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Abstract. The asymptotic behavior at infinity of oscillatory integrals
is in detail investigated by using the Newton polyhedra of the phase and the
amplitude. We are especially interested in the case that the amplitude has
a zero at a critical point of the phase. The properties of poles of local zeta
functions, which are closely related to the behavior of oscillatory integrals, are
also studied under the associated situation.

1. Introduction.

In this paper, we investigate the asymptotic behavior of oscillatory integrals,
that is, integrals of the form

I(τ) =
∫

Rn

eiτf(x)ϕ(x)χ(x)dx, (1.1)

for large values of the real parameter τ , where f , ϕ, χ are real-valued smooth
functions defined on Rn and χ is a cut-off function with small support which
identically equals one in a neighborhood of the origin in Rn. Here f and ϕχ are
called the phase and the amplitude, respectively.

By the principle of stationary phase, the main contribution in the behavior of
the integral (1.1) as τ → +∞ is given by the local properties of the phase around
its critical points. We assume that the phase has a critical point at the origin,
i.e., ∇f(0) = 0. The following deep result has been obtained by using Hironaka’s
resolution of singularities [16] (cf. [21]). If f is real analytic on a neighborhood of
the origin and the support of χ is contained in a sufficiently small neighborhood
of the origin, then the integral I(τ) has an asymptotic expansion of the form
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I(τ) ∼ eiτf(0)
∑
α

n∑

k=1

Cαkτα(log τ)k−1 as τ → +∞, (1.2)

where α runs through a finite number of arithmetic progressions not depending
on ϕ and χ, which consist of negative rational numbers. Our interest focuses
the largest α occurring in (1.2). Let S(f, ϕ) be the set of pairs (α, k) such that
for each neighborhood of the origin in Rn, there exists a cut-off function χ with
support in this neighborhood for which Cαk 6= 0 in the asymptotic expansion
(1.2). We denote by (β(f, ϕ), η(f, ϕ)) the maximum of the set S(f, ϕ) under the
lexicographic ordering, i.e. β(f, ϕ) is the maximum of values α for which we can
find k so that (α, k) belongs to S(f, ϕ); η(f, ϕ) is the maximum of integers k

satisfying that (β(f, ϕ), k) belongs to S(f, ϕ). We call β(f, ϕ) oscillation index
of (f, ϕ) and η(f, ϕ) its multiplicity. (This multiplicity, less one, is equal to the
corresponding multiplicity in [1, p. 183].)

From various points of view, the following is an interesting problem: What
kind of information of the phase and the amplitude determines (or estimates)
the oscillation index β(f, ϕ) and its multiplicity η(f, ϕ)? There have been many
interesting studies concerning this problems ([28], [6], [25], [7], [5], [13], [14], [15],
etc.). In particular, the significant work of Varchenko [28] shows the following by
using the theory of toric varieties: By the geometry of the Newton polyhedron of f ,
the oscillation index can be estimated and, moreover, this index and its multiplicity
can be exactly determined when ϕ(0) 6= 0, under a certain nondegenerate condition
of the phase (see Theorem 2.1 in Section 2). Since his study, the investigation of
the behavior of oscillatory integrals has been more closely linked with the theory
of singularities. Refer to the excellent expositions [19], [1] for studies in this
direction. Besides [28], recent works of Greenblatt [11], [12], [13], [14], [15] are
also interesting. He explores a certain resolution of singularities, which is obtained
from an elementary method, and investigates the asymptotic behavior of I(τ). His
analysis is also available for a wide class of phases without the above nondegenerate
condition.

In this paper, we generalize and improve the above results of Varchenko [28].
To be more precise, we are especially interested in the behavior of the integral
(1.1) as τ → +∞ when ϕ has a zero at a critical point of the phase. Indeed,
under some assumptions, we obtain more accurate results by using the Newton
polyhedra of not only the phase but also the amplitude. Closely related issues
have been investigated by Arnold, Gusein-Zade and Varchenko [1] and Pramanik
and Yang [24], and they obtained similar results to ours. From the point of view
of our investigations, their results will be reviewed in Remark 2.8 in Section 2 and
Section 7.4. In our results, delicate geometrical conditions of the Newton polyhedra
of the phase and the amplitude affect the behavior of oscillatory integrals. There
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exist some faces of the Newton polyhedron of the amplitude, which play a crucial
role in determining the oscillation index and its multiplicity. Furthermore, in
order to determine the oscillation index in general, we need not only geometrical
properties of their Newton polyhedra but also information about the coefficients of
the terms, corresponding to the above faces, in the Taylor series of the amplitude.
(See Theorem 2.7 in Section 2.2 and Example 2 in Section 7.3.)

It is known (see, for instance, [17], [1], [19], and Section 6.1 in this paper)
that the asymptotic analysis of oscillatory integral (1.1) can be reduced to an
investigation of the poles of the functions Z+(s) and Z−(s) (see (5.1) below),
which are similar to the local zeta function

Z(s) =
∫

Rn

|f(x)|sϕ(x)χ(x)dx, (1.3)

where f , ϕ, χ are the same as in (1.1) with f(0) = 0. The substantial analysis in
this paper is to investigate the properties of poles of the local zeta function Z(s)
and the functions Z±(s) by using the Newton polyhedra of the functions f and ϕ.
See Section 5 for more details.

Many problems in analysis, including partial differential equations, mathe-
matical physics, harmonic analysis and probability theory, lead to the need to
study the behavior of oscillatory integrals of the form (1.1) as τ → +∞. We
explain the original motivation for our investigation. In the function theory of
several complex variables, it is an important problem to understand boundary be-
havior of the Bergman kernel for pseudoconvex domains. In [18], the special case
of domains of finite type is considered and the behavior as τ → +∞ of the Laplace
integral

Ĩ(τ) =
∫

Rn

e−τf(x)ϕ(x)dx

plays an important role in boundary behavior of the above kernel. Here f ,ϕ are C∞

functions satisfying certain conditions. The computation of asymptotic expansion
of the above kernel in [18] requires precise analysis of Ĩ(τ) when ϕ has a zero at
the critical point of f . Our analysis in this paper can be applied to the case of the
above Laplace integrals. See also [2], [3].

This paper is organized as follows. In Section 2, after explaining some impor-
tant notions and terminology, we state main results relating to oscillatory integrals.
In Section 3, we consider an important assumption in Theorem 2.7 in Section 2,
which is related to elementary convex geometry (cf. [29]). In Section 4, we overview
the theory of toric varieties and explain a certain resolution of singularities. In
Section 5, we investigate the properties of poles of the local zeta function Z(s) and
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the functions Z±(s) by using the resolution of singularities constructed in Section
4. In Section 6, we give proofs of theorems on the behavior of oscillatory integrals
stated in Section 2. In Section 7, we give some examples, which clarify the subtlety
of our results. Lastly, we check a related result in [1] with these examples.

Notation and Symbols.

• We denote by Z+,Q+,R+ the subsets consisting of all nonnegative numbers
in Z,Q,R, respectively.

• We use the multi-index as follows. For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈
Rn, α = (α1, . . . , αn) ∈ Rn

+, define

|x| =
√
|x1|2 + · · ·+ |xn|2, 〈x, y〉 = x1y1 + · · ·+ xnyn,

xα = xα1
1 · · ·xαn

n , 〈α〉 = α1 + · · ·+ αn.

• For A,B ⊂ Rn and c ∈ R, we set

A + B = {a + b ∈ Rn; a ∈ A and b ∈ B}, c ·A = {ca ∈ Rn; a ∈ A}.

• We express by 1 the vector (1, . . . , 1) or the set {(1, . . . , 1)}.
• For a finite set A, #A means the cardinality of A.
• For a C∞ function f , we denote by Supp(f) the support of f , i.e., Supp(f) =
{x ∈ Rn; f(x) 6= 0}.

2. Definitions and main results.

2.1. Newton polyhedra.
Let us explain some necessary notions to state our main theorems. The defini-

tions of more fundamental terminologies (polyhedra, faces, dimensions, etc.) will
be given in Section 3.1.

Let f be a real-valued C∞ function defined on a neighborhood of the origin
in Rn, which has the Taylor series

∑
α∈Zn

+
cαxα at the origin. Then, the Taylor

support of f is the set Sf = {α ∈ Zn
+; cα 6= 0} and the Newton polyhedron of f is

the integral polyhedron:

Γ+(f) = the convex hull of the set
⋃{α + Rn

+;α ∈ Sf} in Rn
+

(i.e., the intersection of all convex sets which contain
⋃{α + Rn

+;α ∈ Sf}). The
union of the compact faces of the Newton polyhedron Γ+(f) is called the Newton
diagram Γ(f) of f , while the topological boundary of Γ+(f) is denoted by ∂Γ+(f).
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The principal part of f is defined by f0(x) =
∑

α∈Γ(f)∩Zn
+

cαxα. For a compact
subset γ ⊂ ∂Γ+(f), let fγ(x) =

∑
α∈γ∩Zn

+
cαxα. f is said to be nondegenerate

over R with respect to the Newton polyhedron Γ+(f) if for every compact face
γ ⊂ Γ(f), the polynomial fγ satisfies

∇fγ =
(

∂fγ

∂x1
, . . . ,

∂fγ

∂xn

)
6= (0, . . . , 0) on the set {x ∈ Rn;x1 · · ·xn 6= 0}.

f is said to be convenient if the Newton diagram Γ(f) intersects all the coordinate
axes.

Let f, ϕ be real-valued C∞ functions defined on a neighborhood of the origin
in Rn and assume that Γ(f) and Γ(ϕ) are nonempty. We define the Newton
distance of (f, ϕ) by

d(f, ϕ) = min{d > 0; d · (Γ+(ϕ) + 1) ⊂ Γ+(f)}. (2.1)

It is easy to see d(f, ϕ) = max{d > 0; ∂Γ+(f)∩ d · (Γ+(ϕ) + 1) 6= ∅}. The number
d(f, ϕ) corresponds to what is called the coefficient of inscription of Γ+(ϕ) in Γ+(f)
in [1, p. 254]. (Their definition in [1] must be slightly modified.) Let Γ(ϕ, f) be
the subset in Rn defined by

Γ(ϕ, f) + 1 =
(

1
d(f, ϕ)

· ∂Γ+(f)
)
∩ (Γ+(ϕ) + 1).

In the above definition, ∂Γ+(ϕ) can be used instead of Γ+(ϕ) (see Remark 3.2).
Lemma 3.1, below, implies that Γ(ϕ, f) is some union of faces of Γ+(ϕ).

Let Γ(k) be the union of k-dimensional faces of Γ+(f). Then Γ+(f) is stratified
as Γ(0) ⊂ Γ(1) ⊂ · · · ⊂ Γ(n−1)(= ∂Γ+(f)) ⊂ Γ(n)(= Γ+(f)). Let Γ̃(k) = Γ(k) \
Γ(k−1) for k = 1, . . . , n and Γ̃(0) = Γ(0). A map ρf : Γ+(f) → {0, 1, . . . , n} is
defined as ρf (α) = k if α ∈ Γ̃(n−k). In other words, ρf (α) is the codimension
of the face of Γ+(f), whose relative interior contains the point α. We define the
Newton multiplicity of (f, ϕ) by

m(f, ϕ) = max{ρf (d(f, ϕ)(α + 1));α ∈ Γ(ϕ, f)}.

Let Γ0 be the subset of Γ(ϕ, f) defined by

Γ0 = {α ∈ Γ(ϕ, f); ρf (d(f, ϕ)(α + 1)) = m(f, ϕ)},

which is called the essential set on Γ(ϕ, f). Proposition 3.3, below, shows that Γ0
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is a disjoint union of faces of Γ+(ϕ).
Consider the case ϕ(0) 6= 0. Then Γ+(ϕ) = Rn

+. In this case, d(f, ϕ) and
m(f, ϕ) are denoted by df and mf , respectively. (Note that d(f, ϕ) ≤ df for
general ϕ.) It is easy to see that the point q = (df , . . . , df ) is the intersection of the
line α1 = · · · = αn in Rn and ∂Γ+(f), and that mf = ρf (q). Γ(ϕ, f) ⊃ Γ0 ⊃ {0}.
More generally, in the case that Γ+(ϕ) = {p}+ Rn

+ with p ∈ Zn
+, the geometrical

meanings of the quantities d(f, ϕ) and m(f, ϕ) will be considered in Proposition
5.4 below.

