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Abstract. The present paper concerns the dynamics of surface diffeo-
morphisms. Given a diffeomorphism f of a surface S, the torsion of the orbit
of a point z ∈ S is, roughly speaking, the average speed of rotation of the
tangent vectors under the action of the derivative of f , along the orbit of z
under f . The purpose of the paper is to identify some situations where there
exist measures and orbits with non-zero torsion. We prove that every area
preserving diffeomorphism of the disc which coincides with the identity near
the boundary has an orbit with non-zero torsion. We also prove that a dif-
feomorphism of the torus T2, isotopic to the identity, whose rotation set has
non-empty interior, has an orbit with non-zero torsion.

1. Introduction.

Numerical conjugacy invariants are a key tool to analyze the behavior of
dynamical systems. The paradigmatic example is of course Poincaré’s rotation
number for circle homeomorphisms: a single numerical conjugacy invariant, the
rotation number, allows to describe completely the dynamics of a circle diffeo-
morphism, at least when this diffeomorphism is smooth enough and the rotation
number is irrational. Unfortunately, this situation is quite specific to the circle.
Consider for example a homeomorphism f of the torus T2, which is isotopic to the
identity. Poincaré’s construction of rotation numbers may be generalized, yielding
rotation vectors for f . Nevertheless, unlike what happens for circle homeomor-
phisms, different points of T2 may have different rotation vectors. Moreover, even
the collection of all the rotation vectors of the points in T2 is far from describing
completely the dynamics of f . This is the reason why many other invariants have
been defined to study the dynamics of torus (or, more generally, surfaces) homeo-
morphisms. One may for example consider the average speed at which two given
orbits turn around each other. Or, for a diffeomorphism f of S2 ' C̄, one may
construct a conjugacy invariant by considering the evolution of the cross ratio of
four points under the action of f (see e.g. [11] for more details and many more
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examples).
In the present paper, we consider a numerical invariant which measures the

average rotation speed of tangent vectors under the action of the derivative of
a surface diffeomorphism. Consider a (non necessarily compact) surface S with
trivializable tangent bundle and a diffeomorphism f of S isotopic to the identity.
Choose an isotopy I = (ft)t∈[0,1] joining the identity to f . For t ∈ R, we define ft =
ft−n ◦fn where n = btc. Choose a trivialization of the tangent bundle of S. Then,
for every point x ∈ S, every vector ξ ∈ TxS \ {0} and every t, we can see dft(x).ξ
as a non-zero vector in R2 ' C. We denote by Torsionn(I, x, ξ) the variation of the
argument of dft(x).ξ when t runs from 0 to n, divided by n (as a unit for angles,
we use the full turn instead of the radian). If limn→+∞Torsionn(I, x, ξ) exists,
then it does not depend on ξ; we call it torsion of the orbit of x, and denote it
by Torsion(I, x). If µ is an f -invariant probability measure, then Torsion(I, x)
exists for µ-almost every x and the function x 7→ Torsion(I, x) is µ-integrable; we
call torsion of the measure µ the integral

∫
S

Torsion(I, x)dµ(x) and denote it by
Torsion(I, µ). If f has compact support in S and if we only consider isotopies
with compact support, then the quantities Torsion(I, x) and Torsion(I, µ) do not
depend on the choice of the isotopy I. Similarly, if S is the torus T2 = R2/Z2 or
the annulus A = R/Z×R and if we use the canonical trivialization of the tangent
bundle of S, then the quantities Torsion(I, x) and Torsion(I, µ) do not depend on
the choice of the isotopy I. In those two cases, we may speak of the torsion of an
orbit of f without having chosen an isotopy (see Section 2 for more details).

Similar notions have been considered by several authors. What we call the
torsion of the area probability measure has first been defined by D. Ruelle for
conservative diffeomorphisms using the polar decomposition of GL(2,R) [23]. In
the context of twists maps, the notion of torsion of an orbit has been considered
by J. Mather [19], [20] and S. Angenent [1] and S. Crovisier [4], [5]; see below
for more details. J. Mather calls it “the amount of rotation of an orbit”. The
torsion of the area probability measure is one of the quasi-morphisms considered
by J. M. Gambaudo and É. Ghys to study the algebraic structure of the groups
of area preserving diffeomorphisms of a surface; they call it “the Ruelle number
of a diffeomorphism” [11]. A few years ago, T. Inaba and H. Nakayama have
interpreted the torsion of an invariant probability measure as the difference of the
volume of two subsets of a line bundle over the surface [13].

Existence results for orbits and/or invariant probability measures with zero
torsion have been proved in several contextes. For area preserving twists maps of
the compact annulus, well-ordered periodic orbits with a given rotation number
can be found as critical points of a certain energy functionnal [19], [2]. J. Mather
and S. B. Angenent have related the Morse index of these critical points with
the torsion of the corresponding orbit [20], [1]. The existence of periodic orbits
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with zero torsion for area preserving twists maps of the annulus follows (see e.g.
[1] thm1). Actually, S. Crovisier has constructed orbits with arbitrary rotation
number and zero torsion for any twist map of the annulus [5]. He subsequently used
these orbits to exhibit generalized Arnold’s tongues for twist maps [4]. In other
direction, S. Matsumoto and H. Nakayama have proved that every diffeomorphism
of the torus T2 isotopic to the identity has an invariant probability measure with
zero torsion [21].

The purpose of the present paper is to prove results which go in the opposite
direction: we want to identify general situations where there exist orbits with non-
zero torsion (note that the existence of an orbit with non-zero torsion is equivalent
to the existence of an (ergodic) invariant probability measure with non-zero tor-
sion, see Section 2). In other words, we want to find general situations where the
non-triviality of the dynamics of a surface diffeomorphism f , can be read on the
action of the derivative of f along a single orbit.

Remark 1.1. Such results are typically useful to prove rigidity theorems for
some types of group actions. For example, J. Franks and M. Handel have proved
that every action of SL(3,Z) on a surface by area preserving C1-diffeomorphisms
factors through a finite group ([9]). Their proof uses the fact that, for every area
preserving diffeomorphism f on a closed surface of negative Euler characteristic,
either f has trivial dynamics (there exists n such that fn = Id), or there is a
simple dynamical invariant which detects the non-triviality of the dynamics of f :
there is an orbit with non-zero rotation vector, or there is a closed curve α such
that the length of fn(α) grows exponentially, etc. Similarly, in order to prove that
every action of Zn on S2 by area preserving C1-diffeomorphisms has two global
fixed points (provided that it is generated by diffeomorphisms that are C0-close
to the identity), the authors of [3] have used the fact that every area preserving
diffeomorphism of S2 has two fixed points a, b and a recurrent point c such that c

has a non-zero rotation number in the annulus S2 \ {a, b}.

Our first result concerns conservative diffeomorphisms of the disc:

Theorem A. Every area-preserving diffeomorphism of the disk D2 with
compact support, which is not the identity, has an orbit with non-zero torsion.

In the above statement, the disk D2 is tacitly equipped with a trivialization
of its tangent bundle. Observe that, since D2 is simply connected and since we
consider diffeomorphisms with compact support, the result does not depend on
the choice of this trivialization. Also recall that, for diffeomorphisms of the disc
with compact support, the torsion of an orbit does not depend on the choice of an
isotopy.
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Remark 1.2. Let S be an orientable surface with zero genus, and f be an
area-preserving diffeomorphism of the surface S with compact support. Then we
can embed S in D2, extend f to a diffeomorphism f̄ of D2 which is the identity on
D2 \ S. Then, applying Theorem A to f̄ , we get an orbit with non-zero torsion.
This orbit is automatically in S, since f̄ = Id on D2\S. Observe nevertheless that,
if S is not simply connected, the torsion of an orbit of f does depend on the choice
of a trivialization of the tangent bundle of S. Moreover, there exist trivializations
of the tangent bundle of S which do not extend to trivializations of the tangent
bundle of D2 for any embedding of S in D2. Note, for example, that all the orbits
of a rigid rotation of the annulus A = R/Z× R have zero torsion with respect to
the natural trivialization of the tangent bundle of A (i.e. the trivialization induce
by the canonical trivialization of the tangent bundle of R× R).

The existence of orbits with non-zero torsion will be obtained as a consequence
of the existence of a recurrent orbit rotating around a fixed point (at a non-zero
average speed). We will obtain the existence of such a recurrent orbit and such a
fixed point as a consequence of a symplectic geometry result of C. Viterbo ([24]).
It could also be obtained as a consequence of P. Le Calvez’s foliated equivariant
version of Brouwer’s plane translation theorem ([16]), together with a recent result
of O. Jaulent which allows to apply Le Calvez’s result to a diffeomorphism which
has infinitely many fixed points ([14]).

Theorem A fails to be true if one replaces the disc D2 by another surface.
Indeed, for a surface which is not the disk, the recurrent orbits can rotate around
the holes or the handles of the surface instead of rotating around the fixed points.
A rigid rotation of T2 = R2/Z2 is an example of an area-preserving diffeomorphism
having only orbits with zero torsion (for the trivialization of the tangent bundle of
T2 induced by the canonical trivialization of the tangent bundle of R2). We will
nevertheless prove a result of existence of orbits with non-zero torsion for some
diffeomorphisms of T2; unlike the rigid rotations, these diffeomorphims will have
orbits “rotating around T2” in different directions.

