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Abstract. In the 1980s, Harada introduced a class of algebras now
called Harada algebras. The aim of this paper is to study Harada algebras
in representation theoretical point of view. The paper concludes the following
two results. The first is the classification of modules over left Harada algebras
whose projective dimension is at most one. The second is the classification of
tilting modules over left Harada algebras, which is done by giving a bijection
between tilting modules over Harada algebras and tilting modules over direct
products of upper triangular matrix algebras over a field.

1. Main results.

In the 1980s, Harada introduced a new class of algebras now called Harada
algebras, which give a common generalization of QF-algebras and Nakayama al-
gebras. We define left Harada algebras in terms of the structure of its projective
modules since the results included in this paper will be shown by using only the
conditions in Definition 1.2.

Definition 1.1. Let T be a finitely generated module over a finite dimen-
sional algebra R and T ' ⊕n

i=1 Ti an indecomposable decomposition of T . Then
T is called basic if Ti and Tj are not isomorphic for any i 6= j. The algebra R is
called basic if RR is basic.

Definition 1.2. A basic finite dimensional algebra R is called a left Harada
algebra1 if a complete set of orthogonal primitive idempotents Pi(R) of R can be
arranged such that Pi(R) = {eij}m

i=1,
ni
j=1 where

(1) ei1R is an injective R-module for any i = 1, . . . , m,
(2) eijR ' ei,j−1J(R) for any i = 1, . . . , m, j = 2, . . . , ni.

Here J(R) is the Jacobson radial of R.
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Many authors have studied Harada algebras from ring structural and module
structural viewpoints by [6], [8], [9], [10] etc. And those results were applied to
study of the structure of QF-algebras and Nakayama algebras by [6], [7].

In this paper, we study left Harada algebras from modern representation
theoretic viewpoints. The paper includes two main results which are presented as
follows.

Throughout this paper, an algebra means a finite dimensional associative
algebra over an algebraically closed field K. We always deal with finitely generated
right modules over algebras. We denote by J(M) the Jacobson radical of a module
M , by Jk(M) the k-th Jacobson radical of M and by S(M) the socle of M .

Let R be a left Harada algebra as in Definition 1.2. We put

Pij := Jj−1(ei1R) ' eijR (1 ≤ i ≤ m, 1 ≤ j ≤ ni) (1.1)

for simplicity. By the above conditions (1) and (2), we have a chain

Pi1 ⊃ Pi2 ⊃ · · · ⊃ Pini

of indecomposable projective R-modules.
The first main result is the classification of R-modules whose projective di-

mension is equal to one. It is obvious that proj.dim (Pik/Pil) = 1. We will prove
that the converse holds in the following sense in Section 2.

Theorem 1.3. A complete set of isomorphism classes of indecomposable
R-modules whose projective dimension is equal to one is given as follows.

{Pik/Pil | 1 ≤ i ≤ m, 1 ≤ k < l ≤ ni}.

Thus there are only finitely many indecomposable R-modules whose projective di-
mension are at most one.

The other main result is the classification of basic tilting R-modules. We
recall the definition of tilting modules.

Definition 1.4. Let S be an algebra. An S-module T is called a partial
tilting module if it satisfies the following conditions.

(1) proj.dim T ≤ 1.
(2) Ext1S(T, T ) = 0.

A partial tilting S-module T is called a tilting module if it satisfies the following
condition.
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(3) There exists an exact sequence

0 −→ SS −→ T0 −→ T1 −→ 0

where T0, T1 ∈ addT .

From viewpoint of Morita theory, it is enough to consider basic tilting mod-
ules. We denote by tilt(S) the set of isomorphism classes of basic tilting S-modules.

The classification of tilting R-modules is done by reducing it to that of tilting
modules over upper triangular matrix algebras which are typical example of left
Harada algebras. In Section 3, we construct an ideal I of R such that R := R/I

is isomorphic to Tn1(K) × Tn2(K) × · · · × Tnm
(K). Here Tn(K) is an n × n

upper triangular matrix algebra over K. Then there is a natural functor −⊗R R :
mod R −→ mod R. It will be shown that this functor gives a bijection from the
set of isomorphism classes of R-modules whose projective dimension one to the set
of isomorphism classes of R-modules, and preserves vanishing of first extensions
in Section 4. Thus the functor induces a bijection from the set of isomorphism
classes of partial tilting R-modules to the set of isomorphism classes of partial
tilting R-modules. These facts imply the following result.

