Energy decay for a nonlinear generalized Klein-Gordon equation in exterior domains with a nonlinear localized dissipative term

By Mitsuhiro Nakao

(Received Aug. 10, 2010)
(Revised Jan. 19, 2011)

Abstract

We derive an energy decay estimate for solutions to the initial-boundary value problem of a semilinear wave equation in exterior domains with a nonlinear localized dissipation. Our equation includes an absorbing term like $|u|^{\alpha} u, \alpha \geq 0$, and can be regarded as a generalized Klein-Gordon equation at least if α is closed to 0 . This observation plays an essential role in our argument.

1. Introduction.

In this paper we consider the initial-boundary value problem of the nonlinear wave equations of the form:

$$
\begin{gather*}
u_{t t}-\Delta u+\rho\left(x, u_{t}\right)+g(u)=0 \text { in } \Omega \times R^{+} \tag{1.1}\\
u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x) \text { and }\left.u(x, t)\right|_{\partial \Omega}=0 \tag{1.2}
\end{gather*}
$$

where Ω is an exterior domain in R^{N} with a smooth, say C^{2}, boundary $\partial \Omega$, that is, $\Omega=R^{N} / V$ with a compact set V in $R^{N}, \rho(x, v)$ is a function like $\rho(x, v)=$ $a(x)|v|^{r} v, 0 \leq r \leq 2 /(N-2)^{+}$, and $g(u)$ is a nonlinear term like $g(u)=k_{0}|u|^{\alpha} u$, $0 \leq \alpha \leq 2 /(N-2)^{+}, k_{0} \geq 0$. When V is empty the boundary condition should be dropped and the problem is reduced to the Cauchy problem in the whole space R^{N}. We also note that when $N=1$ and V is not empty, then $\Omega=(-\infty, a)$ or (a, ∞) for some $a \in R$.

The existence and uniqueness of global solutions to the problem (1.1)-(1.2) is standard (see, e.g., [5]), and the energy $E(t) \equiv(1 / 2)\left(\left\|u_{t}(t)\right\|^{2}+\|\nabla u(t)\|^{2}\right)+$ $\int_{\Omega} G(u(t)) d x$ is decreasing, where $\|\cdot\|$ denotes L^{2} norm in Ω and $G(u)=\int_{0}^{u} g(\eta) d \eta$. Here we are interested in the energy decay of the solutions when the effect of $\rho\left(x, u_{t}\right)$ is localized near a portion of the boundary $\partial \Omega$ and near infinity. To

[^0]explain our problem more precisely let us consider the case $\rho\left(x, u_{t}\right)=a(x)\left|u_{t}\right|^{r} u_{t}$, $0 \leq r \leq 2 /(N-2)^{+}$and $g(u)=k_{0}|u|^{\alpha} u$. We set for $x_{0} \in R^{N}$,
\[

$$
\begin{equation*}
\Gamma\left(x_{0}\right)=\left\{x \in \partial \Omega \mid\left(x-x_{0}\right) \cdot \nu(x)>0\right\} \tag{1.3}
\end{equation*}
$$

\]

where $\nu(x)$ is the outward normal vector at $x \in \partial \Omega$, which is often used in the boundary control theory in bounded domains (cf. Russell [26], Chen [2], Lions $[4]) . V$ is star-shaped with respect to x_{0} if and only if $\Gamma\left(x_{0}\right)$ is empty. We assume that $a(x)$ is a nonnegative bounded function and there exist x_{0} and a (relatively) open set $\omega \subset \bar{\Omega}$ such that

$$
\begin{equation*}
\overline{\Gamma\left(x_{0}\right)} \subset \omega \text { and } a(x) \geq \epsilon_{0}>0 \text { for } x \in \omega \cup B(R)^{c}, R \gg 1, \tag{1.4}
\end{equation*}
$$

with some ϵ_{0}, where $B(R)=\left\{x \in R^{N}| | x \mid<R\right\}$. This is now a rather standard assumption concerning localized dissipative term.

We also employ a stronger assumption

$$
\begin{equation*}
\partial \Omega \subset \omega \text { and } a(x) \geq \epsilon_{0}>0 \text { for } x \in \omega \cup B(R)^{c}, R \gg 1, \tag{1.4}
\end{equation*}
$$

where if $\Omega=R^{N}$ or V is star-shaped with respect to x_{0} we drop the condition $\partial \Omega \subset \omega$ in (1.4)' and in these cases (1.4) and (1.4)' are coincide each other.

The problem admits a unique solution $u(\cdot) \in C\left([0, \infty) ; H_{1}^{0}(\Omega)\right) \cap C^{1}([0, \infty)$; $\left.L^{2}(\Omega)\right)$ for each $\left(u_{0}, u_{1}\right) \in H_{1}^{0}(\Omega) \times L^{2}(\Omega)$. When $\rho\left(x, u_{t}\right)=a(x) u_{t}$ with $a(x) \geq$ $\epsilon_{0}>0$ on the whole domain Ω and $g(u)=u$ it is easy to show the exponential decay:

$$
\begin{equation*}
E(t) \leq C E(0) e^{-\lambda t} \tag{1.5}
\end{equation*}
$$

with some $\lambda>0$. The estimate (1.5) still holds for the case $g(u)=u+|u|^{\alpha} u$, $0 \leq \alpha \leq 2 /(N-2)^{+}$if $C E(0)$ is replaced by C_{0}, where C_{0} denotes a constant depending on $E(0)$.

In [28] Zuazua treated the case: $\Omega=R^{N}, \rho\left(x, u_{t}\right)=a(x) u_{t}$ with $a(x) \geq$ $\epsilon_{0}>0,|x|>R \gg 1$, and $g(u)=u+|u|^{\alpha} u$, and proved the exponential decay (1.5) with $C E(0)$ replaced by C_{0}. We note that the linear term u included in $g(u)$ plays an essential role in [28] and the argument is not applied to the case $g(u)=|u|^{\alpha} u$. That is, the equation treated in [28] is a semilinear Klein-Gordon equation with a linear localized dissipation near infinity. Subsequently, the present author considered in [12] the Cauchy problem for the case: $\rho\left(x, u_{t}\right)=a(x)\left|u_{t}\right|^{r} u_{t}$ with $a(x) \geq \epsilon_{0}>0$ for $|x| \geq R \gg 1$ and $g(u)=u$, and proved the estimate

$$
E(t) \leq \begin{cases}C_{1}(1+t)^{-(2-N r) / r} & \text { if } 0<r<2 / N \tag{1.6}\\ C_{1}\{\log (2+t)\}^{-N} & \text { if } r=2 / N\end{cases}
$$

where we assumed $\operatorname{supp} u(x) \cup \operatorname{supp} u_{1}(x) \subset B(L), L \gg 1$, and C_{1} denotes a constant depending on $\left\|u_{0}\right\|_{H_{2}}+\left\|u_{1}\right\|_{H_{1}}$. For the nonlocalized case $\rho\left(x, u_{t}\right)=$ $\left|u_{t}\right|^{r} u_{t}$ we know that (1.6) holds with C_{1} replaced by C_{0} (see [10]). Mochizuki and Motai [7] extended the result in [10] to the case $\operatorname{supp} u_{0}(x) \cup \operatorname{supp} u_{1}(x)$ is not compact and further proved for the case $g(u)=0$ that

$$
E(t) \leq C_{0}\{\log (2+t)\}^{-N}
$$

Further considerations have been done by Todorova and Yordanov [24], Todorova, Ugŭryu and Yordanov [25] for the case $\rho\left(x, u_{t}\right)=\left|u_{t}\right|^{r} u_{t}$ and $g(u)=0$. See also Motai [8], Nakao and Ono [21], Matsuyama [6] and Sunagawa [23] for related topics.

Quite recently we have considered in [19] the Cauchy problem for the case like $\rho\left(x, u_{t}\right)=\left|u_{t}\right|^{r} u_{t}, 0 \leq r \leq 2 /(N-2)^{+}$, and $g(u)=|u|^{\alpha} u, 0 \leq \alpha \leq 2 /(N-2)^{+}$. The result in [19] is stated as follows:

$$
E(t) \leq \begin{cases}C_{1}(1+t)^{-\eta} & \text { if } \eta>0 \tag{1.7}\\ C_{1} \log (2+t)^{-N} & \text { if } \eta=0\end{cases}
$$

where we set $\eta=(\alpha+2) /(\alpha+r+\alpha r)-N$. The idea in [19] is to consider the equation as a nonlinear generalized Klein-Gordon equation. In earlier papers [13], [20] we also considered the usual wave equation without mass term u under linear or half-linear localized dissipations and derived some decay estimates of the energy, but, to our knowledge, no result is known for the case of nonlinear localized case: $\rho\left(x, u_{t}\right)=a(x)\left|u_{t}\right|^{r} u_{t}$ and $g(u) \equiv 0$. Thus concerning the energy decay problem for the equation (1.1)-(1.2) we can not regard the term $g(u)$ as a perturbation of the wave equation. In other words, any decay estimate of energy is not known for the problem (1.1)-(1.2) even for small amplitude solutions.