2.2. Main results.
Let us explain our results relating to the behavior of the oscillatory integral

I(τ) in (1.1) as τ → +∞.
Throughout this subsection, f , ϕ, χ satisfy the following conditions: Let U

be an open neighborhood of the origin in Rn.

(A) f : U → R is a real analytic function satisfying that f(0) = 0, |∇f(0)| = 0
and Γ(f) 6= ∅;

(B) ϕ : U → R is a C∞ function satisfying Γ(ϕ) 6= ∅;
(C) χ : Rn → R+ is a C∞ function which identically equals one in some neigh-

borhood of the origin and has a small support which is contained in U .

As mentioned in the Introduction, it is known that the oscillatory integral
(1.1) has an asymptotic expansion of the form (1.2). Before stating our results,
recall a part of famous results due to Varchenko in [28]. In our language, they are
stated as follows.

Theorem 2.1 (Varchenko [28]). Suppose that f is nondegenerate over R
with respect to its Newton polyhedron. Then

( i ) β(f, ϕ) ≤ −1/df for any ϕ;
( ii ) If ϕ(0) 6= 0 and df > 1, then β(f, ϕ) = −1/df and η(f, ϕ) = mf ;
(iii) The progression {α} in (1.2) belongs to finitely many arithmetic progres-

sions, which are obtained by using the theory of toric varieties based on the
geometry of the Newton polyhedron Γ+(f). (See Remark 2.6, below.)

Now, let us explain our results. First, we investigate more precise situation
in the estimate in the part (i) of Theorem 2.1. Indeed, when ϕ has a zero at the
origin, the oscillation index β(f, ϕ) can be more accurately estimated by using the
Newton distance d(f, ϕ), which is called “the coefficient of inscription of Γ+(ϕ) in
Γ+(f)” in [1].

Theorem 2.2. Suppose that (i) f is nondegenerate over R with respect to
its Newton polyhedron and (ii) at least one of the following conditions is satisfied :
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(a) f is convenient ;
(b) ϕ is convenient ;
(c) ϕ is real analytic on U ;
(d) ϕ is expressed as ϕ(x) = xpϕ̃(x) on U , where p ∈ Zn

+ and ϕ̃ is a C∞ function
defined on U with ϕ̃(0) 6= 0.

Then, we have β(f, ϕ) ≤ −1/d(f, ϕ).

Remark 2.3. A more precise estimate for I(τ) is obtained as follows: If the
support of χ is contained in a sufficiently small neighborhood of the origin, then
there exists a positive constant C independent of τ such that

|I(τ)| ≤ Cτ−1/d(f,ϕ)(log τ)A−1 for τ ≥ 1,

where

A :=

{
m(f, ϕ) if 1/d(f, ϕ) is not an integer,

min{m(f, ϕ) + 1, n} otherwise.

The details will be explained in the proof of the above theorem in Section 6.

Remark 2.4. Let us consider the above theorem under the assumptions (i),
(ii)-(d) without the condition: ϕ̃(0) 6= 0. Then the estimate β(f, ϕ) ≤ −1/d(f, ϕ)
does not always hold. In fact, consider the two-dimensional example: f(x1, x2) =
x2

1, ϕ(x1, x2) = x2
1(x

2
1 + e−1/x2

2). The proof of Theorem 2.2, however, implies
that the estimate β(f, ϕ) ≤ −1/d(f, xp) holds under the above assumptions. This
assertion with p = (0, . . . , 0) shows the assertion (i) in Theorem 2.1.

Vassiliev [27] obtained a similar result to that in the case of (d).

Remark 2.5. The condition (d) implies Γ+(ϕ) = {p} + Rn
+. When ϕ is a

C∞ function, however, the converse is not true in general. We give an example
in Section 7.2, which shows that the assumption (d) cannot be replaced by the
condition: Γ(ϕ) = {p}+ Rn

+ in Theorem 2.2.

Remark 2.6. From the proof of the above theorem, we can see that under
the same condition, the progression {α} in (1.2) is contained in the set

{
1

d(f, ϕ)
+

ν

l(a)
; a ∈ Σ̃(1), ν ∈ Z+

}(
⊂

{
1
df

+
ν

l(a)
; a ∈ Σ̃(1), ν ∈ Z+

})
,

where the symbol l(a) is as in (4.1) and Σ̃(1) is as in Theorem 5.1, below. This
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explicitly shows the assertion (iii) in Theorem 2.1.

Next, let us give an analogous result to the part (ii) in Theorem 2.1, due to
Varchenko. Indeed, the following theorem deals with the case that the equation
β(f, ϕ) = −1/d(f, ϕ) holds.

Theorem 2.7. Suppose that (i) f is nondegenerate over R with respect to
its Newton polyhedron, (ii) at least one of the following two conditions is satisfied :

(a) d(f, ϕ) > 1;
(b) f is nonnegative or nonpositive on U ,

and (iii) at least one of the following two conditions is satisfied :

(c) ϕ is expressed as ϕ(x) = xpϕ̃(x) on U , where every component of p ∈ Zn
+ is

even and ϕ̃ is a C∞ function defined on U with ϕ̃(0) 6= 0;
(d) f is convenient and ϕΓ0 is nonnegative or nonpositive on U .

Then the equations β(f, ϕ) = −1/d(f, ϕ) and η(f, ϕ) = m(f, ϕ) hold.

Remark 2.8. Considering the assumptions: (i), (ii)-(a), (iii)-(c) with p =
(0, . . . , 0) in the above theorem, we see the assertion (ii) in Theorem 2.1.

Pramanik and Yang [24] obtained a similar result in the case that the dimen-
sion is two and ϕ(x) = |g(x)|ε where g is real analytic and ε is positive. Their
result in Theorem 3.1 (a) does not need strong assumptions. We explain this rea-
son roughly. They use the weighted Newton distance, whose definition is different
from our Newton distance. The definition of their distance is more intrinsic and
is based on a good choice of coordinate system, which induces a clear resolution
of singularity. Moreover, the nonnegativity of ϕ implies the positivity of the co-
efficient of the expected leading term of the asymptotic expansion (1.2). On the
other hand, in our case, the corresponding coefficient possibly vanishes without
the assumption (c) or (d). See Sections 7.1 and 7.3.

Remark 2.9. In Section 3, we discuss the set Γ0 and the function ϕΓ0 in
the condition (d) in detail. If ϕ(0) = 0 and ϕ takes the local minimal (resp. the
local maximal) at the origin, then ϕΓ0 is nonnegative (resp. nonpositive) on some
neighborhood of the origin.

Remark 2.10. It is easy to show that Theorem 2.7 can be rewritten in a
slightly stronger form by replacing the condition (c) by the following (c′):

(c′) ϕ is expressed as ϕ(x) =
∑l

j=1 xpj ϕ̃j(x) on U , where pj ∈ Zn
+ and ϕ̃j ∈

C∞(U) for all j satisfies that if pj ∈ Γ0, then every component of pj is even
and ϕ̃j(0) > 0 (or ϕ̃j(0) < 0) for all j.
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We will give an example in Section 7.3, which satisfies the conditions (a), (d)
but does not satisfy the condition (c′). (Consider the case that the parameter t

satisfies 0 < |t| < 2 in the example.)

Remark 2.11. In the one-dimensional case, the conditions (c) and (d) are
equivalent.

Lastly, let us discuss a “symmetrical” property with respect to the phase and
the amplitude. Observe the one-dimensional case. Let f, ϕ satisfy that f(0) =
f ′(0) = · · · = f (q−1)(0) = ϕ(0) = ϕ′(0) = · · · = ϕ(p−1)(0) = 0 and f (q)(0)ϕ(p)(0) 6=
0, where p, q ∈ N are even. Applying the computation in Chapter 8 in [26] (see
also Section 7.1 in this paper), we can see that if the support of χ is sufficiently
small, then

∫ ∞

−∞
eiτxf(x)ϕ(x)χ(x)dx ∼ τ−(p+1)/(q+1)

∞∑

j=0

Cjτ
−j/(q+1) as τ →∞,

where C0 is a nonzero constant. Note that the above expansion can be obtained for
C∞ functions f and ϕ. In particular, β(xf, ϕ) = −(p+1)/(q+1) holds. Similarly,
we can get β(xϕ, f) = −(q + 1)/(p + 1). From this observation, the following
question seems interesting: When does the equality β(x1f, ϕ)β(x1ϕ, f) = 1 hold
in higher dimensional case? The following theorem is concerned with this question.

Theorem 2.12. Let f , ϕ be nonnegative or nonpositive real analytic func-
tions defined on U . Suppose that both f and ϕ are convenient and nondegenerate
over R with respect to their Newton polyhedra. Then we have β(x1f, ϕ)β(x1ϕ, f) ≥
1. Moreover, the following two conditions are equivalent :

( i ) β(x1f, ϕ)β(x1ϕ, f) = 1;
( ii ) There exists a positive rational number d such that Γ+(x1f) = d · Γ+(x1ϕ).

If the condition (i) or (ii) is satisfied, then we have η(x1f, ϕ) = η(x1ϕ, f) = n.

3. Convex polyhedra and essential sets.

3.1. Polyhedra.
Let us give precise definitions for polyhedra, faces, dimensions and so on.

Refer to [29], etc. for general theory of convex polyhedra.
A (convex ) polyhedron is an intersection of closed halfspaces: a set P ⊂ Rn

presented in the form
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P =
m⋂

j=1

{x ∈ Rn; 〈aj , x〉 ≥ zj},

for some a1, . . . , am ∈ Rn and z1, . . . , zm ∈ R. It is known (cf. [29]) that the
Newton polyhedron Γ+(f) in Section 2.1 is a polyhedron.

Let P be a polyhedron in Rn. A pair (a, z) ∈ Rn ×R is valid for P if a linear
inequality 〈a, x〉 ≥ z is satisfied for all points x ∈ P . For (a, z) ∈ Rn × R, define

H(a, z) = {x ∈ Rn; 〈a, x〉 = z}. (3.1)

A face of P is any set of the form F = P ∩H(a, z), where (a, z) is valid for P . Since
(0, 0) is always valid, we consider P itself as a trivial face of P ; the other faces
are called proper faces. Conversely, it is easy to see that any face is a polyhedron.
Considering the valid pair (0,−1), we see that the empty set is always a face of
P . The dimension of a face F is the dimension of its affine hull of F (i.e., the
intersection of all affine flats that contain F ). The faces of dimensions 0, 1 and
dim(P ) − 1 are called vertices, edges and facets, respectively. The boundary of a
polyhedron P , denoted by ∂P , is the union of all proper faces of P . For a face F ,
∂F is similarly defined.

3.2. Essential sets.
Let us consider the properties of Γ(ϕ, f) and the essential set Γ0 defined in

Section 2.1. Moreover, we consider the condition (d) in Theorem 2.7.

Lemma 3.1. Let P1, P2 be n-dimensional polyhedra in Rn. If P1 ⊂ P2, then
P1 ∩ ∂P2 is the union of proper faces of P1.

Proof. There exist finite pairs (a1, z1), . . . , (al, zl) ∈ Rn×R such that every
(aj , zj) is valid for P2 and ∂P2 =

⋃l
j=1(P2 ∩H(aj , zj)).

P1 ∩ ∂P2 = P1 ∩
[ l⋃

j=1

(P2 ∩H(aj , zj))
]

=
l⋃

j=1

(
P1 ∩ P2 ∩H(aj , zj)

)
=

l⋃

j=1

(
P1 ∩H(aj , zj)

)
. (3.2)

Since every (aj , zj) is also valid for P1 and P1 ∩H(aj , zj) is a proper face of P1,
then we get the lemma. ¤

Hereafter in this section, we assume that f, ϕ are C∞ functions defined on a
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neighborhood of the origin and their Newton polyhedra are nonempty.
By applying the above lemma to the case:

P1 = Γ+(ϕ), P2 =
1

d(f, ϕ)
· Γ+(f)− 1, (3.3)

we see that Γ(ϕ, f) = P1 ∩ ∂P2(6= ∅) is the union of faces of Γ+(ϕ).

