 in [G-T] or by Theorem 2, page 1867 in [GP] one toric modication of \mathbf{C}^{G+1} provides a simultaneous embedded resolution of both the

[^0]monomial curve $\left(C^{\Gamma}, 0\right)$ parametrized by $u_{i}=t^{\bar{B}_{i}}, i=0, \ldots, G$ and the germ $(C, 0) \subset\left(\mathbf{C}^{G+1}, 0\right)$. In addition, the strict transforms of both curves intersect the exceptional divisor at exactly one point. In particular, this implies that the normalization of $(C, 0)$ is smooth, and the germ $(C, 0)$ is irreducible hence F is irreducible.

Acknowledgements. The author is grateful to Arkadiusz Płoski and Evelia García Barroso for pointing out the problem in the proof of Theorem 3.8 of [GP2]. This work is supported by the grant MTM2010-21740-C02 of MEC-Spain.

References

[G-T] R. Goldin and B. Teissier, Resolving singularities of plane analytic branches with one toric morphism, Resolution of Singularities, A research textbook in tribute to Oscar Zariski, (eds. H. Hauser, J. Lipman, F. Oort and A. Quiros), Progr. Math., 181, Birkhäuser, Basel, 2000, pp. 315-340.
[GP] P. D. González Pérez, Toric embedded resolutions of quasi-ordinary hypersurface singularities, Ann. Inst. Fourier (Grenoble), 53 (2003), 1819-1881.
[GP2] P. D. González Pérez, Approximate roots, toric resolutions and deformations of a plane branch, J. Math. Soc. Japan, 62 (2010), 975-1004.

Pedro Daniel González PÉrez
ICMAT, Departamento de Algebra
Facultad de Ciencias Matemáticas
Universidad Complutense de Madrid Plaza de las Ciencias 3
28040 Madrid, Spain
E-mail: pgonzalez@mat.ucm.es

[^0]: 2010 Mathematics Subject Classification. Primary 14J17; Secondary 32S10, 14M25.
 Key Words and Phrases. approximate roots, deformations of a plane curve.

