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Abstract. Some basic results on compact affine Nash groups related to
their Nash representations are given. So, first a Nash version of the Peter-
Weil theorem is proved and then several more results are given: for example,
it is proved that an analytic representation of such a group is of class Nash
and that the category of the classes of isomorphic embedded compact Nash
groups is isomorphic with that of the classes of isomorphic embedded algebraic
groups. Moreover, given a compact affine Nash group G, a closed subgroup H
and a homogeneous Nash G-manifold X, it is proved that the twisted product
G×H X is a Nash G-manifold which is Nash G-diffeomorphic to an algebraic
G-variety; besides, this algebraic structure is unique.

Introduction.

This paper is dedicated to the study of some basic properties of Nash groups
related to their Nash representations (all Nash objects are assumed to be real
and analytic). The starting point of our results is a Nash version, that we give in
Theorem 1.3, of the Peter-Weil theorem on representative functions on Lie groups.
It is well known that this famous theorem states that the representative functions
on a compact Lie group H are dense in the space of all continuous functions on H.
Well, we prove the following fact: the representative Nash functions on a compact
affine Nash group G are dense in the space of all continuous functions on G. As a
consequence of this theorem we deduce the existence of a faithful representation
of G (Corollary 1.4) and, in turn, this fact allows, on one hand, to obtain that an
analytic representation of G is of class Nash (Corollary 1.7); on the other hand, it
suggests to compare the category N of compact affine Nash groups with that, A,
of compact affine algebraic groups. Now, if one considers the objects of N and of
A up to isomorphisms (that is, if one considers the abstract structures), one gets
two categories that we prove to be isomorphic (Theorem 1.8).

In Section 2 we deal mainly with the equivariant Nash conjecture. We re-
member that this conjecture, still open, says that, if G is a compact Lie group,
a compact C∞ G-manifold is C∞ G- diffeomorphic to a real non singular alge-
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braic G-variety, where an algebraic G-variety is an invariant algebraic variety in
a representation space of G. The main difficulty to obtain algebraic structures on
C∞ G-manifolds lies in a cobordism process. Nevertheless, some special cases are
known in which the conjecture is verified. See for example [4], [5], [6]. In this
paper we consider the conjecture in Nash setting: given a compact affine Nash
group G, a closed subgroup H of G and a homogeneous Nash G-manifold X, first
of all we prove that the twisted product G ×H X is a Nash G-manifold; then we
prove that both X and the twisted product have an algebraic G-structure. This
means that there exist Nash representations of G and non singular algebraic G-
varieties in the spaces of the representations which are Nash G-diffeomorphic to
X and to G ×H X, respectively; and more, such structures are unique (Theorem
2.5, Theorem 2.7).

Finally, in Section 3 we recall a question posed by M. Shiota in [16]: roughly
speaking, he asks whether a Nash map between affine Nash manifolds is, up to Nash
diffeomorphisms between the previous Nash manifolds and non singular algebraic
varieties, an algebraic map. Now, the existence of an algebraic structure on a
homogeneous Nash G-manifold and on a compact affine Nash group, as follows
from Theorem 2.5 and Theorem 2.7, permits us to give a positive answer in these
cases (Proposition 3.1).

1. Nash representations.

We shall consider only Nash functions and Nash manifolds which are real and
analytic. First, let us briefly recall some definitions and facts we shall use later
(see e.g. [1], [15], [16]).

An analytic function f : U → R on an open semialgebraic subset of Rn is
called a Nash function if there exists a non-zero polynomial P (t1, . . . , tn+1) with
the property that P (x1, . . . , xn, f(x)) = 0 for every (x1, . . . , xn) ∈ U . A map
f : U → Rm is said to be a Nash map if every component is a Nash function.
In this paper a Nash manifold is an analytic manifold with coordinate changes
given by Nash maps. We remark that often in the literature such a manifold
is said to be a locally Nash manifold [16]. If there exists a Nash embedding
of a Nash manifold into Rn for some n we say that the manifold is affine. We
remember that exists a non affine Nash manifold. A Nash submanifold Y of a
Nash manifold X is a topological subspace of X such that for any y ∈ Y there
exist an open neighbourhood Uy of y and local coordinates with the property that
Y ∩Uy = {x ∈ Uy; f1(x) = · · · fp(x) = 0}, where f1, . . . , fp are Nash functions and
rk ∂(f1, . . . , fp)/∂(x1, . . . , xn) = p at y.

