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Abstract. Let ι : C2 ↪→ S be a compactification of the two dimensional
complex space C2. By making use of Nevanlinna theoretic methods and the
classification of compact complex surfaces K. Kodaira proved in 1971 ([2])
that S is a rational surface. Here we deal with a more general meromorphic
map f : Cn → X into a compact complex manifold X of dimension n, whose
differential df has generically rank n. Let ρf denote the order of f . We will
prove that if ρf < 2, then every global symmetric holomorphic tensor must
vanish; in particular, if dim X = 2 and X is kähler, then X is a rational
surface. Without the kähler condition there is no such conclusion, as we
will show by a counter-example using a Hopf surface. This may be the first
instance that the kähler or non-kähler condition makes a difference in the value
distribution theory.

1. Introduction and main results.

Let X be a compact hermitian manifold with metric form ω. Let f : Cn → X

be a meromorphic map (cf. [4] for this section in general). If the differential df is
generically of maximal rank, f is said to be differentiably non-degenerate. We set

α = ddc‖z‖2 (1.1)

for z = (zj) ∈ Cn, where dc = (i/4π)(∂̄ − ∂) and ‖z‖2 =
∑n

j=1 |zj |2. We use the
notation:

B(r) = {z ∈ Cn : ‖z‖ < r}, S(r) = {z ∈ Cn : ‖z‖ = r} (r > 0).

We define the order function of f with respect to ω by

Tf (r;ω) =
∫ r

1

dt

t2n−1

∫

B(t)

f∗ω ∧ αn−1. (1.2)
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Then the (upper) order is defined by

ρf = lim
r→∞

log Tf (r;ω)
log r

.

It is easy to see that ρf is independent of the choice of the metric (form ω) on X.

Example 1.3. (i) If X = P n(C) and f is rational, then ρf = 0.
(ii) Let X be a compact torus. If f : Cn → X is non-constant, then ρf ≥ 2.

If λ : Cn → X (dimX = n) is the universal covering map, then ρλ = 2.

A compact complex manifold which is bimeromorphic to P n(C) is called a
rational variety. A two-dimensional compact complex manifold is called a complex
surface. If it admits a kähler metric, it is called a kähler surface.

The main result of this paper is the following:

Main Theorem 1.4. Let X be a kähler surface. Assume that there is a
differentiably non-degenerate meromorphic map f : C2 → X. If ρf < 2, then X

is rational.

The kähler condition is necessary by the following:

Theorem 1.5. There is a Hopf surface S for which there is a differentiably
non-degenerate holomorphic map f : C2 → S with ρf = 1.

Let Ωk
X denote the sheaf of germs of holomorphic k-forms over a complex

manifold X. We denote by SlΩk
X its l-th symmetric tensor power. In particular,

KX = Ωn
X (n = dim X) denotes the canonical bundle over X.

The key tool for the proof of the Main Theorem 1.4 is:

Theorem 1.6. Let X be an n-dimensional compact complex manifold. As-
sume that there exists a differentiably non-degenerate meromorphic map f : Cm →
X (m ≥ n) with ρf < 2. Then for arbitrary lk ≥ 0 with

∑n
k=1 lk > 0

H0
(
X, Sl1Ω1

X ⊗ · · · ⊗ SlnΩn
X

)
= {0}.

Remark 1.7. So far by our knowledge, the above theorems are the first
instance that the kähler or non-kähler condition makes a difference in the value
distribution theory.
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2. Proof of the Main Theorem.

2.1. Proof of Theorem 1.6.
Assume the existence of an element

τ ∈ H0
(
X, Sl1Ω1

X ⊗ · · · ⊗ SlnΩn
X

) \ {0}.

