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Abstract. We derive an energy decay estimate for solutions to the
initial-boundary value problem of a semilinear wave equation in exterior do-
mains with a nonlinear localized dissipation. Our equation includes an absorb-
ing term like |u|αu, α ≥ 0, and can be regarded as a generalized Klein-Gordon
equation at least if α is closed to 0. This observation plays an essential role in
our argument.

1. Introduction.

In this paper we consider the initial-boundary value problem of the nonlinear
wave equations of the form:

utt −∆u + ρ(x, ut) + g(u) = 0 in Ω×R+ (1.1)

u(x, 0) = u0(x), ut(x, 0) = u1(x) and u(x, t)|∂Ω = 0 (1.2)

where Ω is an exterior domain in RN with a smooth, say C2, boundary ∂Ω, that
is, Ω = RN/V with a compact set V in RN , ρ(x, v) is a function like ρ(x, v) =
a(x)|v|rv, 0 ≤ r ≤ 2/(N − 2)+, and g(u) is a nonlinear term like g(u) = k0|u|αu,
0 ≤ α ≤ 2/(N − 2)+, k0 ≥ 0. When V is empty the boundary condition should
be dropped and the problem is reduced to the Cauchy problem in the whole space
RN . We also note that when N = 1 and V is not empty, then Ω = (−∞, a) or
(a,∞) for some a ∈ R.

The existence and uniqueness of global solutions to the problem (1.1)–(1.2)
is standard (see, e.g., [5]), and the energy E(t) ≡ (1/2)(‖ut(t)‖2 + ‖∇u(t)‖2) +∫
Ω

G(u(t))dx is decreasing, where ‖·‖ denotes L2 norm in Ω and G(u) =
∫ u

0
g(η)dη.

Here we are interested in the energy decay of the solutions when the effect of
ρ(x, ut) is localized near a portion of the boundary ∂Ω and near infinity. To
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explain our problem more precisely let us consider the case ρ(x, ut) = a(x)|ut|rut,
0 ≤ r ≤ 2/(N − 2)+ and g(u) = k0|u|αu. We set for x0 ∈ RN ,

Γ(x0) = {x ∈ ∂Ω | (x− x0) · ν(x) > 0}, (1.3)

where ν(x) is the outward normal vector at x ∈ ∂Ω, which is often used in the
boundary control theory in bounded domains (cf. Russell [26], Chen [2], Lions
[4]). V is star-shaped with respect to x0 if and only if Γ(x0) is empty. We assume
that a(x) is a nonnegative bounded function and there exist x0 and a (relatively)
open set ω ⊂ Ω̄ such that

Γ(x0) ⊂ ω and a(x) ≥ ε0 > 0 for x ∈ ω ∪B(R)c, R À 1, (1.4)

with some ε0, where B(R) = {x ∈ RN | |x| < R}. This is now a rather standard
assumption concerning localized dissipative term.

We also employ a stronger assumption

∂Ω ⊂ ω and a(x) ≥ ε0 > 0 for x ∈ ω ∪B(R)c, R À 1, (1.4)′

where if Ω = RN or V is star-shaped with respect to x0 we drop the condition
∂Ω ⊂ ω in (1.4)′ and in these cases (1.4) and (1.4)′ are coincide each other.

The problem admits a unique solution u(·) ∈ C([0,∞);H0
1 (Ω)) ∩ C1([0,∞);

L2(Ω)) for each (u0, u1) ∈ H0
1 (Ω) × L2(Ω). When ρ(x, ut) = a(x)ut with a(x) ≥

ε0 > 0 on the whole domain Ω and g(u) = u it is easy to show the exponential
decay:

E(t) ≤ CE(0)e−λt (1.5)

with some λ > 0. The estimate (1.5) still holds for the case g(u) = u + |u|αu,
0 ≤ α ≤ 2/(N − 2)+ if CE(0) is replaced by C0, where C0 denotes a constant
depending on E(0).

In [28] Zuazua treated the case: Ω = RN , ρ(x, ut) = a(x)ut with a(x) ≥
ε0 > 0, |x| > R À 1, and g(u) = u + |u|αu, and proved the exponential decay
(1.5) with CE(0) replaced by C0. We note that the linear term u included in
g(u) plays an essential role in [28] and the argument is not applied to the case
g(u) = |u|αu. That is, the equation treated in [28] is a semilinear Klein-Gordon
equation with a linear localized dissipation near infinity. Subsequently, the present
author considered in [12] the Cauchy problem for the case: ρ(x, ut) = a(x)|ut|rut

with a(x) ≥ ε0 > 0 for |x| ≥ R À 1 and g(u) = u, and proved the estimate
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E(t) ≤
{

C1(1 + t)−(2−Nr)/r if 0 < r < 2/N

C1{log(2 + t)}−N if r = 2/N,
(1.6)

where we assumed supp u(x) ∪ suppu1(x) ⊂ B(L), L À 1, and C1 denotes a
constant depending on ‖u0‖H2 + ‖u1‖H1 . For the nonlocalized case ρ(x, ut) =
|ut|rut we know that (1.6) holds with C1 replaced by C0 (see [10]). Mochizuki
and Motai [7] extended the result in [10] to the case supp u0(x) ∪ suppu1(x) is
not compact and further proved for the case g(u) = 0 that

E(t) ≤ C0{log(2 + t)}−N .

Further considerations have been done by Todorova and Yordanov [24], Todorova,
Ugŭryu and Yordanov [25] for the case ρ(x, ut) = |ut|rut and g(u) = 0. See also
Motai [8], Nakao and Ono [21], Matsuyama [6] and Sunagawa [23] for related
topics.

Quite recently we have considered in [19] the Cauchy problem for the case
like ρ(x, ut) = |ut|rut, 0 ≤ r ≤ 2/(N−2)+, and g(u) = |u|αu, 0 ≤ α ≤ 2/(N−2)+.
The result in [19] is stated as follows:

E(t) ≤
{

C1(1 + t)−η if η > 0

C1 log(2 + t)−N if η = 0
(1.7)

where we set η = (α + 2)/(α + r + αr) − N . The idea in [19] is to consider the
equation as a nonlinear generalized Klein-Gordon equation. In earlier papers [13],
[20] we also considered the usual wave equation without mass term u under linear
or half-linear localized dissipations and derived some decay estimates of the energy,
but, to our knowledge, no result is known for the case of nonlinear localized case:
ρ(x, ut) = a(x)|ut|rut and g(u) ≡ 0. Thus concerning the energy decay problem
for the equation (1.1)–(1.2) we can not regard the term g(u) as a perturbation of
the wave equation. In other words, any decay estimate of energy is not known for
the problem (1.1)–(1.2) even for small amplitude solutions.

The object of this paper is to combine the idea in [19] with the arguments in
[28], [12], [13], [20] to derive some decay estimates of the energy for the problem
(1.1)–(1.2) where ρ(x, ut) is a nonlinear localized dissipation and g(u) is a nonlinear
absorbing term. See also [16] where the existence of global attractors is discussed
for a related problem in exterior domains. We also use some ideas in our recent
papers [11], [14], [15], [18] where the problems related to (1.1)–(1.2) in bounded
domains have been considered. Quite recently, Aloui, Ibrahim and Nakanishi [1]
have proved an exponential decay for the semilinear Klein-Gordon equation in
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a domain exterior to a star-shaped obstacle with a linear localized dissipation
ρ(x, ut) = a(x)ut and an arbitrary order nonlinearity g(u) = u + f(u) by use of
Morawetz space-time integral estimate. It seems difficult to apply the method in
[1] to the case where ρ(x, ut) is nonlinear.

2. Preliminaries.

We use only familiar function spaces, and their definitions are omitted. We
denote by ‖ · ‖p the Lp norm on Ω. We set Ω(R) ≡ Ω∩B(R). By use of a function
a(x) satisfying (1.4) or (1.4)′ we make the following assumption on ρ(x, v).