The object of this paper is to combine the idea in [19] with the arguments in [28], $[\mathbf{1 2}],[\mathbf{1 3}],[\mathbf{2 0}]$ to derive some decay estimates of the energy for the problem (1.1)-(1.2) where $\rho\left(x, u_{t}\right)$ is a nonlinear localized dissipation and $g(u)$ is a nonlinear absorbing term. See also [16] where the existence of global attractors is discussed for a related problem in exterior domains. We also use some ideas in our recent papers $[\mathbf{1 1}],[\mathbf{1 4}],[\mathbf{1 5}],[\mathbf{1 8}]$ where the problems related to (1.1)-(1.2) in bounded domains have been considered. Quite recently, Aloui, Ibrahim and Nakanishi [1] have proved an exponential decay for the semilinear Klein-Gordon equation in
a domain exterior to a star-shaped obstacle with a linear localized dissipation $\rho\left(x, u_{t}\right)=a(x) u_{t}$ and an arbitrary order nonlinearity $g(u)=u+f(u)$ by use of Morawetz space-time integral estimate. It seems difficult to apply the method in [1] to the case where $\rho\left(x, u_{t}\right)$ is nonlinear.

2. Preliminaries.

We use only familiar function spaces, and their definitions are omitted. We denote by $\|\cdot\|_{p}$ the L^{p} norm on Ω. We set $\Omega(R) \equiv \Omega \cap B(R)$. By use of a function $a(x)$ satisfying (1.4) or (1.4)' we make the following assumption on $\rho(x, v)$.

Hyp.A. $\quad \rho(x, v)$ is measurable in $x \in \Omega$ for any $v \in \boldsymbol{R}$ and Lipschitz continuous in v for a.e. $x \in \Omega$ with $\rho_{v}(x, v) \geq 0$, and satisfies:

$$
\begin{align*}
k_{0} a(x)|v|^{r+2} \leq \rho(x, v) v \leq k_{1} a(x)|v|^{r+2} \tag{1}\\
\text { if }|v| \leq 1 \text { and } x \in \Omega(R), R \gg 1
\end{align*}
$$

with some $k_{0}, k_{1}>0$ and $r, 0 \leq r<\infty$.
(2)

$$
k_{0} a(x)|v|^{p+2} \leq \rho(x, v) v \leq k_{1} a(x)|v|^{p+2} \text { if }|v| \geq 1 \text { and } x \in \Omega(R), R \gg 1
$$

with some $k_{0}, k_{1}>0$ and $p, 0 \leq p \leq 2 /(N-2)^{+}$.
(3)

$$
k_{0}|v|^{q+2} \leq \rho(x, v) v \leq k_{1}|v|^{q+2} \quad \text { if } x \in B(R)^{c}, R \gg 1,
$$

with $k_{0}, k_{1}>0$ and $0 \leq q \leq 2 /(N-2)^{+}$.
A typical example is $\rho(x, v)=a(x)|v|^{r} v$ which satisfies Hyp.A with $p=q=r$. Assume that $a(x)=0$ for $R-1 \leq|x| \leq R, R \gg 1$. Then a little more complicate example is $\rho(x, v)=\phi(x) a(x) \min \left\{|v|^{r},|v|^{p}\right\} v+(1-\phi(x)) a(x)|v|^{q} v$ where we assume $0 \leq p \leq r$ and $\phi(x)$ is a function such that $0 \leq \phi(x) \leq<1$ with $\phi(x)=0$ for $|x|>R, R \gg 1$, and $\phi(x)=1$ for $|x|<R-1$. We could divide the assumption (3) in two cases $|v| \leq 1$ and $|v| \geq 1$ as in (1), (2). Then more general examples would satisfy the conditions. However, to make the essential feature of the argument clear we employ the assumption (3).

Hyp.B. $\quad g(u)$ is a Lipschitz continuous function on R satisfying:

$$
\begin{equation*}
g(0)=0, \quad k_{0}|u|^{\alpha+2} \leq G(u) \leq \frac{d_{0}}{2} g(u) u \tag{1}
\end{equation*}
$$

with some $k_{0}>0$ and $d_{0}, 0<d_{0}<1$, where $G(u)=\int_{0}^{u} g(\eta) d \eta$, and (2)

$$
\left|g^{\prime}(u)\right| \leq k_{2}|u|^{\alpha}
$$

with some $k_{2}>0$ and $0 \leq \alpha \leq 2 /(N-2)^{+}$.
A typical example of $g(u)$ is $g(u)=|u|^{\alpha} u$ with $0<\alpha \leq 2 /(N-2)^{+}$. Let us define $g(u)$ in the following way: $g(u)=|u|^{\alpha} u$ if $|u| \leq R_{1}, g(u)=R_{1}^{\alpha-\beta}|u|^{\beta} u$ if $R_{1} \leq|u| \leq R_{2}$ and $g(u)=\left(R_{1} / R_{2}\right)^{\alpha-\beta}|u|^{\alpha} u$ if $|u| \geq R_{2}$, where $\alpha, \beta>0$ and $0<R_{1}<R_{2}$. This is another simple example. It is clear that we can consider $g(x, u)$ for $g(u)$, and also we could make a more general assumption on $g(u)$ so that the examples $g(u)=|u|^{\alpha} u+|u|^{\beta} u, g(u)=\max \left\{|u|^{\alpha},|u|^{\beta}\right\} u$ may be included. However we employ Hyp.B to avoid inessential difficulties.

Throughout the paper we assume further that

$$
\begin{equation*}
\operatorname{supp} u_{0}(\cdot) \cup \operatorname{supp} u_{1}(\cdot) \subset B(L) \tag{2.1}
\end{equation*}
$$

with some $L \gg 1$. It is well known that under Hyp.A and Hyp.B the problem (1.1)-(1.2) admits a unique solution $u(\cdot) \in X_{2, l o c} \equiv L_{\text {loc }}^{\infty}\left([0, \infty) ; H_{2}\right) \cap$ $W_{\text {loc }}^{1, \infty}\left([0, \infty) ; H_{1}^{0}\right) \cap W^{2, \infty}\left([0, \infty) ; L^{2}\right)$ for each $\left(u_{0}, u_{1}\right) \in H_{2} \cap H_{1}^{0} \times H_{1}^{0}$ and further it satisfies

$$
\begin{equation*}
\operatorname{supp} u(t, \cdot) \subset B(L+t) \tag{2.2}
\end{equation*}
$$

(See John [3].) By density argument we see that the problem admits a unique solution $u(\cdot) \in C\left([0, \infty) ; H_{1}^{0}\right) \cap C^{1}\left([0, \infty) ; L^{2}\right)$ with $\int_{0}^{\infty} \int_{\Omega} \rho\left(x, u_{t}\right) u_{t} d x d s \leq E(0)$ for each $\left(u_{0}, u_{1}\right) \in H_{1}^{0} \times L^{2}$ and (2.2) is also valid if (2.1) holds.

Our first result on energy decay reads as follows.
Theorem 2.1. We assume that $\partial \Omega$ is not empty or $\Omega=R^{N}, N \geq 3$. Assume Hyp.A under (1.4)' with $p=q=0$ and Hyp.B. We assume further $0<$ $\alpha \leq 2 /(N-1)$. Then, for a solution $u(\cdot) \in C\left([0, \infty) ; H_{1}^{0}\right) \cap C^{1}\left([0, \infty) ; L^{2}\right)$ we have:

$$
\begin{equation*}
E(t) \leq C_{0}(L)(1+t)^{-\gamma} \quad \text { if } 0<\alpha<2 /(N-1) \tag{2.3}
\end{equation*}
$$

with $\gamma=\min \{2 / r, 2 / \alpha+1-N\}$, and

$$
\begin{equation*}
E(t) \leq C_{0}(L)(\log (2+t))^{-N} \quad \text { if } \quad \alpha=2 /(N-1) \tag{2.4}
\end{equation*}
$$

where $C_{0}(L)$ denotes constants depending on $E(0)$ and L. When $\Omega=R^{N}, N \geq 3$, or V is star-shaped the above results hold with $\gamma=2 / \alpha+1-N$.

Remark 2.1. When $g(u)=k_{0} u, k_{0}>0$, linear, the above result holds also for $\alpha=0$. In this case we see $\gamma=2 / r$, and if further $r=0$, we have the usual exponential decay $E(t) \leq C_{0} e^{-\lambda t}$ for some $\lambda>0$. This exponential decay estimate is also true even if $r>0$ when V is star-shaped or $\Omega=R^{N}, N \geq 3$. If $g(u)$ is nonlinear and $\alpha=0$ the result is delicate (cf. [27]).