We take a hermitian metric h on X with the associated form ω. There are induced
hermitian metrics on the symmetric powers of the bundles Ωk

X and their tensor
products which by abuse of notation are again denoted by h. Let ‖τ‖h denote the
norm of τ with respect to h. Then there is a constant c1 > 0 such that

‖τ‖h ≤ c1. (2.1)

We denote by ξλ the coefficient functions of f∗τ with respect to the standard
coordinate system (z1, . . . , zm) on Cm. Since f is meromorphic, f∗τ is obviously
holomorphic outside the indeterminacy set If . Because codim(If ) ≥ 2 and because
f∗τ is a section in a globally defined vector bundle, it extends holomorphically to
If . Thus we may regard f∗τ as being holomorphic on Cn and the coefficient func-
tions ξΛ with respect to the flat frames generated by dz1, . . . , dzn are holomorphic
as well. We set

‖f∗τ‖2Cm =
∑

Λ

|ξΛ|2 6≡ 0. (2.2)

We define a function ζ on Cm by

f∗ω ∧ αm−1 = ζαm.

Since f is differentiably non-degenerate, f∗τ 6≡ 0. By (2.1) there are positive
constants c2 and c3 such that

ζ ≥ c2‖f∗τ‖2c3
Cm . (2.3)

By (2.2) ‖f∗τ‖2c3
Cm is plurisubharmonic. Since f∗τ 6≡ 0 is holomorphic, it follows

that
∫

S(1)

‖f∗τ‖2c3
Cmγ = c4 > 0,

where
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γ =
1

r2m−1
dc‖z‖2 ∧ αm−1, (2.4)

induced on S(r) with r = 1. Since the plurisubharmonicity of ‖f∗τ‖2c3
Cm implies

ddc‖f∗τ‖2c3
Cm ≥ 0 as currents,

∫

S(r)

‖f∗τ‖2c3
Cmγ −

∫

S(s)

‖f∗τ‖2c3
Cmγ =

∫ r

s

dt

t2m−1

∫

B(t)

ddc‖f∗τ‖2c3
Cm ∧ αm−1 ≥ 0

for r > s > 0 (cf. [4]). Thus,

∫

S(r)

‖f∗τ‖2c3
Cmγ

is monotone increasing in r > 0. Then,

1
r2m−1

∫

S(r)

‖f∗τ‖2c3
Cm dc‖z‖2 ∧ αm−1 =

∫

S(r)

‖f∗τ‖2c3
Cmγ ≥

∫

S(1)

‖f∗τ‖2c3
Cmγ = c4

for r > 1, so that

∫

S(r)

‖f∗τ‖2c3
Cmdc‖z‖2 ∧ αm−1 ≥ c4r

2m−1, r > 1.

Therefore

∫

B(r)

‖f∗τ‖2c3
Cmαm ≥

∫ r

1

c4t
2m−1dt =

c4

2m
(r2m − 1), r > 1.

We deduce from this that

Tf (r, ω) =
∫ r

1

dt

t2m−1

∫

B(t)

ζαm ≥ c2

∫ r

1

dt

t2m−1

∫

B(t)

‖f∗τ‖2c3
Cmαm

≥ c2c4

2m

∫ r

1

(
t− 1

t2m−1

)
dt =

c2c4

4m
r2 + Cm(r),

where C1(r) = O(log r) and Cm(r) = O(1) for m ≥ 2. Thus,

ρf = lim
r→∞

log Tf (r, ω)
log r

≥ 2.
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This is a contradiction. ¤

Corollary 2.5. If X in Theorem 1.6 is 1-dimensional, then X is biholo-
morphic to P 1(C).

2.2. Proof of the Main Theorem 1.4.
There is a fine classification theory of complex surfaces (cf. Kodaira [2], Barth-

Peters-Van de Ven [1]). According to it, we know the following fact, where b1(X) =
dimH1(X, R) denotes the first Betti number of X.

Theorem 2.6 (Kodaira [68, Theorem 54]). If a complex surface X satisfies
b1(X) = 0 and H0(X, Kl

X) = {0} for all l > 0, then X is rational.

This enables us to prove Theorem 1.4 as follows. By Theorem 1.6
dimH0(X, Ω1

X) = 0. Due to the kähler assumption, we have b1(X) =
2 dim H0(X, Ω1

X) = 0. Moreover, H0(X, Kl
X) = {0} for all l > 0 again by Theorem

1.6. It follows from Theorem 2.6 that X is rational. ¤

3. Proof of Theorem 1.5.

Let λ ∈ C with |λ| > 1. Then a Hopf surface S is defined as the quotient of
C2 \ {(0, 0)} under the Z-action given by n : (x, y) 7→ (λnx, λny). Such a surface
S is known to be diffeomorphic to S1 × S3. As a consequence b1(S) = 1 and S is
not kähler.