Hyp.A. ρ(x, v) is measurable in x ∈ Ω for any v ∈ R and Lipschitz contin-
uous in v for a.e. x ∈ Ω with ρv(x, v) ≥ 0, and satisfies:

(1)
k0a(x)|v|r+2 ≤ ρ(x, v)v ≤ k1a(x)|v|r+2

if |v| ≤ 1 and x ∈ Ω(R), R À 1,

with some k0, k1 > 0 and r, 0 ≤ r < ∞.
(2)

k0a(x)|v|p+2 ≤ ρ(x, v)v ≤ k1a(x)|v|p+2 if |v| ≥ 1 and x ∈ Ω(R), R À 1,

with some k0, k1 > 0 and p, 0 ≤ p ≤ 2/(N − 2)+.
(3)

k0|v|q+2 ≤ ρ(x, v)v ≤ k1|v|q+2 if x ∈ B(R)c, R À 1,

with k0, k1 > 0 and 0 ≤ q ≤ 2/(N − 2)+.

A typical example is ρ(x, v) = a(x)|v|rv which satisfies Hyp.A with p = q = r.
Assume that a(x) = 0 for R− 1 ≤ |x| ≤ R, R À 1. Then a little more complicate
example is ρ(x, v) = φ(x)a(x)min{|v|r, |v|p}v + (1 − φ(x))a(x)|v|qv where we as-
sume 0 ≤ p ≤ r and φ(x) is a function such that 0 ≤ φ(x) ≤< 1 with φ(x) = 0 for
|x| > R, R À 1, and φ(x) = 1 for |x| < R−1. We could divide the assumption (3)
in two cases |v| ≤ 1 and |v| ≥ 1 as in (1), (2). Then more general examples would
satisfy the conditions. However, to make the essential feature of the argument
clear we employ the assumption (3).

Hyp.B. g(u) is a Lipschitz continuous function on R satisfying:

(1)
g(0) = 0, k0|u|α+2 ≤ G(u) ≤ d0

2
g(u)u
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with some k0 > 0 and d0, 0 < d0 < 1, where G(u) =
∫ u

0
g(η)dη, and

(2)

|g′(u)| ≤ k2|u|α

with some k2 > 0 and 0 ≤ α ≤ 2/(N − 2)+.

A typical example of g(u) is g(u) = |u|αu with 0 < α ≤ 2/(N − 2)+. Let
us define g(u) in the following way: g(u) = |u|αu if |u| ≤ R1, g(u) = Rα−β

1 |u|βu

if R1 ≤ |u| ≤ R2 and g(u) = (R1/R2)α−β |u|αu if |u| ≥ R2, where α, β > 0 and
0 < R1 < R2. This is another simple example. It is clear that we can consider
g(x, u) for g(u), and also we could make a more general assumption on g(u) so
that the examples g(u) = |u|αu+ |u|βu, g(u) = max{|u|α, |u|β}u may be included.
However we employ Hyp.B to avoid inessential difficulties.

Throughout the paper we assume further that

suppu0(·) ∪ suppu1(·) ⊂ B(L) (2.1)

with some L À 1. It is well known that under Hyp.A and Hyp.B the prob-
lem (1.1)–(1.2) admits a unique solution u(·) ∈ X2,loc ≡ L∞loc([0,∞);H2) ∩
W 1,∞

loc ([0,∞);H0
1 )∩W 2,∞([0,∞);L2) for each (u0, u1) ∈ H2∩H0

1×H0
1 and further

it satisfies

suppu(t, ·) ⊂ B(L + t). (2.2)

(See John [3].) By density argument we see that the problem admits a unique
solution u(·) ∈ C([0,∞);H0

1 ) ∩ C1([0,∞);L2) with
∫∞
0

∫
Ω

ρ(x, ut)utdxds ≤ E(0)
for each (u0, u1) ∈ H0

1 × L2 and (2.2) is also valid if (2.1) holds.
Our first result on energy decay reads as follows.

Theorem 2.1. We assume that ∂Ω is not empty or Ω = RN , N ≥ 3.
Assume Hyp.A under (1.4)′ with p = q = 0 and Hyp.B. We assume further 0 <

α ≤ 2/(N − 1). Then, for a solution u(·) ∈ C([0,∞);H0
1 ) ∩ C1([0,∞);L2) we

have:

E(t) ≤ C0(L)(1 + t)−γ if 0 < α < 2/(N − 1) (2.3)

with γ = min{2/r, 2/α + 1−N}, and

E(t) ≤ C0(L)(log(2 + t))−N if α = 2/(N − 1) (2.4)
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where C0(L) denotes constants depending on E(0) and L. When Ω = RN , N ≥ 3,
or V is star-shaped the above results hold with γ = 2/α + 1−N .

Remark 2.1. When g(u) = k0u, k0 > 0, linear, the above result holds also
for α = 0. In this case we see γ = 2/r, and if further r = 0, we have the usual
exponential decay E(t) ≤ C0e

−λt for some λ > 0. This exponential decay estimate
is also true even if r > 0 when V is star-shaped or Ω = RN , N ≥ 3. If g(u) is
nonlinear and α = 0 the result is delicate (cf. [27]).

When p > 0 and/or q > 0 in Hyp.A, (2), the result becomes more complicated.
We set

E1(t) =
1
2
(‖utt(t)‖2 + ‖∇ut(t)‖2

)
.

Theorem 2.2. Let N ≥ 3 and assume Hyp.A under (1.4)′ with p > 0 and/or
q > 0 and Hyp.B. We make the assumptions on α, r, p and q such that

α + 2
qα + q + α

> N (2.5)

and

γ ≡ min
{

2
r
,

α + 2
qα + q + α

−N,
2(2 + 2p−Np)

(N − 2)p
,
2(2 + 2q −Nq)

(N − 2)q

}

>
4N

(N − 2)(2 + 2α−Nα)
. (2.6)′

Then, for a solution u(·) ∈ X2,loc we have

E(t) ≤ C1(L)(1 + t)−γ and E1(t) ≤ C1(L) < ∞ (2.7)

where C1(L) denotes constants depending on ‖u0‖H2 + ‖u1‖H1 and L.
When we replace the condition (1.4)′ by (1.4) there exists ε > 0 such that if

E(0) ≤ ε, then the estimate (2.7) holds under the conditions (2.5) and

γ >
4

2 + 4α−Nα
. (2.6)

When Ω = RN or V is star-shaped above results hold with γ replaced by
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γ = min
{

α + 2
qα + q + α

−N,
2(2 + 2p−Np)

(N − 2)p
,
2(2 + 2q −Nq)

(N − 2)q

}
.

We note that the condition (2.6) is weaker than (2.6)′.

Theorem 2.3. We assume N = 1, 2 and ∂Ω 6= φ. Assume Hyp.A under
(1.4)′ with p > 0 and/or q > 0 and Hyp.B. We make the assumptions on α, r, p

and q such that

α + 2
qα + q + α

> N

and

γ ≡ min
{

2
r
,

α + 2
qα + q + α

−N

}

> max
{

2(4 + 2α−Nα)
4 + 6α−Nα

, pN min
{

r + 2
2r

,
α + 2

2(qα + q + α)
− N − 1

2

}}
.

(2.8)′

Then, for a solution u(·) ∈ X2,loc we have:

E(t) ≤ C1(L)(1 + t)−γ and E1(t) ≤ C1(L) < ∞. (2.9)

When we replace (1.4)′ by (1.4) there exists ε > 0 such that if E(0) < ε, then
the estimate (2.9) holds under the above conditions with (2.8)′ replaced by

γ >
2(4 + 2α−Nα)
4 + 6α−Nα

. (2.8)

When V is star-shaped we can replace γ by γ = α + 2/(qα + q + α) −N and the
condition (2.8)′ by

γ ≡ α + 2
qα + q + α

−N

> max
{

2(4 + 2α−Nα)
4 + 6α−Nα

, pN min
{

α + 2
2(qα + q + α)

− N − 1
2

}}
. (2.6)

Remark 2.2. We note that the conditions in Theorems 2.2, 2.3 are satisfied
if α, p, q are all small.
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Remark 2.3. If g(u) = k0u, k0 > 0, linear, the estimates for E(t) in The-
orems are valid without any conditions on γ. The result is still valid even for
Ω = RN , N = 1, 2.