A (coordinate) Nash bundle B = (B, p, X, F, G, {gij : Ui ∩ Uj → G}) is
a bundle where the total and base spaces B and X, and the fibre F are Nash
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manifolds, the projection p : B → X is a Nash map, the structure group is a Nash
group and the coordinate transformations are Nash maps.

If a Nash manifold is endowed with a group structure and if the group oper-
ations are of class Nash, the manifold is said to be a Nash group; it is an affine
Nash group if the manifold is affine.

A subgroup H of a Nash group G is said to be a Nash subgroup of G if it is a
submanifold of G; of course H is a Nash group and it is closed. Examples of Nash
groups are given by the real algebraic groups and by the identity component of a
real algebraic group. We remark that the connected one dimensional Nash groups
has been classified by J. J. Madden and C. M. Stanton [11]. One can define as
usual the notion of Nash action of a Nash group. In particular, we have:

Definition 1.1. Let G be a Nash group.

1) A (linear) Nash representation of G is a Nash homomorphism G → GL(n); this
means a homomorphism of groups which is a Nash map;

2) if X is a Nash manifold with G action and if the action G×X → X is a Nash
map, X is called a Nash G-manifold;

3) an equivariant Nash map between G-manifolds is called a Nash G-map;
4) let p1, . . . , pk : Rn → R be polynomials. The set of common zeros of these

polynomials is a (real) algebraic variety. An affine Nash G-submanifold (resp.
an algebraic G-variety) is a Nash submanifold (resp. an algebraic variety) in a
representation space of G which is G-invariant;

5) a Nash manifold with G action is said to have an affine Nash G-structure (resp.
an algebraic G-structure) if it is Nash G-diffeomorphic to an affine Nash G-
submanifold (resp. to a non singular algebraic G-variety).

From now on in this section we shall consider only compact affine Nash groups
and G stands for such a group. We are interested in representative Nash functions
on G. On this subject, we recall that left translations in G induce an action of
G on the space of real valued C∞ functions f : G → R as follows: f 7→ L(g, f),
L(g, f)(x) = f(g−1x). The function f is said to be representative if the functions
L(g, f) generate a finite dimensional subspace of the space of all real valued C∞

functions on G. It is well known the Peter-Weil theorem about representative
functions on a compact Lie group, which asserts the density of these functions in
the space of all continuous functions on such a group. Our first aim is to give a
Nash version of this theorem, considering representative Nash functions. Before
we need the following results, due to T. Kawakami:

Theorem 1.2.

1) Let X be a compact C∞ G-manifold. Then there exists an affine Nash G-



930 F. Guaraldo

submanifold Y and a C∞ G-diffeomorphism X → Y .
2) A C∞ G-diffeomorphism between homogeneous Nash G-manifolds is a Nash

map.

Proof. See [9]. ¤

The result on the representative Nash functions we are talking about is the
following

Theorem 1.3. The representative Nash functions on G are dense in the
strong topology in the space of all continuous functions on G.

Proof. Consider the Nash G-manifold underlying G and call it again G.
By Theorem 1.2 there exist a linear representation of G, with Rm as representa-
tion space, a Nash G-submanifold Y ⊂ Rm and a C∞ G-diffeomorphism G → Y

between homogeneous Nash G-manifolds. Always by Theorem 1.2 this diffeomor-
phism is a Nash map. So we have the Nash G-map f : G → Rm between Nash
G-manifolds which is a diffeomorphism onto the compact Nash manifold f(G).
Now let p : Rm → R be a polynomial function. Because f is equivariant and G

acts linearly on Rm, the Nash function p ◦ f : G → R is representative on G [12,
p. 107]. Then, let r : G → R be a continuous function and consider the function
r ◦ f−1 : f(G) → R; we can approximate this function by a polynomial function
q : Rm → R. The function q ◦ f : G → R is representative on G, of class Nash
and approximates r. ¤

Corollary 1.4.

1) There exists a faithful Nash representation G → GL(n) of G.
2) G is Nash isomorphic to an affine algebraic group and this algebraic structure

is unique.

Proof.

1) Repeat the proof of the analogous result in Lie case, using Theorem 1.3 instead
of Peter-Weil theorem. See e.g. [3, Theorem 4.1, p. 136].

