©2013 The Mathematical Society of Japan J. Math. Soc. Japan Vol. 65, No. 2 (2013) pp. 375–387 doi: 10.2969/jmsj/06520375

Eventual colorings of homeomorphisms

By Yuki IKEGAMI, Hisao KATO and Akihide UEDA

(Received Aug. 11, 2011)

Abstract. In this paper, we study some dynamical properties of fixedpoint free homeomorphisms of separable metric spaces. For each natural number p, we define eventual colorings within p of homeomorphisms which are generalized notions of colorings of fixed-point free homeomorphisms, and we investigate the eventual coloring number C(f, p) of a fixed-point free homeomorphism $f: X \to X$ with zero-dimensional set of periodic points. In particular, we show that if dim $X < \infty$, then there is a natural number p, which depends on dim X, and X can be divided into two closed regions C_1 and C_2 such that for each point $x \in X$, the orbit $\{f^k(x)\}_{k=0}^{\infty}$ of x goes back and forth between $C_1 - C_2$ and $C_2 - C_1$ within the time p.

1. Introduction.

In this paper, we assume that all spaces are nonempty separable metric spaces and maps are continuous functions. Let \mathbb{N} be the set of all natural numbers, i.e., $\mathbb{N} = \{1, 2, 3, ...\}$. For a (separable metric) space X, dim X denotes the topological dimension of X. For each map $f : X \to X$, let P(f) be the set of all periodic points of f, i.e.,

$$P(f) = \{ x \in X | f^{j}(x) = x \text{ for some } j \in \mathbb{N} \}.$$

Let $f: X \to X$ be a fixed-point free closed map of a separable metric space X, i.e., $f(x) \neq x$ for each $x \in X$. In this paper, we assume that all maps are closed maps, i.e., for any closed subset A of X, f(A) is closed in X. A subset C of X is called a *color* (see [9]) of f if $f(C) \cap C = \emptyset$. Note that $f(C) \cap C = \emptyset$ if and only if $C \cap f^{-1}(C) = \emptyset$. We say that a cover C of X is a *coloring* of f if each element C of C is a color of f. The minimal cardinality C(f) of closed (or open) colorings of f is called the *coloring number* of f. The coloring number C(f) has been investigated by many mathematicians (see [1]–[5] and [7]–[9]).

²⁰¹⁰ Mathematics Subject Classification. Primary 54F45, 54H20; Secondary 55M10, 55M30, 54C05.

Key Words and Phrases. topological dynamics, fixed-point free homeomorphism, coloring, eventual coloring, dimension, periodic point.

THEOREM 1.1 (Lusternik and Schnirelman [7]). Let $f : S^n \to S^n$ be the antipodal map of the n-dimensional sphere S^n . Then C(f) = n + 2.

THEOREM 1.2 (Aarts, Fokkink and Vermeer [1]). Let $f : X \to X$ be a fixedpoint free involution of a (separable) metric space X with dim $X = n < \infty$. Then $C(f) \leq n + 2$.

THEOREM 1.3 (Aarts, Fokkink and Vermeer [1]). Let $f: X \to X$ be a fixedpoint free homeomorphism of a (separable) metric space X with dim $X = n < \infty$. Then $C(f) \le n+3$.

Now, similarly we will consider more general notion of color as follows: Let $f: X \to X$ be a fixed-point free map of a space X and $p \in \mathbb{N}$. A subset C of X is eventually colored within p of f if $\bigcap_{i=0}^{p} f^{-i}(C) = \emptyset$. Note that C is a color of f if and only if C is eventually colored within 1. Then we have the following simple proposition. For completeness, we give the proof.

PROPOSITION 1.4. Let $f : X \to X$ be a fixed-point free map of a separable metric space X and $p \in \mathbb{N}$. Then the followings hold.

- (1) A subset C of X is eventually colored within p of f if and only if each point $x \in C$ wanders off C within p, i.e., for each $x \in C$, $f^i(x) \notin C$ with some $i \leq p$.
- (2) If a subset C of X satisfies the condition $\bigcap_{i=0}^{p} f^{i}(C) = \emptyset$, then C is eventually colored within p of f.
- (3) If f is an injective map, then a subset C of X is eventually colored within p of f if and only if C satisfies the condition $\bigcap_{i=0}^{p} f^{i}(C) = \emptyset$.

PROOF. We prove (1). In fact, it is easily seen that $\bigcap_{i=0}^{p} f^{-i}(C) \neq \emptyset$ if and only if there is an element $x \in C$ such that $f^{i}(x) \in C$ for any $0 \leq i \leq p$. We prove (2). Suppose, on the contrary, that there is a point $x \in C$ such that $f^{i}(x) \in C$ for each $0 \leq i \leq p$. Then $f^{p}(x) \in \bigcap_{i=0}^{p} f^{i}(C) = \emptyset$. This is a contradiction. Finally we prove (3). We suppose that f is injective. Let C be eventually colored within p of f. Suppose, on the contrary, that $\bigcap_{i=0}^{p} f^{i}(C) \neq \emptyset$. Take a point $y \in \bigcap_{i=0}^{p} f^{i}(C)$. Choose a point $x \in C$ such that $f^{p}(x) = y$. Since f is injective, we see that $f^{i}(x) \in C$ for each $0 \leq i \leq p$. This is a contradiction. \Box

REMARK. In general, the converse assertion of (2) in the proposition above is not true. Let $X = \{a, b, c\}$ be a set consisting three points and let $f : X \to X$ be the map defined by f(a) = b, f(b) = c, f(c) = b. Then $C = \{a, b\}$ is eventually colored within 2 of f, but $\bigcap_{i=0}^{p} f^{i}(C) \neq \emptyset$ $(p \in \mathbb{N})$.