Theorem 1.5. There exists a bijection

tilt(R) −→ tilt(Tn1(K))× tilt(Tn2(K))× · · · × tilt(Tnm(K)).

Moreover, we will include a combinatorial description of tilt(Tn(K)) which
should be known for experts by using non-crossing partitions of a regular (n +
2)-polygon in Section 5. Combining this description with Theorem 1.5, we can
classify tilting modules over a given left Harada algebra. Consequently we have
the following result.

Corollary 1.6. The number of basic tilting R-modules is equal to

m∏

i=1

1
ni + 1

(
2ni

ni

)
.

2. Proof of Theorem 1.3.

In this section, we show Theorem 1.3. To prove it, we give key lemmas, that is,
the properties of homomorphisms between indecomposable projective R-modules.

Let R be a left Harada algebra as in Definition 1.2. We use the notation (1.1).
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Lemma 2.1. If a submodule of Pi1 is not contained in J(Pini
), then it is Pij

for some 1 ≤ j ≤ ni.

Proof. It follows from Definition 1.2 (2). ¤

Lemma 2.2. Let f : Pij −→ Pkl be a homomorphism. Then the following
assertions hold.

(1) f is monic if and only if i = k, j ≥ l and Im f = Pkj.
(2) f is not monic if and only if Im f ⊂ J(Pknk

).
(3) Assume i = k and j < l, we have Im f ⊂ J(Pknk

)
(4) Assume i 6= k, we have Im f ⊂ J(Pknk

).

Proof. (1) We assume that f is monic. Then i = k since S(Pij) ' S(Pkl)
and these are simple. By length(Pij) ≤ length(Pkl), we have j ≥ l. By Lemma
2.1, the only submodule of Pkl whose length is equal to length(Pij) is Pkj . Thus
we have Im f = Pkj . The converse is obvious.

(2) We assume that Im f * J(Pknk
). By Lemma 2.1, there exists 0 ≤ r ≤ nk − l

such that Im f = Pk,r+l. Therefore f is monic since f can be seen as an
epimorphism between indecomposable projective R-modules. The converse
follows from (1).

(3) Since length(Pij) > length(Pil), there exists no monomorphism from Pij to
Pil. Therefore the assertion follows from (2).

(4) Since i 6= k, S(Pij) and S(Pkl) are not isomorphic. Hence there exists no
monomorphism from Pij to Pkl. Therefore the assertion follows from (2). ¤

Lemma 2.3. Let f : Pij −→ Pil be any monomorphism with j ≥ l. Then
the following assertions hold.

(1) For any homomorphism g : Pij −→ Pil′ with l ≥ l′, there exists a homomor-
phism h : Pil −→ Pil′ such that g = hf .

(2) For any homomorphism g : Pij −→ Pst which is not monic, there exists a
homomorphism h : Pil −→ Pst such that g = hf .

(3) For any homomorphism g : Pil′ −→ Pil with l′ ≥ j, there exists a homomor-
phism h : Pil′ −→ Pij such that g = fh.

(4) For any homomorphism g : Pst −→ Pil which is not monic, there exists a
homomorphism h : Pst −→ Pij such that g = fh.

Proof. (1) Let u : Pil′ −→ Pi1 be the inclusion map. Since Pi1 is injective,
there exists a homomorphism h : Pil −→ Pi1 such that ug = hf .
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0 // Pij
f //

g

²²

Pil

h

§§

Pil′

u

²²
Pi1

Since l ≥ l′, we have Im h ⊂ Pil′ . We can see h as h : Pil −→ Pil′ .
(2) Let u : Pst −→ Ps1 be the inclusion map. Since Ps1 is injective, there

exists a homomorphism h : Pil −→ Ps1 such that ug = hf .

0 // Pij
f //

g

²²

Pil

h

§§

Pst

u

²²
Ps1

If h is monic, then ug = hf is monic, hence g is monic. This is a contradiction.
Therefore h is not monic. By Lemma 2.2 (2), we have Im h ⊂ J(Psns

) ⊂ Pst. We
can see h as h : Pil −→ Pst.

(3) By Lemma 2.2 (1), (3), we have Im f = Pij and Im g ⊂ Pil′ . Since
l′ ≥ j, we have Im g ⊂ Im f . Since Pil′ is projective, there exists a homomorphism
h : Pil′ −→ Pij such that g = fh.