2) By 1) G is Nash isomorphic to a compact subgroup H of GL(n), for some n, and
H is algebraic [13, Theorem 5, p. 133]; moreover, two compact algebraic real
groups which are C∞-diffeomorphic are polynomially isomorphic [13, Corollary,
p. 246]. ¤

We know that in the category of Lie groups a closed subgroup of a given Lie
group is a Lie group itself. The same fact occurs for G, as the next Corollary
shows.
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Corollary 1.5. A closed subgroup of G is a Nash group.

Proof. Let K be such a subgroup. By Corollary 1.4 there exists a Nash
isomorphism f : G → H, where H is an algebraic linear group, H ⊂ GL(n) for a
suitable n. The image f(K) of K is a compact subgroup of GL(n) and hence it is
algebraic in GL(n); so, f(K) is an algebraic subgroup of H and then it is a Nash
submanifold of H. It follows that K is a Nash submanifold of G. ¤

Another consequence of Corollary 1.4 deals with the homomorphisms between
compact affine Nash groups. We have

Theorem 1.6. An analytic homomorphism between compact affine Nash
groups is of class Nash.

Proof. Let f : G → H be such a homomorphism. By Corollary 1.4 there
exist Nash isomorphisms p : G → G1, q : H → H1, where G1 and H1 are real
algebraic compact groups. By [13, Theorem 11, p. 246] the homomorphism q ◦ f ◦
p−1 : G1 → H1 is polynomial. It follows that f is of class Nash. ¤

Remark 1. A more general version of Theorem 1.6 is proved in [10], by a
different technique and in the o-minimal structures setting.

Corollary 1.7.

1) A compact affine Nash group is Nash isomorphic to a closed subgroup of an
orthogonal group.

2) An analytic representation of a compact affine Nash group is a Nash map.

Since by Corollary 1.4 we have found on G an algebraic affine structure which
is unique, we want to compare the category N of compact affine Nash groups with
that, A, of compact affine algebraic groups. In order to do this, let G, H be two
objects of N and let [G], [H] be the classes of all compact affine Nash groups Nash
isomorphic to G and H, respectively. Therefore, if G1 ∈ [G], H1 ∈ [H], there
exist Nash isomorphisms ϕ : G → G1, ψ : H → H1. Now let f : G → H be a
Nash homomorphism; it induces the Nash homomorphism ψ ◦ f ◦ϕ−1 : G1 → H1.
Consider the class [f ] of all Nash homomorphisms induced by f in this way. We
obtain a category, say N/ ∼, whose objects are the classes of kind [G] and the
morphisms are the classes of kind [f ].

Similarly one constructs the category, A/ ∼, whose objects and morphisms
are, respectively, classes of compact affine algebraic groups and classes of polyno-
mial homomorphisms, up to polynomial isomorphisms.

Recall now that two categories C1 and C2 are said to be isomorphic if there
exists a covariant functor F : C1 → C2 such that: 1. For any object Z of C2,



932 F. Guaraldo

there exists a unique object X of C1 such that F (X) = Z; 2. For any pair (X, Y )
of objects of C1, the map F (X, Y ) : Hom(X, Y ) → Hom(F (X), F (Y )) which
associates to each morphism u : X → Y the morphism F (u) : F (X) → (Y ) is a
bijection.

We have

Theorem 1.8. The categories N/ ∼ and A/ ∼ are isomorphic.

Proof. We construct a covariant functor F : N/ ∼→ A/ ∼ in the following
way. Let [G] be an object of N/ ∼. By Corollary 1.4 there exists an algebraic
compact affine group L which is Nash isomorphic to G and the algebraic structure
is unique; then we set F ([G]) = [L]. Because an algebraic group is a Nash group,
in this way we obtain a bijection between the objects of N/ ∼ and the objects of
A/ ∼. Moreover, let f : G → H be a morphism in N and α : G → L, β : H → M

Nash isomorphisms between G, H and the algebraic compact affine groups L, M ,
respectively. The morphism f induces in A, by [13, Theorem 11, p. 246], the
morphism h = β ◦ f ◦ α−1 : L → M . Then we set F ([f ]) = [h]. So we get a
bijection Hom([G], [H]) → Hom(F [G], F [H]) for any pair of objects of N/ ∼. ¤

2. On equivariant Nash conjecture.

In this section we deal with the equivariant Nash conjecture in Nash setting;
at the same time we consider the problem of the linearization of a Nash action.
About this problem we give the following definition:

Definition 2.1. Let G be a Nash group and X a Nash G-manifold. We say
that the action of G on X is Nash (resp. analytically) linearizable if there exist a
Nash representation of G, with space Rn, a Nash G-submanifold Y of Rn, and a
Nash (resp. an analytic) G-diffeomorphism from X onto Y .