We use the following lemma concerning a difference inequality which is a
generalization of the inequality considered in [9].

Lemma 2.1. Let φ(t) be a nonincreasing continuous function defined on
[0, T ) satisfying

φ(t) ≤
m∑

i=1

C
1/(1+ri)
i (1 + t)θi/(1+ri)(φ(t)− φ(t + 1))1/(1+ri), 0 ≤ t < T,

with some Ci > 0, 0 ≤ θi < 1 and ri > 0, i = 1, . . . , m. Then we have

φ(t) ≤ M

(
1 +

m∑

i=1

C
1/ri

i

)
(1 + t)−γ , 0 ≤ t < T, (2.9)

where M is a constant depending only on φ(0) and the exponent γ > 0 is given by
γ = mini=1,...,m{(1− θi)/ri}.

When 0 ≤ θi ≤ 1, i = 1, . . . , m, and θi = 1 for some i we have, instead of
(2.9), that

φ(t) ≤ M̃{log(2 + t)}−γ̃ , (2.10)

where M̃ depends on φ(0) and Ci, i = 1, . . . , m and the exponent γ̃ > 0 is given by
γ̃ = mini=1,...,m{1/ri}.

Proof. For a proof of (2.9) see [17] or [19], where the case m = 2 is proved.
The general case m ≥ 3 is essentially the same. ¤

3. A basic inequality for E(t).

In this section we derive a basic inequality on E(t) for a solution u(·) ∈ X2,loc.
We start from the following standard identities.

d

dt
E(t) +

∫

Ω

ρ(x, ut)utdx = 0, (3.1)

d

dt
(ut, η

2u) +
∫

Ω

η2(x)|∇u|2dx−
∫

Ω

η2(x)|ut|2dx

+
∫

Ω

η2(x)g(u)udx + 2
∫

Ω

∇u · ∇ηηudx +
∫

Ω

η2(x)ρ(x, ut)udx = 0 (3.2)
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and

d

dt

∫

Ω

(ut(t),h(x) · ∇u(t))dx +
1
2

∫

Ω

∇ · h(x)(|ut(t)|2 − |∇u(t)|2)dx

+
∑

i,j

∫

Ω

∂hi

∂xj

∂u

∂xi

∂u

∂xi
dx− 1

2

∫

∂Ω

h · ν
∣∣∣∣
∂u

∂ν

∣∣∣∣
2

dS +
∫

Ω

ρ(x, ut)h · ∇udx

−
∫

Ω

G(u)∇ · hdx = 0, (3.3)

where h(x) = (h1(x), . . . , hn(x)).
These identities are derived by multiplying the equation by ut, η2(x)u and

h(x) · ∇u(t), respectively. We take a function φ(r) such that

φ(r) =

{
ε0 if 0 ≤ r ≤ R + |x0|
ε0(R + |x0|)/r if r ≥ R + |x0|.

Proposition 3.1. It holds that

d

dt
χk(t) + ε1E(t) + k

∫

Ω

ρ(x, ut)utdx

≤ 1
2

∫

Γ(x0)

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

ν · φ(|x− x0|)(x− x0)dx +
∫

Ω

|ρ(x, ut)|2dx +
∫

Ω(R)c

|ut|2dx

(3.4)

for some ε1 > 0, where k > 0 is a large number and we set

χk(t) =
∫

Ω

utφ(|x− x0|)(x− x0) · ∇udx + kE(t) + m

∫

Ω

utudx (3.5)

with a constant m > 0.

Proof. The proof is rather standard (cf. [27], [13], [14], [20] etc.) and we
give an outline of it.

Combining (3.1) ×k, (3.3) with η2(x) = m = const. > 0 and (3.4) with
h(x) = x− x0 we have
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d

dt

∫

Ω

χ(t) + k

∫

Ω

ρ(x, ut)utdx +
(

Nφ(r) + φ′(r)r
2

−m

) ∫

Ω

|ut|2dx

+
(

m + φ(r)− Nφ(r) + φ′(r)r
2

) ∫

Ω

|∇u|2dx +
∫

Ω

φ′(r)((x− x0) · ∇u)2

rdx

+
∫

Ω

(
mg(u)u−G(u)(Nφ(r) + φ′(r)r)

)
dx + m

∫

Ω

ρ(x, ut)udx

=
1
2

∫

∂Ω

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

ν(x) · (x− x0)dS. (3.6)

Note that by Hyp.B, (1), and φ′(r) ≤ 0,

mg(u)u−G(u)(Nφ(r) + φ′(r)r) ≥ 2
d0

(
m− d0N

2

)
G(u), d0 < 1.

We take m > 0, k > 1 such that

max
{

d0N

2
,
N − 1

2

}
ε0 < m <

Nε0
2

< k.

Then we see that

2
d0

(
m− d0N

2

)
≥ ε1,

m− Nφ(r) + φ′(r)r
2

+ φ(r) + φ′(r)r ≥ ε1

and

l(r) +
Nφ(r) + φ′(r)r

2
−m ≥ ε1

for some ε1 > 0, where we set l(r) = 1 if r ≥ R + |x0| and l(r) = 0 if r ≤ R + |x0|.
Further, since ν(x) · φ(r)(x− x0) ≤ 0 for x ∈ Γ(x0)c ∩ ∂Ω, we see

∫

∂Ω

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

ν(x) · φ(r)(x− x0)dS ≤
∫

Γ(x0)

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

ν(x) · φ(r)(x− x0)dS. (3.7)

Thus, (3.4) follows from (3.6) and (3.7). ¤
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To control the boundary integral on the right-hand side of (3.4) we consider
a vector field h ∈ (W 1,∞(Ω))N such that

h = ν on Γ(x0), h · ν ≥ 0 on ∂Ω and h(x) = 0 on RN \ ω̃,

where ω̃ is an open set in RN such that Γ(x0) ⊂ ω̃ ∩ Ω ⊂ ω. Then, from (3.3) we
find

∫

Γ(x0)

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

dS ≤ 2
d

dt

∫

Ω

uth · ∇udx + 2
∫

ω

(|ut(t)|2 + |ρ(x, ut)|2
)
dx

+ C

∫

ω̃

(
G(u) + |∇u|2)dx. (3.8)

Further we introduce a function

η(x) =

{
1 on ω̃ ∩ Ω

0 on Ω ∩ ωc.

Then we see by (3.3),

∫

Ω∩ω̃

(|∇u|2 + g(u)u)dx

≤ − d

dt

∫

Ω

η(x)2utudx + C

∫

ω

(|u|2 + |ut|2 + |ρ(x, ut)|2
)
dx. (3.9)

From (3.4), (3.8) and (3.9) we obtain the following.

Proposition 3.2.

d

dt
χ̃k(t) + k

∫

Ω

ρ(x, ut)utdx + ε1

∫

Ω

(|ut|2 + |∇u|2 + G(u))dx

≤ C

∫

ω

(|ut|2 + |u(t)|2)dx + C

∫

Ω(R)c

|ut|2dx

+ C

∫

Ω

(|ρ(x, ut)u(t)|+ |ρ(x, ut)|2
)
dx (3.10)

where we set

χ̃k(t) = χk(t) + C(η2u, ut)− C(h · ∇u, ut).
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We note that if Ω = RN or V is star-shaped, then ω = φ, empty, and the last
two terms in the definition of χ̃k(t) can be dropped.

To control the L2 norm of u(x, t) on Ω(R) we prepare the following proposi-
tion.