Pil′

g

²²

h

¦¦
Pij

f
// Pij // 0

(4) By Lemma 2.2 (1), (2), we have Im g ⊂ J(Pini
) ⊂ Pij = Im f . The

assertion follows by the same argument as in the proof of (3). ¤

The following result gives Theorem 1.3.
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Lemma 2.4. Let Qi and Q′j be indecomposable projective R-modules and

f : Q := Q1 ⊕ · · · ⊕Qk −→ Q′ := Q′1 ⊕ · · · ⊕Q′l

a monomorphism. Then there exists automorphisms ϕ ∈ AutR(Q), ψ ∈ AutR(Q′)
such that

ψfϕ−1 =




f1 0
. . .

0 fk

0
...
0




: Q1 ⊕ · · · ⊕Qk −→ Q′1 ⊕ · · · ⊕Q′l.

Proof. We proceed by induction on k. First we consider the case k = 1.
Then Q is an indecomposable projective R-module. We write f as

f : Q

0
BBB@

f1...
fl

1
CCCA

−−−−−→ Q′, fi : Q −→ Qi (1 ≤ i ≤ l).

Since S(Q) is simple, there exists an monomorphism in {f1, . . . , fl}. So we can
assume that f1, . . . , fr are monic and fr+1, . . . , fl are not monic. We assume that
length(Q′1) ≤ length(Q′i) for 2 ≤ i ≤ r. Then for any 2 ≤ j ≤ r there exists a
homomorphism hj : Q′1 −→ Q′j such that fj = hjf1 by Lemma 2.3 (1). Moreover,
for any r + 1 ≤ j ≤ n there exists a homomorphism hj : Q′1 −→ Q′j such that
fj = hjf1 by Lemma 2.3 (2). Let

ψ =




1 0 · · · 0
−h2 1 0

...
. . .

−hl 0 1


 ∈ AutR(Q′1 ⊕ · · · ⊕Q′l).

Then we have

ψf =




1 0 · · · 0
−h2 1 0

...
. . .

−hl 0 1







f1...
fl


 =




f1

0
...
0


 .
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Next we assume that k ≥ 2 and that the assertion holds for k−1. We assume
that length(Qk) ≤ length(Qi) for 1 ≤ i ≤ k − 1. By applying the induction
hypotheses to f |Q1⊕···⊕Qk−1 , we can assume that

f |Q1⊕···⊕Qk−1 : Q1 ⊕ · · · ⊕Qk−1

0
BBBBBBBBBBBB@

f1 0
. . .

0 fk−1

0
...
0

1
CCCCCCCCCCCCA

−−−−−−−−−−−−−−→ Q′, fi : Qi −→ Q′i

(1 ≤ i ≤ k − 1).

Therefore we can write f as

f : Q

0
BBBBBBBBBBBB@

f1 0 g1
. . .

...
0 fk−1 gk−1

0 · · · 0 gk...
...

...
0 · · · 0 gl

1
CCCCCCCCCCCCA

−−−−−−−−−−−−−−−−−−−→ Q′, gi : Qk −→ Q′i (1 ≤ i ≤ l).

By Lemma 2.3 (3), (4), and the assumption on Qk, for any 1 ≤ i ≤ k − 1 there
exists a homomorphism hi : Qk −→ Qi such that gi = fihi. Let

ϕ =




1 0 h1
. . .

...
0 1 hk−1

0 1


 ∈ Aut(Q1 ⊕ · · · ⊕Qk).

Then we have




f1 0
. . . 0

0 fk−1

0 · · · 0 gk...
...

...
0 · · · 0 gl




ϕ =




f1 0 g1
. . .

...
0 fk−1 gk−1

0 · · · 0 gk...
...

...
0 · · · 0 gl




= f.
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By applying the same argument as in the case k = 1 to




gk
...
gl


 ,

the assertion follows. ¤

Now we can prove Theorem 1.3.

Proof of Theorem 1.3. The projective dimension of Pik/Pil is obviously
equal to 1. Let X be an indecomposable R-module whose projective dimension is
equal to one. Then there exists an exact sequence

0 −→ Q −→ Q′ −→ X −→ 0

such that Q and Q′ are projective R-modules. By Lemma 2.4 and since X is an
indecomposable R-module, Q and Q′ must be indecomposable R-modules. By
Lemma 2.2 (1), X is isomorphic to one of Pik/Pil. ¤

3. Triangular factor algebras of Harada algebras.

In this section, we keep the notations from the previous section. We define
a special factor algebra R = R/I of R which is isomorphic to a direct product
Tn1(K) × · · · × Tnm(K) of upper triangular matrix algebras over K. The alge-
bra R contains important information about R which is seen in Lemma 4.3 and
Proposition 4.4.