If the group G is compact and affine and the manifold X is compact, its action
is analytically linearizable, as the next Proposition shows.

Proposition 2.2. Let G be a compact affine Nash group and X a compact
Nash G-manifold. The G action is analytically linearizable.

Proof. We have to show that there exist a Nash representation of G, with
representation space Rn, and an analytic G-embedding f : X → Rn such that
f(X) is an affine Nash G-submanifold of Rn. To do this, we use Theorem 1.2:
there exist a representation space Rn of a Nash representation of G, an affine
Nash G-submanifold Y of Rn and a C∞ G-diffeomorphism f : X → Y . Now
we use the following result about the Whitney topology in the space of C∞ G-
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maps X → Rn: “Every Whitney neighborhood of a G-equivariant C∞ map to
a representation space contains a G-equivariant real analytic map” [8, Zusatz,
p. 233]. Therefore we can approximate f by an analytic G-map h : X → Rn; then,
by a G-tubular neighbourhood (see e.g. [9]) we get the desired embedding. ¤

Now we recall the equivariant Nash conjecture.

Equivariant Nash Conjecture. “Let G be a compact Lie group. Every
compact C∞ G-manifold is C∞ G-diffeomorphic to a non-singular algebraic G-
variety”.

Some partial results are known, see for example [4], [5] and [6]. However, the
general case remains open.

When working in Nash category may be natural and of interest to modify
slightly the conjecture supposing that all objects involved are of class Nash. That
is:

Equivariant Nash Conjecture in Nash setting. “Let G be a compact
affine Nash group. Every compact non-equivariantly affine Nash G-manifold is
Nash G-diffeomorphic to a non-singular algebraic G-variety”.

We will give a positive answer to this conjecture in some cases and, at the
same time, we will find some G actions which are Nash linearizable. Before doing
this, we need some preliminary results.

Theorem 2.3. Let G be a Nash group and H a Nash subgroup of G. Then

1) p : G → G/H, g 7→ gH, is a principal Nash H-bundle.
2) A map f defined on G/H is a Nash map if and only if the map f ◦ p is.
3) The natural action of G on G/H, (g1, gH) 7→ g1gH, gives rise to a Nash map

G×G/H → G/H.

Proof. See [7]. ¤

Proposition 2.4. Let G be a Nash group and X a homogeneous Nash G-
manifold. Let x be a point of X and Gx the isotropy subgroup of x. Then Gx is
a Nash subgroup of G and for any x ∈ X the map G/Gx → X, gGx 7→ gx, is a
Nash G-diffeomorphism.

Proof. As in the Lie case (see e.g. [13, Theorem 4, p. 12]). ¤

And now we can give a first positive answer to the equivariant Nash conjecture
in Nash setting.
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Theorem 2.5. Let G be a compact affine Nash group and X a homogeneous
Nash G-manifold. Then there exists a non-singular algebraic G-variety which is
Nash G-diffeomorphic to X and two such algebraic G-varieties are algebraically
G-isomorphic. Thus X is affine and the G action on X is Nash linearizable. In
particular, G is Nash G-diffeomorphic to a non-singular algebraic G-variety.

Proof. By Proposition 2.4 X is Nash G-diffeomorphic to G/H, for some
Nash subgroup H ⊂ G. By [2, Theorem 0.5.2, p. 24] there exist an analytic
representation ρ : G → O(n), for some n, and a point b ∈ Rn such that the
isotropy subgroup of b is H:

H = Gb = {g ∈ G; ρ(g)b = b}.