Proposition 3.3. Let u(t) be a solution of (1.1)–(1.2) with E(0) ≤ R0.
Then, under Hyp.A with (1.4)′ and Hyp.B there exist T0 > independent of R0

such that if T > T0, for any ε > 0 we have

∫ t+T

t

∫

Ω(R)

|u|2dxds ≤ Cε

∫ t+T

t

( ∫

Ω

|ρ(x, ut)|2dx +
∫

ω

|ut|2dx

)
ds + εE(t),

(3.11)

with a constant Cε depending on ε and R0, where we except for the case Ω = RN ,
N = 1, 2, or V is star-shaped.

Proof. Similar inequalities are proved in [27], [28] and [11], [13], [20], and
we show an outline of the proof.

If the assertion is not true there exist {tn} and solutions {un(t)} such that

∫ tn+T

tn

∫

Ω(R)

|un(s)|2dxds

≥ n

∫ tn+T

tn

( ∫

ω

|un,t(s)|2dx +
∫

Ω

|ρ(x, un,t(t))|2
)

ds + εEn(t), (3.12)

and En(t) ≤ En(0) ≤ R0, where En(t) is defined by E(t) with u(t) replaced by
un(t). We set

∫ tn+T

tn

∫

Ω(R)

|un(s)|2dxds = λ2
n

and

un(·+ tn)/λn = vn(t), 0 ≤ t ≤ T.

If λn does not tend to 0 we may assume λ2
n ≥ ε0 > 0 for some ε0 > 0. Then

we see that {un(t + tn)} is bounded in L∞([0, T ];H1,loc(Ω))∩W 1,∞([0, T ];L2(Ω))
and, along a subsequence,

un(·+ tn) → ũ(·) strongly in L2
loc([0, T ]× Ω) and weakly∗ in L∞([0, T ];H1,loc(Ω))
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and

un,t(·+ tn) → ũt(·) weakly∗ in L∞([0, T ];L2(Ω)).

Note that

∫ T

0

∫

Ω(R)

|ũ(x, s)|2dxds ≥ ε0 > 0. (3.13)

Further,

∫ T

0

∫

ω

|un,t(s + tn)|2dxds +
∫ T

0

∫

Ω

|ρ(x, un,t(s + tn))|2dxds → 0 as n →∞

and

g(un(tn + t)) → g(ũ(t)) in L1
loc(Ω× [0, T ]) as n →∞.

Hence, the limit function ũ(t) ∈ L∞([0, T ]; Ḣ1(Ω) ∩ Lα+2(Ω)) ∩ W 1,∞([0, T ];
L2

loc(Ω)) satisfies the equation

ũtt −∆ũ + g(ũ) = 0 in Ω× (0, T ) (3.14)

and

ũt(x, t) = 0 for (x, t) ∈ ω ∪ Ω(R)c × [0, T ].

When ∂Ω ⊂ ω (see (1.4)′), we can apply the unique continuation theorem due to
Ruiz [22] (cf. Zuazua [27]) to see that there exists a certain constant T0 > 0 such
that if T > T0, u(x, t) = u(x) ≡ 0 on Ω(R)× [0, T ], which contradicts to (3.13).

If λn tends to 0 {vn(t)} defined above satisfies ‖vn,t(t)‖2 +‖∇vn(t)‖2 ≤ 2/ε <

∞ and very similar properties as un(t + tn). In particular, by the assumption
|g(un)/un| ≤ C|un|α, 0 < α ≤ 2/(N − 2)+, we see

g(un(tn + t))
λn

=
g(un)
un

vn → 0.

Hence, the limit function v ∈ L∞([0, T ];H1,loc ∩ Ḣ1(Ω)) with vt ∈ L∞([0, T ];
L2(Ω)) satisfies
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vtt −∆v = 0 in Ω× (0, T ) (3.15)

and

vt(x, t) = 0 for (x, t) ∈ ω ∪ Ω(R)c × [0, T ].

Thus by a rather simple unique continuation theorem we see that if T > T0,
vt(x, t) ≡ 0 on Ω× [0, T ], which implies v(x, t) = const. = 0 if ∂Ω is not empty or
Ω = RN , N ≥ 3. This contradicts to ‖v(t)‖L2([0,T ]×Ω(R)) = 1. ¤

Under the weaker assumption (1.4) we replace Proposition 3.3 by the follow-
ing:

Proposition 3.4. Let u(t) be a solution of (1.1)–(1.2) with E(0) ≤ R0,
satisfying additional condition

‖utt(t)‖+ ‖∇ut(t)‖ ≤ K

for some K > 0. Then, under Hyp.A with (1.4) and Hyp.B, there exist a large
T0 > 0 and a small δ > 0 such that if T > T0 and E(0) < δ, we have the estimate
(3.11) for any 0 < ε ¿ 1, where T0 is independent of R0 and K.

Proof. By the same argument as above we obtain (3.14) if λ2
n does not

tend to 0. Under the weaker assumption Γ(x0) ⊂ ω (see (1.4)) it seems difficult
to apply the unique continuation theorem by Ruiz. However, under the additional
assumption we see that ũ(t) ∈ X̃2(T ) ≡ L∞([0, T ]; Ḣ2∩Lα+2)∩W 1,∞([0, T ]; Ḣ1)∩
W 2,∞([0, T ];L2

loc(Ω)) and if E(0) < δ ¿ 1 we can use a simpler unique contin-
uation theorem (see Appendix) and conclude again ũ(x, t) ≡ 0 on Ω(R) × [0, T ],
T > T0. Thus, we have a contradiction. ¤

Remark 3.1. If α = 0 we have,instead of (3.14),

vtt −∆v + m(x, t)v = 0 in (0, T )× Ω

with m ∈ L∞((0, T )×Ω(R)). It is delicate whether we can conclude v(x, t) ≡ 0 on
[0, T ]× Ω(R) or not. When g(u) = u, linear, we see m(x, t) ≡ 1 and the assertion
holds even for the case Ω = RN , N = 1, 2.

Now, we take T, T > max{T0, 1}. Then we arrive at the following basic
inequality for E(t).

Proposition 3.5. For T > T0, we have
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χ̃k(t + T )− χ̃k(t) + k

∫ t+T

t

∫

Ω

ρ(x, ut)utdxds + ε1

∫ t+T

t

E(s)ds

≤ C

∫ t+T

t

( ∫

ω

|ut|2dx +
∫

Ω(R)c

|ut|2dx

+
∫

Ω

|ρ(x, ut)|2dx +
∫

Ω

|ρ(x, ut)||u|dx

)
ds (3.16)

where we recall

χ̃k(t) = kE(t) +
∫

Ω

ut(t)φ(r)(x− x0) · ∇u(t)dx + m

∫

Ω

ut(t)u(t)dx

+ C(η2u(t), ut(t))− C(h · ∇u(t), ut).

We note that if V is star-shaped, the last two terms appearing in the defini-
tion of χ̃k(t) should be dropped. Under the weaker condition (1.4) we assume in
addition that E(0) < δ ¿ 1 and ‖utt(t)‖+ ‖∇u(t)‖ ≤ K < ∞.

Remark 3.2. When ρ(x, ut) = a(x)ut with (1.4), linear, we can show in-
stead of (3.10),

χ̂k(t + T )− χ̂k(t) + k

∫ t+T

t

∫

Ω

ρ(x, ut)utdxds + ε1

∫ t+T

t

E(s)ds

≤ C

∫ t+T

t

( ∫

ω

|ut|2dx +
∫

Ω

a(x)|ut|2
)

dx, (3.10)′

where χ̂k(t) = χk(t) +
∫
Ω

a(x)|u(t)|2dx. From (3.10)′ and the fact
∫∞
0

∫
Ω

a(x)
·|ut|2dxdt ≤ E(0) < ∞ we see for a large k > 0,

∫ ∞

0

E(t)dt ≤ χ̃k(0) + C0 ≤ C0 < ∞.

Since

d

dt
{(1 + t)E(t)} = E(t) + (1 + t)

d

dt
E(t) ≤ E(t)

we obtain

E(t) ≤ C0(1 + t)−1.
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This is true for 0 < α ≤ 2/(N − 2)+, which is a new result for our semilinear wave
equation (cf. [13]).