Let us recall the definition of the rotation set of a torus homeomorphism. Let f

be a homeomorphism of the torus T2 isotopic to the identity, and f̃ : R2 → R2 be a
lift of f . Given a point z ∈ T2 and a lift z̃ ∈ R2 of z, let ρn(f̃ , z) := (1/n)(f̃n(z̃)−z̃)
(this quantity does not depend on the choice of z̃). If ρn(f̃ , z) converges towards
ρ(f̃ , z) as n goes to +∞, we say that ρ(f̃ , z) is the rotation vector of z for f̃ . Note
that, if z is a periodic point, then the rotation vector ρ(f̃ , z) is well-defined, and
has rational coordinates. Now, the rotation set of f̃ is

ρ(f) :=
⋂

n≥0

{ρn(f̃ , z), z ∈ R2}.
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This is a convex compact of R2 ([22]). If f̃ ′ is another lift of f , then there exists
(p, p′) ∈ Z2 such that f̃ ′ = f̃ + (p, p′), and thus, ρ(f̃ ′) = ρ(f̃) + (p, p′). We will
speak of the rotation set of f : this is a subset of R2, defined up to a translation
(in particular, the fact that the rotation has non-empty interior does not depend
on the choice of a lift of f).

We will prove the following result:

Theorem B. Every diffeomorphism of T2, isotopic to the identity, and
whose rotation set has non-empty interior, has an orbit with non zero torsion.

In this statement, the torsion is measured with respect to the “canonical”
trivialization of the tangent bundle of T2 = R2/Z2, i.e. the trivialization induced
by the affine structure of R2. We have already pointed out that, for this trivial-
ization, the torsion of an orbit does not depend on the choice of an isotopy joining
the identity to f . Using a result of Franks ([8]), the hypothesis of Theorem B
may be replaced by the following one: f has three periodic orbits whose rotation
vectors are affinely independent.

Comments and questions.
(1) Matsumoto and Nakayama have proved that every diffeomorphism of the torus

T2 admits an invariant probability measure with zero torsion ([21]). It seems
to be unknown if one can find such a probability measure which is moreover
ergodic. And thus, it seems to be unknown if one can find an orbit with zero
torsion. On the contrary, observe that the existence of a measure with non-
zero torsion automatically implies (using the ergodic decomposition theorem)
the existence of an ergodic measure with non-zero torsion, and thus (using
Birkhoff’s ergodic theorem) the existence of an orbit with non-zero torsion.

(2) We do not know if, under the hypotheses of Theorems A and B, it is possible
to find periodic orbits with non-zero torsion.

(3) As we already mentioned, our proof of theorem A relies on a symplectic geome-
try result due to Viterbo. Using a recent result by Jaulent and the equivariant
foliated Brouwer’s translation theorem of Le Calvez instead of Viterbo’s result,
it is possible to prove that Theorem A is still valid for a diffeomorphism f of
D2 which preserves a probability measure whose support is not contained in
the fixed points set of f .

(4) Theorem A is of course false, if one simply drops the area-preservation hypoth-
esis. A counter-example is obtained by considering a diffeomorphism which
preserves each horizontal line. Nevertheless, we do not know if Theorem A is
true or false, if one assumes for example the existence of a non-wandering or-
bit (which is not a fixed point) instead of the preservation of some probability
measure.
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(5) It seems reasonable to think that under the hypothesis of Theorem A, the set
of points whose orbits have non-zero torsion should have positive area, but we
were unfortunately not able to prove such a result.

(6) We do not know if it is possible to prove a quantitative version of Theorem B.
Is there a constant C such that, every diffeomorphism f of T2 isotopic to the
identity has an orbit of torsion at least C.r, where r is the maximal radius of
an euclidean ball contained in the rotation set of f?

(7) The arguments of the proof of theorem B do not seem to allow to control the
rotation vectors of the orbits with non-zero torsion that we construct. We do
not know if, under the hypothesis of Theorem B, it is possible to construct
an orbit with rotation vector v and non-zero torsion, for every vector v in the
rotation set of a lift f̃ of f .

(8) It has been proved by J. Llibre and R. MacKay that every f of T2, isotopic
to the identity, whose rotation set has non-empty interior, has positive topo-
logical entropy. H. Einrich and N. Guelman and A. Larcanché and I. Liousse
have obtained a partial converse to this result: for every C1+α-diffeomorphism
f of T2, isotopic to the identity, satisfying a transitivity assumption, if f has
positive topological entropy, then the rotation set of f has non-empty interior.
Combining Einrich-Guelman-Larcanché-Liousse’s result with our Theorem B,
we obtain that a C1+α-diffeomorphism of T2, isotopic to the identity, satis-
fying a transitivity assumption, if f has positive topological entropy, then f

has an orbit with non-zero torsion. We do not know if this result admits a
converse: does a C1+α diffeomorphism of T2, satisfying an appropriate transi-
tivity assumption, and having an orbit with non-zero torsion, necessarily have
positive topological entropy?

Organization of the paper.
In Section 2, we define precisely what we mean by the torsion of an orbit or an

invariant probability measure, and we give some basic properties of these notions.
In Section 3, we define the linking number of two orbits for a diffeomorphism of
R2 isotopic to the identity, and we prove that the existence of two orbits with
non-zero linking number implies the existence of an orbit with non-zero torsion.
Section 4 is devoted to the proof of theorem A and Section 5 is devoted to the
proof of theorem B.

Conventions and notations.
All along the paper, the vector space R2 is endowed with its canonical eu-

clidean norm, which we denote by ‖ · ‖. We denote by S1 the unit circle in R2. We
identify the universal cover of S1 with the real line R using the map π : R → S1

given by π(θ) = ei2πθ. As a unit for angles, we use the full turn.
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2. Torsion of an orbit or an invariant measure.

Let S be a (not necessary compact) surface with trivializable tangent bundle;
in particular, S is an orientable surface with genus 0 or 1. We choose a trivialization
of the tangent bundle of S, which identifies the tangent bundle TS with S ×
R2. Thanks to this identification, the canonical euclidean norm of R2 defines a
riemannian metric on S. This allows us to speak of the unit tangent bundle of S,
which we denote by T 1S. By construction, T 1S is identified to S × S1. Now, let
f be a C1-diffeomorphism of S isotopic to the identity, and I = (ft)t∈[0,1] be an
isotopy joining the identity to f in Diff1(S). As usual, we define ft for every t ∈ R
by setting ft = ft−btc ◦ fbtc. We denote by f∗ the action of f on the unit tangent
bundle T 1S ' S × S1:

f∗(x, ξ) =
(

f(x),
df(x).ξ
‖df(x).ξ‖

)
.

Now we define the torsion of an orbit of f . Let x be a point in S, and ξ be a
unit tangent vector at x. For every t, we see dft(x).ξ/‖dft(x).ξ‖ as an element of
S1. We consider the map

v(I, x, ξ) : R −→ S1

t 7−→ dft(x).ξ
‖dft(x).ξ‖ .

We choose a continuous lift ṽ(I, x, ξ) : R −→ R of this map. For every t ∈ R,
the quantity ṽ(I, x, ξ)(t) − ṽ(I, x, ξ)(0) does not depend on the choice of the lift
ṽ(I, x, ξ). We set

Torsion1(I, x, ξ) = ṽ(I, x, ξ)(1)− ṽ(I, x, ξ)(0).

More generally, for every n ∈ N \ {0}, we set

Torsionn(I, x, ξ) =
1
n

(
ṽ(I, x, ξ)(n)− ṽ(I, x, ξ)(0)

)
=

1
n

n−1∑

k=0

Torsion1

(
I, fk

∗ (x, ξ)
)
.
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Let ξ′ be another unit vector in T 1
xS; since dfn(x) : ξ 7−→ v(I, x, ξ)(n) preserves

the cyclic order on S1, we have

∣∣Torsionn(I, x, ξ)− Torsionn(I, x, ξ′)
∣∣ ≤ 2

n
.

This shows that the quantity Torsionn(I, x, ξ) has a limit for some ξ ∈ T 1
xS when

n goes to ∞, if and only if it has a limit for every ξ ∈ T 1
xS, and that the numerical

value of the limit does not depend on ξ.

Definition 2.1. Consider a point x ∈ S, and assume that the quantity
Torsionn(I, x, ξ) converges for some (or equivalently, for every) ξ ∈ T 1

xS when
n goes to ∞. Then we call the torsion of the orbit of x (for the isotopy I) the
quantity

Torsion(I, x) = lim
n→∞

Torsionn(I, x, ξ).