When $p>0$ and/or $q>0$ in Hyp.A, (2), the result becomes more complicated. We set

$$
E_{1}(t)=\frac{1}{2}\left(\left\|u_{t t}(t)\right\|^{2}+\left\|\nabla u_{t}(t)\right\|^{2}\right) .
$$

Theorem 2.2. Let $N \geq 3$ and assume Hyp. A under (1.4)' with $p>0$ and/or $q>0$ and Hyp.B. We make the assumptions on α, r, p and q such that

$$
\begin{equation*}
\frac{\alpha+2}{q \alpha+q+\alpha}>N \tag{2.5}
\end{equation*}
$$

and

$$
\begin{align*}
\gamma & \equiv \min \left\{\frac{2}{r}, \frac{\alpha+2}{q \alpha+q+\alpha}-N, \frac{2(2+2 p-N p)}{(N-2) p}, \frac{2(2+2 q-N q)}{(N-2) q}\right\} \\
& >\frac{4 N}{(N-2)(2+2 \alpha-N \alpha)} \tag{2.6}
\end{align*}
$$

Then, for a solution $u(\cdot) \in X_{2, \text { loc }}$ we have

$$
\begin{equation*}
E(t) \leq C_{1}(L)(1+t)^{-\gamma} \text { and } E_{1}(t) \leq C_{1}(L)<\infty \tag{2.7}
\end{equation*}
$$

where $C_{1}(L)$ denotes constants depending on $\left\|u_{0}\right\|_{H_{2}}+\left\|u_{1}\right\|_{H_{1}}$ and L.
When we replace the condition (1.4)' by (1.4) there exists $\epsilon>0$ such that if $E(0) \leq \epsilon$, then the estimate (2.7) holds under the conditions (2.5) and

$$
\begin{equation*}
\gamma>\frac{4}{2+4 \alpha-N \alpha} \tag{2.6}
\end{equation*}
$$

When $\Omega=R^{N}$ or V is star-shaped above results hold with γ replaced by

$$
\gamma=\min \left\{\frac{\alpha+2}{q \alpha+q+\alpha}-N, \frac{2(2+2 p-N p)}{(N-2) p}, \frac{2(2+2 q-N q)}{(N-2) q}\right\} .
$$

We note that the condition (2.6) is weaker than $(2.6)^{\prime}$.
Theorem 2.3. We assume $N=1,2$ and $\partial \Omega \neq \phi$. Assume Hyp.A under $(1.4)^{\prime}$ with $p>0$ and/or $q>0$ and Hyp.B. We make the assumptions on α, r, p and q such that

$$
\frac{\alpha+2}{q \alpha+q+\alpha}>N
$$

and

$$
\begin{align*}
\gamma & \equiv \min \left\{\frac{2}{r}, \frac{\alpha+2}{q \alpha+q+\alpha}-N\right\} \\
& >\max \left\{\frac{2(4+2 \alpha-N \alpha)}{4+6 \alpha-N \alpha}, p N \min \left\{\frac{r+2}{2 r}, \frac{\alpha+2}{2(q \alpha+q+\alpha)}-\frac{N-1}{2}\right\}\right\} . \tag{2.8}
\end{align*}
$$

Then, for a solution $u(\cdot) \in X_{2, \text { loc }}$ we have:

$$
\begin{equation*}
E(t) \leq C_{1}(L)(1+t)^{-\gamma} \text { and } E_{1}(t) \leq C_{1}(L)<\infty . \tag{2.9}
\end{equation*}
$$

When we replace (1.4)' by (1.4) there exists $\epsilon>0$ such that if $E(0)<\epsilon$, then the estimate (2.9) holds under the above conditions with (2.8)' replaced by

$$
\begin{equation*}
\gamma>\frac{2(4+2 \alpha-N \alpha)}{4+6 \alpha-N \alpha} \tag{2.8}
\end{equation*}
$$

When V is star-shaped we can replace γ by $\gamma=\alpha+2 /(q \alpha+q+\alpha)-N$ and the condition (2.8)' by

$$
\begin{align*}
\gamma & \equiv \frac{\alpha+2}{q \alpha+q+\alpha}-N \\
& >\max \left\{\frac{2(4+2 \alpha-N \alpha)}{4+6 \alpha-N \alpha}, p N \min \left\{\frac{\alpha+2}{2(q \alpha+q+\alpha)}-\frac{N-1}{2}\right\}\right\} . \tag{2.6}
\end{align*}
$$

Remark 2.2. We note that the conditions in Theorems 2.2, 2.3 are satisfied if α, p, q are all small.

Remark 2.3. If $g(u)=k_{0} u, k_{0}>0$, linear, the estimates for $E(t)$ in Theorems are valid without any conditions on γ. The result is still valid even for $\Omega=R^{N}, N=1,2$.

We use the following lemma concerning a difference inequality which is a generalization of the inequality considered in [9].

Lemma 2.1. Let $\phi(t)$ be a nonincreasing continuous function defined on $[0, T)$ satisfying

$$
\phi(t) \leq \sum_{i=1}^{m} C_{i}^{1 /\left(1+r_{i}\right)}(1+t)^{\theta_{i} /\left(1+r_{i}\right)}(\phi(t)-\phi(t+1))^{1 /\left(1+r_{i}\right)}, \quad 0 \leq t<T,
$$

with some $C_{i}>0,0 \leq \theta_{i}<1$ and $r_{i}>0, i=1, \ldots, m$. Then we have

$$
\begin{equation*}
\phi(t) \leq M\left(1+\sum_{i=1}^{m} C_{i}^{1 / r_{i}}\right)(1+t)^{-\gamma}, \quad 0 \leq t<T \tag{2.9}
\end{equation*}
$$

where M is a constant depending only on $\phi(0)$ and the exponent $\gamma>0$ is given by $\gamma=\min _{i=1, \ldots, m}\left\{\left(1-\theta_{i}\right) / r_{i}\right\}$.

When $0 \leq \theta_{i} \leq 1, i=1, \ldots, m$, and $\theta_{i}=1$ for some i we have, instead of (2.9), that

$$
\begin{equation*}
\phi(t) \leq \tilde{M}\{\log (2+t)\}^{-\tilde{\gamma}}, \tag{2.10}
\end{equation*}
$$

where \tilde{M} depends on $\phi(0)$ and $C_{i}, i=1, \ldots, m$ and the exponent $\tilde{\gamma}>0$ is given by $\tilde{\gamma}=\min _{i=1, \ldots, m}\left\{1 / r_{i}\right\}$.

Proof. For a proof of (2.9) see $[\mathbf{1 7}]$ or $[\mathbf{1 9]}$, where the case $m=2$ is proved. The general case $m \geq 3$ is essentially the same.

3. A basic inequality for $E(t)$.

In this section we derive a basic inequality on $E(t)$ for a solution $u(\cdot) \in X_{2, l o c}$. We start from the following standard identities.

$$
\begin{align*}
& \frac{d}{d t} E(t)+\int_{\Omega} \rho\left(x, u_{t}\right) u_{t} d x=0 \tag{3.1}\\
& \frac{d}{d t}\left(u_{t}, \eta^{2} u\right)+\int_{\Omega} \eta^{2}(x)|\nabla u|^{2} d x-\int_{\Omega} \eta^{2}(x)\left|u_{t}\right|^{2} d x \\
& \quad+\int_{\Omega} \eta^{2}(x) g(u) u d x+2 \int_{\Omega} \nabla u \cdot \nabla \eta \eta u d x+\int_{\Omega} \eta^{2}(x) \rho\left(x, u_{t}\right) u d x=0 \tag{3.2}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{d}{d t} \int_{\Omega}\left(u_{t}(t), \boldsymbol{h}(x) \cdot \nabla u(t)\right) d x+\frac{1}{2} \int_{\Omega} \nabla \cdot \boldsymbol{h}(x)\left(\left|u_{t}(t)\right|^{2}-|\nabla u(t)|^{2}\right) d x \\
& \quad+\sum_{i, j} \int_{\Omega} \frac{\partial h_{i}}{\partial x_{j}} \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial x_{i}} d x-\frac{1}{2} \int_{\partial \Omega} \boldsymbol{h} \cdot \nu\left|\frac{\partial u}{\partial \nu}\right|^{2} d S+\int_{\Omega} \rho\left(x, u_{t}\right) \boldsymbol{h} \cdot \nabla u d x \\
& \quad-\int_{\Omega} G(u) \nabla \cdot \boldsymbol{h} d x=0 \tag{3.3}
\end{align*}
$$

where $\boldsymbol{h}(x)=\left(h_{1}(x), \ldots, h_{n}(x)\right)$.
These identities are derived by multiplying the equation by $u_{t}, \eta^{2}(x) u$ and $\boldsymbol{h}(x) \cdot \nabla u(t)$, respectively. We take a function $\phi(r)$ such that

$$
\phi(r)= \begin{cases}\epsilon_{0} & \text { if } 0 \leq r \leq R+\left|x_{0}\right| \\ \epsilon_{0}\left(R+\left|x_{0}\right|\right) / r & \text { if } r \geq R+\left|x_{0}\right| .\end{cases}
$$

Proposition 3.1. It holds that

$$
\begin{align*}
& \frac{d}{d t} \chi_{k}(t)+\epsilon_{1} E(t)+k \int_{\Omega} \rho\left(x, u_{t}\right) u_{t} d x \\
& \quad \leq \frac{1}{2} \int_{\Gamma\left(x_{0}\right)}\left|\frac{\partial u}{\partial \nu}\right|^{2} \nu \cdot \phi\left(\left|x-x_{0}\right|\right)\left(x-x_{0}\right) d x+\int_{\Omega}\left|\rho\left(x, u_{t}\right)\right|^{2} d x+\int_{\Omega(R)^{c}}\left|u_{t}\right|^{2} d x \tag{3.4}
\end{align*}
$$

for some $\epsilon_{1}>0$, where $k>0$ is a large number and we set

$$
\begin{equation*}
\chi_{k}(t)=\int_{\Omega} u_{t} \phi\left(\left|x-x_{0}\right|\right)\left(x-x_{0}\right) \cdot \nabla u d x+k E(t)+m \int_{\Omega} u_{t} u d x \tag{3.5}
\end{equation*}
$$

with a constant $m>0$.
Proof. The proof is rather standard (cf. [27], [13], [14], [20] etc.) and we give an outline of it.