We define the eventual coloring number C(f, p) as follows. A cover \mathcal{C} of

376

X is called an *eventual coloring within* p if each element C of C is eventually colored within p. The minimal cardinality C(f,p) of all closed (or open) eventual colorings within p is called the *eventual coloring number* of f within p. Note that C(f,1) = C(f). If there is some $p \in \mathbb{N}$ with $C(f,p) < \infty$, we say that f is eventually colored. Similarly, we can consider the index $C^+(f,p)$ defined by

$$\min \left\{ |\mathcal{C}|; \mathcal{C} \text{ is a closed (open) cover of } X \right.$$

such that for each $C \in \mathcal{C}, \ \bigcap_{i=0}^{p} f^{i}(C) = \emptyset \right\}.$

By the definitions, we see that $C(f,p) \leq C^+(f,p)$. In section 3, we show that $C(f,p) = C^+(f,p)$ if X is compact.

In this paper, we need the following notions. A finite cover C of X is a closed partition of X provided that each element C of C is closed, $\operatorname{int}(C) \neq \emptyset$ and $C \cap C' = \operatorname{bd}(C) \cap \operatorname{bd}(C')$ for any $C, C' \in C$. Let \mathcal{B} be a collection of subsets of a space X with dim $X = n < \infty$. Then we say that \mathcal{B} is in general position in X provided that if $S \subset \mathcal{B}$ with |S| = m, then dim $(\bigcap\{S \mid S \in S\}) \leq \max\{-1, n - m\}$. By a swelling of a family $\{A_s\}_{s \in S}$ of subsets of a space X, we mean any family $\{B_s\}_{s \in S}$ of subsets of X such that $A_s \subset B_s$ $(s \in S)$ and for every finite set of indices $s_1, s_2, \ldots, s_m \in S$,

$$\bigcap_{i=1}^{m} A_{s_i} \neq \emptyset \text{ if and only if } \bigcap_{i=1}^{m} B_{s_i} \neq \emptyset.$$

Conversely, for any cover $\{B_s\}_{s\in S}$ of X, a cover $\{A_s\}_{s\in S}$ of X is a *shrinking* of $\{B_s\}_{s\in S}$ if $A_s \subset B_s$ $(s \in S)$. The following facts are well-known;

- (1) for any locally finite collection \mathcal{F} of closed subsets of a space X, \mathcal{F} has a swelling consisting of open subsets of X (e.g., see [9, Proposition 3.2.1]) and
- (2) for any open cover \mathcal{U} of X, \mathcal{U} has a closed shrinking cover of X (e.g., see [9, Proposition A.7.1]).

Hence we see that if $f : X \to X$ is a closed map and a closed finite cover \mathcal{B} of X is an eventual coloring of f, then we can find an open swelling \mathcal{C} of \mathcal{B} which is an eventual coloring of f.

Y. IKEGAMI, H. KATO and A. UEDA

2. Eventual coloring numbers of fixed-point free homeomorphisms.

In this section, we will define an index $\varphi_n(k)$. For each $n = 0, 1, 2, \ldots$, and each $k = 0, 1, 2, \ldots, n + 1$, we define the index $\varphi_n(k)$ as follows: Put $\varphi_n(0) = 1$. For each $k = 1, 2, \ldots, n + 1$, by induction on k we define the index $\varphi_n(k)$ by

$$\varphi_n(k) = 2\varphi_n(k-1) + [n/(n+2-k)] \cdot (\varphi_n(k-1)+1),$$

where $[x] = \max\{m \in \mathbb{N} \cup \{0\} | m \le x\}$ for $x \in [0, \infty)$. Note that $\varphi_n(1) = 2$ $(n \ge 0)$ and $\varphi_n(2) = 7$ $(n \ge 1)$. Also, note that $\varphi_2(3) = 30$, $\varphi_n(3) = 22$ $(n \ge 3)$, $\varphi_3(4) = 113$, $\varphi_4(4) = 90$ and $\varphi_4(5) = 544$.

In this paper, we need the following two lemmas whose proofs are some modifications of the proofs of Kulesza [6, Lemma 3.3 and Lemma 3.5].