Now, let µ be an f -invariant probability measure on S. We can lift µ to
µ̃ an f∗-invariant probability measure on T 1S ∼= S × S1. Assume that either µ

or f has compact support. Then, the function (x, ξ) 7→ Torsion1(I, x, ξ) is in
L∞(T 1S, µ̃), since it is bounded on every compact subset of T 1S and vanishes on
the complement of the support of f . So, Birkhoff’s ergodic theorem implies that
the limit

Torsion(I, x) = lim
n→+∞

1
n

n−1∑

k=0

Torsion1

(
I, fk

∗ (x, ξ)
)

exists for µ̃ almost every (x, ξ), and hence, for µ almost every x (since the con-
vergence does not depend on ξ). Furthermore, and always by the Birkhoff ergodic
theorem, the function x 7→ Torsion(I, x) is µ-integrable and

∫

S

Torsion(I, x)dµ(x) =
∫

T 1S

Torsion1(I, x, ξ)dµ̃(x, ξ).

Definition 2.2. Let µ be an f -invariant probability measure on S. Assume
that either µ or f has compact support. We call the torsion of the measure µ the
quantity

Torsion(I, µ) =
∫

S

Torsion(I, x)dµ(x).



Existence of orbits with non-zero torsion 145

Now, we give some relations between these different notions of torsion.

Lemma 2.3. Let (xn, ξn)n≥0 be a sequence in some compact subset of T 1S.
For every n, let αn := Torsionn(I, xn, ξn). Then, every limit point of the se-
quence (αn)n≥0 is the torsion of an f-invariant probability measure whose support
is contained in {xn | n ∈ N}.

Proof. Let α = limi→+∞ αni
be a limit point of the sequence (αn)n≥0.

For every i, consider the probability measure µ̃i on T 1S defined by

µ̃i =
1
ni

ni−1∑

k=0

δfk∗ (xni
,ξni

).

Let µ̃ be a limit point of the sequence (µ̃i)i∈N. This is a f∗-invariant probability
measure on T 1S. So the projection µ of µ̃ is an f -invariant probability measure
on S, and one has

α = lim
i→∞

αni
= lim

i→∞

∫

T 1S

Torsion1(I, x, ξ)dµ̃i(x, ξ)

=
∫

T 1S

Torsion1(I, x, ξ)dµ̃(x, ξ) =
∫

S

Torsion1(I, x)dµ(x) = Torsion(I, µ).

Moreover, the support of µ is obviously contained in {xn | n ∈ N}. ¤

Lemma 2.4. For every f-invariant probability measure µ, the torsion of the
measure µ is a convex combination of torsions of orbits of points of S.

Proof. On the one hand, the map µ 7→ Torsion(I, µ) is affine, so the
ergodic decomposition theorem shows that the torsion of µ is a convex combination
of torsions of ergodic probability measure. On the other hand, it follows from
Birkhoff’s ergodic theorem that the torsion of an ergodic measure is the torsion of
an orbit. The lemma follows. ¤

Combining these two lemma, we obtain the following corollary:

Corollary 2.5. If there exists a sequence of integers ni → +∞, a
sequence of tangent vectors (xni

, ξni
) in a compact subset of T 1S, such that

Torsionni(I, xni , ξni) ≥ ε for every i, then there exists a point x ∈ S such that
Torsion(I, x) ≥ ε.

Now, we examine the dependance of the torsion of an orbit or an invariant
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probability measure with respect to the isotopy I.
Let I ′ be another isotopy joining the identity to f . Then, for every (x, ξ) ∈

T 1S, the quantities Torsion1(I, x, ξ) and Torsion1(I ′, x, ξ) differ by an integer. For
continuity reasons, this integer does not depend on x and ξ (provided that S is
connnected). It follows that there is an integer k ∈ Z, such that Torsion(I ′, x) =
Torsion(I ′, x) + k for every point x ∈ S, and Torsion(I ′, µ) = Torsion(I ′, µ) + k

for every f -invariant probability measure µ. Now, the integer k obviously depends
continuously on the isotopy I ′. It follows that, for every point x ∈ S and every
f -invariant probability measure µ, the quantities Torsion(I, x) and Torsion(I, µ)
depend only on the homotopy class of the isotopy I.

There exist several interesting situations where these quantities Torsion(I, x)
and Torsion(I, µ) depend only on f , and not on the choice of the isotopy I joining
the identity to f .

Let us first consider the case where S is the torus T2 = R2/Z2 endowed with
the canonical trivialization of its tangent bundle (i.e. the trivialization induced
by the affine structure of R2). We know that Diff1

0(T2) retracts on the subgroup
(isomorphic to T2) made of the rigid rotations. Thus, if I and I ′ are two isotopies
joining the identity to a diffeomorphism f of T2, then I ′−1I is homotopic to a loop
in the rigid rotations group. But, it is clear, that if I ′′ is a loop made of rigid
rotations then, for every (x, ξ) ∈ T 1T2, we have Torsion1(I ′′, x, ξ) = 0 (the rigid
rotations are parallel with respect to the canonical trivialization of the tangent
bundle). It follows that the quantities ; Torsion(I, x) and Torsion(I, µ) do not
depend on the choice of the isotopy I.

Now assume that S is not a closed surface. Let Diff1
c(S) be the set of the C1-

diffeomorphims of S with compact supports, and Diff1
c,0(S) the subset of Diff1

c(S)
made of the diffeomorphisms that are isotopic to the identity (via an isotopy in
Diff1

c(S)). We know that Diff1
c,0(S) is contractible (as a corollary of Kneser’s

theorem, see [15] or e.g. [17, Théorème 2.9]). Hence, if f ∈ Diff1
c,0(S) and if we

consider only isotopies I joining the identity to f in Diff1
c(S), then the quantities

Torsion(I, x) and Torsion(I, µ) depend only on f and not on the choice of I.
When the quantities Torsion(I, x) and Torsion(I, µ) do not depend on the

isotopy I, we will denote them by Torsion(f, x) and Torsion(f, µ).

In general, the torsion of an orbit of f or an f -invariant probability measure
also depends on the trivialization of the tangent bundle of S which is used to
identify T 1S with S × S1. Nevertheless, it is quite easy to check that, if f has
compact support in S, then two trivializations that are homotopic yield the same
value for the torsion of an orbit of f or an f -invariant probability measure. In
particular, if S is the disc D2 and f has compact support, then the torsion of an
orbit of f and the torsion of an f -invariant probability measure do not depend on
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the trivialization of the tangent bundle of S. Although this fact is worth to be
pointed out, we shall not use it strictly speaking.

We conclude this section by a remark, which will be useful for the proof of
our theorem B:

Remark 2.6. Assume R2 and T2 = R2/Z2 to be equipped with the canonical
trivializations of their tangent bundles. Let I be an isotopy joining the identity
to a diffeomorphism f in Diff1(T2), and Ĩ be a lift of the isotopy I in Diff1(R2).
Let x be a point in T2. If there is a lift x̃ ∈ R2 of x such that the quantity
Torsion(Ĩ , x̃) is well-defined, then the quantity Torsion(I, x) is also well-defined,
and Torsion(Ĩ , x̃) = Torsion(I, x). This follows immediatly from the definitions.

3. Linking and torsion.

In this section, we consider a diffeomorphism f of R2 which we assume to be
isotopic to the identity, and an isotopy I = (ft)t∈[0,1] joining the identity to f . The
plane R2 on which the diffeomorphism f acts should be considered as an affine
plane rather than a vector space. We will denote by d(·, ·) the euclidean distance
on this affine plane, which is induced by the canonical euclidean norm ‖ · ‖ on the
underlying vector space. All along this section, R2 is endowed with the canonical
trivialization of its tangent bundle.

Let us first define the linking number of a pair of orbits of f . Let x, y be two
distinct points in R2. We consider the map

v(I, x, y) : R −→ S1

t 7−→ ft(x)− ft(y)
‖ft(x)− ft(y)‖ .

We choose a continuous lift ṽ(I, x, y) : R −→ R of v(I, x, y) (we recall that R is seen
as the universal cover of S1, thanks to the map π : R→ S1 given by π(θ) = ei2πθ).
For every t ∈ R, the quantity ṽ(I, x, y)(t) − ṽ(I, x, y)(0) does not depend on the
choice of this lift. For n ∈ N \ {0}, we set

Linkingn(I, x, y) :=
1
n

(
ṽ(I, x, y)(n)− ṽ(I, x, y)(0)

)

=
1
n

n−1∑

k=0

Linking1

(
I, fk(x), fk(y)

)
.

Definition 3.1. If Linkingn(I, x, y) converges when n goes to ∞, then we
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call linking number of the orbits of x and y (for the isotopy I) the quantity

Linking(I, x, y) = lim
n→∞

Linkingn(I, x, y).

The purpose of the section is to prove the following proposition:

Proposition 3.2. If f has two orbits with non-zero linking number, then f

has an orbit with non-zero torsion.

Remark 3.3. Since we are dealing with diffeomorphisms with non-compact
support, the linking number of a pair of orbits, as well as the torsion of an orbit,
may depend on the choice of a trivialization of the tangent bundle of R2. We
recall that, all along this section, the plane R2 is endowed with the canonical
trivialization of its tangent bundle.