Combining (3.1) $\times k$, (3.3) with $\eta^{2}(x)=m=$ const. >0 and (3.4) with $\boldsymbol{h}(x)=x-x_{0}$ we have

$$
\begin{align*}
& \frac{d}{d t} \int_{\Omega} \chi(t)+k \int_{\Omega} \rho\left(x, u_{t}\right) u_{t} d x+\left(\frac{N \phi(r)+\phi^{\prime}(r) r}{2}-m\right) \int_{\Omega}\left|u_{t}\right|^{2} d x \\
& \quad+\left(m+\phi(r)-\frac{N \phi(r)+\phi^{\prime}(r) r}{2}\right) \int_{\Omega}|\nabla u|^{2} d x+\int_{\Omega} \frac{\phi^{\prime}(r)\left(\left(x-x_{0}\right) \cdot \nabla u\right)^{2}}{r d x} \\
& \quad+\int_{\Omega}\left(m g(u) u-G(u)\left(N \phi(r)+\phi^{\prime}(r) r\right)\right) d x+m \int_{\Omega} \rho\left(x, u_{t}\right) u d x \\
& =\frac{1}{2} \int_{\partial \Omega}\left|\frac{\partial u}{\partial \nu}\right|^{2} \nu(x) \cdot\left(x-x_{0}\right) d S . \tag{3.6}
\end{align*}
$$

Note that by Hyp.B, (1), and $\phi^{\prime}(r) \leq 0$,

$$
m g(u) u-G(u)\left(N \phi(r)+\phi^{\prime}(r) r\right) \geq \frac{2}{d_{0}}\left(m-\frac{d_{0} N}{2}\right) G(u), \quad d_{0}<1
$$

We take $m>0, k>1$ such that

$$
\max \left\{\frac{d_{0} N}{2}, \frac{N-1}{2}\right\} \epsilon_{0}<m<\frac{N \epsilon_{0}}{2}<k .
$$

Then we see that

$$
\begin{gathered}
\frac{2}{d_{0}}\left(m-\frac{d_{0} N}{2}\right) \geq \epsilon_{1}, \\
m-\frac{N \phi(r)+\phi^{\prime}(r) r}{2}+\phi(r)+\phi^{\prime}(r) r \geq \epsilon_{1}
\end{gathered}
$$

and

$$
l(r)+\frac{N \phi(r)+\phi^{\prime}(r) r}{2}-m \geq \epsilon_{1}
$$

for some $\epsilon_{1}>0$, where we set $l(r)=1$ if $r \geq R+\left|x_{0}\right|$ and $l(r)=0$ if $r \leq R+\left|x_{0}\right|$. Further, since $\nu(x) \cdot \phi(r)\left(x-x_{0}\right) \leq 0$ for $x \in \Gamma\left(x_{0}\right)^{c} \cap \partial \Omega$, we see

$$
\begin{equation*}
\int_{\partial \Omega}\left|\frac{\partial u}{\partial \nu}\right|^{2} \nu(x) \cdot \phi(r)\left(x-x_{0}\right) d S \leq \int_{\Gamma\left(x_{0}\right)}\left|\frac{\partial u}{\partial \nu}\right|^{2} \nu(x) \cdot \phi(r)\left(x-x_{0}\right) d S . \tag{3.7}
\end{equation*}
$$

Thus, (3.4) follows from (3.6) and (3.7).

To control the boundary integral on the right-hand side of (3.4) we consider a vector field $\boldsymbol{h} \in\left(W^{1, \infty}(\Omega)\right)^{N}$ such that

$$
\boldsymbol{h}=\nu \text { on } \Gamma\left(x_{0}\right), \boldsymbol{h} \cdot \nu \geq 0 \text { on } \partial \Omega \text { and } \boldsymbol{h}(x)=0 \text { on } \boldsymbol{R}^{N} \backslash \tilde{\omega},
$$

where $\tilde{\omega}$ is an open set in \boldsymbol{R}^{N} such that $\overline{\Gamma\left(x_{0}\right)} \subset \tilde{\omega} \cap \bar{\Omega} \subset \omega$. Then, from (3.3) we find

$$
\begin{align*}
\int_{\Gamma\left(x_{0}\right)}\left|\frac{\partial u}{\partial \nu}\right|^{2} d S \leq & 2 \frac{d}{d t} \int_{\Omega} u_{t} \boldsymbol{h} \cdot \nabla u d x+2 \int_{\omega}\left(\left|u_{t}(t)\right|^{2}+\left|\rho\left(x, u_{t}\right)\right|^{2}\right) d x \\
& +C \int_{\tilde{\omega}}\left(G(u)+|\nabla u|^{2}\right) d x \tag{3.8}
\end{align*}
$$

Further we introduce a function

$$
\eta(x)= \begin{cases}1 & \text { on } \tilde{\omega} \cap \Omega \\ 0 & \text { on } \bar{\Omega} \cap \omega^{c} .\end{cases}
$$

Then we see by (3.3),

$$
\begin{align*}
& \int_{\Omega \cap \tilde{\omega}}\left(|\nabla u|^{2}+g(u) u\right) d x \\
& \quad \leq-\frac{d}{d t} \int_{\Omega} \eta(x)^{2} u_{t} u d x+C \int_{\omega}\left(|u|^{2}+\left|u_{t}\right|^{2}+\left|\rho\left(x, u_{t}\right)\right|^{2}\right) d x \tag{3.9}
\end{align*}
$$

From (3.4), (3.8) and (3.9) we obtain the following.
Proposition 3.2.

$$
\begin{align*}
& \frac{d}{d t} \tilde{\chi}_{k}(t)+k \int_{\Omega} \rho\left(x, u_{t}\right) u_{t} d x+\epsilon_{1} \int_{\Omega}\left(\left|u_{t}\right|^{2}+|\nabla u|^{2}+G(u)\right) d x \\
& \quad \leq C \int_{\omega}\left(\left|u_{t}\right|^{2}+|u(t)|^{2}\right) d x+C \int_{\Omega(R)^{c}}\left|u_{t}\right|^{2} d x \\
& \quad+C \int_{\Omega}\left(\left|\rho\left(x, u_{t}\right) u(t)\right|+\left|\rho\left(x, u_{t}\right)\right|^{2}\right) d x \tag{3.10}
\end{align*}
$$

where we set

$$
\tilde{\chi_{k}}(t)=\chi_{k}(t)+C\left(\eta^{2} u, u_{t}\right)-C\left(\boldsymbol{h} \cdot \nabla u, u_{t}\right) .
$$

We note that if $\Omega=R^{N}$ or V is star-shaped, then $\omega=\phi$, empty, and the last two terms in the definition of $\tilde{\chi_{k}}(t)$ can be dropped.

To control the L^{2} norm of $u(x, t)$ on $\Omega(R)$ we prepare the following proposition.

Proposition 3.3. Let $u(t)$ be a solution of (1.1)-(1.2) with $E(0) \leq R_{0}$. Then, under Hyp.A with (1.4) and Hyp.B there exist $T_{0}>$ independent of R_{0} such that if $T>T_{0}$, for any $\epsilon>0$ we have

$$
\begin{equation*}
\int_{t}^{t+T} \int_{\Omega(R)}|u|^{2} d x d s \leq C_{\epsilon} \int_{t}^{t+T}\left(\int_{\Omega}\left|\rho\left(x, u_{t}\right)\right|^{2} d x+\int_{\omega}\left|u_{t}\right|^{2} d x\right) d s+\epsilon E(t) \tag{3.11}
\end{equation*}
$$

with a constant C_{ϵ} depending on ϵ and R_{0}, where we except for the case $\Omega=R^{N}$, $N=1,2$, or V is star-shaped.

Proof. Similar inequalities are proved in $[\mathbf{2 7}],[\mathbf{2 8}]$ and $[\mathbf{1 1}],[\mathbf{1 3}],[\mathbf{2 0}]$, and we show an outline of the proof.