LEMMA 2.1 (cf. [6, Lemma 3.3]). Let $C = \{C_i | 1 \le i \le m\}$ be an open cover of a separable metric space X with dim $X = n < \infty$ and let $\mathcal{B} = \{B_i | 1 \le i \le m\}$ be a closed shrinking of C. Suppose that O is an open set in X and Z is a zerodimensional subset of O. Then there is an open shrinking $C' = \{C'_i | 1 \le i \le m\}$ of C such that for each $i \le m$,

(0) $B_i \subset C'_i$,

(1)
$$C'_i = C_i \text{ if } \operatorname{bd}(C_i) \cap O = \emptyset$$
,

(2) $C'_i \cap (X - O) = C_i \cap (X - O),$

- (3) $\operatorname{bd}(C'_i) \cap (X O) \subset \operatorname{bd}(C_i) \cap (X O),$
- (4) $\operatorname{bd}(C'_i) \cap Z = \emptyset$, and
- (5) $\{ \operatorname{bd}(C') \cap O | C' \in \mathcal{C}' \}$ is in general position.

PROOF. First, we will construct C'_1 . Consider the subspace

$$Y_1 = \operatorname{cl}(C_1) \cap \operatorname{cl}(O) - (\operatorname{bd}(O) \cap \operatorname{bd}(C_1))$$

of X. Put $E_1 = Y_1 \cap (\operatorname{bd}(O) \cup B_1)$ and $F_1 = Y_1 \cap \operatorname{bd}(C_1)$. Then E_1 and F_1 are disjoint closed subsets of Y_1 . Then we can take a closed separator (or partition) S_1 between E_1 and F_1 in Y_1 such that dim $S_1 \leq n-1$ and $S_1 \cap Z = \emptyset$ (e.g., see [9, Lemma 3.1.4]). Hence we have open subsets G_1 and H_1 of Y_1 such that $Y_1 - S_1 = G_1 \cup H_1, G_1 \cap H_1 = \emptyset$ and $G_1 \supset E_1, H_1 \supset F_1$. Put $C'_1 = (C_1 - O) \cup G_1$. Then C'_1 is an open set of X. By the construction, we see that C'_1 satisfies the conditions (0)–(4).

We proceed by induction on *i*. Now we suppose that there are C'_j $(j \le i - 1)$ satisfying the conditions (0)–(4) and $\{\operatorname{bd}(C'_j) \cap O \mid 1 \le j \le i - 1\}$ is in general position. Consider the subspace $Y_i = \operatorname{cl}(C_i \cap \operatorname{cl}(O)) - (\operatorname{bd}(O) \cap \operatorname{bd}(C_i))$ of X.

Eventual colorings

Put $E_i = Y_i \cap (\operatorname{bd}(O) \cup B_i)$ and $F_i = Y_i \cap \operatorname{bd}(C_i)$. Then E_i and F_i are disjoint closed subsets of Y_i . We can choose a zero-dimensional F_{σ} set Z' of O such that if $S \subset \{O \cap \operatorname{bd}(C_j) \mid j \leq i-1\}$ with |S| = m, then $\dim(\bigcap\{S \mid S \in S\} - Z') \leq$ $\max\{-1, n - m - 1\}$ (e.g., see [9, Lemma 3.11.16]). Then we can take a closed separator S_i between E_i and F_i in Y_i such that $\dim S_i \leq n-1$ and $S_i \cap (Z \cup Z') = \emptyset$. Then we have open subsets G_i and H_i of Y_i such that $Y_i - S_i = G_i \cup H_i, G_i \cap H_i = \emptyset$ and $G_i \supset E_i, H_i \supset F_i$. Put $C'_i = (C_i - O) \cup G_i$. By the construction, we see that $\mathcal{C}' = \{C'_i \mid 1 \leq i \leq m\}$ satisfies the desired conditions. \Box

LEMMA 2.2 (cf. [6, Lemma 3.5]). Suppose that $f: X \to X$ is a fixed-point free homeomorphism of a separable metric space X such that dim $X = n < \infty$ and dim $P(f) \leq 0$. Let $\mathcal{C} = \{C_i | 1 \leq i \leq m\}$ be an open cover of X and let $\mathcal{B} = \{B_i | 1 \leq i \leq m\}$ be a closed shrinking of \mathcal{C} . Then for any $k \in \mathbb{N}$, there is an open shrinking $\mathcal{C}' = \{C'_i | 1 \leq i \leq m\}$ of \mathcal{C} such that

- (0) $B_i \subset C'_i$,
- (1) $\{f^j(\mathrm{bd}(C')) | C' \in \mathcal{C}', -k \leq j \leq k\}$ is in general position,
- (2) $\operatorname{bd}(C') \cap P(f) = \emptyset$ for each $C' \in \mathcal{C}'$.

PROOF. The proof is a modification of the proof of [6, Lemma 3.5]. We proceed by induction on k. First we will show that the case k = 0 is true. In fact, if we put O = X and Z = P(f), we see that the case k = 0 follows from Lemma 2.1. Now we suppose that the result for the case k - 1 is true. We may assume that there is an open shrinking $\mathcal{D} = \{D_i | 1 \le i \le m\}$ of \mathcal{C} such that

- (0) $B_i \subset D_i$,
- (1) $\{f^j(\mathrm{bd}(D)) \mid D \in \mathcal{D}, -k+1 \leq j \leq k-1\}$ is in general position,
- (2) $\operatorname{bd}(D) \cap P(f) = \emptyset$ for each $D \in \mathcal{D}$.