Remark 3.2. From (3.2), we see P1∩∂P2 ⊂ ∂P1. Thus, ∂P1∩∂P2 = P1∩∂P2

holds.

Proposition 3.3. There exist the faces γ1, . . . , γl of Γ+(ϕ) such that

Γ0 =
l⊎

j=1

γj (disjoint union).

Moreover, the dimension of γj is not greater than n−m(f, ϕ) for any j.

Proof. Set P1 and P2 as in (3.3) and let k0 = n−m(f, ϕ).
In the case k0 = 0, Γ0 is the set of vertices of P1, which implies the proposition.

Consider the case 1 ≤ k0 ≤ n. Let F1, . . . , Fl be the k0-dimensional faces of P2

such that Fj∩P1 6= ∅. Now, let us show the sets γj := Fj∩P1 satisfy the condition
in the proposition. Of course, the union of all γj is Γ0 and the dimensions of γj

are not greater than k0(= n − m(f, ϕ)) for any j. It suffices to show that each
γj is a face of P1 and that γj ∩ γk = ∅ if j 6= k. For each j, there is a pair
(aj , zj) ∈ Rn × R such that it is valid for P2 and Fj = P2 ∩ H(aj , zj). Thus,
γj = P1 ∩ Fj = P1 ∩ P2 ∩ H(aj , zj) = P1 ∩ H(aj , zj), which implies γj is a face
of P1. Next, by the minimality of k0, γj is contained in the relative interior of
Fj (i.e., γj ⊂ Fj \ ∂Fj). Since all relative interiors of Fj are disjoint, we have
γj ∩ γk = ∅ if j 6= k. ¤

Lemma 3.4. Let γ be a compact face of Γ+(ϕ). If ϕ is nonnegative (or
nonpositive) in a neighborhood of the origin, so is ϕγ .

Proof. A pair (a, z) = ((a1, . . . , an), z) ∈ Rn × R corresponds to γ, i.e.,
H(a, z) ∩ Γ+(ϕ) = γ. Taylor’s formula implies that for any N ∈ N, ϕ can be
expressed as

ϕ(x) =
∑

α∈Sϕ∩UN

cαxα +
∑

p∈Zn
+,〈p〉=N

xpϕp(x), (3.4)

where UN := {α ∈ Rn
+; 〈α〉 < N}, cα are constants and ϕp are C∞ functions
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defined on a neighborhood of the origin. Here, take a sufficiently large N such
that γ is contained in the set UN . For ξ = (ξ1, . . . , ξn) ∈ (−ε, ε)n, t ∈ (−ε, ε),
where ε > 0 is small, a simple computation gives

ϕ(ξ1t
a1 , . . . , ξntan) =

∑

α∈Sϕ∩UN

cαξαt〈a,α〉 +
∑

p∈Zn
+,〈p〉=N

ξαt〈a,p〉ϕp(ξ1t
a1 , . . . , ξntan)

= tz(ϕγ(ξ) + a(ξ, t)t),

where a(ξ, t) is a C∞ function defined on a neighborhood of (0, 0) ∈ Rn×R. From
the above, it is easy to show the lemma. ¤

Remark 3.5. Even if ϕγ is nonnegative (resp. nonpositive) near the origin
for every faces γ of Γ+(ϕ), ϕ is not always nonnegative (resp. nonpositive) near
the origin: Consider the example ϕ(x1, x2) = (x1 − x2)2 − x4

2.

Proposition 3.6. Let γ1, . . . , γl be the faces of Γ+(ϕ) as in Proposition 3.3
and suppose Γ0 is compact. Then the following two conditions are equivalent :

( i ) ϕΓ0 is nonnegative (resp. nonpositive) near the origin;
( ii ) ϕγj is nonnegative (resp. nonpositive) near the origin for all j.

Proof. From Lemma 3.4, we can see that (i) implies (ii). Since Γ0 is the
disjoint union of the faces γj , we have ϕΓ0(x) =

∑l
j=1 ϕγj

(x). This shows that
(ii) implies (i). ¤

Corollary 3.7. If f is convenient and ϕ is nonnegative or nonpositive
near the origin, then the condition (d) in Theorem 2.7 is satisfied.

Proof. The convenience of f implies the compactness of Γ0. By Lemma
3.4, the assertion (ii) in Proposition 3.6 is satisfied. ¤

4. Toric resolution.

The purpose of this section is to give the resolution of the singularities of the
critical points of some functions from the theory of toric varieties. Refer to [20],
[22], [9], [23], etc. for general theory of toric varieties.

4.1. Cones and fans.
In order to construct a toric resolution obtained from the Newton polyhedron,

we recall the definitions of important terminology: cone and fan.
A rational polyhedral cone σ ⊂ Rn is a cone generated by finitely many ele-

ments of Zn. In other words, there are u1, . . . , uk ∈ Zn such that
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σ = {λ1u1 + · · ·+ λkuk ∈ Rn;λ1, . . . , λk ≥ 0}.

We say that σ is strongly convex if σ ∩ (−σ) = {0}.
By regarding a cone as a polyhedron in Rn, the definitions of dimension, face,

edge, facet for the cone are given in the same way as in Section 3.
The fan is defined to be a finite collection Σ of cones in Rn with the following

properties:

• Each σ ∈ Σ is a strongly convex rational polyhedral cone;
• If σ ∈ Σ and τ is a face of σ, then τ ∈ Σ;
• If σ, τ ∈ Σ, then σ ∩ τ is a face of each.

For a fan Σ, the union |Σ| := ⋃
σ∈Σ σ is called the support of Σ. For k = 0, 1, . . . , n,

we denote by Σ(k) the set of k-dimensional cones in Σ. The skeleton of a cone σ ∈ Σ
is the set of all of its primitive integer vectors (i.e., with components relatively
prime in Z+) in the edges of σ. It is clear that the skeleton of σ generates σ itself.
Thus, the set of skeletons of the cones belonging to Σ(k) is also expressed by the
same symbol Σ(k).

4.2. Simplicial subdivision.
We denote by (Rn)∗ the dual space of Rn with respect to the standard inner

product. For a = (a1, . . . , an) ∈ (Rn)∗, define

l(a) = min{〈a, α〉;α ∈ Γ+(f)} (4.1)

and γ(a) = {α ∈ Γ+(f); 〈a, α〉 = l(a)} (= Γ+(f) ∩ H(a, l(a))). We introduce an
equivalence relation ∼ in (Rn)∗ by a ∼ a′ if and only if γ(a) = γ(a′). For any
k-dimensional face γ of Γ+(f), there is an equivalence class γ∗ which is defined by

γ∗ = {a ∈ (Rn)∗; γ(a) = γ, and aj ≥ 0 for j = 1, . . . , n}.

It is easy to see that the closure of γ∗ is an (n − k)-dimensional strongly convex
rational polyhedral cone in (Rn)∗. Moreover, the collection of the closures of γ∗

gives a fan Σ0. Note that |Σ0| = Rn
+.

It is known that there exists a simplicial subdivision Σ of Σ0, that is, Σ is a
fan satisfying the following properties:

• The fans Σ0 and Σ have the same support;
• Each cone of Σ lies in some cone of Σ0;
• The skeleton of any cone belonging to Σ can be completed to a base of the

lattice dual to Zn.
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4.3. Construction of toric varieties.
Fix a simplicial subdivision Σ of Σ0. For n-dimensional cone σ ∈ Σ, let

a1(σ), . . . , an(σ) be the skeleton of σ, ordered once and for all. Here, we set the
coordinates of the vector aj(σ) as

aj(σ) = (aj
1(σ), . . . , aj

n(σ)).

With every such cone σ, we associate a copy of Cn which is denoted by Cn(σ). We
denote by π(σ) : Cn(σ) → Cn the map defined by π(σ)(y1, . . . , yn) = (x1, . . . , xn)
with

xj = y
a1

j (σ)

1 · · · yan
j (σ)

n , j = 1, . . . , n. (4.2)

Let XΣ be the union of Cn(σ) for σ which are glued along the images of π(σ).
Indeed, for any n-dimensional cones σ, σ′ ∈ Σ, two copies Cn(σ) and Cn(σ′) can
be identified with respect to a rational mapping: π−1(σ′) ◦π(σ) : Cn(σ) → Cn(σ′)
(i.e. x ∈ Cn(σ) and x′ ∈ Cn(σ′) will coalesce if π−1(σ′) ◦ π(σ) : x 7→ x′). Then it
is known that

• XΣ is an n-dimensional complex algebraic manifold;
• The map π : XΣ → Cn defined on each Cn(σ) as π(σ) : Cn(σ) → Cn is

proper.

The manifold XΣ is called the toric variety associated with Σ. The transition
functions between local maps of the manifold XΣ are real on the real part of the
manifold XΣ which will be denoted by YΣ. The restriction of the projection π to
YΣ is also denoted by π. Then we have

• YΣ is an n-dimensional real algebraic manifold;
• The map π : YΣ → Rn defined on each Rn(σ) as π(σ) : Rn(σ) → Rn is

proper.

Note 4.1. The map π(σ) plays an important role in our analysis and the
following kind of computation often appears: Let p = (p1, . . . , pn) ∈ Rn, then (4.2)
implies

xp = (π(σ)(y))p =
(
y

a1
1(σ)

1 · · · yan
1 (σ)

n

)p1 · · · (ya1
n(σ)

1 · · · yan
n(σ)

n

)pn

= y
〈a1(σ),p〉
1 · · · y〈an(σ),p〉

n .



Oscillatory integrals 535

4.4. Resolution of singularities.
For I ⊂ {1, . . . , n}, define the set TI in Rn by

TI = {y ∈ Rn; yj = 0 for j ∈ I, yj 6= 0 for j 6∈ I}. (4.3)

The following proposition shows that π : YΣ → Rn is a real resolution of the
singularity of the critical point of a real analytic function satisfying the nondegen-
erate property.

Proposition 4.2 ([28, Lemma 2.13, Lemma 2.15]). Suppose that f is a real
analytic function in a neighborhood U of the origin. Then we have the following.

( i ) There exists a real analytic function fσ defined on the set π(σ)−1(U) such
that fσ(0) 6= 0 and

(f ◦ π(σ))(y1, . . . , yn) = y
l(a1(σ))
1 · · · yl(an(σ))

n fσ(y1, . . . , yn). (4.4)

( ii ) The Jacobian of the mapping π(σ) is equal to

Jπ(σ)(y) = ±y
〈a1(σ)〉−1
1 · · · y〈an(σ)〉−1

n . (4.5)

(iii) The set of the points in Rn in which π(σ) is not an isomorphism is a union
of coordinate planes.

Moreover, if f is nondegenerate over R with respect to Γ+(f) and π(σ)(TI) =
0, then the set {y ∈ TI ; fσ(y) = 0} is nonsingular, that is, the gradient of the
restriction of the function fσ to TI does not vanish at the points of the set {y ∈
TI ; fσ(y) = 0}.

5. Poles of local zeta functions.

Throughout this section, the functions f , ϕ, χ always satisfy the conditions
(A), (B), (C) in the beginning of Section 2.2.

The purpose of this section is to investigate the properties of poles of the
functions:

Z+(s) =
∫

Rn

f(x)s
+ϕ(x)χ(x)dx, Z−(s) =

∫

Rn

f(x)s
−ϕ(x)χ(x)dx, (5.1)

where f(x)+ = max{f(x), 0} and f(x)− = max{−f(x), 0} and the local zeta
function:
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Z(s) =
∫

Rn

|f(x)|sϕ(x)χ(x)dx. (5.2)

From the properties of Z+(s) and Z−(s), we can easily obtain analogous properties
of Z(s) by using the relationship: Z(s) = Z+(s) + Z−(s).