The proof of proposition 3.2 was sketched during a discussion between by
the first author, F. Le Roux and P. Py several years ago. Observe proposition
is intuitively obvious. Indeed, saying that the orbits of x and y have a non-zero
linking number means that the segment line [ft(x), ft(y)] turns with a non-zero
average speed, when t increases. And this should clearly imply that, at least for
some point z of the segment line [x, y], the image under dft(z) of the vector which
is tangent to the segment [x, y] must turn at a non-zero average speed, when t

increases. Nevertheless, turning this intuition into a formal proof appears to be
quite delicate. We start by giving a quantitative version of the Proposition 3.2:

Lemma 3.4. Suppose that there exist two points x, y ∈ R2 and an integer
n > 0 such that Linkingn(I, x, y) 6= 0. Then, there exist a point z ∈ R2 and a
vector ξ ∈ TzR2 such that

|Torsionn(I, z, ξ)| ≥ 1
3
|Linkingn(I, x, y)| − 1

n
.

Proposition 3.2 follows from Lemma 3.4 and Corollary 2.5; so we are left to
prove Lemma 3.4.

Proof of lemma 3.4. Let x, y be two distinct points in R2, and n be a
positive integer such that Linkingn(I, x, y) 6= 0. Let ε := Linkingn(I, x, y) and
assume that ε is positive (the proof is similar in the case where it is negative). For
s ∈ [0, 1], let z(s) = (1− s)x+ sy. Let ξ := (y−x)/‖y − x‖. Using affine structure
of R2, we will see the vector ξ as an element of Tz(s)R2 for every s ∈ [0, 1]. In
order to prove the lemma, we will find s0 ∈ [0, 1] such that |Torsionn(I, z(s0), ξ)| ≥
ε/3− 1/n.
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If |Torsionn(I, x, ξ)| ≥ ε/3, then we take s0 = 0 and we are done. Hence, in
the remainder of the proof, we will assume that

|Torsionn(I, x, ξ)| < ε

3
. (1)

Using the affine structure of R2, we can define a map

u : [0, 1]× R −→ S1

(s, t) 7−→ ft(z(s))− ft(x)
‖ft(z(s))− ft(x)‖ if s > 0,

(0, t) 7−→ dft(z(0)).ξ
‖dft(z(0)).ξ‖ .

This map is continuous since ft is assumed to be C1 and to depend continuously
on t. So we may consider a continuous lift ũ : [0, 1] × R → R of the map u. This
lift ũ is well defined up to the addition of an integer.

Claim 1. One has ũ(1, n)− ũ(0, n) ≥ 2nε/3.

Proof. Observe that ũ(1, n) − ũ(1, 0) = n.Linkingn(I, x, y) and ũ(0, n)
−ũ(0, 0) = n.Torsionn(I, x, ξ). Also observe that ũ(1, 0)− ũ(0, 0) = 0 since u(s, 0)
= ξ for any s ∈ [0, 1]. Now write

ũ(1, n)− ũ(0, n) =
(
ũ(1, n)− ũ(1, 0)

)
+

(
ũ(1, 0)− ũ(0, 0)

)
+

(
ũ(0, 0)− ũ(0, n)

)
.

= n.Linkingn(I, x, y)− n.Torsionn(I, x, ξ)

Recall that ε is by definition equal to Linkingn(I, x, y). Also recall that we are
assuming that Torsionn(I, x, ξ) is smaller than ε/3 (hypothesis (1)). The claim
follows. ¤

Now, we consider

s0 := inf
{

s ∈ [0, 1] such that ũ(s, n)− ũ(0, n) ≥ 2nε

3

}
.

Claim 1 shows that s0 is well-defined, and hypothesis (1) shows that s0 is positive.
Now, we introduce the continuous map
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v : [0, 1]× R→ S1

(s, t) 7→ dft(z(s)).ξ
‖dft(z(s)).ξ‖ .

It lifts to a continuous map ṽ : [0, 1]×R→ R satisfying π ◦ ṽ = v, well defined by
addition of an integer.

Claim 2. One has ṽ(s0, n)− ṽ(0, n) ≥ 2nε/3− 3/4.

Proof. We consider the curve α : [0, s0] → R2 defined by α(s) :=
fn(z(s))− fn(x). We observe that,

v(s, n) =

dα

ds
(s)

∥∥∥∥
dα

ds
(s)

∥∥∥∥
for every s ∈ [0, s0], and

u(s, n) =
α(s)
‖α(s)‖ for every s ∈ (0, s0].

So, the quantity ṽ(s0, n) − ṽ(0, n) is the number of turns made by the tangent
vector of the curve α, and the quantity ũ(s0, n) − ũ(0, n) is the number of turns
made by the curve α around the origin of R2. To compare these two quantities,
we will construct a simple closed curve (by concatenating a lift of α with a curve
made of a controlled number of segments and circle arcs), and use the fact that
the tangent vector of a simple closed curve makes +1 turn or −1 turn, when one
goes around this curve once.

We introduce the annulus A := [0,+∞)×S1 obtained by blowing up the origin
of R2. We will denote by p : A→ R2 the natural projection given by p(r, e2iπθ) =
re2iπθ. The strip Ã := [0,∞)× R will be seen as the universal covering of A, the
covering map Π : Ã → A being given by Π(r, θ) = (r, π(θ)) = (r, e2iπθ). We will
denote by pθ : Ã → R the projection on the second coordinate. The inclusion of
Ã = [0,+∞)×R in the affine space R×R provides a natural trivialization of the
tangent bundle of Ã.

Remark 3.5. Caution ! This trivialization of the tangent bundle of Ã is not
the same that the one obtained, by pulling back by p ◦ Π : Ã → R2 the natural
trivialization of the tangent bundle of the affine plane R2, where the image of the
curve α lies. More precisely, for (r, θ) ∈ Ã, using the trivializations of the tangent
bundles of Ã and R2, we can consider the differential map d(p◦Π)(r, θ) as a linear
map from R2 to R2; this linear map is not the identity; it is a rotation of angle θ

(recall that we use the full turn as a unit for angles).
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Figure 1. The trivializations of the tangent bundles of R2 and eA.

The curve α : [0, s0] → R2 can be lifted to a (uniquely defined) continuous
curve α̂ : [0, s0] → A, satisfying p ◦ α̂ = α. This curve α̂ is given by the formula
α̂(s) = (‖fn(z(s)) − fn(x)‖, u(s, n)). Then the curve α̂ : [0, s0] → A can be lifted
to a continuous curve α̃ : [0, s0] → Ã, satisfying Π ◦ α̃ = α, given by the formula
α̃(s) = (‖fn(z(s)) − fn(x)‖, ũ(s, n)). Hence, one has pθ(α̃(s)) = ũ(s, n) for any
s ∈ [0, 1].

Remark that α is a simple C1 curve; indeed, up to a translation, it is the
image of the segment line s 7→ z(s) under the diffeomorphism fn. So, α̃ is a
simple C1 curve as well. On the other hand, the definition of s0 and the relation
pθ ◦ α̃(s) = ũ(s, n) imply that we have

pθ(α̃(s0)) = pθ(α̃(0)) +
2nε

3
and pθ(α̃(s)) < pθ(α̃(0)) +

2nε

3
for s ∈ [0, s0).

Hence, the curve α̃ is contained in the quarter of the plane

Q =
{

(r, θ) | r ≥ 0 and θ ≤ pθ(α̃(0)) +
2nε

3

}
,

and joins the point α̃(0), which is situated on the vertical part of the boundary of
Q, to the point α̃(s0) which is situated on the horizontal part of the boundary of
Q. It is so easy to construct a simple arc β̃ in R2 \ int(Q) joining the extremities of
α̃, such that α̃∪ β̃ is a C1 negatively orientated simple closed curve, and such that
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the tangent vector of β̃ makes between −5/4 turns and −1/4 turns, when we cover
β̃. We can, for example, construct β̃ as union of three circle arcs and two segment
lines (see Figure 2). As α̃ ∪ β̃ is a C1 negatively orientated simple closed curve,
the tangent vector of this curve makes exactly −1 turn when one runs around the
curve. Thus, the tangent vector of α̃ makes between −3/4 turn and +1/4 turn,
when the parameter s runs from 0 to s0. According to the Remark 3.5, and since
pθ ◦ α̃(s0) − pθ ◦ α̃(0) = 2nε/3, this means that, for the canonical trivialization
of the tangent bundle of R2, the tangent vector of α = p ◦ Π(α̃) makes between
2nε/3− 3/4 turns and 2nε/3 + 1/4 turns, when s runs from 0 to s0. Recall, now,
that this number of turns is equal to ṽ(s0, n)− ṽ(0, n). This completes the proof
of claim 2. ¤

Remark 3.6. Note that the choice of s0 is important: our proof of claim 2
uses the fact that s0 is the smallest value of the parameter s which satisfies the
inequality ũ(s, n) − ũ(0, n) ≥ 2nε/3. This ensures that the curve α̃ is contained
in the quarter of the plane Q, and hence, prevents α̃ from “spiraling” around its
extremity α(s0).