Put $F = \bigcup \{ bd(D) | D \in \mathcal{D} \}$. Since $F \cap P(f) = \emptyset$, we can choose a star finite open cover $\mathcal{O} = \{O_j | j \in \mathbb{N}\}$ of F such that $O_j \cap F \neq \emptyset$ and $f^p(O_j) \cap f^q(O_j) = \emptyset$ for each $j \in \mathbb{N}$ and for $p \neq q, -2k \leq p, q \leq 2k$. We will construct a sequence $\{\mathcal{D}(j) | j = 0, 1, 2, ...\}$ of open shrinkings of $\mathcal{C} = \{C_i | 1 \leq i \leq m\}$ such that $\mathcal{D}(j+1)$ is a shrinking of $\mathcal{D}(j)$ for each j satisfying the following conditions:

- (a) $\mathcal{D}(j) = \{ D(j)_i | 1 \le i \le m \}.$
- (b) $B_i \subset D(j)_i$.
- (c) $\mathcal{D}(0) = \mathcal{D}$.
- (d) $D(j-1)_i \cap (X-O_j) = D(j)_i \cap (X-O_j), \ \mathrm{bd}(D(j-1)_i) \cap (X-O_j) \supset \mathrm{bd}(D(j)_i) \cap (X-O_j), \ \mathrm{and} \ \mathrm{if} \ \mathrm{bd}(D(j-1)_i) \cap O_j = \emptyset, \ \mathrm{then} \ \mathrm{bd}(D(j)_i) \cap O_j = \emptyset.$
- (e) $\mathcal{B}_j = \{f^p(\mathrm{bd}(D)) | D \in \mathcal{D}(j), -k+1 \le p \le k-1\} \cup \{f^{-k}(\mathrm{bd}(D)) \cap (\bigcup_{p=1}^j O_p) | D \in \mathcal{D}(j)\} \cup \{f^k(\mathrm{bd}(D)) \cap (\bigcup_{p=1}^j O_p) | D \in \mathcal{D}(j)\} \text{ is in general position.}$
- (f) $\operatorname{bd}(D) \cap P(f) = \emptyset$ for $D \in \mathcal{D}(j)$.

Also, we proceed by induction on j. Suppose that we have $\mathcal{D}(j)$. We will construct $\mathcal{D}(j+1)$. For each p with $-k \leq p \leq k$, consider the collection $\mathcal{S}_p = \{B \cap f^p(O_{j+1}) | B \in \mathcal{B}_j\}$. Then there is a zero-dimensional F_{σ} -set Z_p of $f^p(O_{j+1})$ such that if $\mathcal{S} \subset \mathcal{S}_p, |\mathcal{S}| = m$, then $\dim(\bigcap \mathcal{S} - Z_p) \leq \max\{-1, n - m - 1\}$. Let $Z = (\bigcup_{p=-k}^k f^{-p}(Z_p)) \cup (P(f) \cap O_{j+1})$. Note that Z is a zero-dimensional F_{σ} -set of O_{j+1} . Now, we use the same arguments as in the proof of Lemma 2.1. First, we construct $D(j+1)_1$ and by induction on i, we can construct $D(j+1)_i$ $(2 \leq i \leq m)$. Consequently we obtain $\mathcal{D}(j+1) = \{D(j+1)_i | 1 \leq i \leq m\}$. By the constructions and the similar arguments to the proof of [6, Lemma 3.5], we see that $\mathcal{D}(j+1)$ satisfies the conditions (a)–(f).

Now, we obtain the above $\{\mathcal{D}(j) \mid j = 0, 1, 2, ...\}$ satisfying the conditions (a)– (f). Then we put $C'_i = \bigcap_{j=0}^{\infty} D(j)_i$ for each i = 1, 2, ..., m. Since \mathcal{O} is star finite and by the construction of $\{\mathcal{D}(j) \mid j = 0, 1, 2, ...\}$, we see that $\mathcal{C}' = \{C'_i \mid 1 \le i \le m\}$ is an open cover of X. Also we see that \mathcal{C}' satisfies the desired conditions. \Box

The following result is the main theorem of this paper.

THEOREM 2.3 (cf. [1]). Let $f : X \to X$ be a fixed-point free homeomorphism of a separable metric space X with dim $X = n < \infty$. If dim $P(f) \leq 0$, then

$$C(f,\varphi_n(k)) \le n+3-k$$

for each $k = 0, 1, 2, \ldots, n + 1$.

REMARK. If we do not assume dim $P(f) \leq 0$, the above theorem is not true. Let $f: S^n \to S^n$ be the antipodal map of the *n*-dimensional sphere S^n . Note that $P(f) = S^n$ and C(f, p) = C(f, 1) = n + 2 for any $p \in \mathbb{N}$.