If the assertion is not true there exist $\left\{t_{n}\right\}$ and solutions $\left\{u_{n}(t)\right\}$ such that

$$
\begin{align*}
& \int_{t_{n}}^{t_{n}+T} \int_{\Omega(R)}\left|u_{n}(s)\right|^{2} d x d s \\
& \quad \geq n \int_{t_{n}}^{t_{n}+T}\left(\int_{\omega}\left|u_{n, t}(s)\right|^{2} d x+\int_{\Omega}\left|\rho\left(x, u_{n, t}(t)\right)\right|^{2}\right) d s+\epsilon E_{n}(t) \tag{3.12}
\end{align*}
$$

and $E_{n}(t) \leq E_{n}(0) \leq R_{0}$, where $E_{n}(t)$ is defined by $E(t)$ with $u(t)$ replaced by $u_{n}(t)$. We set

$$
\int_{t_{n}}^{t_{n}+T} \int_{\Omega(R)}\left|u_{n}(s)\right|^{2} d x d s=\lambda_{n}^{2}
$$

and

$$
u_{n}\left(\cdot+t_{n}\right) / \lambda_{n}=v_{n}(t), \quad 0 \leq t \leq T
$$

If λ_{n} does not tend to 0 we may assume $\lambda_{n}^{2} \geq \epsilon_{0}>0$ for some $\epsilon_{0}>0$. Then we see that $\left\{u_{n}\left(t+t_{n}\right)\right\}$ is bounded in $L^{\infty}\left([0, T] ; H_{1, l o c}(\Omega)\right) \cap W^{1, \infty}\left([0, T] ; L^{2}(\Omega)\right)$ and, along a subsequence,
$u_{n}\left(\cdot+t_{n}\right) \rightarrow \tilde{u}(\cdot)$ strongly in $L_{l o c}^{2}([0, T] \times \Omega)$ and weakly* in $L^{\infty}\left([0, T] ; H_{1, l o c}(\Omega)\right)$
and

$$
u_{n, t}\left(\cdot+t_{n}\right) \rightarrow \tilde{u}_{t}(\cdot) \text { weakly* in } L^{\infty}\left([0, T] ; L^{2}(\Omega)\right) .
$$

Note that

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega(R)}|\tilde{u}(x, s)|^{2} d x d s \geq \epsilon_{0}>0 \tag{3.13}
\end{equation*}
$$

Further,

$$
\int_{0}^{T} \int_{\omega}\left|u_{n, t}\left(s+t_{n}\right)\right|^{2} d x d s+\int_{0}^{T} \int_{\Omega}\left|\rho\left(x, u_{n, t}\left(s+t_{n}\right)\right)\right|^{2} d x d s \rightarrow 0 \text { as } n \rightarrow \infty
$$

and

$$
g\left(u_{n}\left(t_{n}+t\right)\right) \rightarrow g(\tilde{u}(t)) \text { in } L_{l o c}^{1}(\Omega \times[0, T]) \text { as } n \rightarrow \infty .
$$

Hence, the limit function $\tilde{u}(t) \in L^{\infty}\left([0, T] ; \dot{H}_{1}(\Omega) \cap L^{\alpha+2}(\Omega)\right) \cap W^{1, \infty}([0, T]$; $\left.L_{\text {loc }}^{2}(\Omega)\right)$ satisfies the equation

$$
\begin{equation*}
\tilde{u}_{t t}-\Delta \tilde{u}+g(\tilde{u})=0 \text { in } \Omega \times(0, T) \tag{3.14}
\end{equation*}
$$

and

$$
\tilde{u}_{t}(x, t)=0 \text { for }(x, t) \in \omega \cup \Omega(R)^{c} \times[0, T] .
$$

When $\partial \Omega \subset \omega$ (see (1.4)'), we can apply the unique continuation theorem due to Ruiz [22] (cf. Zuazua [27]) to see that there exists a certain constant $T_{0}>0$ such that if $T>T_{0}, u(x, t)=u(x) \equiv 0$ on $\Omega(R) \times[0, T]$, which contradicts to (3.13).

If λ_{n} tends to $0\left\{v_{n}(t)\right\}$ defined above satisfies $\left\|v_{n, t}(t)\right\|^{2}+\left\|\nabla v_{n}(t)\right\|^{2} \leq 2 / \epsilon<$ ∞ and very similar properties as $u_{n}\left(t+t_{n}\right)$. In particular, by the assumption $\left|g\left(u_{n}\right) / u_{n}\right| \leq C\left|u_{n}\right|^{\alpha}, 0<\alpha \leq 2 /(N-2)^{+}$, we see

$$
\frac{g\left(u_{n}\left(t_{n}+t\right)\right)}{\lambda_{n}}=\frac{g\left(u_{n}\right)}{u_{n}} v_{n} \rightarrow 0
$$

Hence, the limit function $v \in L^{\infty}\left([0, T] ; H_{1, l o c} \cap \dot{H}_{1}(\Omega)\right)$ with $v_{t} \in L^{\infty}([0, T]$; $\left.L^{2}(\Omega)\right)$ satisfies

$$
\begin{equation*}
v_{t t}-\Delta v=0 \text { in } \Omega \times(0, T) \tag{3.15}
\end{equation*}
$$

and

$$
v_{t}(x, t)=0 \text { for }(x, t) \in \omega \cup \Omega(R)^{c} \times[0, T] .
$$

Thus by a rather simple unique continuation theorem we see that if $T>T_{0}$, $v_{t}(x, t) \equiv 0$ on $\Omega \times[0, T]$, which implies $v(x, t)=$ const. $=0$ if $\partial \Omega$ is not empty or $\Omega=R^{N}, N \geq 3$. This contradicts to $\|v(t)\|_{L^{2}([0, T] \times \Omega(R))}=1$.

Under the weaker assumption (1.4) we replace Proposition 3.3 by the following:

Proposition 3.4. Let $u(t)$ be a solution of (1.1)-(1.2) with $E(0) \leq R_{0}$, satisfying additional condition

$$
\left\|u_{t t}(t)\right\|+\left\|\nabla u_{t}(t)\right\| \leq K
$$

for some $K>0$. Then, under Hyp.A with (1.4) and Hyp.B, there exist a large $T_{0}>0$ and a small $\delta>0$ such that if $T>T_{0}$ and $E(0)<\delta$, we have the estimate (3.11) for any $0<\epsilon \ll 1$, where T_{0} is independent of R_{0} and K.

Proof. By the same argument as above we obtain (3.14) if λ_{n}^{2} does not tend to 0 . Under the weaker assumption $\Gamma\left(x_{0}\right) \subset \omega$ (see (1.4)) it seems difficult to apply the unique continuation theorem by Ruiz. However, under the additional assumption we see that $\tilde{u}(t) \in \tilde{X}_{2}(T) \equiv L^{\infty}\left([0, T] ; \dot{H}_{2} \cap L^{\alpha+2}\right) \cap W^{1, \infty}\left([0, T] ; \dot{H}_{1}\right) \cap$ $W^{2, \infty}\left([0, T] ; L_{l o c}^{2}(\Omega)\right)$ and if $E(0)<\delta \ll 1$ we can use a simpler unique continuation theorem (see Appendix) and conclude again $\tilde{u}(x, t) \equiv 0$ on $\Omega(R) \times[0, T]$, $T>T_{0}$. Thus, we have a contradiction.

Remark 3.1. If $\alpha=0$ we have,instead of (3.14),

$$
v_{t t}-\Delta v+m(x, t) v=0 \text { in }(0, T) \times \Omega
$$

with $m \in L^{\infty}((0, T) \times \Omega(R))$. It is delicate whether we can conclude $v(x, t) \equiv 0$ on $[0, T] \times \Omega(R)$ or not. When $g(u)=u$, linear, we see $m(x, t) \equiv 1$ and the assertion holds even for the case $\Omega=R^{N}, N=1,2$.

Now, we take $T, T>\max \left\{T_{0}, 1\right\}$. Then we arrive at the following basic inequality for $E(t)$.

Proposition 3.5. For $T>T_{0}$, we have

$$
\begin{align*}
\tilde{\chi_{k}}(t+T)-\tilde{\chi_{k}}(t)+k & \int_{t}^{t+T} \int_{\Omega} \rho\left(x, u_{t}\right) u_{t} d x d s+\epsilon_{1} \int_{t}^{t+T} E(s) d s \\
\leq C \int_{t}^{t+T}\left(\int_{\omega}\left|u_{t}\right|^{2} d x\right. & +\int_{\Omega(R)^{c}}\left|u_{t}\right|^{2} d x \\
& \left.+\int_{\Omega}\left|\rho\left(x, u_{t}\right)\right|^{2} d x+\int_{\Omega}\left|\rho\left(x, u_{t}\right)\right||u| d x\right) d s \tag{3.16}
\end{align*}
$$

where we recall

$$
\begin{aligned}
\tilde{\chi_{k}}(t)= & k E(t)+\int_{\Omega} u_{t}(t) \phi(r)\left(x-x_{0}\right) \cdot \nabla u(t) d x+m \int_{\Omega} u_{t}(t) u(t) d x \\
& +C\left(\eta^{2} u(t), u_{t}(t)\right)-C\left(\boldsymbol{h} \cdot \nabla u(t), u_{t}\right) .
\end{aligned}
$$

We note that if V is star-shaped, the last two terms appearing in the definition of $\tilde{\chi}_{k}(t)$ should be dropped. Under the weaker condition (1.4) we assume in addition that $E(0)<\delta \ll 1$ and $\left\|u_{t t}(t)\right\|+\|\nabla u(t)\| \leq K<\infty$.