Now

ω =
i

2π
· dx ∧ dx̄ + dy ∧ dȳ

|x|2 + |y|2 =
ddc‖(x, y)‖2
‖(x, y)‖2

is a positive (1, 1)-form on C2 \ {(0, 0)} which is invariant under the above given
Z-action. Therefore it induces a positive (1, 1)-form on the quotient surface S

which by abuse of notation is again denoted by ω.
Let α and γ be as in (1.1) and (2.4), respectively. We claim that the holo-

morphic map f : C2 → S induced by

(z, w) 7→ (z, 1 + zw)

is of order 1. By definition this means

ρf = lim
r→∞

log Tf (r, ω)
log r

= 1,
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i.e.,

lim
r→∞

1
log r

log
∫ r

1

dt

t3

∫

B(t)

f∗ω ∧ α = 1.

Note that

f∗ω ∧ α =
1 + |z|2 + |w|2

2(|z|2 + |1 + zw|2)α2.

We define

Ir =
∫

S(r)

r2

|z|2 + |1 + zw|2 dV, r = ‖(z, w)‖.

Here dV is the euclidean volume element on S(r), and therefore a constant multiple
of r3γ. It is sufficient to show

Ir = O(r2+ε), ∀ε > 0, and r2 = O(Ir). (3.1)

Indeed, assume that this holds. Because of limr→∞(1 + r2)/r2 = 1, (3.1) is equiv-
alent to the assertion

I ′r = O(r2+ε), and r2 = O(I ′r).

with

I ′r =
∫

S(r)

1 + r2

|z|2 + |1 + zw|2 dV.

From this we first obtain

∫

B(r)

1 + r2

|z|2 + |1 + zw|2 α2 = O

( ∫ r

I ′rdr

)
= O(r3+ε), ∀ε > 0,

implying

Tf (r) =
1
2

∫ r

1

dt

t3

∫

B(r)

1 + r2

|z|2 + |1 + zw|2 α2 = O(r1+ε), ∀ε > 0,



Order of meromorphic maps 1175

and

ρf = lim
r→infty

log Tf (r)
log r

≤ 1.

In the same way from the second estimate of (3.1) we get the opposite estimate
ρf ≥ 1, and therefore ρf = 1. Hence it suffices to show (3.1).

We define

η =
r2

|z|2 + |1 + zw|2 .

Thus we have to show

Ir =
∫

S(r)

ηdV = O(r2+ε).

We set

η =
r2

φ(z, w)
, φ(z, w) = |z|2 + |1 + zw|2.

3.1. Geometric estimates.
For (z, w) ∈ S(r) let θ ∈ [0, 2π) such that eiθ|zw| = zw. Let K > 0, −∞ <

λ < 1 and µ ≥ 0. We set

ΩK,λ,µ =
{
(z, w) ∈ S(r) : |z| ≤ Krλ, | sin θ| ≤ r−µ

}
.

We need some volume estimates.
First we note that (sin θ)/θ ≥ 2/π for all θ ∈ [0, π/2], because sin is concave

on [0, π/2]. It follows that for every C ∈]0, 1] we have the following bound for the
Lebesgue measure:

vol ({θ ∈ [0, 2π] : | sin θ| ≤ C}) ≤ 4(Cπ/2) = 2Cπ. (3.2)

Second we define a map ζ : C2 → C ×R2 as follows:

ζ : (z, w) 7→ (z, r arg(zw), r),

where r = ‖(z, w)‖ =
√
|z|2 + |w|2.
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To compute the Jacobian J of this map we set the coordinates so that z =
x + iy, w = u + iv, and write

r =
√

x2 + y2 + u2 + v2,

ζ : (x, y, u, v) 7→ (x, y, r(arg z + arg w), r) ∈ R4.