PROOF OF THEOREM 2.3. We proceed by induction on k. In the case k = 0, Theorem 2.3 follows from Theorem 1.3. Now we suppose that Theorem 2.3 holds for k - 1. We have an open cover $\mathcal{C} = \{C_i | 1 \leq i \leq n + 3 - (k - 1)\}$ of X which is an eventual coloring within $\varphi_n(k - 1)$. Take a closed shrinking $\mathcal{B} = \{B_i | 1 \leq i \leq n + 3 - (k - 1)\}$ of \mathcal{C} . By use of Lemma 2.2, we have an open cover $\mathcal{C}' = \{C'_i | 1 \leq i \leq n + 3 - (k - 1)\}$ such that

- (0) $B_i \subset C'_i$,
- (1) $\{f^{j}(\mathrm{bd}(C')) | C' \in \mathcal{C}', 0 \le j \le \varphi_{n}(k-1) + [n/(n+2-k)] \cdot (\varphi_{n}(k-1)+1)\}$ is in general position,
- (2) $\operatorname{bd}(C') \cap P(f) = \emptyset$ for each $C' \in \mathcal{C}'$.

Put $K_i = cl(C'_i)$ for $1 \le i \le n+3-(k-1)$ and let $\mathcal{K} = \{K_i | 1 \le i \le n+3-(k-1)\}$. Put

380

Eventual colorings

$$L_1 = K_1, \ L_i = cl(K_i - (K_1 \cup K_2 \cup \dots \cup K_{i-1})) \ (i \ge 2)$$

Then the collection $\mathcal{L} = \{L_i | 1 \le i \le n+3-(k-1)\}$ is a closed partition of X and \mathcal{L} satisfies the condition; for $1 \le i_1 < i_2 < \cdots < i_m \le n+3-(k-1)$,

$$\mathrm{bd}(L_{i_1}) \cap \mathrm{bd}(L_{i_2}) \cap \cdots \mathrm{bd}(L_{i_m}) \subset \mathrm{bd}(K_{i_1}) \cap \mathrm{bd}(K_{i_2}) \cap \cdots \cap \mathrm{bd}(K_{i_{m-1}}).$$

Put $D = L_{n+3-(k-1)} \in \mathcal{L}$. Let $x \in D$. Since D is eventually colored within $\varphi_n(k-1)$, we see that $|J_x| \ge [n/(n+2-k)] + 1$, where

$$J_x = \{j \mid 0 \le j \le \varphi_n(k-1) + [n/(n+2-k)] \cdot (\varphi_n(k-1)+1) \text{ and } f^j(x) \notin D\}.$$

For each $j \in J_x$, put

$$I(j) = \{i \in \{1, 2, \dots, n+3-k\} | f^{j}(x) \in L_{i}\}$$

Suppose, on the contrary, that |I(j)| = n + 3 - k for all $j \in J_x$. Then

$$f^j(x) \in \bigcap_{i=1}^{n+3-k} L_i = \bigcap_{i=1}^{n+3-k} \operatorname{bd}(L_i) \subset \bigcap_{i=1}^{n+2-k} \operatorname{bd}(K_i) \subset \bigcap_{i=1}^{n+2-k} \operatorname{bd}(C'_i).$$

Since $\{f^j(\mathrm{bd}(C')) | C' \in \mathcal{C}', 0 \leq j \leq \varphi_n(k-1) + [n/(n+2-k)] \cdot (\varphi_n(k-1)+1)\}$ is in general position, we see that $([n/(n+2-k)]+1)(n+2-k) \leq n$. However, we have the following inequality

$$([n/(n+2-k)]+1)(n+2-k) \ge n+1.$$

This is a contradiction. Hence there is some $j(x) \in J_x$ such that |I(j(x))| < n+3-k. We choose $L_{i(x)}$ such that $f^{j(x)}(x) \notin L_{i(x)}$. Take an open neighborhood U(x) of x in D such that $f^{j(x)}(\operatorname{cl}(U(x))) \cap (D \cup L_{i(x)}) = \emptyset$. Consider the collection $\mathcal{U} = \{U(x)|x \in D\}$ and take a locally finite closed refinement \mathcal{W} of \mathcal{U} . For each $W \in \mathcal{W}$, we can choose U(x) such that $W \subset U(x)$. Put j(W) = i(x). For each $1 \leq j \leq n+3-k$, put $E_j = \bigcup \{W \in \mathcal{W} \mid j(W) = j\}$ and define $F_j = L_j \cup E_j$. We will show that F_j is eventually colored within $\varphi_n(k)$.

Let $y \in F_j (= L_j \cup E_j)$. If $y \in E_j$, then we can choose $W \in \mathcal{W}$ and $U(x) \in \mathcal{U}$ such that $y \in W \subset U(x)$. Then $j(x) \leq \varphi_n(k-1) + [n/(n+2-k)] \cdot (\varphi_n(k-1)+1)$ and $f^{j(x)}(y) \notin (L_j \cup D)$. If $y \in L_j$, we can choose $p \leq \varphi_n(k-1)$ such that $y' = f^p(x) \notin L_j$. If $y' \notin E_j$, then $f^p(x) \notin F_j$. Finally, if $y' \in E_j$, the previous argument shows that there is $q \leq \varphi_n(k-1) + [n/(n+2-k)] \cdot (\varphi_n(k-1)+1)$ such that $f^q(y') \notin F_j$. Hence $f^{p+q}(y) \notin F_j$ and $p+q \leq \varphi_n(k)$. Then the closed cover $\mathcal{F} = \{F_j \mid 1 \leq j \leq n+3-k\}$ of X is an eventual coloring within $\varphi_n(k)$. This implies that $C(f,\varphi_n(k)) \leq n+3-k$. This completes the proof. \Box

COROLLARY 2.4. Let $f: X \to X$ be a fixed-point free homeomorphism of a separable metric space X with dim $X = n < \infty$. If dim $P(f) \le 0$, then $C(f, 2) \le n + 2$ $(n \ge 0)$ and $C(f, 7) \le n + 1$ $(n \ge 1)$.