We start by defining an ideal I of R. We put

eijR ⊃ Iij := Jni−j+1(eijR) (1 ≤ i ≤ m, 1 ≤ j ≤ ni),

and

R ⊃ I :=
m⊕

i=1

ni⊕

j=1

Iij .

Then we have the following result.

Lemma 3.1. I is an ideal of R.

Proof. Clearly I is a right ideal of R. We show that I is a left ideal of R. It
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is enough to show that rx ∈ Ikl = Jnk−l+1(eklR) for any x ∈ Iij = Jni−j+1(eijR)
and any r ∈ eklR. We consider the homomorphism

ϕr : Iij 3 x 7−→ rx ∈ eklR

of right R-modules. Since Iij is indecomposable and non-projective, we have
Im ϕr ⊂ Jnk−l+1(eklR) = Ikl. Therefore I is a left ideal of R. ¤

By Lemma 3.1, we can consider the factor algebra

R := R/I.

For an element a ∈ R, we put a := a + I ∈ R.
We put

ei := ei1 + ei2 + · · ·+ eini

for 1 ≤ i ≤ m.
Now we show the following description of R.

Proposition 3.2. Under the hypotheses above, the following assertions
hold.

(1) {ei | 1 ≤ i ≤ m} is a set of orthogonal central idempotents of R and there
exists a K-algebra isomorphism

Rej ' Tni
(K).

(2) There exists a K-algebra isomorphism

R ' Tn1(K)× Tn2(K)× · · · × Tnm
(K).

To prove the above proposition, we describe all indecomposable projective
R-modules as factor modules of indecomposable projective R-modules. Since I ⊂
J(R), we have that

{eij | 1 ≤ i ≤ m, 1 ≤ j ≤ ni}

is a complete set of orthogonal primitive idempotents of R. For 1 ≤ i ≤ m,
1 ≤ j ≤ ni, there exists an isomorphism
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P i,j := eijR = eijR/Jni−j+1(eijR) ' Pij/Jni−j+1(Pij) = Pij/J(Pini
).

By Definition 1.2 (b),

0 ⊂ Pini/J(Pini) ⊂ Pi,ni−1/J(Pini)

⊂ · · · ⊂ Pi,j+1/J(Pini
) ⊂ Pij/J(Pini

) = P i,j (3.1)

is a unique composition series of P i,j as an R-module. Therefore any indecompos-
able projective R-module is serial and its composition factors are not isomorphic
to each other.

From the above argument, we can prove Proposition 3.2.

Proof of Proposition 3.2. (1) We calculate HomR(P i,j , P k,l). If i 6= k,
P i,j and P k,l have no common composition factors. So we have

HomR(P i,j , P k,l) = 0.

If i = k, we can easily see that

HomR(P i,j , P i,l) '
{

K (j ≥ l)

0 (j < l)

by composition series (3.1).
Thus we have the following isomorphisms as K-vector space.

eiRej ' HomR(ejR, eiR)

'




HomR(P j,1, P i,1) HomR(P j,2, P i,1) · · · HomR(P j,nj
, P i,1)

HomR(P j,1, P i,2) HomR(P j,2, P i,2) · · · HomR(P j,nj , P i,2)
...

...
. . .

...

HomR(P j,1, P i,ni
) HomR(P j,2, P i,ni

) · · · HomR(P j,nj
, P i,ni

)




'








K K · · · K

K · · · K
. . .

...
0 K




(i = j)

0 (i 6= j).
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It is easily seen that the above isomorphism gives a K-algebra isomorphism when
i = j.

(2) By (1), we have the following K-algebra isomorphism.

R '




e1Re1 e1Re2 · · · e1Rem

e2Re1 e2Re2 · · · e2Rem
...

...
. . .

...

emRe1 emRe2 · · · emRem




'




Tn1(K) 0

Tn2(K)
. . .

0 Tnm
(K)


 . ¤

Next we give a description of indecomposable R-modules. By Proposition 3.2
and the unique composition series (3.1) of Pij/J(Pini

), a complete set of isomor-
phism classes of indecomposable nonprojective R-modules is given by

{Pik/Pil | 1 ≤ i ≤ m, 1 ≤ k < l ≤ ni}.