It is easy to see that the above functions are holomorphic functions in the
region Re(s) > 0. Moreover, it is known (see [1], [19], etc.) that if the support
of χ is sufficiently small, then these functions can be analytically continued to
the complex plane as meromorphic functions and their poles belong to finitely
many arithmetic progressions constructed from negative rational numbers. More
precisely, Varchenko [28] describes the positions of the candidate poles and their
orders by using the toric resolution constructed in Section 4. In this section, we
give more accurate results in the case that ϕ has a zero at the origin.

5.1. The monomial case.
First, let us consider the case that the function ϕ is a monomial, i.e., ϕ(x) =

xp = xp1
1 · · ·xpn

n with p = (p1, . . . , pn) ∈ Zn
+. Fedorjuk [8] was the first to consider

this kind of issue in two-dimensional case. Moreover, there have been closely
related studies to ours in [6], [7], [4], [5], which contain other interesting results.

Theorem 5.1. Suppose that (i) f is nondegenerate over R with respect to
its Newton polyhedron and (ii) ϕ(x) = xp with p ∈ Zn

+. If the support of χ is
contained in a sufficiently small neighborhood of the origin, then the poles of the
functions Z+(s), Z−(s) and Z(s) are contained in the set

{
− 〈a, p + 1〉+ ν

l(a)
; ν ∈ Z+, a ∈ Σ̃(1)

}
∪ (−N),

where l(a) is as in (4.1) and Σ̃(1) = {a ∈ Σ(1); l(a) > 0}.

In Remark 5.3 after the proof, we will explain in more detail the reason why
the set (−N) is necessary to express the poles.

Proof. Let Σ0 be the fan constructed from the Newton polyhedron of f .
Fix a simplicial subdivision Σ of Σ0 and let (YΣ, π) be the real resolution associated
with Σ as in Section 4.

By using the mapping x = π(y), Z+(s) and Z−(s) are expressed as

Z±(s) =
∫

Rn

f(x)s
±xpχ(x)dx

=
∫

YΣ

((f ◦ π)(y))s
±(π(y))p(χ ◦ π)(y)|Jπ(y)|dy,
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where dy is a volume element in YΣ, Jπ(y) is the Jacobian of the mapping π. It
is easy to see that there exists a set of C∞0 functions {χσ : YΣ → R+;σ ∈ Σ(n)}
satisfying the following properties:

• For each σ ∈ Σ(n), the support of the function χσ is contained in Rn(σ) and
χσ identically equals one in some neighborhood of the origin.

• ∑
σ∈Σ(n) χσ ≡ 1 on the support of χ ◦ π.

Applying Proposition 4.2, we have

Z±(s) =
∑

σ∈Σ(n)

Z
(σ)
± (s)

with

Z
(σ)
± (s) =

∫

Rn

((f ◦ π(σ))(y))s
±(π(σ)(y))p(χ ◦ π(σ))(y)χσ(y)|Jπ(σ)(y)|dy

=
∫

Rn

( n∏

j=1

y
l(aj(σ))
j fσ(y)

)s

±

( n∏

j=1

y
〈aj(σ),p〉
j

)∣∣∣∣
n∏

j=1

y
〈aj(σ)〉−1
j

∣∣∣∣χ̃σ(y)dy,

(5.3)

where χ̃σ(y) = (χ ◦ π(σ))(y)χσ(y).
Now, consider the functions Z

(σ)
± (s) for σ ∈ Σ(n). We easily see the existence

of finite sets of C∞0 functions {ψk : Rn → R+} and {ηl : Rn → R+} satisfying the
following conditions.

• The supports of ψk and ηl are sufficiently small and
∑

k ψk +
∑

l ηl ≡ 1 on
the support of χ̃σ.

• For each k, fσ is always positive or negative on the support of ψk.
• For each l, the support of ηl intersects the set {y ∈ Supp(χ̃σ); fσ(y) = 0}
• The union of the support of ηl for all l contains the set {y ∈

Supp(χ̃σ); fσ(y) = 0}
Using the functions ψk and ηl, we have

Z
(σ)
± (s) =

∑

k

I
(k)
σ,±(s) +

∑

l

J
(l)
σ,±(s), (5.4)

with

I
(k)
σ,±(s) =

∫

Rn

( n∏

j=1

y
l(aj(σ))
j fσ(y)

)s

±

( n∏

j=1

y
〈aj(σ),p〉
j

)∣∣∣∣
n∏

j=1

y
〈aj(σ)〉−1
j

∣∣∣∣ψ̃k(y)dy,



538 K. Cho, J. Kamimoto and T. Nose

J
(l)
σ,±(s) =

∫

Rn

( n∏

j=1

y
l(aj(σ))
j fσ(y)

)s

±

( n∏

j=1

y
〈aj(σ),p〉
j

)∣∣∣∣
n∏

j=1

y
〈aj(σ)〉−1
j

∣∣∣∣η̃l(y)dy,

where ψ̃k(y) = χ̃σ(y)ψk(y) and η̃l(y) = χ̃σ(y)ηl(y). If the set {y ∈ Supp(χ̃σ);
fσ(y) = 0} is empty, then the functions J

(l)
σ,±(s) do not appear.

First, consider the functions I
(k)
σ,±(s). Set δ(+) = 0 and δ(−) = 1. For ε =

(ε1, . . . , εn) ∈ {+,−}n, let δ(ε) = (δ(ε1), . . . , δ(εn)) ∈ {0, 1}n. A straightforward
computation gives

I
(k)
σ,±(s) =

∑

ε∈E(±αk,σ)

I
(ε)
σ,k(s) (5.5)

with

I
(ε)
σ,k(s) =

∫

Rn

( n∏

j=1

(yj)l(aj(σ))s
εj

)( n∏

j=1

y
〈aj(σ),p〉
j

)∣∣∣∣
n∏

j=1

y
〈aj(σ)〉−1
j

∣∣∣∣|fσ(y)|sψ̃k(y)dy,

where αk is the sign of fσ on the support of ψ̃k and

E(+, σ) (resp. E(−, σ))

=
{

ε ∈ {+,−}n;
n∑

j=1

l(aj(σ))δ(εj) is even (resp. odd)
}

.

We remark that E(+, σ)∪E(−, σ) = {+,−}n and that E(−, σ) is possibly empty.
Moreover, we have

I
(ε)
σ,k(s) = (−1)gσ,p(ε)

∫

Rn

( n∏

j=1

(yj)l(aj(σ))s+〈aj(σ),p+1〉−1
εj

)
|fσ(y)|sψ̃k(y)dy, (5.6)

where

gσ,p(ε) =
n∑

i,j=1

δ(εj) · aj
i (σ) · pi. (5.7)

The following lemma is useful for analyzing the poles of integrals of the above
form.

Lemma 5.2 ([10], [1]). Let ψ(y1, . . . , yn;µ) be a C∞0 function of y on Rn
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that is an entire function of the parameter µ ∈ C. Then the function

L(τ1, . . . , τn;µ) =
∫

Rn

( n∏

j=1

(yj)τj
εj

)
ψ(y1, . . . , yn;µ)dy1 · · · dyn,

where εj is + or −, can be analytically continued at all the values of τ1, . . . , τn

and µ as a meromorphic function. Moreover all its poles are simple and lie on
τj = −1,−2, . . . for j = 1, . . . , n.

Proof. This is easily obtained by the integration by parts (see [10], [1]).
¤

Applying Lemma 5.2 to (5.6), we see that the poles of I
(ε)
σ,k(s) are contained

in the set
{
− 〈aj(σ), p + 1〉+ ν

l(aj(σ))
; ν ∈ Z+, j ∈ B(σ)

}
, (5.8)

where

B(σ) := {j; l(aj(σ)) 6= 0} ⊂ {1, . . . , n}. (5.9)

Next, consider the functions J
(l)
σ,±(s). Applying Proposition 4.2 and changing

the integral variables, we have

J
(l)
σ,±(s) =

∫

Rn

(
yk

∏

j∈Bl(σ)

y
l(aj(σ))
j

)s

±

( ∏

j∈Bl(σ)

y
〈aj(σ),p〉
j

)∣∣∣∣
∏

j∈Bl(σ)

y
〈aj(σ)〉−1
j

∣∣∣∣η̂l(y)dy,

(5.10)

where Bl(σ) is some subset in {1, . . . , n} (with Bl(σ) 6= {1, . . . , n}), k ∈ {1, . . . , n}\
Bl(σ) and η̂l ∈ C∞0 (Rn) with η̂l(0) 6= 0. In a similar fashion to the case of I

(k)
σ,±(s),

we have

J
(l)
σ,±(s) =

∑

ε∈Ẽ(±,σ)

J
(ε)
σ,l (s),

with

J
(ε)
σ,l (s) = (−1)g̃σ,p(ε̃)

∫

Rn

(
(yk)s

εk

∏

j∈Bl(σ)

(yj)l(aj(σ))s+〈aj(σ),p+1〉−1
εj

)
η̂l(y)dy,

(5.11)
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where ε = (εk, ε̃) with ε̃ = (εj)j∈Bl(σ), g̃σ,p(ε̃) =
∑

j∈Bl(σ)

∑n
i=1 δ(εj) ·aj

i (σ) ·pi and

Ẽ(+, σ) (resp. Ẽ(−, σ))

=
{

ε = (εk, ε̃); δ(εk) +
∑

j∈Bl(σ)

l(aj(σ))δ(εj) is even (resp. odd)
}

.

We remark that #Ẽ(+, σ) = #Ẽ(−, σ) and, in particular, both Ẽ(+, σ) and Ẽ(−, σ)
are nonempty.

By applying Lemma 5.2 to (5.11), the poles of J
(ε)
σ,l (s) are contained in the set

{
− 〈aj(σ), p + 1〉+ ν

l(aj(σ))
; ν ∈ Z+, j ∈ B̃l(σ)

}
∪ (−N), (5.12)

where B̃l(σ) = {j ∈ Bl(σ); l(aj(σ)) 6= 0}.
Finally, the union of the sets (5.8) and (5.12) for all σ, ε equals the set

in the theorem. It is easy to show the case of Z(s) by using the relationship:
Z(s) = Z+(s) + Z−(s). ¤

Remark 5.3. We explain in more detail the reason why the set (−N) in
(5.12) is necessary to express the poles of J

(ε)
σ,l (s), namely, each J

(ε)
σ,l (s) possibly has

a pole on (−N). From Proposition 4.2, the nondegenerate condition of f implies
that fσ is nonsingular at the zero set of fσ. By choosing an appropriate coordinate
system near the zero set of fσ, f can be locally expressed by yk(

∏
j∈Bl(σ) y

l(aj(σ))
j )

as in (5.10). Moreover, the existence of (yk)s
εk

in (5.11) induces the poles on (−N)
by Lemma 5.2.

For p ∈ Zn
+, we define

β(p) = max
{
− 〈a, p + 1〉

l(a)
; a ∈ Σ̃(1)

}
. (5.13)

If s = β(p) is a pole of Z±(s), Z(s), then we denote by η±(p), η̂(p) the order of its
pole, respectively. For σ ∈ Σ(n), let

Ap(σ) =
{

j ∈ B(σ);β(p) = −〈a
j(σ), p + 1〉
l(aj(σ))

}
⊂ {1, . . . , n}.

The following proposition shows the relationship between “the values of β(p),
η±(p), η̂(p)” and “the geometrical conditions of Γ+(f) and the point p”.
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Proposition 5.4. Let q = (q1, . . . , qn) be the point of the intersection of
∂Γ+(f) with the line joining the origin and the point p + 1 = (p1 + 1, . . . , pn + 1).
Then

−β(p) =
p1 + 1

q1
= · · · = pn + 1

qn
=
〈p〉+ n

〈q〉 =
1

d(f, xp)
,

η±(p), η̂(p) ≤
{

ρf (q) if 1/d(f, xp) is not an integer,

min{ρf (q) + 1, n} otherwise,

where ρf and d(·, ·) are as in Section 2.1. Note that m(f, xp) = ρf (q) =
ρf (d(f, xp)(p + 1)).