Because of Corollary 1.7 the map ρ is of class Nash. Therefore let us consider the
Nash map F : G → Rn, g 7→ ρ(g)b, and the induced G-map f : G/H → Rn,
gH 7→ ρ(g)b. If p : G → G/H is the canonical projection, it is f ◦ p = F and
then, by Theorem 2.3, f is of class Nash; moreover, remark that f(G/H) is the
orbit of b: it follows, using Proposition 2.4, that f is a Nash G-diffeomorphism;
but the orbit f(G/H) is a non singular algebraic G-variety of Rn by [5]. Thus X

has an algebraic G-structure and so the G action on X is Nash linearizable. The
uniqueness of this algebraic G-structure follows from [5]. ¤

The previous Theorem can be generalized. Before we need some preliminary
facts. Let H be a closed subgroup of the compact affine Nash group G (by Corol-
lary 1.5 H is a Nash subgroup of G) and X a Nash H-manifold. Recall that the
twisted product G ×H X is the orbit space of the Nash action of H on G × X

given by (h, (g, x)) 7→ (gh−1, hx). The H-orbit of (g, x) will be denoted by [g, x].
We have

Lemma 2.6.

1) The twisted product G×H X is a Nash G-manifold.
2) The canonical map q : G×X → G×H X, (g, x) 7→ [g, x] is of class Nash.
3) Let Z be a Nash manifold. A map f : G ×H X → Z is of class Nash if and

only if f ◦ q is.

Proof. It is known [2, p. 47] that the twisted product G ×H X is the
total space of the fibre bundle over G/H with X as fibre and associated with the
principal H-bundle p : G → G/H, which is a Nash fibre bundle by Theorem 2.3.
It follows that the bundle π : G ×H X → G/H, π([g, x]) = p(g), is of class Nash
and the total space is a Nash manifold. The action of G on G ×H X is given
by (g′, [g, x]) 7→ [g′g, x]. Before to prove that this is a Nash action, consider the
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following commutative diagram of canonical projections:

G×X //

q

²²

G

²²
G×H X // G/H

.

Let U×H → p−1(U) be a chart of the Nash fibre bundle p : G → G/H, U ⊂ G/H;
therefore, locally, the previous diagram becomes [2, Lemma 2.5, p. 75]

U ×H ×X //

q

²²

U ×H

²²
U ×X // U

,

(u, h, x) Â //
_

²²

(u, h)
_

²²
(u, hx) Â // u

.

It follows that the surjective submersion q is of class Nash and then 2) and 3) are
proved. It remains to prove that the action of G on G×H X is of class Nash. To
this purpose, consider the following commutative diagram:

G×G×X //

id×q

²²

G×X

²²
G× (G×H X) // G×H X

,

(g′, g, x) Â //
_

²²

(g′g, x)
_

²²
(g′, [g, x]) Â // [g′g, x]

.

The arrow below is the G action and it is of class Nash by 3) and because the
other arrows are Nash maps. ¤

Next Theorem tells that the Nash conjecture in Nash setting is true for twisted
products of homogeneous Nash manifolds and compact affine Nash groups.

Theorem 2.7. Let H be a closed subgroup of the compact affine Nash group
G, X a Nash H-manifold, Y a Nash G-manifold and f : X → Y a Nash H-
embedding. Then

1) The map α : G ×H X → (G/H) × Y , [g, x] 7→ (gH, gf(x)) is a Nash G-
embedding.

2) Consider only G, H, Y and suppose Y a homogeneous Nash G-manifold. Then
G×H Y has an algebraic G-structure, and this structure is unique. So, the G

action on G×H Y is Nash linearizable.
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Proof.

1) Let us consider the map β : G ×H X → G ×H Y , [g, x] 7→ [g, f(x)]. The
twisted products are Nash G-manifolds by Lemma 2.6 and β is a G-equivariant
bijection onto its image. Moreover it is a Nash map, as follows from the following
commutative diagram and by Lemma 2.6:

G×X //

²²

G× Y

²²
G×H X // G×H Y

,

(g, x) Â //
_

²²

(g, f(x))
_

²²
[g, x] Â // [g, f(x)]

.

In a similar way one proves that the inverse map β−1 is a Nash map. So, β is a
Nash G-embedding.

Consider now the G-equivariant map γ : G ×H Y → (G/H) × Y , [g, y] 7→
(gH, gy). It is a Nash diffeomorphism. In fact, if q : G × Y → G ×H Y is the
canonical projection, the map γ ◦ q : G× Y → (G/H)× Y , (g, y) 7→ (gH, gy) is of
class Nash and then, by Lemma 2.6, γ is of class Nash.

The inverse map γ−1 is given by

γ−1 : (G/H)× Y → G×H Y, (gH, y) 7→ [g, g−1y].

