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Abstract. For an oriented knot K, we construct a functor from the
category of pointed quandles to the category of quandles in three different
ways. This functor-valued invariant of a knot is an extension of the knot
quandle. We also extend the quandle cocycle invariants of knots by using
these quandle-valued invariants, and study their properties.

1. Introduction.

A quandle is a set Q with a binary operation ∗ which satisfies some axioms, and
the pointed quandle is a pair (Q,h) consisting of a quandle Q and its element h. For
an oriented knot K, one can associate a quandle QK called the knot quandle. The
knot quandle distinguishes all knots up to orientation [7], [8]. Moreover, using the
homology theories of quandles, the knot quandle provides a knot invariant called
a quandle cocycle invariant [4], [5].

The aim of this paper is to extend the knot quandle as a functor. For each
oriented knot K in S3, we construct the quandle invariant functor IK , which
is a functor from PQ, the category of pointed quandles, to Q, the category
of quandles. Thus, for each pointed quandle (Q,h) we obtain a quandle-valued
invariant IK(Q,h) of a knot K. The classical knot quandle QK appears as IK(T1),
the quandle-valued invariant corresponding to the trivial 1-quandle T1. We also
construct an extension of quandle cocycle invariants by using the quandle-valued
invariant of knots.

Our results are summarized as follows.

Theorem 1. Let K be an oriented knot. Then there exists a functor IK :
PQ → Q from the category of pointed quandles to the category of quandles, having
the following properties.

1. For the trivial 1-quandle T1, IK(T1) is the knot quandle QK .
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2. HQ
1 (IK(Q,h);Z) ∼= HQ

1 (Q;Z).
3. If (Q,h) is a finite pointed quandle, then there exists a characteristic homology

class [K]Q,h ∈ HQ
2 (IK(Q,h);Z) which vanishes if and only if K is unknot.

4. For the dual knot −K∗, which is the mirror of K with the opposite orientation,
IK = I−K∗ and [−K∗]Q,h = −[K]Q,h hold.

Using the characteristic class [K]Q,h, we define a cocycle invariant as in the
classical knot quandles. The explicit construction of cocycle invariants will be
given in Section 6, in which section we also study fundamental properties of the
extension of cocycle invariants.

We construct the quandle invariant functor by three different ways. The
first method is algebraic. We use a representation of the braid groups derived
from a pointed quandle. Such a representation can be seen as a generalization
of the Artin type representation of the braid groups introduced in [3]. The second
method is combinatorial and uses knot diagrams. We define the quandle-valued
invariants by giving a presentation, which extends the Wirtinger presentation of
the knot quandle. This point of view is useful when we extend the quandle cocycle
invariants. The last method is geometric. We construct a topological pair of space
whose positive fundamental quandle coincides with the quandle-valued invariant
of knots. Such a spatial realization of the quandle invariant is obtained by gluing
a topological space along the knot.

Our quandle-valued invariants are generalizations of the group-valued invari-
ant defined by Crisp-Paris [3] and Wada [9]. Indeed, many arguments in this
paper is a direct generalization of the arguments in [3]. A new aspect which did
not appear in [3] is the homology theory, which is used to define a cocycle invariant
and makes our invariant more useful.

Finally, we remark that although we restrict our attention to knots, but the
construction of the quandle invariant functors and the characteristic classes are
valid for oriented links as well with some modifications. Thus our results are
directly extended for link cases.

2. Quandles, racks and braids.

A quandle is a set Q with a binary operation ∗ which satisfies the following
three axioms.

Q1: a ∗ a = a for all a ∈ Q.
Q2: For all a, b ∈ Q there exists a unique element a ∗ b ∈ Q such that a =

(a ∗ b) ∗ b = (a ∗ b) ∗ b.
Q3: (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c) for all a, b, c ∈ Q.
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If (Q, ∗) does not satisfy the axiom Q1 but satisfy both Q2 and Q3, then it
is called a rack.

Example 1. We present examples of quandle which will be used in later.

• Let X be a finite set of cardinal n, and consider an operation ∗ defined by
x ∗ y = x for all x, y ∈ X. Then (X, ∗) is a quandle. We call (X, ∗) the
trivial n-quandle and denote by Tn.

• A group G can be considered as a quandle by the operation ∗ defined by
the conjugation x ∗ y = y−1xy. We call this quandle the conjugacy quandle
associated to the group G and denote by QG. Conversely, for a quandle Q

one can obtain the associated group Ass(Q) defined by the presentation

Ass(Q) = 〈q ∈ Q | p ∗ q = q−1pq〉.

We call a pair (Q,h) consisting of a quandle Q and its element h ∈ Q a pointed
quandle. A map between two quandles τ : (Q, ∗Q) → (P, ∗P ) is called a (quandle)
morphism if τ preserves the operation ∗, that is, τ(a ∗Q b) = τ(a) ∗P τ(b) holds for
all a, b ∈ Q. We denote by Aut(Q) the group of automorphisms of Q. A morphism
between pointed quandles (Q,h) and (P, i) is, by definition, a quandle morphism f

which satisfies the condition f(h) = i. We denote the category of pointed quandles
and the category of quandles by PQ and Q respectively.

As in the group case, the notions of the free quandles, free products, and the
presentation of quandles are defined in a similar way.

3. Representations of the braid group associated to pointed quan-
dles.

Let Bn be the braid group of n-strands and σ1, . . . , σn−1 be the standard
generators of Bn. The closure of a braid β, an oriented link in S3, is denoted by β̂.
In this section we define a representation of the braid group ρQ,h : Bn → Aut(Q∗n)
for a pointed quandle (Q,h).

Let Q∗n = Q1 ∗ Q2 ∗ · · · ∗ Qn be the free product of n-copies of the quandle
Q. For q ∈ Q, we denote by qi the element in Qi ⊂ Q∗n which corresponds to q.
For each integer k = 1, 2, . . . , n− 1, let τk be an automorphism of Q∗n defined by

τk :





qk 7→ qk+1 ∗ hk

qk+1 7→ qk ∗ hk

qi 7→ qi (i 6= k, k + 1)
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The following proposition is easily confirmed by a direct calculation.