Remark 5.5. In the case when n = 2 or 3, ρf (q) is equal to min{m̂p, n},
where m̂p is the number of the (n− 1)-dimensional faces of Γ+(f) containing the
point q. This, however, does not generally hold for n ≥ 4.

Proof. For a ∈ Σ(1), we denote by q(a) the point of the intersection of the
hyperplane H(a, l(a)) with the line {t · (p + 1); t ∈ R}, where H(·, ·) is as in (3.1).
Then it is easy to see

q(a) =
l(a)

〈a, p + 1〉 · (p + 1). (5.14)

From (5.14), the condition that −〈a, p + 1〉/l(a) takes the maximum is equivalent
to the geometrical condition that q(a) is as far as possible from the origin. To be
more precise, we have the following equivalences: For a ∈ Σ̃(1),

β(p) = −〈a, p + 1〉
l(a)

⇐⇒ q = q(a) ⇐⇒ q ∈ H(a, l(a)). (5.15)

From (5.14) and (5.15), we have −β(p) = (p1 + 1)/q1 = · · · = (pn + 1)/qn =
(〈p〉 + n)/〈q〉. From the definition of d(·, ·), the above value equals 1/d(f, xp).
Note that q = d(f, xp)(p + 1).

Next, consider the orders of the poles of Z±(s), Z(s) at s = β(p). From the
proof of Theorem 5.1, it suffices to analyze the poles of I

(ε)
σ,k(s), J

(ε)
σ,l (s). Applying

Lemma 5.2 to the integrals (5.6), (5.11), we see the upper bounds of orders of the
poles at s = β(p) of these functions as follows.



542 K. Cho, J. Kamimoto and T. Nose

I
(ε)
σ,k(s) #Ap(σ)

J
(ε)
σ,l (s) min{#Ap(σ), n− 1} if β(p) 6∈ (−N)

min{#Ap(σ) + 1, n} if β(p) ∈ (−N)

From these estimates of orders, in order to obtain the estimates in the proposition,
it suffices to show ρf (q) = max{#Ap(σ);σ ∈ Σ(n)}. From the definition of Ap(σ)
and (5.15), we have

#Ap(σ) = #{j; q ∈ H(aj(σ), l(aj(σ)))}
= #{j; γ ⊂ H(aj(σ), l(aj(σ)))},

where γ is the face of Γ+(f) whose relative interior contains the point q (i.e.,
q ∈ (γ \ ∂γ).) From the definition of ρf , the codimension of γ is ρf (q).
Since a1(σ), . . . , an(σ) are linearly independent for each σ ∈ Σ(n), #{j; γ ⊂
H(aj(σ), l(aj(σ)))} is not larger than ρf (q) for any σ ∈ Σ(n). On the other hand,
the closure of γ∗ is a cone belonging to the fan Σ0 constructed from Γ+(f) (see
Section 4.2) and the dimension of this cone is ρf (q). There exists an n-dimensional
cone σ̂ in a simplicial subdivision Σ of Σ0 whose ρf (q)-dimensional face is con-
tained in the closure of γ∗. This means #{j; γ ⊂ H(aj(σ̂), l(aj(σ̂)))} = ρf (q).
Hence, we see ρf (q) = max{#Ap(σ);σ ∈ Σ(n)}.

Lastly, it follows from Γ0 ⊃ {p} that m(f, xp) = ρf (d(f, xp)(p + 1)) = ρf (q).
¤

Next, let us consider the coefficients of the Laurent expansions of Z+(s) and
Z−(s) at the poles. The following lemma is useful for computing the coefficients
explicitly.

Lemma 5.6. Let ψ be a C∞ function on R and k ∈ N. Then

lim
s→−k

(s + k)
∫ ∞

−∞
ys
±ψ(y)dy =

(±1)k−1

(k − 1)!
ψ(k−1)(0).

In particular, we have

lim
s→−1

(s + 1)
∫ ∞

−∞
ys
±ψ(y)dy = ψ(0).

Proof. The above formula is easily obtained by the integration by parts.
¤
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When d(f, xp) > 1, we compute the coefficients of (s − β(p))−m(f,xp) in the
Laurent expansions of Z±(s), Z(s). Let

C± = lim
s→β(p)

(s− β(p))m(f,xp)Z±(s), C = lim
s→β(p)

(s− β(p))m(f,xp)Z(s),

respectively.

Theorem 5.7. Suppose that (i) f is nondegenerate over R with respect to
its Newton polyhedron, (ii) ϕ(x) = xp, where every component of p ∈ Zn

+ is even,
and (iii) d(f, xp) > 1. If the support of χ is contained in a sufficiently small
neighborhood of the origin, then C+ and C− are nonnegative and C = C+ +C− is
positive.

Proof. Let

Σ(n)
p = {σ ∈ Σ(n); #Ap(σ) = m(f, xp)}.

First, we consider the case when m(f, xp) < n. For σ ∈ Σ(n)
p , considering the

equations (5.4) and applying Lemma 5.6 to (5.6), (5.11) with respect to each yj

for j ∈ Ap(σ), we have

lim
s→β(p)

(s− β(p))m(f,xp)Z
(σ)
± (s) =

∑

k

G
(k)
± (σ) +

∑

l

H
(l)
± (σ), (5.16)

with

G
(k)
± (σ) =

∑

ε∈E(±αk,σ)

(−1)gσ,p(ε)

∏
j∈Ap(σ) l(aj(σ))

·
∫

D(σ)

( ∏

j 6∈Ap(σ)

(yj)l(aj(σ))β(p)+〈aj(σ),p+1〉−1
εj

)
|fσ(ŷ)|β(p)ψ̃k(ŷ)dŷ,

(5.17)

H
(l)
± (σ) =

∑

ε̃∈Ẽ(±,σ)

(−1)g̃σ,p(ε̃)

∏
j∈Ap(σ) l(aj(σ))

·
∫

D(σ)

(yk)β(p)
εk

( ∏

j∈Bl(σ)\Ap(σ)

(yj)l(aj(σ))β(p)+〈aj(σ),p+1〉−1
εj

)
η̂l(ŷ)dŷ,

(5.18)
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where the summations in (5.16) are taken for all k, l satisfying TAp(σ)∩Supp(ψk) 6=
∅ and Ap(σ) ⊂ Bl(σ), ŷ is defined by ŷj = 0 for j ∈ Ap(σ), ŷj = yj for j 6∈ Ap(σ),
dŷ =

∏
j 6∈Ap(σ) dyj , D(σ) = {y ∈ Rn; yj = 0 for j ∈ Ap(σ)}(≈ Rn−m(f,xp)) and

the other symbols are the same as in (5.6), (5.11). Note that the integrals in
(5.18) are convergent and interpreted as improper integrals. In (5.17), (5.18), we
deform the cut-off functions ψk and ηl as the volume of the support of ηl tends to
zero for all l. Then it is easy to see that the limit of H

(l)
± (σ) is zero, while that of∑

k G
(k)
± (σ) is G+,±(σ) + G−,∓(σ), respectively, with

Gu,v(σ) =
∑

ε∈E(u,σ)

(−1)gσ,p(ε)

∏
j∈Ap(σ) l(aj(σ))

·
∫

Dv(σ)

( ∏

j 6∈Ap(σ)

(yj)l(aj(σ))β(p)+〈aj(σ),p+1〉−1
εj

)
|fσ(ŷ)|β(p)χ̃σ(ŷ)dŷ,

(5.19)

where u, v ∈ {+,−} and

Dv(σ) = {y ∈ Supp(χ̃σ); vfσ(y) > 0 and yj = 0 for j ∈ Ap(σ)}.

Note that the above integral is also improper, if fσ has a zero on D(σ). As a
result, we have

C± =
∑

σ∈Σ
(n)
p

(G+,±(σ) + G−,∓(σ)), (5.20)

respectively.
Next, we consider the case when m(f, xp) = n. Noticing Σ(n)

p = {σ;Ap(σ) =
B(σ) = {1, . . . , n}}, we obtain the corresponding coefficients as

C± =
∑

σ∈Σ
(n)
p

∑

ε∈E(±α,σ)

(−1)gσ,p(ε)|fσ(0)|β(p)

∏n
j=1 l(aj(σ))

, (5.21)

where α is the sign of fσ(0).
Now, let us assume that every component of p is even. By the definition

(5.7), gσ,p(ε) is also even. From (5.19), (5.20), (5.21), we see the nonnegativity
of the coefficients C+, C−. Moreover, since E(+, σ) is nonempty, the coefficient
C = C+ + C− is positive. ¤
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The following proposition is concerned with the poles of Z+(s) and Z−(s),
which are induced by the set of zeros of fσ.

Proposition 5.8. Suppose that the conditions (i), (ii) in Theorem 5.1 are
satisfied and (iii) d(f, xp) < 1. Let 1, . . . , k∗ be all the natural numbers strictly
smaller than −β(p) = 1/d(f, xp). If the support of χ is contained in a sufficiently
small neighborhood of the origin, then Z+(s) and Z−(s) have at s = −1, . . . ,−k∗
poles of order not higher than 1 and do not have other poles in the region Re(s) >

β(p). Moreover, let a+
k , a−k be the residues of Z+(s), Z−(s) at s = −k, respectively,

then we have a+
k = (−1)k−1a−k for k = 1, . . . , k∗.

Proof. For j = 2, . . . , n, let lj ,mj be positive integers such that mj/lj >

k∗. Let εj = + or −, j = 2, . . . , n, be arbitrarily fixed. Let C±k be the residues at
s = −k of the functions

g±(s) :=
∫

Rn

(
(y1)s

±
∏

j∈B

(yj)ljs+mj−1
εj

)
η(y)dy,

respectively, where B is a subset in {2, . . . , n} and η ∈ C∞0 (Rn) with η(0) 6= 0.
By carefully observing the analysis of J

(l)
σ,±(s) in the proof of Theorem 5.1, it

suffices to show the following.

(a) g+(s) and g−(s) have at s = −1, . . . ,−k∗ poles of order 1 and they do not
have other poles in Re(s) > β(p);

(b) C+
k = (−1)k−1C−k for k = 1, . . . , k∗.

From Lemma 5.2, (a) is easy to see. By using Lemma 5.6, we obtain

C±k =
(±1)k−1

(k − 1)!

∫

Rn−1

( ∏

j∈B

(yj)−ljk+mj−1
εj

)
∂k−1η

∂yk−1
1

(0, y2, . . . , yn)dy2 · · · dyn.

This expression implies (b). ¤

Remark 5.9. We can easily generalize the results in this subsection as
follows. The same assertions in Theorems 5.1 and 5.7, and Proposition 5.8 can be
obtained, even if xp is replaced by xpϕ̃(x) where ϕ̃ ∈ C∞(U) with ϕ̃(0) 6= 0. Here,
in the case of Theorem 5.7, when ϕ̃(0) < 0, “positive” and “nonnegative” must be
changed to “negative” and “nonpositive”, respectively.

5.2. The convenient case.
Next, let us consider the poles of Z±(s) in (5.1) and Z(s) in (5.2) in the case

that f or ϕ is convenient, i.e., the associated Newton polyhedron intersects all the
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coordinate axes.

Theorem 5.10. Suppose that (i) f is nondegenerate over R with respect to
its Newton polyhedron and (ii) at least one of the following conditions is satisfied :

(a) f is convenient ;
(b) ϕ is convenient ;
(c) ϕ is real analytic on a neighborhood of the origin.

If the support of χ is contained in a sufficiently small neighborhood of the origin,
then the poles of the functions Z+(s), Z−(s) and Z(s) are contained in the set

{
− 1

d(f, ϕ)
− ν

l(a)
; ν ∈ Z+, a ∈ Σ̃(1)

}
∪ (−N),

where l(a) is as in (4.1) and Σ̃(1) is as in Theorem 5.1. Moreover, for each Z+(s),
Z−(s) and Z(s), if s = −1/d(f, ϕ) is a pole, then its order is not larger than

{
m(f, ϕ) if 1/d(f, ϕ) is not an integer,

min{m(f, ϕ) + 1, n} otherwise.