Figure 2. By concatenating eα with three circle arcs and two segment
lines, we obtain a negatively orientated simple closed curve.
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Now, using Claim 2, it is not difficult to finish the proof of lemma 3.4. Indeed,
write

Torsionn(I, z(s0), ξ)

=
1
n

(ṽ(s0, n)− ṽ(s0, 0))

=
1
n

(
(ṽ(s0, n)− ṽ(0, n))︸ ︷︷ ︸

A

+(ṽ(0, n)− ṽ(0, 0))︸ ︷︷ ︸
B

+(ṽ(0, 0)− ṽ(s0, 0))︸ ︷︷ ︸
C

)
.

Claim 2 states that quantity A is bigger than 2nε/3 − 3/4. Quantity B is equal
to nTorsionn(I, x, ξ), and we assumed that the modulus of this quantity is smaller
than nε/3 (hypothesis (1)). Finally, quantity C is equal to 0 since v(s, 0) = ξ, for
every s. So we get

Torsionn(I, z(s0), ξ) ≥ 2ε

3
− ε

3
− 3

4n
≥ ε

3
− 1

n
,

and Lemma 3.4 is proved. ¤

4. Proof of theorem A.

In this section, we consider a C1-diffeomorphism f of the open unit disc D2.
We assume that f has compact support (i.e. coincides with the identity outside a
compact subset of D2), and preserves the standard area two-form, which we denote
by ω. The goal of the section is to prove Theorem A, i.e. to prove that f has an
orbit with non-zero torsion.

We will compute linking numbers and torsion using the natural trivialization
of the tangent bundle of D2, and an isotopy I = (ft)t∈[0,1] joining the identity
to f in the space of C1-diffeomorphisms of D2 with compact supports. We have
already noticed at the end of Section 2 that the torsion of an orbit of f does not
depend on the choice of an isotopy joining the identity to f . This will allow us
to assume that I is an isotopy in the set of area preserving diffeomorphisms of
D2 (the existence of such an isotopy follows from Moser’s lemma). As usual, we
extend the isotopy I by setting ft := ft−n ◦ fn where n = btc, for every t ∈ R.

Let us first observe that the average linking number, with respect to ω, of the
orbits with a given point x0 is well-defined:

Proposition 4.1. For x0 ∈ D2, the quantity Linking(I, x0, x) is defined for
almost every x in D2, the function x 7→ Linking(I, x0, x) is integrable, and
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∫

D2
Linking(I, x0, x)dω(x) =

∫

D2
Linking1(I, x0, x)dω(x).

Proof of proposition 4.1. We denote by A the annulus obtained from
D2 by blowing up x0. The function x 7→ Linking1(I, x0, x), which is defined on
D2 \{x0}, extends continuously on A (using the derivative of f at x0). This shows
that x 7→ Linking1(I, x0, x) is bounded on D2 \ {x0}. Proposition 4.1 then follows
from Birkhoff’s ergodic theorem. ¤

Definition 4.2. For x0 ∈ D2, we call average linking number around x0 the
quantity

Linking(I, x0, ω) :=
∫

D2
Linking(I, x0, x)dω(x) =

∫

D2
Linking1(I, x0, x)dω(x).

Denote by Fix(f) be the set of the fixed points of f . Theorem A is an
immediate consequence of the following proposition, together with Proposition
3.2.

Proposition 4.3. If f is not the identity, then there exists a point x0 ∈
Fix(f) such that

Linking(I, x0, ω) 6= 0.

Proposition 4.3 is actually a reformulation, in the context surfaces dynamics,
of a symplectic geometry result due to C. Viterbo (Proposition 4.5 below). For
every t ∈ [0, 1], let Xt be the vector field on D2 defined by Xt(x) = d/ds|s=t|fs(x).
Then, for every t ∈ [0, 1], there is a unique normalised function Ht : D2 → R
which “generates the vector field Xt”. By such, we mean that Ht is null outside
a compact subset of D2 and satisfies ω(Xt, ·) = dHt. This allows to define the
symplectic action (for the isotopy I) of a point x ∈ Fix(f):

Definition 4.4. Let x be a point in Fix(f). The symplectic action (for the
isotopy I) of the fixed point x is the quantity

AI(x) =
∫

γx

λ−
∫ 1

0

Ht(ft(x)) dt,

where γx : [0, 1] → D2 is the loop defined by γx(t) = ft(x) and λ is a primitive of
the area form ω.
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Viterbo’s result reads as follows:

Proposition 4.5 (Viterbo; see Proposition 4.2 of [24]). If f is not the
identity, then

sup
x∈Fix(f)

{AI(x)} 6= inf
x∈Fix(f)

{AI(x)}.

Now, we will see that, given a point x0 ∈ Fix(f), the hamiltonian action A(x0)
is nothing else that the average linking number Linking(I, x0, ω). The following
lemma is well-known by experts in hamiltonian dynamics; the first author learned
it from P. Le Calvez.

Lemma 4.6. We have

AI(x0) = Linking(I, x0, ω).

Proof. The symplectic action AI(x0) does not depend on the class of ho-
motopy of the isotopy I (see e.g. [24]). If x, y ∈ D2, it is easy to find an area
preserving diffeomorphism with compact support τx,y such that τx,y(x) = y, such
that τx,y = Id if x = y, and such that τx,y depends continuously on the couple
(x, y). Up to replacing ft by τx0,ft(x0) ◦ ft, we may therefore assume that the
isotopy I = (ft)t∈[0,1] fixes the point x0, i.e. satisfies ft(x0) = x0 for all t. Under
this assumption, the formula for the symplectic action of the point x0 reads

AI(x0) = −
∫ 1

0

Ht(x0) dt.

We are left to prove that Linking(I, x0, ω) is equal to the integral on the right-
hand side above. For x ∈ D2 \ {x0}, let θ(x) ∈ R/Z be the argument of (x −
x0)/‖x− x0‖ ∈ S1. Note that dθ is a closed 1-form on D2 \ {x0}. By definition,
for every x ∈ D2 \ {x0}, the quantity Linking1(I, x, x0) is the variation of θ(ft(x))
when t runs from 0 to 1. Since Xt(x) = d/ds|s=tfs(x), this yields

Linking1(I, x, x0) =
∫ 1

0

dθ(Xt(ft(x))) dt

So, if we denote by Dε the disc of radius ε and centered at x0, we have
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Linking(I, x0, ω) =
∫

D2\{x0}
Linking1(I, x, x0) ω(x)

=
∫

D2\{x0}

( ∫ 1

0

dθ
(
Xt(ft(x)))dt

)
ω(x)

=
∫ 1

0

( ∫

D2\{x0}
dθ

(
Xt(ft(x))

)
ω(x)

)
dt

=
∫ 1

0

( ∫

D2\{x0}
dθ(Xt(x)) ω(x)

)
dt

=
∫ 1

0

(
lim
ε→0

∫

D2\Dε

dθ(Xt) ω

)
dt

(the third equality uses the fact that ft preserves ω and fixes x0). Now observe
that

dθ(Xt) ω = dθ ∧ ω(Xt, ·) = −d(Ht dθ)

(the first equality follows from the nullity of the 3-form dθ∧ω, whereas the second
equality is a consequence of the nullity of the form ddθ). Using this and Stokes’
theorem, we obtain

Linking(I, x0, ω) = −
∫ 1

0

(
lim
ε→0

∫

D2\Dε

d(Ht dθ)
)

dt

= −
∫ 1

0

(
lim
ε→0

∫

∂Dε

Ht dθ

)
dt

= −
∫ 1

0

Ht(x0)dt.

This completes the proof of lemma 4.6. ¤

Proof of proposition 4.3. If f is not the identity, Viterbo’s proposition
4.5 shows that there is at least one point x0 ∈ Fix(f) such that the symplectic
action AI(x0) is different from zero, and Lemma 4.6 shows that AI(x0) is equal
to the integral

∫
D2 Linking(I, x0, x) ω(x). ¤

Proposition 4.3 can also be deduced from of Le Calvez’s equivariant foliated
version of the Brouwer plane translations theorem ([16]), together with a recent
result of O. Jaulent, which allows to apply Le Calvez’s result in a situation where
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there are infinitely many fixed points ([14]). See [3, Proposition 2.1, item (5)] for
more details. Observe that this alternative proof also works in the case where the
area form ω is replaced by any f -invariant probability measure, whose support is
not contained in Fix(f).

Proof of theorem A. Assume that f is not the identity. Proposition 4.3
shows the existence of a point x0 ∈ Fix(f) and a point x ∈ D2 \ {x0}, such that
the linking number Linking(I, x0, x) is not zero. According to Proposition 3.2, this
implies the existence of a point z ∈ D2 such that the torsion Torsion(I, z) is not
null. ¤

5. Proof of theorem B.

The purpose of this section is to prove Theorem B. Before starting the proof
strictly speaking, we need to define a notion of linking number for a pair of curves.