We put

Pi,k,l := Pik/Pil

for 1 ≤ i ≤ m, 1 ≤ k < l ≤ ni for simplicity.
We have the following diagram for any 1 ≤ i ≤ m by our definitions.

P i,1 −→ Pi,1,ni −→ Pi,1,ni−1 −→ · · · −→ Pi,1,3 −→ Pi,1,2

∪ ∪ ∪ ∪
P i,2 −→ Pi,2,ni

−→ Pi,2,ni−1 −→ · · · −→ Pi,2,3

∪ ∪ ∪
...

...
...

∪ ∪ ∪
P i,ni−2 −→ Pi,ni−2,ni

−→ Pi,ni−2,ni−1

∪ ∪
P i,ni−1 −→ Pi,ni−1,ni

∪
P i,ni
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In the above diagram, arrows from left to right mean natural epimorphisms. We
remark that the above diagram is the AR-quiver of mod(Rei) (see Section 5).

4. Proof of Theorem 1.5.

The aim of this section is to prove Theorem 1.5. We keep the notations from
the previous section.

Now we give the correspondence of Theorem 1.5 precisely. A key role is played
by the functor

F := −⊗R R : mod R −→ mod R.

Theorem 4.1. Under the hypotheses above, we have a bijection

F : tilt(R) 3 T 7−→ F (T ) ∈ tilt(R).

By Proposition 3.2 and Theorem 4.1, we have the following corollary imme-
diately.

Corollary 4.2. Under the hypotheses above, we have a bijection

tilt(R) 3 T 7−→ (F (T )e1, . . . , F (T )em) ∈ tilt(Re1)× · · · × tilt(Rem).

Hence we have Theorem 1.5.

In the rest of this section, we prove Theorem 4.1. Let P be the category of
R-modules whose projective dimension is at most one. We define the full subcat-
egories Pi of P for 1 ≤ i ≤ m by

Pi := add{Pij , Pi,k,l | 1 ≤ j ≤ ni, 1 ≤ k < l ≤ ni}.

By Theorem 1.3, we have

P = add(P1 ∪P2 ∪ · · · ∪Pm).

To prove Theorem 4.1, we show that the restriction on F to P gives a bijection
from the isomorphism classes of R-modules which are in P to the isomorphism
classes of R-modules which preserves vanishing property of first extensions (Lemma
4.3 and Proposition 4.4).

Lemma 4.3. Under the hypotheses above, the following assertions hold.
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(1) The restriction on F to P induces a bijection between the isomorphism classes
of R-modules which lie in P and the isomorphism classes of R-modules.

(2) The restriction on F to Pi induces a bijection between the isomorphism classes
of R-modules which lie in Pi and the isomorphism classes of Rei-modules.

Proof. We calculate F (M) for an indecomposable R-module M which lies
in P. We have isomorphisms

F (Pij) = Pij ⊗R R ' Pij/(PijI) = Pij/Jni(Pi1) = P ij ,

F (Pi,k,l) = Pi,k,l ⊗R R ' Pi,k,l/(Pi,k,lI) = Pi,k,l.

for 1 ≤ i ≤ m, 1 ≤ j ≤ ni and 1 ≤ k < l ≤ ni. The assertion follows. ¤

Proposition 4.4. For any X, Y ∈ P, Ext1R(X, Y ) = 0 if and only if
Ext1

R
(F (X), F (Y )) = 0.

We divide a proof of the above result into a few steps. First we show that
Ext1R(X, Y ) vanishes for any X ∈ Pi and Y ∈ Pu if i 6= u.

Lemma 4.5. If i 6= u, then Ext1R(X, Y ) = 0 for any X ∈ Pi and Y ∈ Pu.

Proof. It is obvious that Ext1R(Pij ,Pu) = 0. We show Ext1R(Pi,k,l,Pu) =
0 for 1 ≤ k < l ≤ ni.

First we show Ext1R(Pi,k,l, Puv) = 0 for 1 ≤ v ≤ nu. We take a projective
resolution

0 −→ Pil
f−−→ Pik −→ Pi,k,l −→ 0 (4.1)

of Pi,k,l in modR. By applying HomR(−, Puv) to the above exact sequence, we
have an exact sequence

HomR(Pik, Puv)
Hom(f,Puv)−−−−−−−−→ HomR(Pil, Puv) −→ Ext1R(Pi,k,l, Puv) −→ 0.

By the assumption i 6= u, there is no monomorphism from Pil to Puv since the sim-
ple socles S(Pil) and S(Puv) are not isomorphic. By Lemma 2.3 (2), Hom(f, Puv)
is an epimorphism. Therefore we have Ext1R(Pi,k,l, Puv) = 0.