4. Difference inequalities for E(t).

We have by (3.1),

k0

∫ t+T

t

∫

Ω(R)c

|ut(s)|q+2dxds ≤
∫ t+T

t

∫

Ω

ρ(x, ut)utdxds

= E(t)− E(t + T ) ≡ D(t)2 (4.1)

and

∫ t+T

t

∫

Ω(R)c

|ut(s)||u(s)|dxds

≤
( ∫ t+T

t

∫

Ω(R)c

|ut(s)|q+2dxds

)1/(q+2)

×
( ∫ t+T

t

∫

Ω(R)c

|u(s)|(q+2)/(q+1)dxds

)(q+1)/(q+2)

≤ CD(t)2/(q+2)

( ∫ t+T

t

∫

Ω(R)c

|u(s)|(q+2)/(q+1)dxds

)(q+1)/(q+2)

. (4.2)

Here, by the fact suppu(t) ⊂ B(L + t),

( ∫ t+T

t

∫

Ω(R)c

|u(s)|(q+2)/(q+1)dxds

)(q+1)/(q+2)

≤
( ∫ t+T

t

∫

Ω

|u(s)|α+2dx

)1/(α+2)( ∫

B(L+t)

1dx

)(qα+α+q)/(q+2)(α+2)

≤ C(L)(1 + t)N(qα+q+α)/(q+2)(α+2)E(t)1/(α+2).

Hence we have

∫ t+T

t

∫

Ω(R)c

|ut(s)||u(s)|dxds

≤ C(L)(1 + t)N(qα+q+α)/(q+2)(α+2)D(t)2/(q+2)E(t)1/(α+2) ≡ A1(t)2. (4.3)
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We know from (4.3) that there exist t1 ∈ [t, t + T/4], t2 ∈ [t + 3T/4, t + T ] such
that

∫

Ω(R)c

|(ut(ti), u(ti))|dx ≤ 4
T

A1(t)2, i = 1, 2. (4.4)

Thus, by Proposition 3.5 with t = t1, t + T = t2, ε = ε1/2 and (4.4) we have

ε1

∫ t2

t1

E(s)ds

≤ C

∫ t2

t1

( ∫

ω

|ut|2dx +
∫

Ω(R)c

|ut|2dx +
∫

Ω

|ρ(x, ut)|2dx +
∫

Ω

|ρ(x, ut)||u|dx

)
ds

+ 2kE(t1) + 2
∑

i=1,2

{ ∫

Ω

|ut(ti)φ(r)(x− x0) · ∇u(ti)|dx

+ C|(h · ∇u(ti), ut(ti))|
}

+ m
∑

i=1,2

{ ∫

Ω

|ut(ti)u(ti)|dx + C(η2u(ti), ut(ti))
}

≤ C

∫ t2

t1

( ∫

ω

|ut|2dx +
∫

Ω(R)c

|ut|2dx +
∫

Ω

|ρ(x, ut)|2dx +
∫

Ω

|ρ(x, ut)||u|dx

)
ds

+
5
2
kE(t1) + CA1(t)2 + C

∑

i=1,2

∫

Ω(R)

|ut(ti)||u(ti)|dx (4.5)

for a large k > 0.
Further, if ∂Ω 6= φ we see, by Poincare’s inequality,

C
∑

i=1,2

∫

Ω(R)

|ut(ti)u(ti)|dx ≤ C
∑

i=1,2

‖ut(ti)‖‖∇u(ti)‖ ≤ CE(t1) (4.6)

and if Ω = RN , N ≥ 3,

C
∑

i=1,2

∫

Ω(R)

|ut(ti)u(ti)|dx ≤ C‖ut(ti)‖
{ ∫

Ω

|u(ti)|2N/(N−2)dx

}(N−2)/2N

≤ C
∑

i=1,2

‖ut(ti)‖‖∇u(ti)‖ ≤ CE(t1). (4.6)′
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Moreover,

3kE(t1) = 3kE(t2) + 3k

∫ t2

t1

∫

Ω

ρ(x, ut)utdxds

≤ 3k

t2 − t1

∫ t2

t1

E(s)ds + 3kD(t)2

≤ ε1
2

∫ t2

t1

E(s)ds + 3kD(t)2 (4.7)

where we take further T > 3kε−1
1 . Then, we have from (4.5), (4.6) (or (4.6)′) and

(4.7) that

∫ t2

t1

E(s)ds ≤ C
(
I1 + I2 + I3 + D(t)2 + A1(t)2

)
(4.8)

where we set

I1 = C

∫ t+T

t

( ∫

ω

|ut|2dx +
∫

Ω(R)c

|ut|2dx

)
ds,

I2 = C

∫ t+T

t

∫

Ω

|ρ(x, ut)|2dxds

and

I3 = C

∫ t+T

t

∫

Ω

|ρ(x, ut)||u|dxds.

(For the definition of A1(t)2 see (4.3).)
Further we see from (3.1) that

E(t) ≤ E(t2) +
∫ t+T

t

∫

Ω

ρ(x, ut)utdxds ≤ 1
T

∫ t2

t1

E(s)ds + D(t)2

and hence, recalling the definition of A1(t)2,

E(t) ≤ C(I1 + I2 + I3 + D(t)2)

+ C(L)(1 + t)N(qα+q+α)/(q+2)(α+1)D(t)2(α+2)/(q+2)(α+1). (4.9)
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Our task is to estimate the terms Ii, i = 1, 2, 3. For this we introduce the following
notations:

Ω1(t) = {x ∈ Ω | |ut(x, t)| ≤ 1}, Ω2(t) = {x ∈ Ω | |ut(x, t)| ≥ 1},
ωi(t) = Ωi(t) ∩ ω, i = 1, 2,

and

Ωi(t, R) = Ωi(t) ∩B(R), i = 1, 2.

Then,

I1 ≤ C

( ∫ t+T

t

∫

ω1(s)

|ut|r+2dxds

)2/(r+2)

+ C

∫ t+T

t

∫

ω2(s)

|ut|p+2dxds

+ C(L)(1 + t)Nq/(q+2)

( ∫ t+T

t

∫

Ω(R)c

|ut|q+2dxds

)2/(q+2)

≤ C
(
D(t)4/(r+2) + D(t)2 + C(L)(1 + t)Nq/(q+2)D(t)4/(q+2)

)
. (4.10)

I2 ≤ C

∫ t+T

t

∫

Ω1(s,R)

a(x)|ut|2(r+1)dxds + C

∫ t+T

t

∫

Ω2(s,R)

a(x)|ut|2(p+1)dxds

+ C

∫ t+T

t

∫

Ω(R)c

|ut|2(q+1)dxds

≤ C

∫ t+T

t

∫

Ω1(s,R)

a(x)|ut|r+2dxds

+ C

∫ t+T

t

( ∫

Ω2(s,R)

a(x)|ut|p+2dx

)2(p+1)(1−θ1)/(p+2)

‖ut(s)‖2(p+1)θ1
β ds

+ C

∫ t+T

t

( ∫

Ω(R)c

|ut|q+2dx

)2(q+1)(1−θ2)/(q+2)

‖∇ut(s)‖2(q+1)θ2
β ds

where β = 2N/(N − 2)+ and

θ1 =
Np

(p + 1)(2N − (p + 2)(N − 2)+)

and
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θ2 =
Nq

(q + 1)(2N − (q + 2)(N − 2)+)
.

(A trivial modification is needed if N = 2.) Hence, by Gagliardo-Nirenberg in-
equality and the definition of D(t)2, we see

I2 ≤ CD(t)2 + CD(t)4(p+1)(1−θ1)/(p+2)E(t)(p+1)θ1(1−θ̃)‖∇ut(s)‖2(p+1)θ1θ̃

+ CD(t)4(q+1)(1−θ2)/(q+2)E(t)(q+1)θ2(1−θ̃)‖∇ut(s)‖2(q+1)θ2θ̃ (4.11)

where

θ̃ = (1/2− 1/β)N =





1 if N ≥ 3,

1− δ, 0 < δ ¿ 1, if N = 2,

1/2 if N = 1.