Then the Jacobian J takes the following form:

J =

∣∣∣∣∣∣∣∣∣∣∣

1 0 ∗ ∗
0 1 ∗ ∗
0 0 u

r (arg z + arg w) + r ∂
∂u arg w u

r

0 0 v
r (arg z + arg w) + r ∂

∂v arg w v
r

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣
r ∂

∂u arg w u
r

r ∂
∂v arg w v

r

∣∣∣∣∣ .

An easy practice of computation implies that “J ≡ −1”.
Furthermore the gradient grad(r) is of length one and normal on the level

set S(r). Correspondingly the map ζ is volume preserving and S(r) has the same
volume as its image

ζ(S(r)) = {z ∈ C : |z| ≤ r} × [0, 2πr)× {r}, (3.3)

namely 2π2r3.
Similarly the euclidean volume of ΩK,λ,µ agrees with the euclidean volume of

ζ(ΩK,λ,µ) = {z ∈ C : |z| ≤ Krλ} × {θr : θ ∈ [0, 2π), | sin θ| ≤ r−µ} × {r}.

Using (3.2) it follows that for r ≥ 1 the volume of ΩK,λ,µ is bounded by

π(Krλ)2 · 2r−µπr = 2K2π2r2λ+1−µ.

In particular,

vol(ΩK,λ,µ) = O(r2λ+1−µ). (3.4)
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3.2. Arithmetic estimates.
Besides the Landau O-symbols, we also use the notation “&”: If f, g are

functions of a real parameter r, then f(r) & g(r) indicates that

lim inf
r→+∞

f(r)
g(r)

≥ 1.

Similarly f ∼ g indicates

lim
r→+∞

f(r)
g(r)

= 1.

In the sequel, we will work with domains Ω ⊂ S(r) (i.e. for each r > 0 some
subset Ω = Ωr ⊂ S(r) is chosen). In this context, given functions f , g on C2

we say “f(z, w) & g(z, w) holds on Ω” if for every sequence (zn, wn) ∈ C2 with
lim ‖(zn, wn)‖ = +∞ and (zn, wn) ∈ Ωr (r = ‖(zn, wn)‖) we have

lim inf
n→∞

f(zn, wn)
g(zn, wn)

≥ 1.

We develop some estimates for φ(z, w) = |z|2 + |1 + zw|2. Fix µ > 0, −∞ <

λ < 1.

( i ) For all z, w: φ ≥ |z|2.
( ii ) If (z, w) ∈ S(r) and |z| ≤ 1/2r, then

|w| ≤ r =⇒ |zw| ≤ 1
2

=⇒ |1 + zw| ≥ 1
2

and therefore φ ≥ 1/4.
(iii) For |z| ≤ rλ we have |w| ∼ r, i.e., for fixed λ, µ and any choice of (zr, wr) ∈

S(r) with |zr| ≤ rλ we have limr→∞ |wr|/r = 1.
(iv) For |z| ≥ 3/2r and |z| ≤ rλ we have that φ & (1/9)|zw|2, because |w| ∼ r

and |zw| & 3/2 (equivalently, 1 . (2/3)|zw|), implying |1+zw| ≥ |zw|−1 &
(1/3)|zw|.

( v ) For all z, w, φ ≥ |=(1 + zw)|2 = (|zw| sin θ)2.

3.3. Putting things together.
We are going to prove first the claim

“I(r) = O(r2+ε), ∀ε > 0”
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by dividing S(r) into regions A, B, C, D−2, D−1, D0, D1, E, F , each of which is
investigated separately.

• Region A consists of those points with |z| ≤ 1/2r, i.e., A = Ω1/2,−1,0. The
volume vol(A) is thus of order O(r−1). Due to (ii) the integrand η is bounded
by η|A = O(r2). It follows that

∫

A

η dV ≤ vol(A) · sup
(z,w)∈A

η(z, w) = O(r).

Hence the contribution of A to the integral Ir =
∫

S(r)
η dV is bounded by

O(r).
• Region B consists of those points with 1/2r ≤ |z| ≤ 3/2r and | sin θ| < 1/r.