It is of class Nash. Consider, in fact, the following commutative diagram:

G× Y //

p×id

²²

G× Y

²²
(G/H)× Y // G×H Y

,

(g, y) Â //
_

²²

(g, g−1y)
_

²²
(gH, y) Â // [g, g−1y]

.

The arrow below is γ−1 and the others arrows are Nash maps; then the asser-
tion follows from Theorem 2.3. Therefore γ is a Nash G-diffeomorphism. This
completes the proof of 1) because α = γ ◦ β.

2) Since Y is homogeneous, it is Nash G-diffeomorphic to G/K, for a suitable
Nash subgroup K of G, by Proposition 2.4. By Theorem 2.5, both G/H and G/K

have an algebraic G-structure and these structures are unique. Then the assertion
follows from the Nash G-diffeomorphism γ : G×H Y → (G/H)× Y (see 1). ¤

Proposition 2.8. Let G be a compact affine Nash group, H a closed sub-
group of G and X a Nash H-manifold.

1) Let us suppose that X has an affine Nash H-structure. Then
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a) G ×H X has an affine Nash G-structure. Thus, the action of G on the
twisted product is Nash linearizable.

b) There is an orthogonal group O(q) such that O(q)×H X has an affine Nash
O(q)-structure.

2) Conversely, let us suppose that G×H X has an affine Nash G-structure. Then
X has an affine Nash H-structure.

Proof.

1) a) There exists, by hypothesis, a Nash H-equivariant embedding f : X →
Rp in the space of a Nash representation of H. By Corollary 1.4 we can suppose
that G is a matrix group; then, by [14], there is a continuous representation
λ : G → GL(m), with space Rm, such that Rm, considered as an H-space by
restriction, contains the H-space Rp as an invariant linear subspace. By Theorem
1.6 λ is a Nash homomorphism and hence Rm is a Nash G-space. In this way
we obtain the H-equivariant Nash embedding f : X → Rm. Then we can use
Theorem 2.7: there is a Nash G-embedding G ×H X → (G/H) ×Rm. Now, by
Theorem 2.5, there are a Nash representation ρ of G with space Rn and a Nash
G-embedding G/H → Rn. So we get the Nash G-embedding G×H X → Rn×Rm

and Rn ×Rm is the space of the Nash representation ρ⊕ λ.
b) By Corollary 1.7 H is Nash isomorphic to a closed subgroup of an orthog-

onal group O(q). Then the statement follows from a) where G = O(q).
2) First we remark that the canonical H-embedding X → G×H X is a Nash

map because it is the composition of the Nash maps X → G × X → G ×H X,
x 7→ (e, x) 7→ [e, x]. Now, by hypothesis there exist a Nash representation ϑ :
G → GL(p), with space Rp, and a Nash G-embedding ϕ : G ×H X → Rp. Then
the restriction ϕ|X : X → Rp is a Nash H-embedding into the space of the
representation ϑ|H. ¤

3. On a question posed by M. Shiota.

In [15, Problem VI.2.12, p. 209] M. Shiota posed the following question: “Let
f : X1 → X2 be a Nash map between affine Nash manifolds. Do there exist
Nash diffeomorphisms p1, p2 from X1 and X2 respectively to affine non singular
algebraic varieties such that p2 ◦ f ◦ p−1

1 is a smooth rational map?”. On this
subject, some of the previous results lead to the following Proposition:

Proposition 3.1.

1) Let G1, G2 be compact affine Nash groups and f : G1 → G2 a C∞ homomor-
phism. There exist compact affine algebraic groups H1, H2 and Nash diffeo-
morphisms qi : Gi → Hi (i = 1, 2) such that q2 ◦ f ◦ q−1

1 : H1 → H2 is a
polynomial map. So, f is a Nash map.
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2) Let G be a compact affine Nash group, X1 and X2 homogeneous Nash G-
manifolds and f : X1 → X2 a C∞ G-map. There exist non-singular algebraic
G-varieties Yi and Nash G-diffeomorphisms pi : Xi → Yi (i = 1, 2) such that
p2 ◦ f ◦ p−1

1 is polynomial. So, f is a Nash map.

Proof.

1) See Theorem 1.6 and its proof.
2) One can find the algebraic G-varieties Xi and the Nash G-diffeomorphisms

pi : Xi → Yi (i = 1, 2) using Theorem 2.5. By [5] p2 ◦ f ◦ p−1
1 is polynomial. ¤
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