Finally,

I3 ≤ C

∫ t+T

t

( ∫

Ω1(s,R)

a(x)|ut|r+1|u|dx

+
∫

Ω2(s,R)

a(x)|ut|p+1|u|dx +
∫

Ω(R)c

|ut|q+1|u|dx

)
ds

≡ I3,1 + I3,2 + I3,3. (4.12)

Here, we see

I3,1 ≤ C

( ∫ t+T

t

∫

Ω1(s,R)

a(x)|ut|2(r+1)dxds

)1/2( ∫ t+T

t

∫

Ω1(s,R)

|u|2dxds

)1/2

≤ C

( ∫ t+T

t

∫

Ω1(s,R)

a(x)|ut|r+2dxds

)1/2( ∫ t+T

t

∫

Ω(R)

|u|2dxds

)1/2

≤ CD(t)
( ∫ t+T

t

∫

Ω(R)

|u|2dxds

)1/2

. (4.13)

Further,
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( ∫

Ω(R)

|u|2dx

)1/2

≤ C

( ∫

Ω(R)

|u|2N/(N−2)dx

)(N−2)/2N

≤ C‖∇u(t)‖ ≤ C
√

E(t) if N ≥ 3.

When ∂Ω 6= φ the result is also true for the case N = 1, 2 due to Poincare’s
inequality. (When α = 0 the inequality ‖u(t)‖ ≤ C

√
E(t) is trivial even for the

case Ω = RN , N = 1, 2.)
Thus, we have from (4.13) that

I3,1 ≤ CD(t)
√

E(t). (4.14)

Similarly, we have

I3,2 ≤ C

( ∫ t+T

t

∫

Ω2(s,R)

a(x)|ut|p+2dxds

)(p+1)/(p+2)

×
( ∫ t+T

t

∫

Ω(R)

|u|p+2dxds

)1/(p+2)

≤ CD(t)2(p+1)/(p+2)
√

E(t). (4.15)

The treatment of the term I3,3 is a little more delicate and we need the fact
suppu(t) ⊂ B(L + t). We see

I3,3 ≤ C

( ∫ t+T

t

∫

Ω(R)c

|ut|q+2dxds

)(q+1)/(q+2)( ∫ t+T

t

∫

Ω(R)c

|u|q+2dxds

)1/(q+2)

.

Here, if α ≥ q,

∫

Ω(R)c

|u|q+2dx ≤
( ∫

B(L+t)

|u|α+2dx

)(q+2)/(α+2)( ∫

B(L+t)

1dx

)(α−q)/(α+2)

≤ C(L)(1 + t)N(α−q)/(α+2)E(t)(q+2)/(α+2)

and if α ≤ q,

∫

Ω(R)c

|u|q+2dx ≤ C‖u(t)‖(q+2)(1−θ3)
α+2 ‖∇u(t)‖(q+2)θ3

≤ CE(t)(q+2)(2+αθ3)/2(α+2)
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with

θ3 =
1/(α + 2)− 1/(q + 2)
1/N + 1/(α + 2)− 1/2

=
2N(q − α)

(q + 2)(4 + 2α−Nα)
.

Hence we have

I3,3 ≤ C(L)D(t)2(q+1)/(q+2)E(t)1/(α+2)w(t) (4.16)

where we set

w(t) =

{
(1 + t)N(α−q)/(α+2)(q+2) if α ≥ q,

E(t)Nα(q−α)/(α+2)(q+2)(4+2α−Nα) if α ≤ q.

Summarizing above we obtain from (4.9) that

E(t) ≤ C
(
D(t)4/(r+2) + D(t)2

)
+ C(L)(1 + t)Nq/(q+2)D(t)4/(q+2)

+ CD(t)4(p+1)(1−θ1)/(p+2)E(t)(p+1)θ1(1−θ̃)‖∇ut(s)‖2(p+1)θ1θ̃

+ CD(t)4(q+1)(1−θ2)/(q+2)E(t)(q+1)θ2(1−θ̃)‖∇ut(s)‖2(q+1)θ2θ̃

+ C(D(t) + D(t)2(p+1)/(p+2))
√

E(t) + C(L)D(t)2(q+1)/(q+2)E(t)1/(α+2)w(t)

+ C(L)(1 + t)N(qα+q+α)/(q+2)(α+1)D(t)2(α+2)/(q+2)(α+1). (4.17)

Noting that

w(t)(α+2)/(α+1) ≤ C0(L)(1 + t)N(qα+q+α)/(q+2)(α+1)

and absorbing
√

E(t) appearing in the right-hand side of (4.16) into the left-hand
side we arrive at the difference inequality for E(t).

Proposition 4.1.

E(t) ≤ C
(
D(t)4/(r+2) + D(t)2 + D(t)4(p+1)/(p+2)

)
+ C(L)(1 + t)Nq/(q+2)D(t)4/(q+2)

+ CD(t)4(p+1)(1−θ1)/(p+2)E(t)(p+1)θ1(1−θ̃)‖∇ut(s)‖2(p+1)θ1θ̃

+ CD(t)4(q+1)(1−θ2)/(q+2)E(t)(q+1)θ2(1−θ̃)‖∇ut(s)‖2(q+1)θ2θ̃

+ C0(L)(1 + t)N(qα+q+α)/(q+2)(α+1)D(t)2(α+2)/(q+2)(α+1), (4.18)
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where we recall

θ1 =
Np

(p + 1)(2N − (p + 2)(N − 2)+)
, θ2 =

Nq

(q + 1)(2N − (q + 2)(N − 2)+)

and

θ̃ = (1/2− 1/β)N =





1 if N ≥ 3,

1− δ, 0 < δ ¿ 1, if N = 2,

1/2 if N = 1.

When Ω = RN or V is star-shaped the term D(t)4/(r+2) in (4.18) should be
dropped.

5. Proof of Theorem 2.1.

We assume p = q = 0. Then θ1 = θ2 = 0 and (4.17) is reduced to the simple
difference inequality

E(t) ≤ (
C0D(t)4/(r+2) + C0(L)(1 + t)Nα/2(α+1)D(t)(α+2)/(α+1)

)
. (5.1)

Applying Lemma 2.1 to (5.1) we have

E(t) ≤ C0(L)(1 + t)−γ if (N − 1)α < 2 (5.2)

with γ = min{2/r, 2/α + 1−N} and

E(t) ≤ C0(L)(log(2 + t))−N if α = 2/(N − 1). (5.3)

When Ω = RN or V is star-shaped the term D(t)4/(r+2) is ignored and we have
the estimate (5.2) with γ = 2/α + 1−N and also (5.4).

6. Proof of Theorems 2.2, 2.3.

We employ a ‘loan’ method. Since D(t) ≤ C0 < ∞ (4.18) is reduced to a
little simpler form
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E(t) ≤ C0(L)
{
D(t)4/(r+2) + (1 + t)N(qα+q+α)/(q+2)(α+1)D(t)2(α+2)/(q+2)(α+1)

}

+ CD(t)4(p+1)(1−θ1)/(p+2)E(t)(p+1)θ1(1−θ̃)‖∇ut(s)‖2(p+1)θ1θ̃

+ CD(t)4(q+1)(1−θ2)/(q+2)E(t)(q+1)θ2(1−θ̃)‖∇ut(s)‖2(q+1)θ2θ̃. (6.1)

We fix T such that T > 4T0 and take any T̃ > T > 4T0. We assume for a moment
that

‖utt(t)‖+ ‖∇ut(t)‖ ≤ K, 0 ≤ t ≤ T̃ + T. (6.2)

In fact, this is true for 0 ≤ t ≤ T̃ +T if we choose a large K = K(T̃ ) À 1. We must
show that K can be chosen independently of T̃ . Anyway, under the assumption
of (6.2) we have from (6.1) that

E(t) ≤ C0(L)
{
D(t)4/(r+2) + (1 + t)N(qα+q+α)/(q+2)(α+1)D(t)2(α+2)/(q+2)(α+1)

+ CK2(p+1)θ1θ̃D(t)4(p+1)(1−θ1)/(p+2)E(t)(p+1)θ1(1−θ̃)

+ CK2(q+1)θ2θ̃D(t)4(q+1)(1−θ2)/(q+2)E(t)(q+1)θ2(1−θ̃)
}
,

0 ≤ t ≤ T̃ + T. (6.3)

First we consider the case N ≥ 3. Then,

θ1 = Np/(p + 1)(4 + 2p−Np), θ2 = Nq/(q + 1)(4 + 2q −Nq) and θ̃ = 1.