Remark 3.2. When $\rho\left(x, u_{t}\right)=a(x) u_{t}$ with (1.4), linear, we can show instead of (3.10),

$$
\begin{align*}
& \hat{\chi}_{k}(t+T)-\hat{\chi}_{k}(t)+k \int_{t}^{t+T} \int_{\Omega} \rho\left(x, u_{t}\right) u_{t} d x d s+\epsilon_{1} \int_{t}^{t+T} E(s) d s \\
& \quad \leq C \int_{t}^{t+T}\left(\int_{\omega}\left|u_{t}\right|^{2} d x+\int_{\Omega} a(x)\left|u_{t}\right|^{2}\right) d x \tag{3.10}
\end{align*}
$$

where $\hat{\chi}_{k}(t)=\chi_{k}(t)+\int_{\Omega} a(x)|u(t)|^{2} d x$. From (3.10) and the fact $\int_{0}^{\infty} \int_{\Omega} a(x)$ $\cdot\left|u_{t}\right|^{2} d x d t \leq E(0)<\infty$ we see for a large $k>0$,

$$
\int_{0}^{\infty} E(t) d t \leq \tilde{\chi}_{k}(0)+C_{0} \leq C_{0}<\infty .
$$

Since

$$
\frac{d}{d t}\{(1+t) E(t)\}=E(t)+(1+t) \frac{d}{d t} E(t) \leq E(t)
$$

we obtain

$$
E(t) \leq C_{0}(1+t)^{-1}
$$

This is true for $0<\alpha \leq 2 /(N-2)^{+}$, which is a new result for our semilinear wave equation (cf. [13]).

4. Difference inequalities for $E(t)$.

We have by (3.1),

$$
\begin{align*}
& k_{0} \int_{t}^{t+T} \int_{\Omega(R)^{c}}\left|u_{t}(s)\right|^{q+2} d x d s \leq \int_{t}^{t+T} \int_{\Omega} \rho\left(x, u_{t}\right) u_{t} d x d s \\
& \quad=E(t)-E(t+T) \equiv D(t)^{2} \tag{4.1}
\end{align*}
$$

and

$$
\begin{align*}
\int_{t}^{t+T} & \int_{\Omega(R)^{c}}\left|u_{t}(s) \| u(s)\right| d x d s \\
\leq & \left(\int_{t}^{t+T} \int_{\Omega(R)^{c}}\left|u_{t}(s)\right|^{q+2} d x d s\right)^{1 /(q+2)} \\
& \times\left(\int_{t}^{t+T} \int_{\Omega(R)^{c}}|u(s)|^{(q+2) /(q+1)} d x d s\right)^{(q+1) /(q+2)} \\
\leq & C D(t)^{2 /(q+2)}\left(\int_{t}^{t+T} \int_{\Omega(R)^{c}}|u(s)|^{(q+2) /(q+1)} d x d s\right)^{(q+1) /(q+2)} \tag{4.2}
\end{align*}
$$

Here, by the fact $\operatorname{supp} u(t) \subset B(L+t)$,

$$
\begin{aligned}
& \left(\int_{t}^{t+T} \int_{\Omega(R)^{c}}|u(s)|^{(q+2) /(q+1)} d x d s\right)^{(q+1) /(q+2)} \\
& \quad \leq\left(\int_{t}^{t+T} \int_{\Omega}|u(s)|^{\alpha+2} d x\right)^{1 /(\alpha+2)}\left(\int_{B(L+t)} 1 d x\right)^{(q \alpha+\alpha+q) /(q+2)(\alpha+2)} \\
& \quad \leq C(L)(1+t)^{N(q \alpha+q+\alpha) /(q+2)(\alpha+2)} E(t)^{1 /(\alpha+2)}
\end{aligned}
$$

Hence we have

$$
\begin{align*}
& \int_{t}^{t+T} \int_{\Omega(R)^{c}}\left|u_{t}(s) \| u(s)\right| d x d s \\
& \quad \leq C(L)(1+t)^{N(q \alpha+q+\alpha) /(q+2)(\alpha+2)} D(t)^{2 /(q+2)} E(t)^{1 /(\alpha+2)} \equiv A_{1}(t)^{2} \tag{4.3}
\end{align*}
$$

We know from (4.3) that there exist $t_{1} \in[t, t+T / 4], t_{2} \in[t+3 T / 4, t+T]$ such that

$$
\begin{equation*}
\int_{\Omega(R)^{c}}\left|\left(u_{t}\left(t_{i}\right), u\left(t_{i}\right)\right)\right| d x \leq \frac{4}{T} A_{1}(t)^{2}, \quad i=1,2 . \tag{4.4}
\end{equation*}
$$

Thus, by Proposition 3.5 with $t=t_{1}, t+T=t_{2}, \epsilon=\epsilon_{1} / 2$ and (4.4) we have

$$
\begin{align*}
& \epsilon_{1} \int_{t_{1}}^{t_{2}} E(s) d s \\
& \leq C \int_{t_{1}}^{t_{2}}\left(\int_{\omega}\left|u_{t}\right|^{2} d x+\int_{\Omega(R)^{c}}\left|u_{t}\right|^{2} d x+\int_{\Omega}\left|\rho\left(x, u_{t}\right)\right|^{2} d x+\int_{\Omega}\left|\rho\left(x, u_{t}\right)\right||u| d x\right) d s \\
&+2 k E\left(t_{1}\right)+2 \sum_{i=1,2}\left\{\int_{\Omega}\left|u_{t}\left(t_{i}\right) \phi(r)\left(x-x_{0}\right) \cdot \nabla u\left(t_{i}\right)\right| d x\right. \\
&\left.+C\left|\left(\boldsymbol{h} \cdot \nabla u\left(t_{i}\right), u_{t}\left(t_{i}\right)\right)\right|\right\} \\
&+m \sum_{i=1,2}\left\{\int_{\Omega}\left|u_{t}\left(t_{i}\right) u\left(t_{i}\right)\right| d x+C\left(\eta^{2} u\left(t_{i}\right), u_{t}\left(t_{i}\right)\right)\right\} \\
& \leq C \int_{t_{1}}^{t_{2}}\left(\int_{\omega}\left|u_{t}\right|^{2} d x+\int_{\Omega(R)^{c}}\left|u_{t}\right|^{2} d x+\int_{\Omega}\left|\rho\left(x, u_{t}\right)\right|^{2} d x+\int_{\Omega}\left|\rho\left(x, u_{t}\right)\right||u| d x\right) d s \\
& \quad+\frac{5}{2} k E\left(t_{1}\right)+C A_{1}(t)^{2}+C \sum_{i=1,2} \int_{\Omega(R)}\left|u_{t}\left(t_{i}\right)\right|\left|u\left(t_{i}\right)\right| d x \tag{4.5}
\end{align*}
$$

for a large $k>0$.
Further, if $\partial \Omega \neq \phi$ we see, by Poincare's inequality,

$$
\begin{equation*}
C \sum_{i=1,2} \int_{\Omega(R)}\left|u_{t}\left(t_{i}\right) u\left(t_{i}\right)\right| d x \leq C \sum_{i=1,2}\left\|u_{t}\left(t_{i}\right)\right\|\left\|\nabla u\left(t_{i}\right)\right\| \leq C E\left(t_{1}\right) \tag{4.6}
\end{equation*}
$$

and if $\Omega=R^{N}, N \geq 3$,

$$
\begin{align*}
C \sum_{i=1,2} \int_{\Omega(R)}\left|u_{t}\left(t_{i}\right) u\left(t_{i}\right)\right| d x & \leq C\left\|u_{t}\left(t_{i}\right)\right\|\left\{\int_{\Omega}\left|u\left(t_{i}\right)\right|^{2 N /(N-2)} d x\right\}^{(N-2) / 2 N} \\
& \leq C \sum_{i=1,2}\left\|u_{t}\left(t_{i}\right)\right\|\left\|\nabla u\left(t_{i}\right)\right\| \leq C E\left(t_{1}\right) \tag{4.6}
\end{align*}
$$

Moreover,

$$
\begin{align*}
3 k E\left(t_{1}\right) & =3 k E\left(t_{2}\right)+3 k \int_{t_{1}}^{t_{2}} \int_{\Omega} \rho\left(x, u_{t}\right) u_{t} d x d s \\
& \leq \frac{3 k}{t_{2}-t_{1}} \int_{t_{1}}^{t_{2}} E(s) d s+3 k D(t)^{2} \\
& \leq \frac{\epsilon_{1}}{2} \int_{t_{1}}^{t_{2}} E(s) d s+3 k D(t)^{2} \tag{4.7}
\end{align*}
$$

where we take further $T>3 k \epsilon_{1}^{-1}$. Then, we have from (4.5), (4.6) (or (4.6)') and (4.7) that

$$
\begin{equation*}
\int_{t_{1}}^{t_{2}} E(s) d s \leq C\left(I_{1}+I_{2}+I_{3}+D(t)^{2}+A_{1}(t)^{2}\right) \tag{4.8}
\end{equation*}
$$

where we set

$$
\begin{aligned}
& I_{1}=C \int_{t}^{t+T}\left(\int_{\omega}\left|u_{t}\right|^{2} d x+\int_{\Omega(R)^{c}}\left|u_{t}\right|^{2} d x\right) d s \\
& I_{2}=C \int_{t}^{t+T} \int_{\Omega}\left|\rho\left(x, u_{t}\right)\right|^{2} d x d s
\end{aligned}
$$

and

$$
I_{3}=C \int_{t}^{t+T} \int_{\Omega}\left|\rho\left(x, u_{t}\right)\right||u| d x d s
$$