Now we have the following general problem for eventual coloring numbers.

PROBLEM 2.5. For each $n \ge 0$ and each $1 \le k \le n+1$, determine the minimal number $m_n(k)$ of natural numbers p satisfying the condition; if $f: X \to X$ is any fixed-point free homeomorphism of a separable metric space X such that dim X = n and dim $P(f) \le 0$, then $C(f, p) \le n+3-k$.

Next, we will consider another index $\tau_n(k)$ defined by $\tau_n(k) = k(2n+1) + 1$ for each $n = 0, 1, 2, \ldots$, and each $k = 0, 1, 2, \ldots, n+1$.

THEOREM 2.6. Let $f : X \to X$ be a fixed-point free homeomorphism of a separable metric space X with dim $X = n < \infty$. If dim $P(f) \leq 0$, then

$$C(f,\tau_n(k)) \le n+3-k$$

for each $k = 0, 1, 2, \ldots, n+1$.

PROOF. The proof is similar to the proof of Theorem 2.3. We proceed by induction on k. In the case k = 0, Theorem 2.6 follows from Theorem 1.3. Now we suppose that $k \ge 1$ and there is an open cover $\mathcal{C} = \{C_i | 1 \le i \le n+3-(k-1)\}$ of X such that $cl(C_1), cl(C_2)$ are eventually colored within $\tau_n(k-1) = (k-1)(2n+1)+1$ and $cl(C_i)$ ($3 \le i \le n+3-(k-1)$) are colored (=eventually colored within 1). By use of Lemma 2.2, we may assume that

$$\{f^j(\mathrm{bd}(C)) \mid C \in \mathcal{C}, 0 \le j \le 2n+1\}$$

is in general position. In particular, $\{f^j(\mathrm{bd}(C_1))| \ 0 \le j \le 2n+1\}$ is in general position.

Put $K_i = cl(C_i)$ for $1 \le i \le n+3-(k-1)$ and let $\mathcal{K} = \{K_i | 1 \le i \le n+3-(k-1)\}$. Put

$$L_1 = K_1, \ L_i = cl(K_i - (K_1 \cup K_2 \cup \dots \cup K_{i-1})) \ (i \ge 2).$$

Then the collection $\mathcal{L} = \{L_i | 1 \le i \le n+3-(k-1)\}$ is a closed partition of X.

Note that $L_1 \cap L_2 \subset \operatorname{bd}(C_1)$. Let $x \in L_3$. Since L_3 is colored, $|J_3(x)| \ge n+1$, where $J_3(x) = \{j \mid 0 \le j \le 2n+1 \text{ and } f^j(x) \notin L_3\}$. By the similar argument to the proof of Theorem 2.3, we see that there is some $j(x) \in J_3(x)$ such that $f^{j(x)}(x) \notin L_1$ or $f^{j(x)}(x) \notin L_2$. Also, by the similar argument to the proof of Theorem 2.3, we have a closed cover

$$\mathcal{F} = \{F_i \mid 1 \le i \le n+3-k\}$$

of X such that F_1, F_2 are eventually colored within $\tau_n(k) = k(2n+1) + 1$ and F_i $(3 \le i \le n+3-k)$ are colored.

We have the following result which is the case C(f, p) = 2.

COROLLARY 2.7. Let $f: X \to X$ be a fixed-point free homeomorphism of a separable metric space X with dim $X = n < \infty$. If dim $P(f) \leq 0$, then there is some $p \in \mathbb{N}$ with $p \leq \min\{\varphi_n(n+1), \tau_n(n+1)\}$ such that

$$C(f, p) = 2.$$

In other words, X can be divided into two closed subsets C_1, C_2 (i.e., $X = C_1 \cup C_2$) and there is some $p \in \mathbb{N}$ such that if $x \in C_i$ ($i \in \{1,2\}$), there is a strictly increasing sequence $\{n_x(k)\}_{k=1}^{\infty}$ of natural numbers such that $1 \leq n_x(1) \leq p$, $n_x(k+1) - n_x(k) \leq p$ and if $j \in \{1,2\}$ with $j \neq i$, then

$$f^{n_x(k)}(x) \in C_i - C_i \ (k: odd), \quad f^{n_x(k)}(x) \in C_i - C_i \ (k: even).$$

By the above corollary, we see that $m_n(k) \leq \min\{\varphi_n(k), \tau_n(k)\}$. We see that $\varphi_0(1) = 2, \varphi_1(2) = 7, \varphi_2(3) = 30, \varphi_3(4) = 113$ and $\varphi_4(5) = 544$, Also, $\tau_0(1) = 2, \tau_1(2) = 7, \tau_2(3) = 16, \tau_3(4) = 29$ and $\tau_4(5) = 46$. Hence we have the partial answer to the above problem.