Definition 5.1. Let α, β : R 7→ R2 be two curves such that α(t) 6= β(t)
for all t ∈ R. Consider the function v : R → S1 given by v(t) = (β(t) − α(t))/
‖β(t)− α(t)‖. Choose a continuous lift ṽ : R→ R of v. The linking number of the
curves α and β is the quantity

Linking(α, β) := lim
t→+∞

1
t

(
ṽ(t)− ṽ(0)

)
,

provided that the limit exists.

Remark 5.2. If the curves α, β are defined by α(t) = ft(x) and β(t) = ft(y)
for some isotopy I = (ft)t∈[0,1] on a surface S and for some points x, y ∈ S, then
Linking(α, β) = Linking(I, x, y).

The following technical lemma will be used twice in the proof of theorem B:

Lemma 5.3. Consider two curves α : R→ R2 and β : R→ R2, and assume
that there is a positive constant d such that ‖β(t) − α(t)‖ ≥ d for all t ∈ R.
Consider two curves α′ : R→ R2 and β′ : R→ R2 such that ‖α(t)− α′(t)‖ ≤ d/2
and ‖β(t)− β′(t)‖ ≤ d/2 for all t ∈ R. Then,

Linking(α, β) = Linking(α′, β′).

Proof. Since ‖(α(t) − α′(t)) + (β(t) − β′(t))‖ ≤ ‖β(t) − α(t)‖, the an-
gle between the vectors β(t) − α(t) and β′(t) − α′(t) is less than 1/4 turn.
So, 1/t|Linkingt(α, β) − Linkingt(α′, β′)| ≤ 1/4t. Letting t → +∞, we obtain
Linking(α, β) = Linking(α′, β′). ¤
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We are now ready to begin the proof of theorem B. We consider a diffeo-
morphism f of the torus T2 = R2/Z2 isotopic to the identity and an isotopy
I = (ft)t∈[0,1] joining the IdT2 to f in Diff1(T2). This isotopy I can be lifted to
an isotopy Ĩ = (f̃t)t∈[0,1] joining IdR2 to a lift f̃ of f in Diff1(R2). As usual, for
t ∈ R, we set ft = ft−n ◦ fn and f̃t = f̃t−n ◦ fn where n = btc. We assume that
the rotation set of f̃ has non-empty interior. Recall that this hypothesis depends
only on f , and not on the choice of the lift f̃ (two different lifts have the same
rotation set up to a translation). We trivialize the tangent bundle of T2, using the
trivialization induced by the affine structure of R2. To prove Theorem B, we have
to find a point z̄ ∈ T2 such that the torsion Torsion(I, z̄) is non-zero. We recall
that this is equivalent to finding a point z ∈ R2 such that the torsion Torsion(Ĩ , z)
is non-zero (see Remark 2.6).

Let (p/q, p′/q) be a vector with rational coordinates in the interior of the
rotation set of f̃ . Let g := fq and g̃ := f̃q − (p, p′). It is easy to check that
ρ(g̃) = qρ(f̃)− (p, p′); in particular, (0, 0) is in the interior of ρ(g̃). Moreover, it is
easy to check that Torsion(g, z) = qTorsion(f, z), for every z ∈ R2; in particular, f

has an orbit with non-zero torsion if and only if it is the case for g. Therefore, up
to replacing f by g, we may — and we will — assume that (0, 0) is in the interior
of the rotation set of f̃ .

We will use the following lemma, which is due to J. Franks:

Lemma 5.4 (Franks, [8]). Let g be a homeomorphism of the torus T2 that is
isotopic to the identity, and g̃ be a lift of g to R2. Let (p/q, p′/q) be a vector with
rational coordinates in the interior of the rotation set of g̃. Then, there exists
z ∈ R2 such that g̃q(z) = z + (p, p′). In other words, each vector with rational
coordinates (p/q, p′/q) in the interior of the rotation set of g̃ is realized as a rotation
vector of a periodic point of g of period q.

Since the rotation set of f̃ has non-empty interior, we can find three affinely
independent vectors u1, u2, u3 with rational coordinates in the interior of the ro-
tation set of f̃ . According to Lemma 5.4, there exist three periodic orbits of f

with respective rotation vectors u1, u2, u3. Let E be the finite subset of T2 made
of the points of these three orbits. Llibre and MacKay [18] have proved that
f is isotopic, relatively to E, to a pseudo-Anosov homeomorphism with marked
points φ. According to a well-known result of M. Handel ([12]), this implies that
φ is a topological factor of f . More precisely, there exists a continuous surjection
h : T2 → T2, which fixes each point of E, which is homotopic to the identity
(through a homotopy which fixes each point of E), such that h ◦ f = φ ◦ h. As
h is homotopic to the identity, it has a lift h̃ : R2 → R2 commuting to the action
of Z2. Then the homeomorphism φ has a unique lift φ̃ : R2 → R2 such that
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h̃ ◦ f̃ = φ̃ ◦ h̃. Now, note that, considered as homeomorphism of T2, the home-
omorphism φ is isotopic to the identity (since it is isotopic to f). So we may
consider an isotopy J = (φt)t∈[0,1] joining IdT2 to φ in Homeo(T2), which lifts to
an isotopy J̃ = (φ̃t)t∈[0,1] joining IdR2 to φ̃ in Homeo(R2). As usual, for t ∈ R,
we set φt = φt−n ◦ φn and φ̃t = φ̃t−n ◦ φ̃n where n = btc. For each t ∈ R, the
homeomorphism φ̃t commutes to the action of Z2.

Remark 5.5. Since h is not one-to-one, it is not possible in general to find
an isotopy (φt)t∈[0,1] joining IdT2 to φ such that h ◦ ft = φt ◦ h, for every t.

Since h̃ commutes to the action of Z2, and since R2/Z2 is compact, h̃ is at a
finite uniform distance from the identity; we will denote this distance by d1:

d1 :=
∥∥h̃− IdR2

∥∥
∞ = sup

z∈R2
dist

(
h̃(z), z

)
< +∞

(we recall that dist denote the canonical euclidean distance on the affine space
R2).

Lemma 5.6. The homeomorphisms f̃ and φ̃ have the same rotation set. In
particular, (0, 0) is in the interior of the rotation set of φ̃.

Proof. The proof uses from the conjugacy relation φ̃ ◦ h̃ = h̃ ◦ f̃ , and the
fact that h̃ is at a finite uniform distance from the identity. For every point x ∈ R2

and every positive integer n,

∣∣ρn

(
φ̃, h̃(x)

)− ρn

(
f̃ , x

)∣∣ =
∣∣∣∣
1
n

(
φ̃n

(
h̃(x)

)− h̃(x)
)− 1

n

(
f̃n(x)− x

)∣∣∣∣

=
1
n

∣∣(h̃(
f̃n(x)

)− f̃n(x)
)− (

h̃(x)− x
)∣∣ ≤ 2d1

n
.

Letting x range over R2, we obtain that the Hausdorff distance between the sets
ρn(φ̃) and ρn(f̃) is less than 2d1/n. The lemma follows. ¤

Theorem B will appear as a consequence of the following lemma, together
with Proposition 3.2 and Lemma 5.3:

Lemma 5.7. Let d be a positive constant. There exist two points x, y ∈ R2

such that

(1) x and y are periodic points for φ̃,
(2) for every t ∈ R, the distance dist(φ̃t(x), φ̃t(y)) is bigger than d,
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(3) the linking number Linking(J̃ , x, y) is not null (observe that this linking number
is well-defined since the orbits of x and y are periodic for φ̃).

Let us postpone the proof of lemma 5.7, and complete the proof of theorem
B assuming that this lemma is true.

Proof of theorem B, assuming Lemma 5.7. Since φ̃t commutes to the
action of Z2 and depends continuously on t, we can find a constant d2 with the
following property:

if dist(x, y) ≤ d1, then sup
t∈[0,1]

(
dist

(
φ̃t(x), φ̃t(y)

) ≤ d2.

Set d := 2d2, and consider the points x, y provided by Lemma 5.7. Choose a
point x′ ∈ h̃−1({x}) and a point y′ ∈ h̃−1({y}). Let t ∈ R and btc = n. Since
h̃ ◦ f̃n = φ̃n ◦ h̃ and h̃(x′) = x, one has

dist
(
φ̃n(x), f̃n(x′)

)
= dist

(
h̃
(
f̃n(x′)

)
, f̃n(x′)

) ≤ d1.

Hence,

dist
(
φ̃t(x), f̃t(x′)

)
= dist

(
φ̃t−n

(
φ̃n(x)

)
, f̃t−n

(
f̃n(x′)

)) ≤ d2 =
d

2
.

Similar arguments yield

dist
(
φ̃t(y), f̃t(y′)

) ≤ d

2
.

Let α, β, α′, β′ : R → R2 be the curves defined by α(t) = φ̃t(x), β(t) = φ̃t(y),
α′(t) = f̃ t(x′) and β′(t) = f̃ t(y′). The inequalities above yield

dist
(
α(t), α′(t)

) ≤ d

2
and dist

(
β(t), β′(t)

) ≤ d

2
for all t,

and property (2) of Lemma 5.7 yields

dist(α(t), β(t)) > d, for all t ∈ R.