Proposition 1. The map ρQ,h : Bn → Aut(Q∗n) defined by ρQ,h(σi) = τi

is a group homomorphism.

We call this representation the representation associated to a pointed quandle
(Q,h). By considering the associated group of Q, we also have a representation
ρ′Q,h : Bn → Aut(Ass(Q∗n)), given by

ρ′Q,h(σi) :





qk 7→ h−1
k qk+1hk

qk+1 7→ hkqkh−1
k

qi 7→ qi (i 6= k, k + 1)

This representation is called the Artin type representation of Bn associated to the
pair (Ass(Q), h) defined in [3].

Example 2. Let Fn be the free group of rank n generated by {x1, x2, . . . ,

xn}, which is the fundamental group of the n-punctured disc Dn = D2 −
{n points}. It is known that the braid group Bn is identified with the relative
mapping class group MCG(Dn, ∂Dn), the group of isotopy classes of homeomor-
phisms of Dn which fixes ∂Dn pointwise [2].

The action of the braid groups on Dn induces the representation Φ : Bn →
Aut(π1(Dn)) = Aut(Fn), explicitly written as

Φ(σk) :





xk 7→ x−1
k xk+1xk

xk+1 7→ xk

xi 7→ xi (i 6= k, k + 1).

The representation Φ is identical with the associated group representation ρ′T1,q.
It is classically known that both ρT1,q and ρ′T1,q are faithful [2].

First we show that the representation ρQ,h is faithful.

Proposition 2. For a pointed quandle (Q,h), the representation ρQ,h :
Bn → Aut(Q∗n) is faithful.

Proof. Let us consider the subquandle T = ({h}, ∗), which is isomorphic to
the trivial 1-quandle T1, and consider the subquandle T ∗n ⊂ Q∗n. Since τi|T∗n =
T ∗n, by considering the restriction, we obtain a map ρQ,h|T∗n : Bn → Aut(T ∗n)
defined by ρQ,h|T∗n(β) = ρQ,h(β)|T∗n . By definition ρQ,h|T∗n coincides with the
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representation ρT1,h, so ρQ,h|T∗n is faithful. Hence we conclude ρQ,h is faithful. ¤

Now using the representation associated to a pointed quandle (Q,h), we con-
struct the quandle invariant functor. For an n-braid β, we define a quandle invari-
ant Iβ(Q,h) as the quotient of Q∗n by the set of relations {[ρQ,h(β)](q) = q | q ∈
Q∗n}. For a pointed quandle morphism f : (Q,h) → (R, i), we define a morphism
between quandle invariants Iβ(f) : Iβ(Q,h) → Iβ(R, i) by [Iβ(f)](qi) = [f(q)]i.
This defines a functor Iβ : PQ → Q.

Theorem 2. The functor Iβ is a knot invariant.

Proof. Recall that the Markov theorem (see [2], for example) states that
the closures of two braids α, β represent the same oriented link if and only if α is
converted to β by applying following two operations.

Conjugation: α → γ−1αγ where α, γ ∈ Bn.
(De)Stabilization: α ↔ ασ±1

n where α ∈ Bn.

First we show the invariance under the conjugation. Since ρQ,h(γ) is an
automorphism of Q∗n, the set of relations {[ρQ,h(α)](q) = q} is equivalent to the
set of relations {[ρQ,h(αγ)](q) = [ρQ,h(γ)](q)}. Hence Iα(Q,h) and Iγ−1αγ(Q,h)
are isomorphic as a quandle.

The isomorphism τγ between Iα(Q,h) and Iγ−1αγ(Q,h) is given by τγ(qi) =
[ρQ,h(γ)](qi). Thus, the following diagram commutes for any pointed quandle
morphisms f : (Q,h) → (R, i).

Iα(Q,h)
Iα(f) //

τγ

²²

Iα(R, i)

τγ

²²
Iγ−1αγ(Q,h)

Iγ−1αγ(f)
// Iγ−1αγ(R, i)

Therefore Iβ is invariant as a functor under the conjugations.
Next we show the invariance under the positive stabilization. First ob-

serve that [ρQ,h(α)](qn+1) = qn+1. From the relation [ρQ,h(ασn)](qn+1) =
[ρQ,h(α)](qn ∗ hn) = qn+1, we obtain the equation

[ρQ,h(ασn)](qn) = [ρQ,h(α)](qn+1 ∗ hn) = qn+1 ∗ [ρQ,h(α)](hn)

= [ρQ,h(α)](qn ∗ hn) ∗ [ρQ,h(α)](hn)

= [ρQ,h(α)](qn).
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Thus, the relation [ρQ,h(ασn)](qn) = qn implies [ρQ,h(α)](qn) = qn. Similarly,
the relation [ρQ,h(α)](qn) = qn implies [ρQ,h(ασn)](qn) = qn. Thus, there is a
natural isomorphism τ+ : Iασn

(Q,h) → Iα(Q,h), which is defined by τ+(qi) = qi

(i = 1, . . . , n) and τ+(qn+1) = qn. Now the following diagram commutes for each
pointed quandle morphism f : (Q,h) → (R, i), hence the functor Iβ is invariant
under the positive stabilization.

Iασn(Q,h)
Iασn (f) //

τ+

²²

Iασn(R, i)

τ+

²²
Iα(Q,h)

Iα(f) // Iα(R, i)

The invariance under the negative stabilization is similar. ¤

Now we obtain the first definition of quandle invariant functor.

Definition 1. Let K be an oriented knot represented as a closed braid α̂.
The quandle invariant functor IK is a functor Iα : PQ → Q. For a pointed
quandle (Q,h), we call a quandle IK(Q,h) the quandle invariant associated to
(Q,h).

By definition, it is easy to see the quandle invariant functor IK has the fol-
lowing properties.

Proposition 3. Let K be an oriented knot.