Next we show Ext1R(Pi,k,l, Pu,s,t) = 0 for 1 ≤ s < t ≤ nu. By applying
HomR(−, Pu,s,t) to (4.1), we have an exact sequence

HomR(Pik, Pu,s,t) −→ HomR(Pil, Pu,s,t) −→ Ext1R(Pi,k,l, Pu,s,t) −→ 0.
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By the assumption i 6= u, Pil/J(Pil) does not appear in composition factors of
Pu,s,t. Therefore we have HomR(Pil, Pu,s,t) = 0, and so Ext1R(Pi,k,l, Pu,s,t) = 0. ¤

Next we show that Ext1R(X, Y ) = 0 if and only if Ext1
R
(F (X), F (Y )) = 0 for

any X, Y ∈ Pi. We need the following lemma.

Lemma 4.6. For any 1 ≤ i ≤ m, 1 ≤ j ≤ ni and 1 ≤ k < l ≤ ni, the
natural epimorphism ϕ : Pij −→ P i,j induces an isomorphism

Hom(ϕ,Pi,k,l) : HomR(P i,j , Pi,k,l) = HomR(P i,j , Pi,k,l) −→ HomR(Pij , Pi,k,l).

Proof. It is obvious that HomR(P i,j , Pi,k,l) = HomR(P i,j , Pi,k,l) holds.
We show that Hom(ϕ,Pi,k,l) is an isomorphism.

Since ϕ is epic, we have that Hom(ϕ,Pi,k,l) is monic. Since any f ∈
HomR(Pij , Pi,k,l) satisfies Ker f ⊃ PijI = Ker ϕ, we have that f factors through
ϕ. Thus Hom(ϕ,Pi,k,l) is an isomorphism. ¤

Proposition 4.7. For fixed 1 ≤ i ≤ m, the following assertions hold.

(1) For 1 ≤ j ≤ ni, Ext1R(Pij , X) = 0 for any X ∈ P.
(2) For 1 ≤ j ≤ ni, Ext1

R
(P i,j , X) = 0 for any X ∈ mod R.

(3) For 1 ≤ k < l ≤ ni and 1 ≤ s < t ≤ ni, there exists a K-vector space
isomorphism

Ext1R(Pi,k,l, Pi,s,t) ' Ext1
R
(Pi,k,l, Pi,s,t).

(4) For 1 ≤ k < l ≤ ni and 1 ≤ j ≤ ni, Ext1R(Pi,k,l, Pij) = 0 if and only if
Ext1

R
(Pi,k,l, P i,j) = 0.

Proof. (1) (2) Obvious.
(3) We have a natural projective resolution

0 −→ Pil
f−−→ Pik −→ Pi,k,l −→ 0 (4.2)

of Pi,k,l in modR and a natural projective resolution

0 −→ P i,l
f ′−−→ P i,k −→ Pi,k,l −→ 0 (4.3)

of Pi,k,l in modR. For natural epimorphisms ϕ : Pik −→ P i,k and ϕ′ : Pil −→ P i,l,
we have the following commutative diagram.
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0 // Pil
f //

ϕ′

²²

Pik
//

ϕ

²²

Pi,k,l // 0

0 // P i,l

f ′ // P i,k
// Pi,k,l // 0

By applying HomR(−, Pi,s,t) to the upper row and applying HomR(−, Pi,s,t) to
the lower row, we have the following commutative diagram.

HomR(P i,k, Pi,s,t) // HomR(P i,l, Pi,s,t) // Ext1
R
(Pi,k,l, Pi,s,t) // 0

HomR(P i,k, Pi,s,t)

Hom(ϕ,Pi,s,t)

²²

HomR(P i,l, Pi,s,t)

Hom(ϕ′,Pi,s,t)

²²
HomR(Pik, Pi,s,t) // HomR(Pil, Pi,s,t) // Ext1R(Pi,k,l, Pi,s,t) // 0

By Lemma 4.6, Hom(ϕ,Pi,s,t) and Hom(ϕ′, Pi,s,t) are isomorphisms. Conse-
quently we have an isomorphism Ext1R(Pi,k,l, Pi,s,t) ' Ext1

R
(Pi,k,l, Pi,s,t).