Proof. Let Σf and Σϕ be the fans constructed from the Newton polyhedra
of f and ϕ, respectively. Define Σ0 = {σ ∩ σ̃;σ ∈ Σf , σ̃ ∈ Σϕ}. Then it is easy to
see that Σ0 is also a fan. Fix a simplicial subdivision Σ of Σ0 and let (YΣ, π) be
the real resolution associated with Σ as in Section 4.

First, let us compute the form of ϕ ◦ π.

Lemma 5.11. Let ϕ be a C∞ function defined on a neighborhood of the
origin. When ϕ is convenient or real analytic near the origin, define l̃(a) =
min{〈a, α〉;α ∈ Γ+(ϕ)} for a ∈ Zn

+. Otherwise, define l̃(a) = min{〈a, α〉;α ∈
Γ+(ϕ)} for a ∈ Nn and l̃(a) = 0 for a ∈ Zn

+ \ Nn. Then, for σ ∈ Σ(n), ϕ ◦ π(σ)
can be expressed as

ϕ(π(σ)(y)) =
( n∏

j=1

y
l̃(aj(σ))
j

)
ϕσ(y), (5.22)

where ϕσ is a C∞ function defined on a neighborhood of the origin. (Needless to
say, if ϕ is real analytic, so is ϕσ.)

Proof of Lemma 5.11. Let us consider the case that ϕ is a C∞ function.
By using Taylor’s formula, ϕ can be expressed as (3.4) in Section 3. Substituting
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x = π(σ)(y) with (4.2) into (3.4), we have

ϕ(π(σ)(y)) =
∑

α∈Sϕ∩UN

cα

( n∏

j=1

y
〈aj(σ),α〉
j

)

+
∑

p∈Zn
+,〈p〉=N

( n∏

j=1

y
〈aj(σ),p〉
j

)
ϕp(π(σ)(y)).

Here, take a sufficiently large N ∈ N such that the union of the hypersurfaces
H(a, l̃(a)) ∩Rn

+ for all a ∈ Σ(1) ∩Nn is contained in the set UN = {α ∈ Rn
+; 〈α〉 ≤

N}. If a ∈ Σ(1)∩Nn, then we see that 〈a, α〉 ≥ l̃(a) for α ∈ Γ+(ϕ) and 〈a, p〉 ≥ l̃(a)
for p ∈ Zn

+ with 〈p〉 = N . Therefore, we can get

ϕ(π(σ)(y)) =
( ∏

j∈C(σ)

y
l̃(aj(σ))
j

)
ϕσ(y),

where C(σ) = {j; aj(σ) ∈ Nn} ⊂ {1, . . . , n} and ϕσ is a C∞ function defined on a
neighborhood of the origin. Notice that if ϕ is convenient, then l̃(aj(σ)) = 0 for
a ∈ Zn

+ \ Nn. Thus, we obtain the expression (5.22) for every C∞ function ϕ.
The case of real analytic ϕ is easier, so the proof is omitted. ¤

Using the map π : YΣ → Rn with x = π(y) and the cut-off functions {χσ;σ ∈
Σ(n)} in the proof of Theorem 5.1 and substituting (5.22), we have

Z±(s) =
∫

Rn

f(x)s
±ϕ(x)χ(x)dx

=
∫

YΣ

((f ◦ π)(y))s
±(ϕ ◦ π)(y)(χ ◦ π)(y)|Jπ(y)|dy

=
∑

σ∈Σ(n)

Z
(σ)
± (s),

with

Z
(σ)
± (s) =

∫

Rn

((f ◦ π(σ))(y))s
±(ϕ ◦ π(σ))(y)(χ ◦ π(σ))(y)χσ(y)|Jπ(σ)(y)|dy

=
∫

Rn

( n∏

j=1

y
l(aj(σ))
j fσ(y)

)s

±

( n∏

j=1

y
l̃(aj(σ))
j ϕσ(y)

)∣∣∣∣
n∏

j=1

y
〈aj(σ)〉−1
j

∣∣∣∣χ̃σ(y)dy,

(5.23)
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where χ̃σ(y) = (χ ◦π(σ))(y)χσ(y). By an argument similar to that in the proof of
Theorem 5.1, we see that the poles of Z

(σ)
± (s) are contained in the set

{
− l̃(aj(σ)) + 〈aj(σ)〉+ ν

l(aj(σ))
; j ∈ B(σ), ν ∈ Z+

}
∪ (−N), (5.24)

where B(σ) is as in (5.9). Note that the set (−N) is necessary to express the poles
because of the same reason as in Remark 5.3.

Next, consider a geometrical meaning of the largest element of the union of
the first set in (5.24) for all σ ∈ Σ(n). If ϕ is convenient or real analytic near
the origin, then l̃(a) = min{〈a, α〉;α ∈ Γ+(ϕ)} if a ∈ Zn

+. Therefore, from the
definitions of β(·) in (5.13) and Proposition 5.4, we have

max
{
− l̃(a) + 〈a〉

l(a)
; a ∈ Σ̃(1)

}

= max
{
− 〈a, α + 1〉

l(a)
;α ∈ Γ+(ϕ), a ∈ Σ̃(1)

}

= max{β(α);α ∈ Γ+(ϕ)}

= max
{
− 1

d(f, xα)
;α ∈ Γ+(ϕ)

}

= max
{
− 1

d(f, xα)
;α ∈ Γ(ϕ, f)

}
= − 1

d(f, ϕ)
. (5.25)

On the other hand, when f is convenient, it is easy to see Σ̃(1) = Σ(1) ∩Nn, which
implies the first equality in (5.25). Note that Σ̃(1) ⊃ Σ(1) ∩ Nn in general case.
From (5.24) and (5.25), we see that the poles of Z±(s) are contained in the set in
the theorem.

Finally, consider the orders of the poles of Z±(s) at s = −1/d(f, ϕ). Con-
sidering the construction of simplicial subdivision in the beginning of the proof,
we see that for each σ ∈ Σ(n) there exists a vertex ασ of Γ+(ϕ) such that
〈aj(σ), ασ〉 = l̃(aj(σ)) for j = 1, . . . , n. Therefore, for σ ∈ Σ(n), we have

#

{
j;− l̃(aj(σ)) + 〈aj(σ)〉

l(aj(σ))
= − 1

d(f, ϕ)

}

= #
{
j; d(f, ϕ)(〈aj(σ), ασ〉+ 〈aj(σ)〉) = l(aj(σ))

}

= #
{
j; 〈aj(σ), d(f, ϕ)(ασ + 1)〉 = l(aj(σ))

}
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= #
{
j; d(f, ϕ)(ασ + 1) ∈ H(aj(σ), l(aj(σ)))

}

= ρf (d(f, ϕ)(ασ + 1)). (5.26)

The last equality follows from the last part of the proof of Proposition 5.4. Since
ρf (d(f, ϕ)(ασ + 1)) ≤ m(f, ϕ), we obtain the estimate of the orders of the poles
in Theorem 5.10 by the same argument as that in Proposition 5.4.

It is easy to show the case of Z(s) by using the relationship: Z(s) = Z+(s) +
Z−(s). ¤

Remark 5.12. In the beginning of the above proof, we constructed a simpli-
cial subdivision Σ from a more complicated process. Before estimating the orders
of poles, the usual subdivision as in Theorem 5.1 is sufficient.

Next, when d(f, ϕ) > 1, we consider the coefficients of (s + 1/d(f, ϕ))−m(f,ϕ)

in the Laurent expansions of Z±(s) and Z(s). Let

C± = lim
s→−1/d(f,ϕ)

(s + 1/d(f, ϕ))m(f,ϕ)Z±(s),

C = lim
s→−1/d(f,ϕ)

(s + 1/d(f, ϕ))m(f,ϕ)Z(s),
(5.27)

respectively.

Theorem 5.13. Suppose that (i) f is convenient and nondegenerate over R
with respect to its Newton polyhedron, (ii) ϕΓ0 is nonnegative (resp. nonpositive) on
a neighborhood of the origin and (iii) d(f, ϕ) > 1. If the support of χ is contained
in a sufficiently small neighborhood of the origin, then C+ and C− are nonnegative
(resp. nonpositive) and C = C+ + C− is positive (resp. negative).

Proof. We only show the theorem in the nonnegative case in the assump-
tion (ii).

Let Σ0 be the fan constructed from the Newton polyhedron of f . Fix a
simplicial subdivision Σ of Σ0 and let (YΣ, π) be the real resolution associated
with Σ as in Section 4.

Notice that Γ(ϕ, f) and Γ0 are compact sets, because f is convenient. Recall
that the essential set Γ0 is expressed as the disjoint union of some finite faces
γ1, . . . , γl of Γ+(ϕ) and that the nonnegativity of ϕ is equivalent to that of ϕγµ

for µ = 1, . . . , l (see Section 3).
We define the functions ϕ1, . . . , ϕl+2 as follows.
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ϕµ(x) = ϕγµ
(x) for µ = 1, . . . , l,

ϕl+1(x) = ϕΓ(ϕ,f)\Γ0(x), ϕl+2(x) = ϕ(x)−
l+1∑
µ=1

ϕµ(x). (5.28)

Substituting (5.28) into (5.1), we obtain

Z±(s) =
l+2∑
µ=1

Zµ,±(s),

where

Zµ,±(s) =
∫

Rn

f(x)s
±ϕµ(x)χ(x)dx, µ = 1, . . . , l + 2.

From Theorem 5.10, we see that the poles of Zl+2,±(s) are contained in the
set

{
− 1

d(f, ϕl+2)
− ν

l(a)
; ν ∈ Z+, a ∈ Σ̃(1)

}
∪ (−N).

Since d(f, ϕl+2) < d(f, ϕ), Zl+2,±(s) can be extended analytically to the region
Re(s) ≥ −1/d(f, ϕ) − δ with small δ > 0. Moreover, the order of the poles of
Zl+1,±(s) at s = −1/d(f, ϕ) is less than m(f, ϕ) from Theorem 5.7 (or Theorem
5.10). It suffices to consider the poles of Zµ,±(s) at s = −1/d(f, ϕ) for µ = 1, . . . , l.

For each σ ∈ Σ(n) and µ ∈ {1, . . . , l}, there exists a set Aµ(σ) ⊂ {1, . . . , n}
such that

Aµ(σ) =
{

j ∈ B(σ);
〈aj(σ), α + 1〉

l(aj(σ))
=

1
d(f, ϕ)

}
⊂ {1, . . . , n}, (5.29)

for all α ∈ γµ ∩ Zn
+, where B(σ) is as in (5.9). For µ, define

Σ(n)
µ = {σ ∈ Σ(n); #Aµ(σ) = m(f, ϕ)}.

By applying the argument in the proof of Theorem 5.1 with the condition d(f, ϕ) >

1, it suffices to consider the pole at s = −1/d(f, ϕ) of the function

Iµ,σ,ε(s) =
∫

Rn

Φµ,ε(y, s)|fσ(y)|sψ(y)dy, (5.30)
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with

Φµ,ε(y, s) =
( n∏

j=1

(yj)l(aj(σ))s
εj

)( ∑
α∈γµ

cα

n∏

j=1

y
〈aj(σ),α〉
j

)∣∣∣∣
n∏

j=1

y
〈aj(σ)〉−1
j

∣∣∣∣, (5.31)

where σ ∈ Σ(n)
µ , ε ∈ {+,−}n, and ψ(y) is a cut-off function on R(σ)n satisfying

that Supp(ψ) ⊂ Supp(χ̃σ), where χ̃σ is as in (5.3), and its support does not
intersect the set {y ∈ Supp(χ̃σ); fσ(y) = 0}. Indeed, if σ ∈ Σ(n) \ Σ(n)

µ , then the
order of the pole of Iµ,σ,ε(s) is less than m(f, ϕ).