1. If τ : (Q,h) → (R, i) is a surjective morphism of pointed quandles, then IK(τ) :
IK(Q,h) → IK(R, i) is also surjective.

2. For each pointed quandle (Q,h), IK(Q,h) = I−K∗(Q,h), where −K∗ is the
dual of K.

Proof. The assertion 1 is obvious from the definition of IK(Q,h). Let
K = β̂. Then, −K∗ = β̂−1, so the relation [ρQ,h(β)](q) = q is equivalent to the
relation [ρQ,h(β−1)](q) = q, hence IK(Q,h) is isomorphic to I−K∗(Q,h). ¤

4. Diagrammatic description of quandle invariants.

We give an alternative definition of the quandle invariant functor by using a
knot diagram. This construction is more combinatorial and is useful to study the
(co)homology of the quandle invariants.

Let D be an oriented knot diagram. That is, D is an image of a projection
of a knot on the plane so that is has only transverse double points. At each
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double point we assign the “over and under” information by breaking the under-
passing segment. We call a connected component of diagram D a large arc and
let A (D) = {A1, A2, . . . , Am} be the set of large arcs of D. Each large arc Ai is
decomposed to the subarcs ai,1, ai,2, . . . , ai,ki by removing the points on Ai which
correspond to the double points of the projection. We call these subarcs small arcs
of D, and denote the set of small arcs by S A (D). For a small arc a, we denote
the large arc containing a as its subarc by the corresponding large letter A.

Let (Q,h) be a pointed quandle and Q∗m = QA ∗QB ∗ · · · be the free product
of m-copies of Q, where m = ]A (D). Each copy of Q is labeled by the large arc of
D. For each q ∈ Q we denote by qA the element of QA ⊂ Q∗m which corresponds
to q. For q ∈ Q, we first define the map cq : S A (D) → Q∗m by the following
manner.

1. For a small arc a which contains the starting point of the large arc A, we define
cq(a) = qA.

2. Let x be a crossing point of D and put a, a′, b, c as in Figure 1. Assume that
we have defined the value cq(a). Then, we define cq(a′) by

{
cq(a′) = cq(a) ∗ hA if the crossing x is positive.

cq(a′) = cq(a) ∗ hA if the crossing x is negative.

Figure 1. Labeling of small arcs around the crossing point.

Using the map cq, we associate a relation R(x; q) for each crossing point x

and q ∈ Q by the rule

R(x; q) :

{
cq(c) = cq(b) ∗ hA if the crossing x is positive.

cq(c) = cq(b) ∗ hA if the crossing x is negative.

Now we define the quandle invariant ID(Q,h) by the presentation

ID(Q,h) = 〈qA (A ∈ A (D), q ∈ Q) | R(x; q) (x : crossings of D, q ∈ Q)〉.

As in the definition using braid representation, ID is a functor ID : PQ → P,
by defining [ID(f)](qA) = f(q)A for a pointed quandle morphism f : (Q,h) →
(R, i).
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Proposition 4. The functor ID is a knot invariant, and it coincides with
the quandle invariant functor IK defined in the previous section.

Proof. We only prove an invariance of the quandle invariant ID(Q,h) for
each pointed quandle (Q,h). Invariance as a functor is routine. By definition, it is
easy to confirm that if a diagram D is a closed braid diagram β̂, then ID(Q,h) =
Iβ(Q,h). Thus, we only need to show that ID(Q,h) is a link invariant.

Figure 2. Reidemeister move invariance.

4.1. Invariance of Reidemeister move I.
Let x be the newly-added crossing generated by the Reidemeister move I. We

consider the case x is a positive crossing. The negative crossing case is proved in
a similar way. Put a, b, b′ as in Figure 2 (I). Then the relation R(x; q) is cq(b) =
cq(a) ∗ hB , hence cq(b′) = cq(b) ∗ hB = cq(a). Thus this move does not change the
quandle invariant.

4.2. Invariance of Reidemeister move II.
We consider the Reidemeister move II depicted in Figure 2 (II). Other cases

are proved in a similar way. Take small arcs {a, a′, a′′, b, c, d} as in Figure 2 (II).
Then the relations at these two crossings are given by

{
cq(c) = cq(b) ∗ hA

cq(d) = cq(c) ∗ hA.

Hence cq(b) = cq(d) and the contributions of the quandle QC to ID(Q,h) vanish.
Hence these two diagrams define the same quandle.

4.3. Invariance of Reidemeister move III.
We consider the Reidemeister move III depicted in Figure 2 (III). Other cases

are proved in a similar way. Take small arcs {a, a′, a′′, b, b′, c, c′, d, e, f} as in Figure
2 (III). First of all, in the diagram above, three crossings provide the relations
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cq(c) = cq(b) ∗ hA

cq(e) = cq(d) ∗ hA

cq(f) = cq(e) ∗ hC .

Thus, cq(f) = (cq(d) ∗ hA) ∗ hC . By putting q = h, we obtain hC = hB ∗ hA, so
cq(f) = (cq(d) ∗ hA) ∗ (hB ∗ hA) = (cq(d) ∗ hB) ∗ hA. Similarly, we get cq(c′) =
(cq(b) ∗ hA) ∗ (hB ∗ hA) = (cq(b) ∗ hB) ∗ hA.

On the other hand, from the diagram below, three crossings provide the rela-
tions





cq(e) = cq(d) ∗ hB

cq(f) = cq(e) ∗ hA

cq(c) = cq(b′) ∗ hA

so cq(c) = (cq(b) ∗ hB) ∗ hA and cq(f) = (cq(d) ∗ hB) ∗ hA. Thus, the map cq

takes the same value on each small arc and these two diagrams defines the same
quandle. ¤

From this diagrammatic definition, it is quite easy to check our quandle in-
variant functor is indeed an extension of the classical knot quandle.