(For the definition of $A_{1}(t)^{2}$ see (4.3).)
Further we see from (3.1) that

$$
E(t) \leq E\left(t_{2}\right)+\int_{t}^{t+T} \int_{\Omega} \rho\left(x, u_{t}\right) u_{t} d x d s \leq \frac{1}{T} \int_{t_{1}}^{t_{2}} E(s) d s+D(t)^{2}
$$

and hence, recalling the definition of $A_{1}(t)^{2}$,

$$
\begin{align*}
E(t) \leq & C\left(I_{1}+I_{2}+I_{3}+D(t)^{2}\right) \\
& +C(L)(1+t)^{N(q \alpha+q+\alpha) /(q+2)(\alpha+1)} D(t)^{2(\alpha+2) /(q+2)(\alpha+1)} . \tag{4.9}
\end{align*}
$$

Our task is to estimate the terms $I_{i}, i=1,2,3$. For this we introduce the following notations:

$$
\begin{gathered}
\Omega_{1}(t)=\left\{x \in \Omega| | u_{t}(x, t) \mid \leq 1\right\}, \quad \Omega_{2}(t)=\left\{x \in \Omega| | u_{t}(x, t) \mid \geq 1\right\}, \\
\omega_{i}(t)=\Omega_{i}(t) \cap \omega, \quad i=1,2,
\end{gathered}
$$

and

$$
\Omega_{i}(t, R)=\Omega_{i}(t) \cap B(R), \quad i=1,2 .
$$

Then,

$$
\begin{align*}
I_{1} \leq & C\left(\int_{t}^{t+T} \int_{\omega_{1}(s)}\left|u_{t}\right|^{r+2} d x d s\right)^{2 /(r+2)}+C \int_{t}^{t+T} \int_{\omega_{2}(s)}\left|u_{t}\right|^{p+2} d x d s \\
& +C(L)(1+t)^{N q /(q+2)}\left(\int_{t}^{t+T} \int_{\Omega(R)^{c}}\left|u_{t}\right|^{q+2} d x d s\right)^{2 /(q+2)} \\
\leq & C\left(D(t)^{4 /(r+2)}+D(t)^{2}+C(L)(1+t)^{N q /(q+2)} D(t)^{4 /(q+2)}\right) . \tag{4.10}\\
I_{2} \leq & C \int_{t}^{t+T} \int_{\Omega_{1}(s, R)} a(x)\left|u_{t}\right|^{2(r+1)} d x d s+C \int_{t}^{t+T} \int_{\Omega_{2}(s, R)} a(x)\left|u_{t}\right|^{2(p+1)} d x d s \\
& +C \int_{t}^{t+T} \int_{\Omega(R)^{c}}\left|u_{t}\right|^{2(q+1)} d x d s \\
\leq & C \int_{t}^{t+T} \int_{\Omega_{1}(s, R)} a(x)\left|u_{t}\right|^{r+2} d x d s \\
& +C \int_{t}^{t+T}\left(\int_{\Omega_{2}(s, R)} a(x)\left|u_{t}\right|^{p+2} d x\right)^{2(p+1)\left(1-\theta_{1}\right) /(p+2)}\left\|u_{t}(s)\right\|_{\beta}^{2(p+1) \theta_{1}} d s \\
& +C \int_{t}^{t+T}\left(\int_{\Omega(R)^{c}}\left|u_{t}\right|^{q+2} d x\right)^{2(q+1)\left(1-\theta_{2}\right) /(q+2)}\left\|\nabla u_{t}(s)\right\|_{\beta}^{2(q+1) \theta_{2}} d s
\end{align*}
$$

$$
\theta_{2}=\frac{N q}{(q+1)\left(2 N-(q+2)(N-2)^{+}\right)} .
$$

(A trivial modification is needed if $N=2$.) Hence, by Gagliardo-Nirenberg inequality and the definition of $D(t)^{2}$, we see

$$
\begin{align*}
I_{2} \leq & C D(t)^{2}+C D(t)^{4(p+1)\left(1-\theta_{1}\right) /(p+2)} E(t)^{(p+1) \theta_{1}(1-\tilde{\theta})}\left\|\nabla u_{t}(s)\right\|^{2(p+1) \theta_{1} \tilde{\theta}} \\
& +C D(t)^{4(q+1)\left(1-\theta_{2}\right) /(q+2)} E(t)^{(q+1) \theta_{2}(1-\tilde{\theta})}\left\|\nabla u_{t}(s)\right\|^{2(q+1) \theta_{2} \tilde{\theta}} \tag{4.11}
\end{align*}
$$

where

$$
\tilde{\theta}=(1 / 2-1 / \beta) N= \begin{cases}1 & \text { if } N \geq 3 \\ 1-\delta, 0<\delta \ll 1, & \text { if } N=2 \\ 1 / 2 & \text { if } N=1\end{cases}
$$

Finally,

$$
\begin{align*}
I_{3} \leq C \int_{t}^{t+T}(& \int_{\Omega_{1}(s, R)} a(x)\left|u_{t}\right|^{r+1}|u| d x \\
& \left.+\int_{\Omega_{2}(s, R)} a(x)\left|u_{t}\right|^{p+1}|u| d x+\int_{\Omega(R)^{c}}\left|u_{t}\right|^{q+1}|u| d x\right) d s \\
\equiv I_{3,1}+I_{3,2}+ & I_{3,3 .} \tag{4.12}
\end{align*}
$$

Here, we see

$$
\begin{align*}
I_{3,1} & \leq C\left(\int_{t}^{t+T} \int_{\Omega_{1}(s, R)} a(x)\left|u_{t}\right|^{2(r+1)} d x d s\right)^{1 / 2}\left(\int_{t}^{t+T} \int_{\Omega_{1}(s, R)}|u|^{2} d x d s\right)^{1 / 2} \\
& \leq C\left(\int_{t}^{t+T} \int_{\Omega_{1}(s, R)} a(x)\left|u_{t}\right|^{r+2} d x d s\right)^{1 / 2}\left(\int_{t}^{t+T} \int_{\Omega(R)}|u|^{2} d x d s\right)^{1 / 2} \\
& \leq C D(t)\left(\int_{t}^{t+T} \int_{\Omega(R)}|u|^{2} d x d s\right)^{1 / 2} . \tag{4.13}
\end{align*}
$$

Further,

$$
\begin{aligned}
\left(\int_{\Omega(R)}|u|^{2} d x\right)^{1 / 2} & \leq C\left(\int_{\Omega(R)}|u|^{2 N /(N-2)} d x\right)^{(N-2) / 2 N} \\
& \leq C\|\nabla u(t)\| \leq C \sqrt{E(t)} \text { if } N \geq 3
\end{aligned}
$$

When $\partial \Omega \neq \phi$ the result is also true for the case $N=1,2$ due to Poincare's inequality. (When $\alpha=0$ the inequality $\|u(t)\| \leq C \sqrt{E(t)}$ is trivial even for the case $\Omega=R^{N}, N=1,2$.)

Thus, we have from (4.13) that

$$
\begin{equation*}
I_{3,1} \leq C D(t) \sqrt{E(t)} \tag{4.14}
\end{equation*}
$$

Similarly, we have

$$
\begin{align*}
I_{3,2} \leq & C\left(\int_{t}^{t+T} \int_{\Omega_{2}(s, R)} a(x)\left|u_{t}\right|^{p+2} d x d s\right)^{(p+1) /(p+2)} \\
& \times\left(\int_{t}^{t+T} \int_{\Omega_{(R)}}|u|^{p+2} d x d s\right)^{1 /(p+2)} \\
\leq & C D(t)^{2(p+1) /(p+2)} \sqrt{E(t)} . \tag{4.15}
\end{align*}
$$

The treatment of the term $I_{3,3}$ is a little more delicate and we need the fact $\operatorname{supp} u(t) \subset B(L+t)$. We see
$I_{3,3} \leq C\left(\int_{t}^{t+T} \int_{\Omega(R)^{c}}{\left.\left|u_{t}\right|^{q+2} d x d s\right)^{(q+1) /(q+2)}\left(\int_{t}^{t+T} \int_{\Omega(R)^{c}}|u|^{q+2} d x d s\right)^{1 /(q+2)} .}\right.$
Here, if $\alpha \geq q$,

$$
\begin{aligned}
\int_{\Omega(R)^{c}}|u|^{q+2} d x & \leq\left(\int_{B(L+t)}|u|^{\alpha+2} d x\right)^{(q+2) /(\alpha+2)}\left(\int_{B(L+t)} 1 d x\right)^{(\alpha-q) /(\alpha+2)} \\
& \leq C(L)(1+t)^{N(\alpha-q) /(\alpha+2)} E(t)^{(q+2) /(\alpha+2)}
\end{aligned}
$$

and if $\alpha \leq q$,

$$
\begin{aligned}
\int_{\Omega(R)^{c}}|u|^{q+2} d x & \leq C\|u(t)\|_{\alpha+2}^{(q+2)\left(1-\theta_{3}\right)}\|\nabla u(t)\|^{(q+2) \theta_{3}} \\
& \leq C E(t)^{(q+2)\left(2+\alpha \theta_{3}\right) / 2(\alpha+2)}
\end{aligned}
$$

with

$$
\theta_{3}=\frac{1 /(\alpha+2)-1 /(q+2)}{1 / N+1 /(\alpha+2)-1 / 2}=\frac{2 N(q-\alpha)}{(q+2)(4+2 \alpha-N \alpha)} .
$$