Moreover, according to the item (3) of Lemma 5.7, the quantity Linking(α, β)
is non-zero. So Lemma 5.3 implies that Linking(α′, β′) is also non-zero. Now
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observe that Linking(α′, β′) = Linking(Ĩ , x′, y′). Hence, we have found two points
x, y ∈ R2 such that Linking(Ĩ , x, y) is non-zero. According to Proposition 3.2, this
implies the existence of a point z ∈ R2 such that Torsion(Ĩ , z) is non-zero. If z̄

is the projection of z in T2, then we have Torsion(I, z̄) = Torsion(Ĩ , z) 6= 0. This
completes the proof of theorem B. ¤

Now, we are left to prove Lemma 5.7. The main tool of the proof will be a
Markov partition for the diffeomorphism φ̃. Let us recall some basic facts about
Markov partitions.

Let g be homeomorphism of a (non-necessarily compact) surface S. A rect-
angle in S is a topological embedding of [0, 1]2 in S. A Markov partition for g is
a covering of S by a locally finite collection of rectangles with pairwise disjoint
interiors, such that, for every i, j ∈ I, g(Ri) intersects Rj in a certain way (we will
not need the precise definition, but only some properties that we will be stated
later; see e.g. [7] for a precise definition). Given a Markov partition M = {Ri}i∈I ,
we call a g-chain of rectangles of M a finite sequence c = (Ri1 , . . . , Rin) of rect-
angles in M such that g(Rik

) intersects Rik+1 for i = 1, . . . , n − 1. The length
of a g-chain c = (Ri1 , . . . , Rin

) is n − 1. A close g-chain of rectangles of M is of
course a g-chain c = (Ri1 , . . . , Rin

) such that Rin
= Ri1 . If x ∈ S is a periodic

point of period p for g, the M-itinerary of g is the closed g-chain of rectangles
c = (Ri0 , . . . , Rip

= Ri0) such that gk(x) ∈ Rik
for k = 0, . . . , p. We will use the

following properties of Markov partitions:

Facts 5.8 (see for Example [7]).

(1) If M = {Ri}i∈I is a Markov partition for a surface homeomorphism g, then
every closed g-chain of rectangles of M of length p is the itinerary of a periodic
point of period p.

(2) Every pseudo-Anosov homeomorphism admits a (finite) Markov partition.
(3) Let g be a homeomorphism of a surface S, and g̃ be a lift of g to the universal

covering S̃ of S. Let M be a Markov partition for g, and M̃ be the lift of M
in S̃ (i.e. the collection of all the lifts of the rectangles of M). Then M̃ is a
Markov partition for g̃.

We are now ready to begin the proof of lemma 5.7.

Proof of lemma 5.7. According to the second item of Facts 5.8, the
pseudo-Anosov homeomorphism φ admits a finite Markov partition M. We de-
note by M̃ the lift of this Markov partition in R2 (i.e. the collection of all the
lifts of the rectangles of M). According to the facts stated above, M̃ is a Markov
partition for φ̃. Note that, if R̃ is a rectangle in M̃, and (p, p′) is a vector in Z2,
then R̃ + (p, p′) is also a rectangle of M̃.
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To prove the Lemma 5.7, we will construct a closed φ̃-chain Γ of rectangles
of M̃ with the following properties: one can find a fundamental domain ∆ for
the action of Z2 on R2, such that “Γ makes one turn around ∆” and “Γ stays far
away from ∆”. The closed chain Γ will be the itinerary of a periodic point y of φ̃.
Franks’ Lemma 5.4 will provide us with a fixed point x of φ̃ in ∆. The property “Γ
makes one turn around ∆” will imply that the orbits of x and y will have non-zero
linking number (item (3) of Lemma 5.7). The property “Γ stays far away from
∆” will imply that the orbits of x and y will stay far from each other (item (2) of
lemma 5.7). Let us start the construction of the closed φ̃-chain Γ:

Claim 1. There exists a constant K ∈ N such that for every couple of
rectangles (S̃, T̃ ) in M̃, there exists a vector (p, p′) ∈ Z2 and a finite φ̃-chain of
rectangles of M̃ of length smaller than K going from S̃ to T̃ + (p, p′).

Proof. We recall that a pseudo-Anosov homeomorphism is always transi-
tive (see e.g. [7]). The topological transitivity of φ implies that, for every couple
of rectangles S, T of M, there exists an integer kST such that φkST (S) intersects
T . Hence, for any lift S̃ of S and any lift T̃ of T , there is a vector (p, p′) ∈ Z2

such that φ̃kST (S̃) intersects T̃ + (p, p′). In particular, there is a finite φ̃-chain of
rectangles of M̃ of length smaller than kST joining the rectangle S̃ to the rectan-
gle T̃ + (p, p′). Since M has a finite number of rectangles, the integers kST are
uniformly bounded. This completes the proof of the claim. ¤

We pick a rectangle R̃ of M̃.

Claim 2. There exist three vectors (p1, p
′
1), (p2, p

′
2), (p3, p

′
3) in Z2 such that:

(1) (0, 0) is in the interior of the convex hull of the vectors (p1, p
′
1), (p2, p

′
2), (p3, p

′
3),

(2) for i ∈ {1, 2, 3}, there exists a finite φ̃-chain of rectangles of M̃, denoted ci,
joining R̃ to a translate R̃+(pi, p

′
i) of R̃. We denote ki the length of the chain

ci.

Proof. Let K be the constant given by Claim 1. Since φ̃ is at finite uniform
distance from the identity, there exists a constant L with the following property:
if S̃ and T̃ are two rectangles of M̃ such that there is a φ̃-chain of rectangles of
length smaller than K going from S̃ to T̃ , then dist(x, y) ≤ L for every x ∈ S̃ and
every y ∈ T̃ . Since (0, 0) is in the interior of the rotation set of φ̃, we can find
three vectors v1, v2, v3 in the rotation set of φ̃ such that (0, 0) is in the interior
of the convex hull of v1, v2, v3. Then, we can find a constant η > 0 such that if
w1, w2, w3 are vectors in R2 such that ‖wi − vi‖ < η for i = 1, 2, 3, then (0, 0) is
in the interior of the convex hull of w1, w2, w3.

Let N be an integer such that L/N < η/3. For i = 1, 2, 3, since vi is in the
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rotation set of φ̃, we can find a point zi ∈ R2 and an integer ni ≥ N such that

∥∥∥∥
1
ni

(
φ̃ni(zi)− zi

)− vi

∥∥∥∥ <
η

3
. (2)

Let S̃i and T̃i be the rectangles of M̃ containing respectively the points zi and
φ̃ni(zi). Now we construct the φ̃-chain of rectangles ci.

– Claim 1 provides us with a vector (ri, r
′
i) in Z2 and a φ̃-chain of rectangles of

M̃ of length less than K going from R̃ to S̃i + (ri, r
′
i).

– By definition of the rectangles S̃i and T̃i, and since φ̃ commutes with the action
of Z2, the image under φ̃ni of the rectangle S̃i + (ri, r

′
i) intersects the rectangle

T̃i + (ri, r
′
i). In particular, there is a φ̃-chain of rectangles of M̃ going from

S̃i + (ri, r
′
i) to T̃i + (ri, r

′
i).

– Claim 1 provides us with a vector (pi, p
′
i) in Z2 and a φ̃-chain of rectangles of

M̃ of length less than K going from T̃i + (ri, r
′
i) to R̃ + (pi, p

′
i).

Concatenating these three φ̃-chains of rectangles of M̃, we obtain a φ̃-chain of
rectangles of M̃ going from R̃ to R̃ + (pi, p

′
i), which we denote by ci.

We will now prove that ‖1/ni(pi, p
′
i) − vi‖ < η. Fix a point z in R̃. Since

there exists a φ̃-chain of rectangles of M̃ of length less than K going from R̃

to S̃i + (ri, r
′
i), we have ‖z − (zi + (ri, r

′
i))‖ ≤ L. The same arguments yield

‖φ̃ni(zi + (ri, r
′
i))− (z + (pi, p

′
i))‖ ≤ L. So, we get

∥∥∥∥
1
ni

(pi, p
′
i)− vi

∥∥∥∥

=
∥∥∥∥

1
ni

(
(z + (pi, p

′
i))− z

)− vi

∥∥∥∥

≤ 1
ni

∥∥(z + (pi, p
′
i))− φ̃ni(zi + (ri, r

′
i))

∥∥

+
∥∥∥∥

1
ni

(
φ̃ni(zi + (ri, r

′
i))− (zi + (ri, r

′
i))

)− vi

∥∥∥∥ +
1
ni

∥∥(zi + (ri, r
′
i))− z

∥∥

≤ L

ni
+

η

3
+

L

ni
≤ η.