Proof of Theorem 1.1. Let us take the trivial 1-quandle T1 = {q}. Then
the relation R(x) at the crossing x is qC = qB∗qA, which is a relation in the classical
Wirtinger presentation of the knot quandles in [7], [8]. ¤

Next we show that quandle invariants naturally contain the knot quandle as
a subquandle.

Proposition 5. There are a natural injection of the knot quandle ι : QK →
IK(Q,h) and a natural surjection to the knot quandle p : IK(Q,h) → QK . More-
over, p ◦ ι = id.

Proof. This proposition follows from Theorem 1.1 and the fact that the
trivial 1-quandle is the initial and the final object of the category PQ. More
precisely, let i : T1 → (Q,h) be the natural inclusion and π : (Q,h) → T1 be the
natural surjection. Then ι = i∗ and p = π∗. ¤

We remark that from the presentation of IK(Q,h), for each long arc A of a
knot diagram D the natural map QA → ID(Q,h) is an injection. So we may also
regard Q as a subquandle of ID(Q,h) by specifying an arc A of the diagram D.
In the knot theory view point, this corresponds to a base point ∗ ∈ K, thus this
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is equivalent to consider the corresponding long knot.

5. Homology and cohomology of quandle invariants.

In this section, we study the homology and cohomology groups of the quandle
invariant IK(Q,h). For a quandle (X, ∗), let CR

n (X) be the free abelian group
generated by n-tuples of elements of X and CD

n (X) be the subgroup of CR
n (X)

generated by n-tuples (x1, x2, . . . , xn) of X with xi = xi+1 for some i. Let ∂n :
CR

n → CR
n−1 be a homomorphism defined by

∂n(x1, x2, . . . , xn) =
n∑

i=1

(−1)i
[
(x1, x2, . . . , x̂i, . . . , xn)

− (x1 ∗ xi, x2 ∗ xi, . . . , xi−1 ∗ xi, xi+1, . . . , xn)
]

Then both (CR
∗ (X), ∂∗) and (CD

∗ (X), ∂∗) are chain complexes. Let CQ
∗ (X) be

the quotient complex (CR
∗ (X), ∂∗)/(CD

∗ (X), ∂∗). For an abelian group G, the G-
coefficient n-th quandle homology and cohomology groups are defined by

HQ
n (X;G) = Hn

(
CQ
∗ (X)⊗G

)
, Hn

Q(X;G) = Hn
(
Hom(CQ

∗ (X), G)
)

respectively. The quandle (co)homology is an invariant of quandles, so the
(co)homology groups of quandle invariant IK(Q,h) also define knot invariants.

Remark 1. The above definition of the quandle (co)homology is the sim-
plest one. There is a general theory of quandle (co)homologies, including twisted
coefficients [1], [4]. Many results in this section also remains true for such general-
ized homology theories. In particular, we can also extend the “generalized” cocycle
invariants defined in [4], which is an extension of classical cocycle invariants. We
mainly restrict the classical (abelian coefficient) case for the sake of simplicity.

First we observe that the quandle invariant contains all information of the
homology and cohomology of knot quandles.

Lemma 1. Let K be an oriented knot and (Q,h) be a pointed quandle. Let
ι : QK ↪→ IK(Q,h) and p : IK(Q,h) → QK be the natural maps in Proposition 5.
Then for any coefficient group G, ι induces an injection of the homology groups
ι∗ : HQ

∗ (QK ;G) ↪→ HQ
∗ (IK(Q,h);G). Similarly, p induces an injection of the

cohomology groups.

Proof. Since p ◦ ι = id, this is clear. ¤

Now we determine the first quandle homology group HQ
1 (IK(Q,h),Z).
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Proof of Theorem 1.2. Let D be an oriented knot diagram which rep-
resents K. For q ∈ Q and large arcs A,B ∈ A (D), we consider two elements
qA, qB ∈ IK(Q,h). Since K is a knot, by definition of IK(Q,h) we may find a
sequence of elements {hi}i=1,...,m in IK(Q,h) such that

qB =
(
(· · · (qA ∗′ h1) ∗′ h2) ∗′ · · ·

) ∗′ hm

holds, where ∗′ represents either ∗ or ∗ . Thus qA and qB represents the same
1st homology class in IK(Q,h). Hence the map Q → IK(Q,h) defined by q 7→ qA

induces an isomorphism between the 1st quandle homologies. ¤

Next we proceed to study the 2nd homology group. For an oriented knot
K, Eisermann showed that if K is not an unknot, then HQ

2 (QK ;Z) = Z and
HQ

2 (QK ;Z) is generated by the orientation class [K]. He also showed that if K

is unknot, then HQ
2 (QK ;Z) = 0 [6].

We extend the orientation class for the quandle invariant IK(Q,h). From now
on, we assume that the quandle Q is finite.

Let D be a knot diagram. Let us define a 2-chain (D) ∈ CQ
2 (IK(Q,h);Z) by

(D) =
∑

q∈Q

∑
x

ε(x) · {(cq(a), hB)− (cq(b), hB)}.

where x runs all crossing points of D and ε(x) denotes the sign of the crossing x.
At each crossing x, we take small arcs a, b, b′, c as in Figure 3.

Figure 3. Definition of 2-chain (D).

Lemma 2. The 2-chain (D) is a cycle and its representing homology class
[D] ∈ HQ

2 (IK(Q,h);Z) is a knot invariant.

Proof. First we show (D) is a 2-cycle. The boundary of (D) is given by

∂(D) =
∑

x

∑
q

∂ε(x){(cq(a), hB)− (cq(b), hB)}

=
∑

x

∑
q

ε(x)(cq(a) ∗ hB − cq(a))− ε(x)(cq(b)− cq(b) ∗ hB)



1158 T. Ito

=
∑

x

∑
q

ε(x)(cq(c)− cq(a))−
∑

q

ε(x)(cq(b)− cq(b) ∗ hB)

=
∑

x

∑
q

ε(x)(cq(c)− cq(a)) =
∑

x

∑
q

(qC − qA).

Hence each long arc A contributes ∂(D) by
∑

q qA at its initial point and
by −∑

q qA at its end point. Thus these two contributions cancel each other, so
∂(D) = 0.