(4) By applying HomR(−, Pij) to (4.2), we have an exact sequence

HomR(Pik, Pij)
Hom(f,Pij)−−−−−−−→ HomR(Pil, Pij) −→ Ext1R(Pi,k,l, Pij) −→ 0.

It can be seen that Ext1R(Pi,k,l, Pij) = 0 if and only if Hom(f, Pij) is an epimor-
phism.

We show that Hom(f, Pij) is an epimorphism if and only if j ≤ k or l < j.
First we assume that j > k and l ≥ j. By l ≥ j, there exists a monomorphism from
Pil to Pij . But there are no monomorhisms from Pik to Pij by j > k. Since Pik

has simple socle, gf is not monic for any g ∈ HomR(Pik, Pij). Thus Hom(f, Pij)
is not an epimorphism. Next we assume j ≤ k. By Lemma 2.3 (1), Hom(f, Pij)
is an epimorphism. Finally we assume l < j. Then by length(Pil) > length(Pij),
there are no monomorphisms from Pil to Pij . By Lemma 2.3 (2), Hom(f, Pij) is
an epimorphism.

On the other hand, by applying HomR(−, P i,j) to (4.3), we have an exact
sequence

HomR(P i,k, P i,j)
Hom(f ′,P i,j)−−−−−−−−→ HomR(P i,l, P i,j) −→ Ext1

R
(Pi,k,l, P i,j) −→ 0.

It can be seen that Ext1
R
(Pi,k,l, P i,j) = 0 if and only if Hom(f ′, P i,j) is an epimor-
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phism. We can show that Hom(f ′, P i,j) is an epimorphism if and only if j ≤ k or
l < j by the same argument as above.

Consequently Ext1R(Pi,k,l, Pij) = 0 if and only if j ≤ k or l < j which is
equivalent to Ext1

R
(Pi,k,l, P i,j) = 0. ¤

By Lemma 4.5 and Proposition 4.7, we have Proposition 4.4.
Finally to prove Theorem 4.1, we need the following well-known proposition

which describes a very useful equivalent condition of tilting modules.

Proposition 4.8 ([2]). Let R be an algebra and T a partial tilting R-
module. Then the following conditions are equivalent.

(1) T is a tilting module.
(2) The number of pairwise nonisomorphic indecomposable direct summand of T

is equal to the number of pairwise nonisomorphic simple R-modules.

Now we can prove Theorem 4.1.

Proof of Theorem 4.1. Any basic tilting R-module lies in P. By
Lemma 4.3 and Proposition 4.4, F induces a bijection from the set of isomor-
phism classes of partial tilting R-modules to that of isomorphism classes of partial
tilting R-modules. Moreover by Proposition 4.8, F induces a bijection from tilt(R)
to tilt(R) since the number of isomorphism classes of simple R-modules is equal
to that of isomorphism classes of simple R-modules. ¤

5. Combinatorial description of tilting Tn(K)-modules.

In this section, we recall the well-known classification of basic tilting modules
over the upper triangular matrix algebra Tn(K). It was done by constructing a
bijection between tilt(Tn(K)) and the set of non-crossing partitions of the regular
(n + 2)-polygon into triangles. By this classification and Theorem 4.2, we can
classify basic tilting modules over left Harada algebras.

First we introduce coordinates in the AR-quiver of Tn(K) as follows.
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We remark that the vertex (i, j) corresponds the Tn(K)-module

Mij =

j−2
ˇ

1
ˇ

( 0 ... 0 K ... K ) /

i
ˇ

1
ˇ

( 0 ... 0 K ...K )=

j−2
ˇ

i
ˇ

1
ˇ

( 0 ... 0 K ... K 0 ... 0 ) .

Next we consider a regular (n+2)-polygon Rn+2 whose vertices are numbered
as follows.

We denote by D(Rn+2) the set of all diagonals of Rn+2 except edges of Rn+2.
We call a subset S of D(Rn+2) a non-crossing partition of Rn+2 if S satisfies the
following conditions.

(1) Any two distinct diagonals in S do not cross except at their endpoints.
(2) Rn+2 is divided into triangles by diagonals in S.

We denote by Pn+2 the set of an non-crossing partitions of Rn+2.
Now we construct the correspondence Φ from Pn+2 to tilt(Tn(K)). We

denote by (i, j) the diagonal between i and j for i < j. It is obvious that there
exists a bijection

D(Rn+2) 3 (i, j) 7−→ Mij ∈ {Mij | (i, j) 6= (1, n + 2)}.