By definition of η, these inequalities imply that (0, 0) is in the interior of the
convex hull of the vectors 1/n1(p1, p

′
1), 1/n2(p2, p

′
2), 1/n3(p3, p

′
3). Therefore (0, 0)

is also in the interior of the convex hull of the vectors (p1, p
′
1), (p2, p

′
2), (p3, p

′
3).

¤
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We will now construct closed φ̃-chains of rectangles of M̃. If c = (R̃1, . . . , R̃n)
is a φ̃-chain of rectangles of M̃, and (p, p′) is a vector in Z2, we denote by c+(p, p′)
the sequence of rectangles (R̃1 + (p, p′), . . . , R̃n + (p, p′)). Observe that c + (p, p′)
is a φ̃-chain of rectangles of M̃, since φ̃ commutes with the action of Z2. If c and
c′ are two φ̃-chains of rectangles of M̃ such that the last rectangles of c is equal
to the first rectangle of c′, we denote by c ∨ c′ the φ̃-chains of rectangles obtained
by concataneting c and c′.

Since (p1, p
′
1), (p2, p

′
2), (p3, p

′
3) are vectors with integral coordinates, and since

(0, 0) is in the interior of the convex hull of these vectors, there exists three positive
integers `1, `2, `3 such that

`1(p1, p
′
1) + `2(p2, p

′
2) + `3(p3, p

′
3) = (0, 0).

For i = 1, 2, 3, and n ∈ N\{0}, we consider the φ̃-chain of rectangles of M̃ defined
as follows:

Γi,n = ci ∨
(
ci + (pi, p

′
i)

) ∨ (
ci + 2(pi, p

′
i)

) ∨ · · · ∨ (
ci + (n`i − 1)(pi, p

′
i)

)
.

This is a chain of length n`iki, joining the rectangle R̃ to the rectangle R̃ +
n`i(pi, p

′
i). Now, for n ∈ N \ {0}, we consider the φ̃-chain of rectangles of M̃

defined as follows:

Γn := Γ1,n ∨
(
Γ2,n + n`1(p1, p

′
1)

) ∨ (
Γ3,n + n`1(p1, p

′
1) + n`2(p2, p

′
2)

)
.

This is a closed φ̃-chain of rectangles of M̃, starting and ending at R̃. We denote
by pn = n(`1k1 + `2k2 + `3k3) the length of this φ̃-chain Γn.

For every n ∈ N \ {0}, since Γn is a closed φ̃-chain of rectangles of M̃ of
length pn, and since M̃ is a Markov partition for φ̃, there exists a point yn ∈ R̃

which is periodic of period pn for φ̃, and such that the itinerary of the orbit of
yn is precisely Γn. We will prove that the orbit of yn is very close from an affine
triangle. We pick a point ỹ in the rectangle R̃. For every n ∈ N \ {0}, we consider
the triangle

Tn := Conv
(
y, y + n`1(p1, p

′
1), y + n(`1(p1, p

′
1) + `2(p2, p

′
2)

)
.

Recall that pn = n(`1k1 + `2k2 + `3k3). We consider the parametrisation τn :
[0, pn] → ∂Tn of the boundary of Tn defined by the following properties:

– τn is affine on the intervals [0, n`1k1], [n`1k1, n(`1k1 + `2k2)] and [n(`1k1 + `2k2),
pn],
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– τn(0) = y, τn(n`1k1) = y + n`1(p1, p
′
1), τn(n(`1k1 + `2k2)) = y + n(`1(p1, p

′
1) +

`2(p2, p
′
2)) and τn(pn) = y.

The trajectory of t 7→ φ̃t(yn) and the triangle Tn are depicted on Figure 3. The
following claim states that the distance from the trajectory of t 7→ φ̃t(yn) to the
boundary of the triangle Tn is bounded independently of n.

Claim 3. There exists D such that dist(φ̃t(yn), τn(t)) ≤ D for every t ∈
[0, pn] and every n ∈ N.

Proof. Let us first observe that, for t ∈ [0, n`1k1], one has τn(t) = y +
t/k1(p1, p

′
1). Now consider the constant

D1 := sup
z∈ eR, t∈[0,k1]

dist
(
φ̃t(z), τn(t)

)
= sup

z∈ eR, t∈[0,k1]

dist
(

φ̃t(z), y +
t

k1
(p1, p

′
1)

)
.

For every n ∈ N\{0} and every j ∈ {0, . . . , n`1−1}, the point φ̃jk1(yn)− j(p1, p
′
1)

is in the rectangle R̃. So, for every n ∈ N \ {0}, every j ∈ {0, . . . , n`1 − 1} and
every t ∈ [0, k1], one has

dist
(

φ̃t

(
φ̃jk1(yn)− j(p1, p

′
1)

)
, y +

t

k1
(p1, p

′
1)

)
≤ D1,

or equivalently

dist
(
φ̃jk1+t(yn), τn(jk1 + t)

)
= dist

(
φ̃jk1+t(yn), y +

(
j +

t

k1

)
(p1, p

′
1)

)
≤ D1.

This shows that the distance between the points φ̃t(yn) and τn(t) is bounded from
above by D1, for every n ∈ N \ {0} and for every t ∈ [0, n`1k1]. Similar arguments
show the existence of some constants D2 and D3, such that the distance between
the points φ̃t(yn) and τn(t) is bounded from above by D2 and D3, respectively for
t ∈ [n`1k1, n`1k1 +n`2k2] and for t ∈ [n`1k1 +n`2k2, pn]. This completes the proof
of claim 3. ¤

Claim 4. For n large enough, there exists a fixed point xn of φ̃ such that,
for every t ∈ R,

φt(xn) ∈ Tn and dist(φt(xn), ∂Tn) > D + d.
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Proof. Consider the real constant d3 defined as follow:

d3 := sup
t∈[0,1]

∥∥φ̃t − Id
∥∥
∞ = sup

z∈R2
sup

t∈[0,1]

distR2

(
φ̃t(z), z

)
.

The triangle T1 has non-empty interior, and the triangle Tn is the image of T1

under an homothecy of ratio n. It follows that there exists n0 ∈ N such that, for
n ≥ n0, one can find a fundamental ∆n for the action Z2 on R2 such that ∆n ⊂ Tn

and dist(∂∆n, ∂Tn) ≥ D+d+d3. Now, since (0, 0) is in the interior of the rotation
set of φ̃, Lemma 5.4 implies that φ̃ has a fixed point x. For n ≥ n0, let xn be
an element of x + Z2 which is in the fundamental domain ∆n. Note that xn is
also a fixed point of φ̃, since φ̃ commutes with the action of Z2. The properties
of the fundamental domain ∆n and the definition of the constant d3 imply that
φt(xn) ∈ Tn and dist(φt(xn), ∂Tn) > D + d. This completes the proof of claim 4.
See Figure 3. ¤

Claim 3 and 4 imply that, for n large enough, for every t ∈ [0, pn], one has

∥∥φ̃t(xn)− φ̃t(yn)
∥∥ ≥

∥∥φ̃t(xn)− τn(t)
∥∥−

∥∥τn(t)− φ̃t(yn)
∥∥ ≥ d.

Now consider the curves αn : R→ R2 and βn : R→ R2, defined by αn(t) = φ̃t(xn)
and βn(t) = φ̃t(yn). The curve τn|[0, pn] is a parametrization of the boundary of
the triangle Tn; the image of the curve αn is contained in Tn. Therefore we have

Linking(αn, τn) = ± 1
pn

(the sign depends on the orientation induced by the parametrization τn on ∂Tn).
Claim 3 implies that ‖τn(t) − βn(t)‖ ≤ D for every t ∈ R and every n ∈ N \ {0}.
Claim 4 implies that there exists an integer n0 such that ‖αn(t) − τn(t)‖ > D +
d for every t ∈ R and every n ≥ n0. According to Lemma 5.3, this implies
that Linking(αn, βn) = Linking(αn, τn) for every n ≥ n0. Lastly, observe that
Linking(αn, βn) = Linking(J̃ , xn, yn) (by definition of the curves αn and βn). So
we finally get

Linking
(
J̃ , xn, yn

)
= ± 1

pn

for every n ≥ n0. This completes the proof of lemma 5.7. See Figure 3. ¤
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Figure 3. This figure depicts the situation for n bigger than n0. The solid curve in the

center of the figure represents the trajectory t 7→ eφt(xn). The dashed curve represents

the trajectory t 7→ eφt(yn). It stays at distance less than D of the triangle Tn. The

distance between the trajectory t 7→ eφt(xn) and the triangle Tn is bigger than D + d.

Hence, the distance between t 7→ eφt(xn) and the trajectory t 7→ eφt(yn) is bigger than d.
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Astérisque, 66–67 (1971), 1–286.

[ 8 ] J. Franks, Realizing rotation vectors for torus homeomorphisms, Trans. Amer. Math. Soc.,

311 (1989), 107–115.

[ 9 ] J. Franks and M. Handel, Distortion elements in group actions on surfaces, Duke Math.

J., 131 (2006), 441–468.

[10] D. Fried, The geometry of cross sections to flows, Topology, 21 (1982), 353–371.
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Géométrie et Applications
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Département de Mathématiques
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