We show the homology class [(D)] is a knot invariant.
First we check the invariance of Reidemeister move I. Let x be the newly-

added crossing generated by Reidemeister move I. We consider the case x is a
positive crossing. The negative case is similar. Take small arcs a, b, b′ around x

as in the Figure 2 (I). Then the contribution of the newly-added crossing to the
cycle (D) is

∑
q

(cq(a), hB)− (cq(b′), hB) =
∑

q

(cq(a), hB)− (cq(a), hB) = 0,

hence the cycle (D) itself is invariant under the Reidemeister move I.
Next we consider the Reidemeister move depicted in Figure 2 (II). Other

cases are similar. Take small arcs a, a′, a′′, b, c, d as in Figure 2 (II). Then the
newly-added two crossings contribute the cycle (D) by

∑
q

(cq(b), hA)− (cq(a′), hA)− (cq(d), hA) + (cq(a′′), hA)

=
∑

q

−(cq(a′), hA) + (cq(a′′), hA) = 0

hence the cycle (D) itself is invariant under the Reidemeister move II.
Finally we show the invariance under the Reidemeister move III. We consider

the Reidemeister move depicted in Figure 2 (III). Other cases are similar. Take
small arcs {a, a′, a′′, b, b′, c, c′, d, e, f} as in Figure 2 (III). Then the three crossings
in the diagram above contribute the cycle (D) by

∑
q

{
(cq(b), hA)− (cq(a′), hA) + (cq(d), hA)

− (cq(a′′), hA) + (cq(e), hC)− (cq(c′), hC)
}

and the three crossings in the diagram below contribute the cycle (D) by
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∑
q

{
(cq(d), hB)− (cq(b′), hB) + (cq(e), hA)

− (cq(a′), hA) + (cq(b′), hA)− (cq(a′′), hA)
}
.

Their difference is a boundary of the 3-chain

∑
q

{(qD, hB , hA)− (qB , hB , hA)}.

Thus the homology class does not change under the Reidemeister move III. ¤

The (Q,h)-fundamental class (or orientation class) of a knot K is, by defini-
tion, [(D)] ∈ HQ

2 (IK(Q,h);Z) where D is a knot diagram representing K. From
Lemma 2, this is independent of the choice of a diagram D. We denote this ho-
mology class by [K]Q,h. For Q = T1, the definition of the T1-fundamental class
agrees with the orientation class [K] defined by Eisermann [6].

Proof of Theorem 1.3 and 4. Let p∗ : HQ
2 (IK(Q,h);Z)→HQ

2 (KQ;Z)
be the map in Proposition 5. From the definition of [K]Q,h, p∗([K]Q,h) = ]Q · [K].
Since [K] = 0 if and only if K is unknot [6], we conclude [K]Q,h = 0 if and only if
K is an unknot. The assertion 4 follows from the definition of the cycle (D). ¤

Remark 2. The isomorphism class of the quandle invariant IK(Q,h) only
depends on the quandle homology class [h] ∈ HQ

1 (Q;Z), because if h and h′

represent the same homology class, then the set of the relations for IK(Q,h) and
IK(Q,h′) coincide. In particular, if HQ

1 (Q;Z) = Z, then the isomorphism class
of IK(Q,h) is independent of a choice of h ∈ Q. However, we need to fix a point
h ∈ Q to realize IK as a functor. The situation is similar to the fundamental
group, since the isomorphism class of fundamental group is independent of the
choice of base point if the underlying space is path-connected. Thus in our theory,
an element h plays a very similar role to the base point in the theory fundamental
group. This is why we call a pair (Q,h) a pointed quandle.

We remark that for unknot K, the quandle invariant IK(Q,h) is isomorphic
to Q, so its 2nd homology does not always vanish whereas HQ

2 (KQ;Z) = 0.
The (Q,h)-fundamental class is decomposed as the sum of the partial fun-

damental class as follows. For an element q ∈ Q, we denote by [q] the h-orbit
of q. That is, [q] is a subset of Q defined by [q] = {(· · · (q ∗ h) ∗ h) · · · ∗ h) ∗
h, (· · · (q ∗ h) ∗ h) · · · ∗ h) ∗ h}. The quandle Q is decomposed as a disjoint union
of h-orbits as Q = [h]

∐
[q1]

∐ · · ·∐[qk]. For a knot diagram D and q ∈ Q, define
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(D)[q] =
∑

q∈[q]

∑
x

ε(x) · (cq(ax), cq(bx)).

where x runs all crossings of D. As in the proof of Lemma 2, (D)[q] is a cycle and its
homology class is also independent of a choice of a diagram D. Thus the homology
class [(D)[q]] also defines a knot invariant [K]Q,h;[q]. We call this homology class
the partial (Q,h)-fundamental class of K relative to [q]. From the proof of Lemma
2 and the proof of Theorem 1.3, we observe the partial (Q,h)-fundamental class
has the following property.

Corollary 1. Let K be an oriented knot and (Q,h) be a finite pointed
quandle. We denote the h-orbit decomposition of Q by Q = [q0]

∐ · · ·∐[qk]. Then,

1. [K]Q,h =
∑k

i=0[K]Q,h;[qi].
2. For each q ∈ Q, [K]Q,h;[q] is trivial if and only if K is unknot.

We close this section by giving questions about the (co)homology of quandle
invariants. As we have seen, the 1st homology group of quandle invariants contains
no information of K. We would like to ask this phenomenon always occurs for all
degrees.

Question 1.

1. Are the (co)homology group of IK(Q,h) always determined by HQ
∗ (QK ;Z) and

HQ
∗ (Q;Z)?

2. Are the betti numbers of IK(Q,h) always determined by the betti numbers of
QK and Q?

6. Quandle cocycle invariant via quandle invariant IK(Q,h).

In this section we extend the quandle cocycle invariants by using the quandle
invariant IK(Q,h) and study their properties. As in the previous section, we
always assume that every pointed quandle (Q,h) is finite.