Hence we have from (6.3) that

E(t) ≤ C0(L)
{
D(t)4/(r+2) + (1 + t)N(qα+q+α)/(q+2)(α+1)D(t)2(α+2)/(q+2)(α+1)

+ K2Np/(4+2p−Np)D(t)4(2+2p−Np)/(4+2p−Np)

+ K2Nq/(4+2q−Nq)D(t)4(2+2q−Nq)/(4+2q−Nq)
}
. (6.4)

Applying Lemma 2.2 to (6.4) we can derive the decay estimate for E(t) which is
stated as follows:

Proposition 6.1. Let K À 1 and assume

‖utt(t)‖+ ‖∇ut(t)‖ ≤ K, 0 ≤ t < T̃ + T.
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Then, if 3 ≤ N < (α + 2)/(qα + q + α), we have

E(t) ≤ C0(L)K2N/(N−2)(1 + t)−γ , 0 ≤ t ≤ T̃ + T (6.5)

with

γ = min
{

2
r
,

α + 2
qα + q + α

−N,
2(2 + 2p−Np)

(N − 2)p
,
2(2 + 2q −Nq)

(N − 2)q

}
.

When Ω = RN or V is star-shaped we can drop 2/r in the definition of γ.

Next we consider the case N = 1, 2. Then we see θ1 = p/2(p + 1), θ2 =
q/2(q + 1), and using the fact E(t) ≤ E(0) we have

E(t) ≤ C0(L)
{
D(t)4/(r+2) + (1 + t)(qα+q+α)/(q+2)(α+1)D(t)2(α+2)/(q+2)(α+1)

}

+ C
{
Kpθ̃D(t)2E(t)p(1−θ̃)/2 + Kqθ̃D(t)2E(t)q(1−θ̃)/2

}

≤ C0(L)
{
D(t)4/(r+2) + (1 + t)(qα+q+α)/(q+2)(α+1)D(t)2(α+2)/(q+2)(α+1)

+ Kpθ̃D(t)2(1−ν) + Kqθ̃D(t)2(1−ν)
}

(6.6)

with any 0 ≤ ν < 1. Applying Lemma 2.1 we have the following estimates.

Proposition 6.2. Let K À 1 and assume

‖utt(t)‖+ ‖∇ut(t)‖ ≤ K, 0 ≤ t ≤ T̃ + T.

Further assume that N = 1, 2 and N < (α + 2)/(qα + q + α). Then we have

E(t) ≤ C0(L)Km(1 + t)−γ , 0 ≤ t ≤ T̃ + T (6.7)

with

m = pθ̃ν−1 and γ = min
{

2
r
,

α + 2
qα + q + α

−N,
1− ν

ν

}
,

where ν, 0 < ν < 1, is arbitrary. (2/r can be dropped when V is star-shaped or
Ω = RN .)

We shall choose ν as
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1− ν

ν
= min

{
2
r
,

α + 2
qα + q + α

−N

}
,

that is,

ν = max
{

r

r + 2
,

qα + q + α

α + 2− (N − 1)(qα + q + α)

}
.

Then we see

m = pθ̃ min
{

r + 2
r

,
α + 2

qα + q + α
− (N − 1)

}
.

By use of the estimates (6.5) and (6.7) with above m, γ we shall derive the estimate
for ‖utt(t)‖+ ‖∇ut(t)‖. We employ a similar argument as in [17], [18]. We set

E1(t) =
1
2
(‖utt(t)‖2 + ‖∇ut(t)‖2

)
.

Proposition 6.3. Assume that

E(t) ≤ CKm(1 + t)−γ , 0 ≤ t ≤ T̃ + T, (6.8)

with some m ≥ 0 and γ > 0. Assume further that there exists ε, 0 ≤ ε ≤ 1, such
that

εγ(2 + 4α−Nα)
4

> 1 if N ≥ 3 and
εγ(4 + 6α−Nα)
2(4 + 2α−Nα)

> 1 if N = 1, 2. (6.9)

Then we have

E1(t) ≤
{
C1 + C(ε)E(0)µKη

}2
, 0 ≤ t ≤ T̃ + T (6.10)

where C1 is a constant depending on ‖u0‖H2 + ‖u1‖H1 and the exponents µ, η are
given by

µ = (1− ε)/(2 + 4α + Nα),

η =

{
(N − 2)α/2 + εm(2 + 4α−Nα)/4 if N ≥ 3,

εm(4 + 6α−Nα)/2(4 + 2α−Nα) if N = 1, 2.
(6.11)
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(When N = 2, the exponent η in (6.10) should be replaced by η + δ, 0 < δ ¿ 1.)

Proof. Differentiating the equation we have formally,

uttt −∆ut + ρv(x, ut)utt = −g′(u)ut. (6.12)

Multiplying the equation by utt and integrating we have

d

dt
E1(t) ≤ C

∫

Ω

|u|α|ut||utt|dx ≤ C

( ∫

Ω

|u|2α|ut|2dx

)1/2

‖utt(t)‖2

and hence

d

dt

√
E1(t) ≤ C

( ∫

Ω

|u|2α|ut|2dx

)1/2

. (6.13)

(6.13) is valid in the distribution sense for the solutions u(·) ∈ X2,loc. Here,

∫

Ω

|u|2α|ut|2dx

≤
( ∫

Ω

|u|2N/(N−2)+dx

)(N−2)+α/N( ∫

Ω

|ut|2N/(N−(N−2)+α)dx

)(N−(N−2)+α)/N

≤ C‖u(t)‖2α(1−θ̂)
α+2 ‖∇u(t)‖2αθ̂‖ut(t)‖2(1−θ)

2 ‖∇ut(t)‖2θ
2 (6.14)

with θ = (N − 2)+α/2 and θ̂ = (2N − (α + 2)(N − 2)+)/(4 + 2α−Nα). (A trivial
modification is needed if N = 2.) Hence,

∫

Ω

|u|2α|ut|2dx ≤ CK(N−2)+αE(t)α(2+θ̂α)/(α+2)+1−θ

≤ C

{
K(N−2)αE(t)(2+4α−Nα)/2 if N ≥ 3

E(t)(4+6α−Nα)/(4+2α−Nα) if N = 1, 2.
(6.15)

We make a simple device

E(t) ≤ E(0)1−εE(t)ε, 0 ≤ ε ≤ 1.

Then, if N ≥ 3, it follows from (6.13) and (6.15) that
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√
E1(t) ≤

√
E1(0) + CK(N−2)α/2E(0)(1−ε)(2+4α−Nα)/4

∫ t

0

E(s)ε(2+4α−Nα)/4ds

≤ C1 + CE(0)µK(N−2)α/2

∫ t

0

Kεm(2+4α−Nα)/4(1 + s)−γε(2+4α−Nα)/4ds

(6.16)

for any ε, 0 ≤ ε ≤ 1. Under the assumption (6.9) we have the estimate (6.10) with
C(ε) = C/{εγ(2 + 4α−Nα)− 4}. When N = 1, 2 we have, instead of (6.16),

√
E1(t) ≤ C1 + CKεm(4+6α−Nα)/2(4+2α−Nα)

×
∫ t

0

(1 + s)−γε(4+6α−Nα)/2(4+2α−Nα)ds (6.16)′

and (6.10) follows, where C(ε) = C/{εγ(4 + 6α−Nα)− 2(4 + 2α−Nα)}. ¤

Now we are in a position to complete the proof of our Theorems 2.2 and 2.3.
We first assume (6.2), ‖utt(t)‖ + ‖∇ut(t)‖ ≤ K, 0 ≤ t ≤ T̃ + T . Then,

by Propositions 6.1, 6.2, we have the estimate (6.8), where m, γ are given as in
Propositions 6.1, 6.2, according to the case N ≥ 3 and N = 1, 2.