Thus B ⊂ Ω3/2,−1,1. Due to (3.4) this implies vol(B) = O(r−2). For the
integrand η|B we have the bound η|B = O(r4) (using (i) and |z| ≥ 1/2r).
Hence

∫

B

η dV ≤ vol(B) · sup
(z,w)∈B

η(z, w) = O(r2);

i.e., the contribution of B to the integral Ir is bounded by O(r2).
• Region C consists of those points with 1/2r ≤ |z| ≤ 3/2r and | sin θ| > 1/r.

Since |w| ∼ r, 1/2 . |zw| . 3/2 We take the volume-compatible parameter
ψ = rθ due to (3.3). Then 1/r < | sinψ/r| < ψ/r, and so ψ > 1. Therefore

Jr :=
∫

1<ψ<2πr, | sin ψ/r|>1/r

η dψ

=
∫

1<ψ<2πr, | sin ψ/r|>1/r

2r2

(sinψ/r)2
dψ = O(r4).

Here in fact we have that there is a constant c > 1 such that

r4

c
≤ Jr ≤ cr4.

Therefore it follows that

r2

c′
≤

∫

C

η dV =
∫

1/2r≤|z|≤3/2r

Jr
i

2
dz ∧ dz̄ ≤ c′r2, (3.5)
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where c′ is a positive constant. Thus the contribution of C to the integral
Ir is bounded by O(r2).

• For γ ∈ {−2,−1, 0, 1} let Dγ denote the set of those points where |z| ≥ 3/2r,
|z| ≤ r1−ε and rγ/2 ≤ |z| ≤ r(γ+1)/2. For each γ the integrand η is bounded
on Dγ by O(r−γ) (due to (iv)), and the volume vol(Dγ) is bounded by
O(r2+γ), because Dγ ⊂ Ω1,(γ+1)/2,0. Thus the contribution of Dγ to the
integral Ir is bounded by O(r2).

• Let E denote the region where |z| ≥ r1−ε, |w| ≥ r1/2. For the integrand
we have that η|E = O(r2ε−1) (using (iv)). The volume of E is bounded by
the total volume of S(r), i.e., vol(E) = O(r3). Together this shows that the
contribution of E to Ir is bounded by O(r2+2ε).

• Let F denote the region where |w| ≤ r1/2. In analogy to (iii) we have
|z| ∼ r. With (i) it follows that sup(z,w)∈F η(z, w) = O(1). On the other
hand the volume of F agrees with the volume of {(z, w) ∈ S(r) : |z| ≤ r1/2}
which according to (3.4) is bounded by O(r2). Together this yields that the
contribution of F to Ir is bounded by O(r2).

Thus we have a collection of nine regions (A, B, C, D−2, D−1, D0, D1, E,
F ) covering the sphere S(r). For each such region Ω we have verified

∫

Ω

η dV = O(r2+ε), ε > 0.

This establishes our claim

Ir = O(r2+ε), ε > 0.

Furthermore, it follows from (3.5) that

r2 = O(Ir).

As a consequence, the holomorphic map f : C2 → S induced by f : (z, w) 7→
(z, 1 + zw) is of order ρf = 1. ¤

4. Problems.

Because of the results presented above it may be interesting to recall some
problems (conjectures) from [3, Section 1.4]. An n-dimensional compact complex
manifold X is said to be unirational if there is a surjective meromorphic map
φ : P n(C) → X; in this case, if g : Cn → P n(C) is a differentiably non-degenerate
meromorphic map with order ρg < 2, then φ ◦ g : Cn → X is differentiably
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non-degenerate and has order less than two. Therefore, the rationality and the
unirationality of X cannot be distinguished by the existence of a differentiably
non-degenerate meromorphic map f : Cn → X with ρf < 2.

Problem 4.1. Let X be a compact kähler manifold of dimension n. If
there is a differentiably non-degenerate meromorphic map f : Cn → X with order
ρf < 2, is X unirational?

At least this is true for dimX ≤ 2 by Corollary 2.5 and the Main Theorem
1.4.

Problem 4.2. Let f : C → X be a non-constant entire curve into a projec-
tive (or kähler) manifold X. If ρf < 2, then does X contain a rational curve?
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