COROLLARY 2.8. Suppose that $f: X \to X$ is a fixed-point free homeomorphism of a separable metric space X and dim $P(f) \leq 0$.

(1) If dim X = 0, then C(f, 2) = 2. (2) If dim X = 1, then C(f, 7) = 2. (3) If dim X = 2, then C(f, 16) = 2. (4) If dim X = 3, then C(f, 29) = 2. (5) If dim X = 4, then C(f, 46) = 2.

In other words, $m_0(1) = 2$, $m_1(2) \le 7$, $m_2(3) \le 16$, $m_3(4) \le 29$ and $m_4(5) \le 46$.

3. Eventual coloring numbers of fixed-point free maps of compact metric spaces.

In this section, we consider eventual coloring numbers of fixed-point free maps of compact metric spaces. Let X be a compact metric space and let $f: X \to X$ be a map. Consider the inverse limit (X, f) of f, i.e.

$$(X, f) = \left\{ (x_i)_{i=0}^{\infty} | \ x_i \in X, f(x_i) = x_{i-1} \text{ for } i \in \mathbb{N} \right\} \subset X^{\infty} = \prod_{j=0}^{\infty} X_j.$$

Then we have the shift homeomorphism $\tilde{f}: (X, f) \to (X, f)$ of f and the natural projection $p_j: (X, f) \to X_j = X$ $(j \ge 0)$ defined by

$$\widetilde{f}((x_i)_{i=0}^{\infty}) = (f(x_i))_{i=0}^{\infty}, \quad p_j((x_i)_{i=0}^{\infty}) = x_j.$$

Note that $p_j \cdot \tilde{f} = f \cdot p_j$. We see that if $f : X \to X$ is a fixed-point free map of a compact metric space X, then $\tilde{f} : (X, f) \to (X, f)$ is a fixed-point free homeomorphism. By a modification of the proof of [1, Theorem 6], we have the following theorem which is a more precise result than [1, Theorem 6].

THEOREM 3.1. Let $f: X \to X$ be a fixed-point free map of a compact metric space X and let $\tilde{f}: (X, f) \to (X, f)$ be the shift homeomorphism of f. Then for $p \in \mathbb{N}$,

$$C(f,p) = C^+(f,p) = C(\widetilde{f},p).$$

PROOF. Since \tilde{f} is a homeomorphism, we see that $C(\tilde{f}, p) = C^+(\tilde{f}, p)$. Also, note that $C^+(f, p) \geq C(f, p)$. First, we suppose that the map $f : X \to X$ is surjective. We show that $C^+(f, p) \leq C(\tilde{f}, p) \leq C(f, p)$. We will prove $C(\tilde{f}, p) \leq C(f, p)$. Let \mathcal{C} be an eventual (closed) coloring within p of f. Since $p_0 \cdot \tilde{f} = f \cdot p_0$, we see that $p_0^{-1}(\mathcal{C})$ is a closed cover of (X, f) and

$$\bigcap_{i=0}^{p} \widetilde{f}^{-i}(p_{0}^{-1}(C)) = p_{0}^{-1}\bigg(\bigcap_{i=0}^{p} f^{-i}(C)\bigg) = \emptyset$$

for each $C \in \mathcal{C}$. This implies that $C(\tilde{f}, p) \leq C(f, p)$. We prove that $C^+(f, p) \leq C(\tilde{f}, p) = C^+(\tilde{f}, p)$. Let \mathcal{C} be an eventual (closed) coloring within p of \tilde{f} . Let $C \in \mathcal{C}$. Then we see that $\bigcap_{i=0}^{p} \tilde{f}^i(C) = \emptyset$. Take an open neighborhood U(C) of

Eventual colorings

C in (X, f) such that $\bigcap_{i=0}^{p} \widetilde{f}^{i}(U(C)) = \emptyset$. Note that for any $\epsilon > 0$, there is a sufficiently large $j \in \mathbb{N}$ such that p_{j} is an ϵ -map, i.e., diam $p_{j}^{-1}(x) < \epsilon$ for $x \in X$. Hence we see that there is $j \in \mathbb{N}$ such that $p_{j}^{-1}(f^{i}(p_{j}(C))) \subset \widetilde{f}^{i}(U(C))$. Hence $\bigcap_{i=0}^{p} f^{i}(p_{j}(C)) = \emptyset$. Since $p_{j} : (X, f) \to X$ is surjective, the family $p_{j}(C)$ is a closed cover of X. This implies that $C^{+}(f, p) \leq C(\widetilde{f}, p)$ and hence $C(f, p) = C^{+}(f, p) = C(\widetilde{f}, p)$. Next, we consider the general case in which f is any map. Put

$$K = \bigcap \{ f^j(X) | \ j \in \mathbb{N} \}.$$

Consider the map $g = f|K : K \to K$. Note that g is surjective. We prove that $C^+(g,p) \ge C^+(f,p)$. Consider any closed cover \mathcal{C} of K such that for each $C \in \mathcal{C}$, $\bigcap_{i=0}^p f^i(C) = \emptyset$. Take an open swelling \mathcal{C}' of \mathcal{C} in X. We may assume that for each $C' \in \mathcal{C}'$, $\bigcap_{i=0}^p f^i(C') = \emptyset$. Note that K is an attractor of f, i.e., there is $q \in \mathbb{N}$ such that $f^q(X) \subset U = \bigcup \mathcal{C}'$. Then $f^{-q}(\mathcal{C}')$ is an open cover of X and for each $C' \in \mathcal{C}'$,

$$\bigcap_{i=0}^{p} f^{i}(f^{-q}(C')) \subset \bigcap_{i=0}^{p} f^{-q}(f^{i}(C')) = f^{-q}\left(\bigcap_{i=0}^{p} f^{i}(C')\right) = \emptyset.$$