We take S ∈ Pn+2. Since any non-crossing partition of Rn+2 consists of n − 1
diagonals, S can be putted by

S = {(i1, j1), (i2, j2), . . . , (in−1, jn−1)}.

Then we define

Φ(S) := M1,n+2 ⊕
( n−1⊕

k=1

Mik,jk

)
.
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This correspondence Φ : Pn+2 −→ tilt(Tn(K)) is well-defined, and moreover the
following hold.

Theorem 5.1. The above correspondence Φ : Pn+2 −→ tilt(Tn(K)) is a
bijection.

Example 5.2. We consider n = 3 case. We classify basic tilting T3(K)-
modules by using Theorem 5.1. All of partitions of the regular pentagon into
triangles are given as follows.

(1) 1

OOOOOOOOOOOOO

²²
²²
²²
²²
²²
²²
²

//
//

//
//

//
//

/

5

ooooooooooooo
2

ÄÄ
ÄÄ

ÄÄ
Ä

4

???????
3

(2) 1

OOOOOOOOOOOOO

5

ooooooooooooo
2

ÄÄ
ÄÄ

ÄÄ
Ä

jjjjjjjjjjjjjjjjjjjj

4

???????
3

(3) 1

OOOOOOOOOOOOO

5

ooooooooooooo
2

ÄÄ
ÄÄ

ÄÄ
Ä

4

???????
3

/////////////

TTTTTTTTTTTTTTTTTTTT

(4) 1

OOOOOOOOOOOOO

5

ooooooooooooo
2

ÄÄ
ÄÄ

ÄÄ
Ä

4

???????

²²²²²²²²²²²²²

jjjjjjjjjjjjjjjjjjjj
3

(5) 1

OOOOOOOOOOOOO

5

ooooooooooooo

TTTTTTTTTTTTTTTTTTTT 2

ÄÄ
ÄÄ

ÄÄ
Ä

4

???????
3

Therefore the number of basic tilting T3(K)-modules is equal to 5 and all of
basic tilting T3(K)-modules are given as follows.

(1) ( K K K )⊕ ( 0 K K )⊕ ( 0 0 K ),
(2) ( K K K )⊕ ( K K 0 )⊕ ( 0 K 0 ),
(3) ( K K K )⊕ ( K 0 0 )⊕ ( 0 0 K ),
(4) ( K K K )⊕ ( 0 K K )⊕ ( 0 K 0 ),
(5) ( K K K )⊕ ( K K 0 )⊕ ( K 0 0 ).

Now we show examples of classifications of tilting modules over left Harada
algebras.
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Example 5.3. (1) Let R be a local quasi-Frobenius algebra. Then we con-
sider block extension (cf. [3], [10])

R(n) =




R · · · R
. . .

...
J(R) R




for n ∈ N of R which is a subalgebra of n× n full matrix algebra over R. We can
show that

(a) the first row is a injective module,
(b) the i-th row is the Jacobson radical of the (i− 1)-th row for 2 ≤ i ≤ n.

In particular R(n) is a left Harada algebra with m = 1 and n1 = n in Definition
1.2.

By Corollary 4.2, we have a bijection F : tilt(R(n)) −→ tilt(Tn(K)). We can
obtain all basic tilting R(n)-modules from the definition of F and Theorem 5.1.
(2) Let R be a basic quasi-Frobenius algebra which has a complete set of orthogonal
primitive idempotents {e, f}. Then we can represent R as follows.

R '
(

eRe eRf
fRe fRf

)
.

We put Q := eRe, W := fRf , A := eRf and B := fRe. Now we consider the
block extension (cf. [3], [10])

R(n1, n2) =




Q · · · Q A · · · A
. . .

...
...

...
J(Q) Q A · · · A

B · · · B W · · · W
...

...
. . .

...
B · · · B J(W ) W




for n1, n2 ∈ N of R which is a subalgebra of EndR((eR)n1 ⊕ (fR)n2). We can
show that

(a) the first and n1 + 1 row are injective modules,
(b) the i-th row is the Jacobson radical of the (i − 1)-th row for 2 ≤ i ≤ n1 and

n1 + 2 ≤ i ≤ n1 + n2.

In particular R(n1, n2) is a left Harada algebra with m = 2 in Definition 1.2.
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By Corollary 4.2, we have a bijection F : tilt(R(n1, n2)) −→ tilt(Tn1(K)) ×
tilt(Tn2(K)). We can obtain all basic tilting R(n1, n2)-modules from the definition
of F and Theorem 5.1.
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