Assume (6.9) and take K À 1 such that K2 > 2C2
1 . Then, if E(0) is suffi-

ciently small, we have from (6.10) with ε = 1,

E1(t) ≤ 1
2
(K − ε̃)2

with some ε̃ > 0. This implies

‖utt(t)‖+ ‖∇ut(t)‖ ≤ K − ε̃ < K, 0 ≤ t ≤ T̃ + T,

and we conclude that the estimates (6.2) and (6.5) (or (6.7)) hold in fact on [0,∞).
The condition (6.9) with ε = 1 becomes

γ >
4

2 + 4α−Nα
if N ≥ 3 and γ >

2(4 + 2α−Nα)
4 + 6α−Nα

if N = 1, 2. (6.9)′

Thus, Theorems 2.2 and 2.3 are proved for the case E(0) is sufficiently small.
Next we show the estimates (6.2) and (6.5) (or (6.7)) on [0,∞) without smallness
condition on E(0). Note that (6.10) implies

‖utt(t)‖+ ‖∇ut(t)‖ ≤ C1K
η, 0 ≤ t ≤ T̃ + T. (6.10)′
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Assume that there exists ε, 0 ≤ ε ≤ 1 such that (6.9) holds and η < 1. Then we
can conclude that for a large K À 1, the estimates (6.2) and (6.5) (or (6.7)) hold
in fact on [0,∞). We first consider the case N ≥ 3. Then the required condition
is reduced to

4
γ(2 + 4α−Nα)

< ε <
2(2 + 2α−Nα)
m(2 + 4α−Nα)

for some 0 ≤ ε ≤ 1. It is easy to see that the condition is equivalent to:

4
γ(2 + 4α−Nα)

< 1

and

4
γ(2 + 4α−Nα)

<
2(2 + 2α−Nα)
m(2 + 4α−Nα)

.

Thus, the required condition is further reduced to

γ > max
{

4
2 + 4α−Nα

,
2m

2 + 2α−Nα

}
=

4N

(N − 2)(2 + 2α−Nα)
. (6.17)

Theorem 2.2 for the case without smallness condition on E(0) is now proved.
When N = 1, 2 we see by a similar argument that the required condition is

γ > max
{

2(4 + 2α−Nα)
4 + 6α−Nα

,m

}
. (6.18)

We know

m = pθ̃ min
{

r + 2
r

,
α + 2

qα + q + α
− (N − 1)

}
, θ̃ =

N

2
,

and

γ = min
{

2
r
,

α + 2
qα + q + α

−N

}
.

Hence (6.18) becomes
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min
{

2
r
,

α + 2
qα + q + α

−N

}

> max
{

2(4 + 2α−Nα)
4 + 6α−Nα

, pN min
{

r + 2
2r

,
α + 2

2(qα + q + α)
− N − 1

2

}}
. (6.20)

When V is star-shaped we replace (6.20) by

α + 2
qα + q + α

−N > max
{

2(4 + 2α−Nα)
4 + 6α−Nα

,
pN(α + 2)

2(qα + q + α)
− N − 1

2

}
. (6.20)′

Thus we have proved Theorem 2.3 for the case without smallness condition
on E(0).

Appendix.

Here we prove the following simple unique continuation theorem used in the
proof of Proposition 3.4.

Proposition A.1. We assume Hyp.B. Let u(·) ∈ X̃2(T ) ≡ L∞([0, T ]; Ḣ2 ∩
Lα+2) ∩W 1,∞([0, T ]; Ḣ1) ∩W 2,∞([0, T ];L2

loc(Ω)) be a solution of the problem

utt −∆u + g(u) = 0 in Ω× [0, T ]

with ut(x, t) = 0 on ω ∪ Ω(R)c. Then there exists T0 > 0 and ε > 0 such that if
T > T0 and E(0) < ε, we have u(x, t) ≡ 0 on Ω× [0, T ].

Proof. Set w(x, t) = ut(x, t) and wδ(x, t) = w(x, ·) ∗ ρδ(·) where ρδ(t) is a
mollifier with supp ρδ(·) ⊂ (−δ, δ), 0 < δ ¿ 1. Then wδ ∈ C([0, T ];H2(Ω(2R))) ∩
C1([0, T ];H1(2R)) is a solution of the problem

wδ,tt −∆wδ + g′(u)w ∗ ρδ(t) = 0 in Ω(2R)× [δ, T − δ]. (A.1)

Now applying the same, in fact, a simpler argument deriving (3.10) to (A.1) and
noting that wδ,t = wδ = 0 on ω ∪ Ω(R)c we have

d

dt
χ̃k(t) + ε1

∫

Ω(R)

(|wδ,t|2 + |∇wδ|2
)
dx

≤ C

∫

Ω(R)

|g′(u)w ∗ ρδ(t)|(|wδ,t|+ |wδ|)dx
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≤ C sup
t−δ≤s≤t+δ

( ∫

Ω(R)

|u|2(α+1)dx

)α/2(α+1)

sup
t−δ≤s≤t+δ

‖∇w(s)‖(‖wδ,t(t)‖+ ‖wδ(t)‖)

≤ CE(0)α/2 sup
t−δ≤s≤t+δ

‖∇w(s)‖(‖wδ,t(t)‖+ ‖wδ(t)‖), (A.2)

where χ̃k(t) is defined with u replaced by wδ (note that here in the definition of
χ̃k(t), we set E(t) = (1/2)(‖wδ,t(0)‖2 + ‖∇wδ(t)‖2)). Integrating (A.2) in t and
letting δ tend to 0 we have

χ̃k(t) + ε1

∫ T

0

∫

Ω(R)

(|wt|2 + |∇w|2)dxds

≤ χ̃k(0) + CE(0)α/2

∫ T

0

(‖wt(t)‖2 + ‖∇w(t)‖2)dt, (A.2)′

where χ̃k(t) is defined with u replaced by w. Further, by the standard energy
identity we see

sup
0≤t≤T

(‖wt(t)‖2 + ‖∇w(t)‖2)

≤ inf
0≤t≤T

(‖wt(t)‖2 + ‖∇w(t)‖2) + 2
∫ T

0

∫

Ω(R)

|g′(u)w||wt|dxdt

≤ inf
0≤t≤T

(‖wt(t)‖2 + ‖∇w(t)‖2) + CE(0)α/2

∫ T

0

(‖wt(t)‖2 + ‖∇w(t)‖2)dt.

(A.3)

It follows from (A.2)′, (A.3) and the fact χ̃k(0) ≤ C(‖wt(0)‖2 + ‖∇w(0)‖2)
that

(ε1 − CE(0)α/2)
∫ T

0

(‖wt(t)‖2 + ‖∇w(t)‖2)dt

≤ C inf
0≤t≤T

(‖wt(t)‖2 + ‖∇w(t)‖2) ≤ C
1
T

∫ T

0

(‖wt(t)‖2 + ‖∇w(t)‖2)dt. (A.4)

Thus we conclude that if E(0) is small and T is sufficiently large, then w(t) ≡
const. for 0 ≤ t ≤ T . Since w(x, t) = 0 for |x| ≥ R we have w(x, t) ≡ 0 and
hence, u(x, t) = u(x), independent of t. Returning to the original equation we see

−∆u + g(u) = 0 in Ω. (A.5)
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By the assumption E(0) < ∞ and Hyp.B we know u ∈ Ḣ1 ∩ Lα+2, and hence
(A.5) implies

‖∇u‖2 +
∫

Ω

g(u)udx ≤ 0

and we conclude u(x) ≡ 0. ¤
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