A simple computation gives

Φµ,ε(y, s) =
∑

α∈γµ

(−1)gσ,α(ε)cα

( n∏

j=1

(yj)l(aj(σ))s+〈aj(σ),α+1〉−1
εj

)

=
( ∏

j∈Aµ(σ)

(yj)l(aj(σ))(s+1/d(f,ϕ))−1
εj

)
Φµ,ε(ỹ, s), (5.32)

where gσ,α(ε) is as in (5.7) and ỹ is defined by ỹj = εj1 ∈ {±1} for j ∈ Aµ(σ);
ỹj = yj for j 6∈ Aµ(σ). Substituting (5.32) into (5.30), we have

Iµ,σ,ε(s) =
∫

Rn

( ∏

j∈Aµ(σ)

(yj)l(aj(σ))(s+1/d(f,ϕ))−1
εj

)
Φµ,ε(ỹ, s)|fσ(y)|sψ(y)dy.

First, we consider the case when m(f, ϕ) < n. By applying Lemma 5.6, the
coefficient of (s + 1/d(f, ϕ))−m(f,ϕ) in the Laurent expansion of Iµ,σ,ε(s) is

1∏
j∈Aµ(σ) l(aj(σ))

∫

Rn−m(f,ϕ)
Φµ,ε(ỹ,−1/d(f, ϕ))|fσ(ŷ)|−1/d(f,ϕ)ψ(ŷ)dŷ, (5.33)

where ŷ is defined by ŷj = 0 for j ∈ Aµ(σ), ŷj = yj for j 6∈ Aµ(σ) and
dŷ =

∏
j 6∈Aµ(σ) dyj . From (5.31), the nonnegativity of ϕγµ

implies that of Φµ,ε.
Moreover, since ϕγµ is a polynomial, there is an open set in Supp(ψ) such that
Φµ,ε(·,−1/d(f, ϕ)) is positive there. Consider the case that the support of ψ con-
tains the origin. Then we can see that (5.33) is positive for any σ ∈ Σ(n)

µ and
ε ∈ {+,−}n.

Next, we consider the case when m(f, ϕ) = n. Then, Aµ(σ) = B(σ) =
{1, . . . , n}. Since the essential set Γ0 is a set of vertices of Γ+(ϕ), the nonnegative
assumption of ϕΓ0 implies that each ϕµ can be expressed as a monomial of the
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form: ϕµ(x) = cαxα, where cα is a positive constant and every component of α

is even. From an easy computation, the corresponding coefficient in this case is
obtained as

cα|fσ(0)|−1/d(f,ϕ)

∏n
j=1 l(aj(σ))

. (5.34)

Of course, (5.34) is positive for any σ ∈ Σ(n)
µ and is independent of ε ∈ {−,+}n.

Finally, by the same argument as that in the proof of Theorem 5.7, we can
see the nonnegativity of C+ and C− and the positivity of C = C+ + C− in the
theorem. ¤

Proposition 5.14. Suppose that the conditions (i), (ii) in Theorem 5.10
are satisfied and (iii) d(f, ϕ) < 1. Let 1, . . . , k∗ be all the natural numbers strictly
smaller than 1/d(f, ϕ). If the support of χ is contained in a sufficiently small
neighborhood of the origin, then Z+(s) and Z−(s) have at s = −1, . . . ,−k∗ poles
of order not higher than 1 and they do not have other poles in the region Re(s) >

−1/d(f, ϕ). Moreover, let a+
k , a−k be the residues of Z+(s), Z−(s) at s = −k,

respectively, then we have a+
k = (−1)k−1a−k for k = 1, . . . , k∗.

Proof. The difference between (5.3) and (5.23) does not essentially affect
the argument in the proof of Proposition 5.8. The details are left to the readers.

¤

5.3. Remarks.
In this subsection, let us consider Theorem 5.7 (with Remark 5.9) and The-

orem 5.13 under the additional assumption: f is nonnegative or nonpositive near
the origin. The following theorem shows that the same assertions can be obtained
without the assumption: d(f, ϕ) > 1.

Theorem 5.15. Suppose that (i) f is nondegenerate over R with respect to
its Newton polyhedron, (ii) f is nonnegative or nonpositive on a neighborhood of
the origin and (iii) at least one of the following condition is satisfied :

(a) ϕ is expressed as ϕ(x) = xpϕ̃(x) on a neighborhood of the origin, where every
component of p ∈ Zn

+ is even and ϕ̃(0) > 0 (resp. ϕ̃(0) < 0);
(b) f is convenient and ϕΓ0 is nonnegative (resp. nonpositive) on a neighborhood

of the origin.

If the support of χ is contained in a sufficiently small neighborhood of the origin,
then C+ and C− are nonnegative (resp. nonpositive) and C = C+ +C− is positive
(resp. negative), where C±, C are as in (5.27).
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Proof. We only show the case that f is nonnegative in the assumption (ii).
Let Σ0 be the fan constructed from the Newton polyhedron of f . Fix a

simplicial subdivision Σ of Σ0 and let (YΣ, π) be the real resolution associated with
Σ as in Section 4. Let σ ∈ Σ(n). First, from Proposition 4.2 and the assumptions
(i), (ii), there exists a neighborhood Uσ of the origin such that f(x) ≥ 0 for x ∈ Uσ

and

f(π(σ)(y)) =
( n∏

j=1

y
l(aj(σ))
j

)
fσ(y) for y ∈ π(σ)−1(Uσ),

where fσ is real analytic and fσ(0) > 0. It is easy to see that all l(aj(σ)) are even
and that fσ(y) ≥ 0 for y ∈ π(σ)−1(Uσ).

Now, let us assume that there exists a point y0 ∈ TI ∩ π(σ)−1(Uσ) with
nonempty I ⊂ {1, . . . , n} such that fσ(y0) = 0. (See (4.3) for the definition
of TI .) Since f is nondegenerate, Proposition 4.2 implies that there is a point
y∗ ∈ π(σ)−1(Uσ) near y0 such that fσ(y∗) < 0. This contradicts the nonnegativity
of f on Uσ, so we see that {y ∈ π(σ)−1(Uσ); fσ(y) = 0} ⊂ (R \ {0})n.

Therefore, there exists a small neighborhood Vσ ⊂ Uσ of the origin such that
{y; fσ(y) = 0} ∩ π(σ)−1(Vσ) = ∅. Then fσ is positive on π(σ)−1(Vσ) for each
σ ∈ Σ(n).

Let us investigate the properties of poles of Z±(s) in (5.1), where the cut-
off function χ has a support contained in the set V :=

⋂
σ∈Σ(n) Vσ. We apply

the arguments in the proofs of Theorems 5.7 and 5.13 to these cases. In the
process of analysis, the decomposition similar to (5.4) is obtained, but the functions
corresponding to J

(k)
σ,±(s) do not appear because fσ is always positive on V . Thus,

since it suffices to consider the poles of I
(k)
σ,±(s), we can easily obtain the assertions

of this theorem. ¤

5.4. Certain symmetrical properties.
We denote by β±(f, ϕ), β̂(f, ϕ) the largest poles of Z±(s), Z(s) and by

η±(f, ϕ), η̂(f, ϕ) their orders, respectively.

Theorem 5.16. Let f, ϕ be nonnegative or nonpositive real analytic func-
tions defined on a neighborhood of the origin. Suppose that f and ϕ are convenient
and nondegenerate over R with respect to their Newton polyhedra. If the support
of χ is contained in a sufficiently small neighborhood of the origin, then we have

β±(x1f, ϕ)β±(x1ϕ, f) ≤ 1 and β̂(x1f, ϕ)β̂(x1ϕ, f) ≤ 1 (5.35)

Moreover, the following two conditions are equivalent :
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( i ) The equality holds in each estimate in (5.35);
( ii ) There exists a positive rational number d such that Γ+(x1f) = d · Γ+(x1ϕ).

If the condition (i) or (ii) is satisfied, then we have η±(x1f, ϕ) = η±(x1ϕ, f) =
η̂(x1ϕ, f) = n.

Proof. Admitting Lemmas 5.17 and 5.19 below, we prove the theorem
as follows. From the assumptions in the theorem and Lemma 5.17 with p = 1,
Theorem 5.13 implies the equations β(x1f, ϕ) = −1/d(x1f, ϕ) and β(x1ϕ, f) =
−1/d(x1ϕ, f). By Lemma 5.19, these equations imply the inequality (5.35) and the
equivalence of (i) and (ii). The condition (ii) in the theorem implies Γ(ϕ, x1f) =
Γ(ϕ). Thus, Γ0 is the set of the vertices (i.e., zero-dimensional faces) of Γ(ϕ). This
means η±(x1f, ϕ) = m(x1f, ϕ) = n. Similarly, we see η±(x1ϕ, f) = n. ¤

Lemma 5.17. Let p ∈ Zn
+ and g be a C∞ function defined on a neighborhood

of the origin in Rn such that Γ(g) 6= ∅. Then, g is nondegenerate over R with
respect to its Newton polyhedron if and only if so is xpg.

Proof. First, notice that if a C∞ function ψ has a quasihomogeneous prop-
erty: ψ(tm1x1, . . . , t

mnxn) = tcψ(x) for t > 0 and x ∈ Rn, then ∇ψ(x) = 0 implies
ψ(x) = 0. In fact, this follows from Euler’s identity:

m1x1
∂ψ

∂x1
(x) + · · ·+ mnxn

∂ψ

∂xn
(x) = cψ(x)

for x ∈ Rn.
Now, we assume that h(x) := xpg(x) is not nondegenerate in the above sense.

Then, there exist a face γ of Γ+(h) and a point x0 ∈ (R\{0})n such that∇hγ(x0) =
0 and hγ(x0) = 0. It is easy to see the existence of the face γ̃ of Γ+(g) such that
hγ(x) = xpgγ̃(x). Note that γ̃ +p = γ. The assumption on h implies ∇gγ̃(x0) = 0,
which means that g is not nondegenerate.

The above argument is also available for p ∈ (−Z+)n, so the converse can be
shown similarly. ¤

Remark 5.18. By observing the above proof, it might be expected that the
above lemma can be generalized as follow. “Let g be the same as above and let a
C∞ function ρ be positive on (R \ {0})n. Then g is nondegenerate in the above
sense if and only if so is ρ(x)g(x).” But, this claim is not true. In fact, consider
the two-dimensional case: g(x, y) = xy and ρ(x, y) = (x− y)2 + x4.

Lemma 5.19. Let g,h be C∞ functions defined near the origin, then we have

d(x1g, h)d(x1h, g) ≥ 1.
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The equality holds in the above, if and only if there exists a positive rational number
d such that Γ+(x1g) = d · Γ+(x1h).

Proof. From the definition of d(·, ·),

d(x1g, h) · Γ+(x1h) ⊂ Γ+(x1g), (5.36)

d(x1h, g) · Γ+(x1g) ⊂ Γ+(x1h). (5.37)

Putting (5.36),(5.37) together, we have

(d(x1g, h)d(x1h, g)) · Γ+(x1g) ⊂ Γ+(x1g). (5.38)

This implies d(x1g, h)d(x1h, g) ≥ 1.
If there exists a positive number d such that Γ+(x1g) = d · Γ+(x1h), then

it is clear that d = d(x1g, h) = 1/d(x1h, g). On the other hand, if Γ+(x1g) 6=
d·Γ+(x1h) for any d > 0, then the inclusions in (5.36), (5.37) are in the strict sense,
therefore so is the inclusion in (5.38). Then we see that d(x1g, h)d(x1h, g) > 1. ¤

6. Proofs of the theorems in Section 2.

6.1. Relationship between I(τ ) and Z±(s).
It is known (see [17], [19], [1], etc.) that the study of the asymptotic be-

havior of the oscillatory integral I(τ) in (1.1) can be reduced to an investigation
of the poles of the functions Z±(s) in (5.1). Here, we explain an outline of these
situations. Let f, ϕ, χ satisfy the conditions (A), (B), (C) in Section 2.2. Suppose
that the support of χ is sufficiently small.