Let D be an oriented knot diagram, and X be a finite quandle. Take a G-
coefficient quandle 2-cocycle of X, φ : X ×X → G. We call a quandle morphism
ρ : IK(Q,h) → X a (Q,h)-extended X-coloring. For the classical knot quandle
QK , we simply call a quandle morphism ρ : QK → X an X-coloring. For q ∈ Q

and a (Q,h)-extended coloring ρ, we denote by ρq the map ρ ◦ cq : S A (D) → X,
where cq is the composite of the coloring map cq : S A (D) → Q∗]A (D) and the
projection map p : Q∗]A (D) → IK(Q,h).

At each crossing x of D we define a weight W (x, q; ρ) by

W (x, q; ρ) =
{
φ(ρq(a), ρ(hB)) · φ(ρq(b), ρ(hB))−1

}ε(x)
.
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The (Q,h)-extended quandle cocycle invariant is defined by the sum of the all
weights

Φφ,(Q,h)(D) =
∑

ρ

∏

q∈Q

∏
x

W (x, q; ρ) ∈ Z[G]

where x runs all crossings of D and ρ runs all Q-extended X-colorings.

Theorem 3. The (Q,h)-extended quandle cocycle invariant is equal to the
value

∑
ρ〈[φ], ρ∗([D])〉. Here 〈 , 〉 represents the pairing of the homology and the

cohomology. Thus, Φφ,(Q,h)(D) is a knot invariant and its value depends on the
cohomology class [φ] ∈ H2

Q(X;G).

Proof. From the definition of [D], we obtain the equality

〈[φ], ρ∗([D])〉 =
∑

ρ

( ∏

q∈Q

∏
x

{
φ(ρ(cq(a)), ρ(hB)) · φ(ρ(cq(b)), ρ(hB))−1

}ε(x)
)

.

The right hand is the definition of Φφ,(Q,h)(D). ¤

By definition, for the trivial 1-quandle T1, the T1-extended quandle cocycle
invariant coincides with the classical quandle cocycle invariant Φφ(K) defined in
[5].

From the homological viewpoint of the cocycle invariant, we can decompose
the (Q,h)-extended quandle cocycle invariants by using the partial fundamental
classes. For a pointed quandle (Q,h) and q ∈ Q, let us define the partial quandle
cocycle invariant Φφ,(Q,h);[q](K) by

Φφ,(Q,h);[q](K) =
∑

ρ

〈
[φ], ρ∗([K]Q,h;[q])

〉
.

Corollary 2. The partial quandle cocycle invariant Φφ,(Q,h);[q](K) is a
knot invariant.

Now let us proceed to study the properties of (Q,h)-extended quandle cocycle
invariants. Unfortunately, in many cases (Q,h)-extended quandle cocycle invari-
ants are determined by Q and usual quandle cocycle invariants Φφ(K) as we shall
explain below.

Before stating our results, we review some notions about quandle morphisms.
We say a quandle morphism f : Q → R is trivial if f(Q) = {r} for some r ∈ R.
For each element q ∈ Q, the map [∗q] : Q → Q, x 7→ x ∗ q defines a quandle
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automorphism of Q. The inner automorphism group Inn(Q) of Q is a subgroup
of Aut(Q) generated by {[∗q] | q ∈ Q}. By the definition of inner automorphisms,
each nontrivial inner automorphism has at least one fixed point.

As a first step, we study the relationships between a (Q,h)-extended quandle
coloring ψ : IK(Q,h) → X and a usual knot coloring ρ : QK → X. Let D be
an oriented knot diagram of K. We assume that D is a long knot diagram with
distinguished arcs A and A′ which contains the point of infinity, as shown in Figure
4. Then, as we remarked earlier, Q = QA is regarded as a subquandle of IK(Q,h).

For a (Q,h)-extended coloring ψ : IK(Q,h) → X, we obtain quandle mor-
phisms ρψ : QK → X and fψ : Q → X by considering the restriction of ψ to QK

and QA respectively. ρψ and fψ satisfy ρψ(hA) = fψ(h).
Conversely, let ρ : QK → X and f : Q → X be quandle morphisms which sat-

isfy ρ(hA) = f(h). Let us try to construct a (Q,h)-extended coloring by extending
ρ and f . First we define ψρ,f (qA) = f(q). Using the defining relations of IK(Q,h),
we can uniquely determine the value ψρ,f (qB) for other long arcs B ∈ A (D) as
the following way. Let A,B, C be arcs of the diagram D around a crossing point
x, as in Figure 4. Assume that we have already defined the value ψρ,f (qA). Let
p, n be the number of the positive and negative crossing points contained in A.
Then, we define ψρ,f (qC) by

ψρ,f (qC) = [∗ρ(hB)]ε(x) ◦ [∗ρ(hA)]n−p(ψρ,f (qA)).

For each x ∈ X, let fx : Q → X be a trivial quandle morphism defined by
fx(q) = x for all q ∈ Q. Then the above procedure defines an inner automorphism
Aρ,D : X → X, which sends x ∈ X to ψρ,fx(qA′) ∈ X, the color induced on A′.
The inner automorphism Aρ,D only depends on the diagram D and ρ.

Observe that this construction of ψρ,f defines a well-defined morphism
IK(Q,h) → X if and only if the colorings on A and A′ coincide, that is,
Aρ,D(f(q)) = f(q) holds for all q ∈ Q.

Summarizing, we proved the following lemma.

Figure 4. The definition of ψρ,f (qC) and Aρ,D.
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Lemma 3. There is a one-to-one correspondence between the (Q,h)-extended
X-colorings of a knot K and the pair (ρ, f) consisting of an X-coloring ρ : QK →
X and a quandle morphism f : Q → X which satisfy the two conditions:

1. ρ(hA) = f(h).
2. Aρ,D(f(q)) = f(q) for all q ∈ Q.

Now we provide some computations of (Q,h)-extended cocycle invariants.