This implies that $C^+(g,p) \ge C^+(f,p)$. Note that (X,f) = (K,g) and $\tilde{f} = \tilde{g}$. Since g is surjective, by the above arguments we see that $C(g,p) = C^+(g,p) = C(\tilde{f},p)$. Note that $C(g,p) \le C(f,p) \le C^+(f,p) \le C^+(g,p)$. Hence $C(g,p) = C(f,p) = C^+(f,p) = C^+(f,p) = C^+(f,p)$. \Box

COROLLARY 3.2 (cf. [1, Theorem 6]). Let $f: X \to X$ be a fixed-point free map of a compact metric space X with dim $X = n < \infty$. If dim $P(f) \leq 0$, then there is $p \in \mathbb{N}$ with $p \leq \min\{\varphi_n(k), \tau_n(k)\}$ such that

$$C(f,p) \le n+3-k$$

for each $k = 0, 1, 2, \dots, n+1$.

PROOF. Let $0 \le k \le n+1$. Since dim $P(f) \le 0$, we see that dim $P(\tilde{f}) \le 0$. Note that \tilde{f} is a fixed-point free homeomorphism and dim $(X, f) \le n$. By Theorems 2.3 and 2.6, $C(\tilde{f}, p) \le n+3-k$ some $p \le \min\{\varphi_n(k), \tau_n(k)\}$. By Theorem 3.1, we see that

$$C(f,p) = C(f,p) \le n+3-k.$$

EXAMPLE. There are a (zero-dimensional) separable metric space X and a fixed-point free map $f: X \to X$ such that dim $P(f) \leq 0$ and

- (1) f is closed,
- (2) f is finite-to-one, and
- (3) f cannot be eventually colored within any $p \in \mathbb{N}$.

In fact, let $f: X \to X$ be the map as in [9, Theorem 3.12.7]. Then we see that $P(f) = \emptyset$ and f cannot be colored and satisfies the conditions (1), (2) (see [9, Theorem 3.12.7]). Let \mathcal{U} be any finite open cover of X. Then there exist some $U \in \mathcal{U}$ and a point $x \in U$ such that $f^p(x) \in U$ for any $p \in \mathbb{N}$ (see [9, Corollary 3.12.6] and the proof of [9, Theorem 3.12.7]). This implies that \mathcal{U} is not an eventual coloring within any $p \in \mathbb{N}$.

REMARK. In the statement of Theorem 1.3, "a separable metric space X" can be replaced with "a paracompact space X" (see [M. A. van Hartskamp and J. Vermeer, On colorings of maps, Topology and its Applications 73 (1996), 181–190]). Hence Theorem 2.3 is also true for the case that X is a paracompact space.

References

- J. M. Aarts, R. J. Fokkink and H. Vermeer, Variations on a theorem of Lusternik and Schnirelmann, Topology, 35 (1996), 1051–1056.
- [2] J. M. Aarts, R. J. Fokkink and H. Vermeer, Coloring maps of period three, Pacific J. Math., 202 (2002), 257–266.
- [3] A. Błaszczyk and D. Y. Kim, A topological version of a combinatorial theorem of Katětov, Comment. Math. Univ. Carolin., 29 (1988), 657–663.
- [4] E. K. van Douwen, βX and fixed-point free maps, Topology Appl., **51** (1993), 191–195.
- [5] A. Krawczyk and J. Steprāns, Continuous colourings of closed graphs, Topology Appl., 51 (1993), 13–26.
- [6] J. Kulesza, Zero-dimensional covers of finite-dimensional dynamical systems, Ergodic Theory Dynam. Systems, 15 (1995), 939–950.
- [7] L. Lusternik and L. Schnirelman, Topological Methods in Variational Calculus (Russian), Moscow, 1930.
- [8] J. van Mill, Easier proofs of coloring theorems, Topology Appl., 97 (1999), 155–163.
- [9] J. van Mill, The Infinite-Dimensional Topology of Function Spaces, North-Holland Math. Library, 64, North-Holland Publishing Co., Amsterdam, 2001.
- [10] H. Steinlein, On the theorems of Borsuk-Ulam and Ljusternik-Schnirelmann-Borsuk, Canad. math. Bull., 27 (1984), 192–204.

386

$Eventual\ colorings$

Yuki Ikegami

Institute of Mathematics University of Tsukuba Ibaraki 305-8571, Japan

Hisao Kato

Institute of Mathematics University of Tsukuba Ibaraki 305-8571, Japan E-mail: hkato@math.tsukuba.ac.jp

Akihide UEDA

Institute of Mathematics University of Tsukuba Ibaraki 305-8571, Japan