Define the Gelfand-Leray function: K : R→ R as

K(t) =
∫

Wt

ϕ(x)χ(x)ω, (6.1)

where Wt = {x ∈ Rn; f(x) = t} and ω is the surface element on Wt which is
determined by df ∧ω = dx1∧ · · ·∧dxn. I(τ) and Z±(s) can be expressed by using
K(t): Changing the integral variables in (1.1), (5.1), we have

I(τ) =
∫ ∞

−∞
eiτtK(t)dt =

∫ ∞

0

eiτtK(t)dt +
∫ ∞

0

e−iτtK(−t)dt, (6.2)

Z±(s) =
∫ ∞

0

tsK(±t)dt, (6.3)
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respectively. Applying the inverse formula of the Mellin transform to (6.3), we
have

K(±t) =
1

2πi

∫ c+i∞

c−i∞
Z±(s)t−s−1ds, (6.4)

where c > 0 and the integral contour follows the line Re(s) = c upwards. Recall
that Z+(s) and Z−(s) are meromorphic functions and their poles exist on the
negative part of the real axis. By deforming the integral contour as c tends to
−∞ in (6.4), the residue formula gives the asymptotic expansions of K(t) as t →
±0. Substituting these expansions of K(t) into (6.2), we can get an asymptotic
expansion of I(τ) as τ → +∞.

Through the above calculation, we see more precise relationship for the coef-
ficients. If Z+(s) and Z−(s) have the Laurent expansions at s = −λ:

Z±(s) =
B±

(s + λ)ρ
+ O

(
1

(s + λ)ρ−1

)
,

respectively, then the corresponding part in the asymptotic expansion of I(τ) has
the form

Bτ−λ(log τ)ρ−1 + O(τ−λ(log τ)ρ−2).

Here a simple computation gives the following relationship:

B =
Γ(λ)

(ρ− 1)!
[
eiπλ/2B+ + e−iπλ/2B−

]
, (6.5)

where Γ is the Gamma function.

6.2. Proofs of Theorems 2.2, 2.7 and 2.12.
Applying the above argument to the results relating to Z±(s) in Section 5,

we obtain the theorems in Section 2.

Proof of Theorem 2.2. This theorem follows from Theorem 5.1 with
Remark 5.9 and Theorem 5.10. Notice that Propositions 5.8 and 5.14 and the
relationship (6.5) induce the cancellation of the coefficients of the term, whose
orders are larger than −1/d(f, ϕ). The estimate in Remark 2.3 is also obtained
by using the estimates of orders of the poles of Z±(s), Z(s) in Proposition 5.4 and
Theorem 5.10.
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Proof of Theorem 2.7. This theorem follows from Theorem 5.7 with
Remark 5.9 and Theorems 5.13 and 5.15. Notice that the relationship (6.5) gives
the information about the coefficient of the leading term of I(τ).

Proof of Theorem 2.12. This theorem follows from Theorem 5.16.

7. Examples.

In this section, we give some examples of the phase and the amplitude in
the integral (1.1), which clarifies the subtlety of our results in Sections 2 and 6.
Throughout this section, we always assume that f , ϕ, χ satisfy the conditions
(A), (B), (C) in Section 2. (In Examples 1, 2, each f , ϕ, ϕt satisfies the respective
condition.)

7.1. The one-dimensional case.
Let us compute the asymptotic expansion of I(τ) in (1.1) as τ → +∞ in

the one-dimensional case by using our analysis in this paper. As mentioned in
Section 2, the results below can also be obtained by using the analysis in [26].
Note that the computation below is valid for C∞ phases. From the assumptions
Γ+(f),Γ+(ϕ) 6= ∅, f , ϕ can be expressed as

f(x) = xq f̃(x), ϕ(x) = xpϕ̃(x),

where q, p ∈ Z+, q ≥ 2 and f̃ , ϕ̃ are C∞ functions defined on a neighborhood of
the origin with f̃(0)ϕ̃(0) 6= 0. Suppose that the support of χ is so small that f̃ , ϕ̃

do not have any zero on the support.
It is easy to see that f is nondegenerate over R with respect to its Newton

polyhedron, Γ+(f) = [q,∞), Γ+(ϕ) = [p,∞), d(f, ϕ) = q/(p+1) and m(f, ϕ) = 1.
Let α be the sign of f̃(x) on the support of χ. From a simple computation, for
even q

Zα(s) =
∫ ∞

0

xqs+p
{|f̃(x)|sϕ̃(x)χ(x) + (−1)p|f̃(−x)|sϕ̃(−x)χ(−x)

}
dx,

Z−α(s) = 0,

(7.1)

and for odd q

Zα(s) =
∫ ∞

0

xqs+p|f̃(x)|sϕ̃(x)χ(x)dx,

Z−α(s) = (−1)p

∫ ∞

0

xqs+p|f̃(−x)|sϕ̃(−x)χ(−x)dx.

(7.2)



558 K. Cho, J. Kamimoto and T. Nose

By using Lemma 5.2, we can see that the poles of Z±(s) are simple and they are
contained in the set {−(p + 1 + ν)/q; ν ∈ Z+}. By using Lemma 5.6, we can
compute the explicit values of the coefficients of the term (s + (p + 1)/q)−1 in the
Laurent expansions of Z+(s) and Z−(s).

Next, applying the argument in Section 6.1, we have

I(τ) ∼ τ−(p+1)/q
∞∑

j=0

Cjτ
−j/q as τ →∞.

The relationship (6.5) gives the values of the coefficient C0. As a result, we can
see all the cases that β(f, ϕ) = −1/d(f, ϕ) holds.

( i ) (q: even; p: even) C0 = (2/q)Γ((p + 1)/q)|f̃(0)|−(p+1)/qϕ̃(0)eαi((p+1)/2q)π 6=
0, which implies β(f, ϕ) = −1/d(f, ϕ);

( ii ) (q: even; p: odd) C0 = 0, which implies β(f, ϕ) < −1/d(f, ϕ);
(iii) (q: odd; p: even) C0 = (2/q)Γ((p + 1)/q)|f̃(0)|−(p+1)/qϕ̃(0) cos(((p + 1)/

2q)π), which implies that β(f, ϕ) = −1/d(f, ϕ) is equivalent to (p+1)/2q 6∈
N+ 1/2;

(iv) (q: odd; p: odd) C0 = α(2i/q)Γ((p + 1)/q)|f̃(0)|−(p+1)/qϕ̃(0) sin(((p + 1)/
2q)π), which implies that β(f, ϕ) = −1/d(f, ϕ) is equivalent to (p+1)/2q 6∈
N.

Let us compare the conditions (a), (b), (c), (d) in Theorem 2.7 with the condition
of p, q. That q (resp. p) is even is equivalent to the condition (b) (resp. (c),
(d)). The condition (a) is equivalent to the inequality: ((p+1)/2q)π < π/2, which
implies C0 6= 0 in (iii).

7.2. Example 1.
Consider the following two-dimensional example:

f(x1, x2) = x4
1,

ϕ(x1, x2) = x2
1x

2
2 + e−1/x2

2 (=: ϕ1(x1, x2) + ϕ2(x1, x2)),

and χ is radially symmetric about the origin. It is easy to see that f is nonde-
generate over R with respect to its Newton polyhedron, Γ+(f) = {(4, 0)} + R2

+,
Γ+(ϕ) = Γ+(ϕ1) = {(2, 2)}+R2

+, Γ+(ϕ2) = ∅, d(f, ϕ) = 4/3, m(f, ϕ) = 1. Define

Z
(j)
± (s) =

∫

R2
(f(x))s

±ϕj(x)χ(x)dx j = 1, 2.
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Note Z−(s) = 0. A simple computation gives

Z
(1)
+ (s) = 4

∫ ∞

0

∫ ∞

0

x4s+2
1 x2

2χ(x1, x2)dx1dx2.

By Lemma 5.2, we see that the poles of Z
(1)
+ (s) are simple and they are contained

in the set {−3/4,−4/4,−5/4, . . .}. Similarly, the poles of

Z
(2)
+ (s) = 4

∫ ∞

0

∫ ∞

0

x4s
1 e−1/x2

2χ(x1, x2)dx1dx2

are simple and contained in the set {−1/4,−2/4,−3/4, . . .}. Moreover, Lemma
5.6 implies that the coefficient of (s + 1/4)−1 is

∫ ∞

0

e−1/x2
2χ(0, x2)dx2 > 0.

Therefore, we have β+(f, ϕ) = β(f, ϕ) = −1/4. As a result, β(f, ϕ) > −1/d(f, ϕ)
(= −3/4).

This example does not satisfy the condition (d) in Theorem 2.2. Noticing that
Γ+(ϕ) = {(2, 2)}+ R2

+, we see that the information of the Newton polyhedron is
not sufficient to understand the behavior of oscillatory integrals in the case of C∞

amplitudes.

7.3. Example 2.
Consider the following two-dimensional example with a real parameter t:

f(x1, x2) = x5
1 + x6

1 + x5
2,

ϕt(x1, x2) = x2
1 + tx1x2 + x2

2.

It is easy to see that f is nondegenerate over R with respect to its Newton
polyhedron, (ϕt)Γ0(x) = ϕt(x), d(f, ϕt) = 5/4, and m(f, ϕt) = 1. (ϕt)Γ0(x)
is nonnegative on R2, if and only if |t| ≤ 2. Thus, Theorem 5.7 implies that
β(f, ϕt) = −1/d(f, ϕt) = −4/5 if |t| ≤ 2. In this example, we understand the
situation in more detail from the explicit computation below.

By applying the computation in Section 5, we see the properties of poles of the
functions Z+(s) and Z−(s) in the following. The poles of the functions Z+(s) and
Z−(s) are contained in the set {−4/5,−5/5,−6/5, . . .} and their order is at most
one. Let C+(t), C−(t) be the coefficients of (s− 4/5)−1 in the Laurent expansions
of Z+(s) and Z−(s). Then, we have C+(t) = C−(t) = A + tB with
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A :=
1
5

∫ ∞

−∞
|u5 + 1|−4/5(u2 + 1)du, B :=

1
5

∫ ∞

−∞
|u5 + 1|−4/5udu.

Note that A is positive and B is negative.
Next, applying the argument in Section 6.1, I(τ) has the asymptotic expansion

of the form:

I(τ) ∼ τ−4/5
∞∑

j=0

Cj(t)τ−j/5 as τ → +∞. (7.3)

The relationship (6.5) gives C0(t) = 2Γ(4/5) cos(2/5π)(A + tB).
Set t0 = −A/B(> 0). From the above value of C0(t), if t 6= t0, then the

equation β(f, ϕt) = −1/d(f, ϕt) holds. This means that the condition (d) in
Theorem 2.7 is not necessary to satisfy the above equation. Furthermore, this
example shows that the oscillation index is determined by not only the geometry
of the Newton polyhedra but also the values of the coefficients of xα for α ∈ Γ0 in
the Taylor expansion of the amplitude.

Note 7.1. The existence of the term x6
1 in f produces infinitely many non-

zero coefficients Cj(t) in the asymptotic expansion (7.3) for any t.

7.4. Comments on results in [1].
As mentioned in the Introduction, there have been studies in [1] in a similar

direction to our investigations. In our language, their results can be stated as
follows.

“Theorem” 7.1 (Theorem 8.4 in [1, p. 254]). If f is nondegenerate over R
with respect to its Newton polyhedron, then

( i ) β(f, ϕ) ≤ −1/d(f, ϕ);
( ii ) If d(f, ϕ) > 1 and Γ+(ϕ) = {p} + Rn

+ with p ∈ Zn
+, then β(f, ϕ) =

−1/d(f, ϕ).

Unfortunately, more additional assumptions are necessary to obtain the above
assertions (i), (ii). Indeed, it is easy to see that Example 1 violates (i), (ii).
As for (ii), even if ϕ is real analytic, the one-dimensional case in Section 7.1
indicates that at least some condition on the power p is needed. (It is easy to
find counterexamples in higher dimensional case.) The same case shows that the
evenness of p is not always necessary to satisfy β(f, ϕ) = −1/d(f, ϕ).

Acknowledgements. The authors would like to express their sincere grat-
itude to the referee for his/her careful reading of the manuscript and giving the
authors many valuable comments.
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