Proposition 6. Let (Q,h) and X be finite (pointed) quandles and K be an
oriented knot. Assume that one of the following conditions holds.

1. There are no non-trivial quandle morphisms Q → X.
2. Each non-trivial inner automorphism of X has only one fixed point, and Aρ,D

is non-trivial for all quandle morphisms ρ : QK → X.

Then

Φφ,(Q,h)(K) = P ]Q(Φφ(K))

holds where P i : ZG → ZG is a map defined by g 7→ gi and Φφ(K) = Φφ,T1(K)
is the classical quandle cocycle invariant.

Proof. Let D be a long knot diagram of K.
First assume that assumption 1. holds. Since there are no non-trivial quandle

morphisms from Q to X, by Lemma 3 there is a one-to-one correspondence between
the set of (Q,h)-extended colorings and the usual knot colorings. For a usual knot
coloring ρ, we denote by ψρ its corresponding (Q,h)-extended coloring. This
coloring map ψρ is defined by ψρ(qA) = ρ(hA) for each A ∈ A (D). Let us
denote by W ′(x, ρ) the classical weight φ(ρ(hA), ρ(hB))ε(x). Then, the (classical)
quandle cocycle invariant of K is defined by the sum of classical weights Φφ(K) =∑

ρ

∏
x W ′(x; ρ).

By definition of ψρ, for a crossing point x of D and an arbitrary element
q ∈ Q, the equality W (x, q;ψρ) = W ′(x; ρ) holds.

Similarly, if assumption 2. holds, by Lemma 3, there is also a one-to-one
correspondence between the set of (Q,h)-extended colorings and the usual knot
colorings. Thus in this case the same equality of weights holds.

Thus in either case, we obtain the equality

Φφ,(Q,h)(K) =
∑

ρ

∏
q

∏
x

W (x, q;ψρ)

=
∑

ρ

∏
x

W ′(x; ρ)]Q = P ]Q(Φφ(K)). ¤
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Example 3. We give some examples where the criterion of Proposition 6
work.

1. Let S4 be the Alexander quandle Z2[T, T−1]/(T 2+T +1) and R3 be the dihedral
quandle of order 3. Then, there are no non-trivial quandle morphism R3 → S4.
Hence for all h ∈ R3, the (R3, h)-extended cocycle invariant for a cocycle of S4

is determined by the usual cocycle invariant.
2. Let K be a knot with less than 7 crossings. Then, the inner automorphisms

AD,ρ are non-trivial for all coloring maps ρ : QK → S4. Since each non-trivial
inner automorphism of S4 has exactly one fixed point, we conclude that for such
knots, the (S4, h)-extended cocycle invariant for a cocycle of S4 is determined
by the usual cocycle invariant.

Next we consider the case that Q is a trivial quandle. In this case we can also
represent the extended cocycle invariants by the classical cocycle invariants, but
the formula is slightly complicated.

Proposition 7. Let Tm be the trivial m-quandle and φ be a 2-cocycle of
a finite quandle X. Then there exist integers {Ni}i=1,...,m such that for every
oriented knot K, (Tm, h)-extended quandle cocycle invariants satisfy the equality

Φφ,(Tm,h)(K) =
m∑

i=1

Ni · P i(Φφ(K)).

The integers Ni depend on only m and X.

Proof. We assume m ≥ 2, since m = 1 case is trivial. Let D be a long
knot diagram of K. For an X-coloring ρ : QK → X, let Fρ be the set of quandle
morphisms f : Q → X such that ρ(hA) = f(h). Let X ′ be the image of ρ(QK).

Since the knot quandle QK is connected (that is, the action of the inner
automorphism group of QK is transitive), X ′ is also connected. Thus for all
f ∈ Fρ and q ∈ Q, if f(q) 6∈ X ′, then f(q) ∗ x′ = f(q) holds for all x′ ∈ X ′.
Similarly, by the same reason, if f(q) ∈ X ′, then f(q) = f(h) holds.

By definition, Aρ,D belongs to the subgroup of Inn(X) generated by {[∗x′] |
x′ ∈ X ′}. Since ρ is a knot coloring, Aρ,D(ρ(hA)) = ρ(hA) always holds. Therefore,
from the above observations, the inner automorphism Aρ,D is always trivial when
it is restricted to f(Tm). Thus by Lemma 3, for all f ∈ Fρ, a pair (ρ, f) always
defines a (Tm, h)-extended coloring ψρ,f .

For q ∈ Q, if f(q) 6= f(h), then ψρ,f (cq(b)) = f(q) for each small arc b. Thus
in this case W (x, q;ψρ,f ) = 1 holds for each crossing point x. On the other hand,
if f(q) = f(h), then ψρ,f (cq(b)) = ρ(hB) for each small arc b. Thus, in this case
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W (x, q;ψρ,f ) is equal to the classical weight W ′(x; ρ).
Now we define the integer Ni as follows. Let us take an element x ∈ X and

define Ni = ] {f : Tm → X | ] f−1(x) = i} for i = 1, . . . , m. The integers Ni are
independent of a choice of x, and only depend on m and X.

Then by using the obtained equality of weights, we obtain the desired equality

Φφ,(Tm,h)(D) =
∑

ρ

∑

Fρ

∏

q∈Tm

∏
x

W (x, q;ψρ,f ) =
∑

ρ

m∑

i=1

Ni

∏
x

W ′(x; ρ)i

=
m∑

i=1

Ni

( ∑
ρ

∏
x

W ′(x; ρ)i

)
=

m∑

i=1

Ni · P i(Φφ(D)). ¤

As these examples suggest, in many simple cases extended quandle cocycle
invariants are determined by the usual quandle cocycle invariants (and the pointed
quandle (Q,h)). In fact, the author cannot find an example of knots whose ex-
tended cocycle invariants can distinguish them while the corresponding classical
cocycle invariant cannot. Thus, we would like to pose the following question.

Question 2. Let X be a finite quandle and φ be a 2-cocycle of X. For
two oriented knots K and K ′, if their classical quandle cocycle invariants Φφ(K)
and Φφ(K ′) are the same, then for each finite pointed quandle (Q,h), are the
(Q,h)-extended cocycle invariants Φφ,(Q,h)(K) and Φφ,(Q,h)(K ′) always the same?

Even if the above question has an affirmative answer, it might be difficult to
construct an explicit formula to write the (Q,h)-extended cocycle invariants by
the classical cocycle invariants.

7. Spatial realization of quandle invariants.

In this section we describe a spatial realization of the quandle invariant
IK(Q,h) in some special cases. The content of this section is a direct extension
of section 3 of [3] and proofs are almost the same, so we only sketch the proof.
We remark that this approach does not produce the quandle invariant functor, be-
cause it is not known that every quandle and quandle morphism admits a spatial
realization as the fundamental quandles, unlike the group cases.

First we review the notion of the fundamental quandle introduced by Joyce
[7] and Matveev [8]. A pointed pair of topological space is a triple (X, A, ∗)
consisting of a topological space X, its subspace A and a base point ∗ ∈ X\A. A
map of pair of topological spaces is a continuous map f : (X, A, ∗) → (Y, B, ∗′)
with f−1(B) = A and f(∗) = ∗′.

Let N = {z ∈ C | |z| ≤ 1} ∪ {z ∈ R ⊂ C | −5 ≤ z ≤ −1}. We denote
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by ip the pointed pair of topological space (N, 0,−5). The fundamental

quandle Q(X, A, ∗) of a pointed pair of topological space (X, A, ∗) is defined as

the homotopy classes of the map f : ip → (X, A, ∗). The quandle operation ∗
is defined by Figure 5.

Figure 5. Quandle operation ∗.

Under some conditions, for example, if X is a compact smooth manifold and
A is a proper codimension two submanifold, we can define the notion of positive
intersections. The positive fundamental quandle Q+(X, A, ∗) is a subquandle of

Q(X, A, ∗) generated by the map f : ip → (X, A, ∗) which positively intersects

with A at the point f(0). Geometrically, the knot quandle QK of a knot K is
defined as the positive fundamental quandle Q+(S3,K, ∗).

Let K = β̂ be a knot represented as a closed n-braid. Let Q be a positive

fundamental quandle of a pointed topological pair (X, A, ∗) and f : ip →
(X, A, ∗) be a map which represents the element h ∈ Q.

Let D be a 2-disc D = {z ∈ C | |z| ≤ n + 1}, P = {pi = (i, 0) ∈ D |
i = 1, 2, . . . , n} and ∗ be the base point lying on ∂D. We consider the pointed

topological pair (D, P, ∗). Let gi : ip → (D, P, ∗) be the map defined as in

Figure 6 and we denote its image in D by Ni. Now glue n-copies of a pointed
topological pair (X, A, ∗) to (D, P, ∗) along Ni by the map f ◦ g−1

i . Let us denote
the obtained pointed topological pair by (Z, S, ∗). Then, the fundamental quandle
Q+(Z, S, ∗) is isomorphic to Q∗n.

Let Ci (resp. Ci,i+1) be a simple closed curve in D which encloses pi (resp.
pi and pi+1). We denote the half-Dehn twist along Ci (resp. Ci,i+1) by τi (resp.
τi,i+1). Let Ti : D\P → D\P be a homomorphism defined by τ−3

i τ−1
i+1τi,i+1 (See

Figure 6). The homeomorphism Ti can be extended as a homeomorphism of the
pointed topological pair TX

i : (Z, S, ∗) → (Z, S, ∗).
The following lemma is proved by the same way as in the proof of Proposition

3.2 in [3].

Lemma 4. Let (Q,h) be a pointed quandle and (X, K, ∗) be a pointed topo-
logical pair defined as the above. Then the induced homomorphism Φ : Bn →
Aut(Q∗n) defined by σi 7→ (TX

i )∗ is identical with the associated braid representa-
tion ρQ,h.
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Figure 6. Maps gi and Ti.

Now the geometric construction goes as follows. Fix a word representative
of β, and let B : (Z, S, ∗) → (Z, S, ∗) be a homomorphism which corresponds to
β. Then by Lemma 4, the induced map B∗ : Q∗n → Q∗n is identical with the
image of the associated braid representation ρQ,h(β). Let (M(Z),M(S), ∗) be the
mapping torus of B. Then the total space M(Z) has a torus boundary ∂D × S1.
Along this torus boundary, attach a solid torus so that {∗}× S1 is identified with
∂D2 × {point}. We denote the obtained pointed pair of space by (Ω,M(S), ∗).

Theorem 4. The positive fundamental quandle of the pointed pair of topo-
logical space (Ω,M(S), ∗) is isomorphic to the quandle invariant IK(Q,h).

Proof. Let TQ be another copy of Q∗n. We denote an element of TQ

corresponding to q ∈ Q∗n by tq. Then the positive fundamental quandle
Q+(M(Z),M(S), ∗) has a presentation

Q+(M(Z),M(S), ∗) = 〈q, tq | tq = [ρQ,h(β)](q)〉

Geometrically, tq is represented by a map depicted in Figure 7. Then, gluing a solid
torus corresponds to the adding relations {q = tq}, hence the positive fundamental
quandle of (Ω,M(S), ∗) has a presentation

Q+(Ω,M(S), ∗) = 〈q ∈ Q∗n | q = [ρQ,h(β)](q)〉,

which is a presentation of the quandle invariant IK(Q,h). ¤

Figure 7. Generators q and tq of Q+(M(Z), M(S), ∗).



1168 T. Ito

This point of view provides a geometrical meaning of quandle invariants in
some special cases.

Example 4. Let FQn be the free quandle of rank n generated by
{q1, . . . , qn}. This quandle is the positive fundamental quandle of the n-punctured
disc (D2, {p1, . . . , pn}, ∗). By Theorem 4, for each i, IK(FQn, qi) is isomorphic to
the link quandle of the n-parallelization of the knot K.
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