Hence we have

$$
\begin{equation*}
I_{3,3} \leq C(L) D(t)^{2(q+1) /(q+2)} E(t)^{1 /(\alpha+2)} w(t) \tag{4.16}
\end{equation*}
$$

where we set

$$
w(t)= \begin{cases}(1+t)^{N(\alpha-q) /(\alpha+2)(q+2)} & \text { if } \alpha \geq q, \\ E(t)^{N \alpha(q-\alpha) /(\alpha+2)(q+2)(4+2 \alpha-N \alpha)} & \text { if } \alpha \leq q .\end{cases}
$$

Summarizing above we obtain from (4.9) that

$$
\begin{align*}
E(t) \leq & C\left(D(t)^{4 /(r+2)}+D(t)^{2}\right)+C(L)(1+t)^{N q /(q+2)} D(t)^{4 /(q+2)} \\
& +C D(t)^{4(p+1)\left(1-\theta_{1}\right) /(p+2)} E(t)^{(p+1) \theta_{1}(1-\tilde{\theta})}\left\|\nabla u_{t}(s)\right\|^{2(p+1) \theta_{1} \tilde{\theta}} \\
& +C D(t)^{4(q+1)\left(1-\theta_{2}\right) /(q+2)} E(t)^{(q+1) \theta_{2}(1-\tilde{\theta})}\left\|\nabla u_{t}(s)\right\|^{2(q+1) \theta_{2} \tilde{\theta}} \\
& +C\left(D(t)+D(t)^{2(p+1) /(p+2)}\right) \sqrt{E(t)}+C(L) D(t)^{2(q+1) /(q+2)} E(t)^{1 /(\alpha+2)} w(t) \\
& +C(L)(1+t)^{N(q \alpha+q+\alpha) /(q+2)(\alpha+1)} D(t)^{2(\alpha+2) /(q+2)(\alpha+1)} . \tag{4.17}
\end{align*}
$$

Noting that

$$
w(t)^{(\alpha+2) /(\alpha+1)} \leq C_{0}(L)(1+t)^{N(q \alpha+q+\alpha) /(q+2)(\alpha+1)}
$$

and absorbing $\sqrt{E(t)}$ appearing in the right-hand side of (4.16) into the left-hand side we arrive at the difference inequality for $E(t)$.

Proposition 4.1.

$$
\begin{align*}
E(t) \leq & C\left(D(t)^{4 /(r+2)}+D(t)^{2}+D(t)^{4(p+1) /(p+2)}\right)+C(L)(1+t)^{N q /(q+2)} D(t)^{4 /(q+2)} \\
& +C D(t)^{4(p+1)\left(1-\theta_{1}\right) /(p+2)} E(t)^{(p+1) \theta_{1}(1-\tilde{\theta})}\left\|\nabla u_{t}(s)\right\|^{2(p+1) \theta_{1} \tilde{\theta}} \\
& +C D(t)^{4(q+1)\left(1-\theta_{2}\right) /(q+2)} E(t)^{(q+1) \theta_{2}(1-\tilde{\theta})}\left\|\nabla u_{t}(s)\right\|^{2(q+1) \theta_{2} \tilde{\theta}} \\
& +C_{0}(L)(1+t)^{N(q \alpha+q+\alpha) /(q+2)(\alpha+1)} D(t)^{2(\alpha+2) /(q+2)(\alpha+1)} \tag{4.18}
\end{align*}
$$

where we recall

$$
\theta_{1}=\frac{N p}{(p+1)\left(2 N-(p+2)(N-2)^{+}\right)}, \quad \theta_{2}=\frac{N q}{(q+1)\left(2 N-(q+2)(N-2)^{+}\right)}
$$

and

$$
\tilde{\theta}=(1 / 2-1 / \beta) N= \begin{cases}1 & \text { if } N \geq 3 \\ 1-\delta, 0<\delta \ll 1, & \text { if } N=2 \\ 1 / 2 & \text { if } N=1\end{cases}
$$

When $\Omega=R^{N}$ or V is star-shaped the term $D(t)^{4 /(r+2)}$ in (4.18) should be dropped.

5. Proof of Theorem 2.1.

We assume $p=q=0$. Then $\theta_{1}=\theta_{2}=0$ and (4.17) is reduced to the simple difference inequality

$$
\begin{equation*}
E(t) \leq\left(C_{0} D(t)^{4 /(r+2)}+C_{0}(L)(1+t)^{N \alpha / 2(\alpha+1)} D(t)^{(\alpha+2) /(\alpha+1)}\right) \tag{5.1}
\end{equation*}
$$

Applying Lemma 2.1 to (5.1) we have

$$
\begin{equation*}
E(t) \leq C_{0}(L)(1+t)^{-\gamma} \text { if }(N-1) \alpha<2 \tag{5.2}
\end{equation*}
$$

with $\gamma=\min \{2 / r, 2 / \alpha+1-N\}$ and

$$
\begin{equation*}
E(t) \leq C_{0}(L)(\log (2+t))^{-N} \text { if } \alpha=2 /(N-1) \tag{5.3}
\end{equation*}
$$

When $\Omega=R^{N}$ or V is star-shaped the term $D(t)^{4 /(r+2)}$ is ignored and we have the estimate (5.2) with $\gamma=2 / \alpha+1-N$ and also (5.4).

6. Proof of Theorems 2.2, 2.3.

We employ a 'loan' method. Since $D(t) \leq C_{0}<\infty$ (4.18) is reduced to a little simpler form

$$
\begin{align*}
E(t) \leq & C_{0}(L)\left\{D(t)^{4 /(r+2)}+(1+t)^{N(q \alpha+q+\alpha) /(q+2)(\alpha+1)} D(t)^{2(\alpha+2) /(q+2)(\alpha+1)}\right\} \\
& +C D(t)^{4(p+1)\left(1-\theta_{1}\right) /(p+2)} E(t)^{(p+1) \theta_{1}(1-\tilde{\theta})}\left\|\nabla u_{t}(s)\right\|^{2(p+1) \theta_{1} \tilde{\theta}} \\
& +C D(t)^{4(q+1)\left(1-\theta_{2}\right) /(q+2)} E(t)^{(q+1) \theta_{2}(1-\tilde{\theta})}\left\|\nabla u_{t}(s)\right\|^{2(q+1) \theta_{2} \tilde{\theta}} . \tag{6.1}
\end{align*}
$$

We fix T such that $T>4 T_{0}$ and take any $\tilde{T}>T>4 T_{0}$. We assume for a moment that

$$
\begin{equation*}
\left\|u_{t t}(t)\right\|+\left\|\nabla u_{t}(t)\right\| \leq K, \quad 0 \leq t \leq \tilde{T}+T \tag{6.2}
\end{equation*}
$$

In fact, this is true for $0 \leq t \leq \tilde{T}+T$ if we choose a large $K=K(\tilde{T}) \gg 1$. We must show that K can be chosen independently of \tilde{T}. Anyway, under the assumption of (6.2) we have from (6.1) that

$$
\begin{align*}
& E(t) \leq C_{0}(L)\{ D(t)^{4 /(r+2)}+(1+t)^{N(q \alpha+q+\alpha) /(q+2)(\alpha+1)} D(t)^{2(\alpha+2) /(q+2)(\alpha+1)} \\
&+C K^{2(p+1) \theta_{1} \tilde{\theta}} D(t)^{4(p+1)\left(1-\theta_{1}\right) /(p+2)} E(t)^{(p+1) \theta_{1}(1-\tilde{\theta})} \\
&\left.+C K^{2(q+1) \theta_{2} \tilde{\theta}} D(t)^{4(q+1)\left(1-\theta_{2}\right) /(q+2)} E(t)^{(q+1) \theta_{2}(1-\tilde{\theta})}\right\}, \\
& 0 \leq t \leq \tilde{T}+T . \tag{6.3}
\end{align*}
$$

First we consider the case $N \geq 3$. Then,

$$
\theta_{1}=N p /(p+1)(4+2 p-N p), \quad \theta_{2}=N q /(q+1)(4+2 q-N q) \quad \text { and } \tilde{\theta}=1
$$

Hence we have from (6.3) that

$$
\begin{align*}
E(t) \leq C_{0}(L)\{ & D(t)^{4 /(r+2)}+(1+t)^{N(q \alpha+q+\alpha) /(q+2)(\alpha+1)} D(t)^{2(\alpha+2) /(q+2)(\alpha+1)} \\
& +K^{2 N p /(4+2 p-N p)} D(t)^{4(2+2 p-N p) /(4+2 p-N p)} \\
& \left.+K^{2 N q /(4+2 q-N q)} D(t)^{4(2+2 q-N q) /(4+2 q-N q)}\right\} \tag{6.4}
\end{align*}
$$

Applying Lemma 2.2 to (6.4) we can derive the decay estimate for $E(t)$ which is stated as follows:

Proposition 6.1. Let $K \gg 1$ and assume

$$
\left\|u_{t t}(t)\right\|+\left\|\nabla u_{t}(t)\right\| \leq K, \quad 0 \leq t<\tilde{T}+T .
$$

Then, if $3 \leq N<(\alpha+2) /(q \alpha+q+\alpha)$, we have

$$
\begin{equation*}
E(t) \leq C_{0}(L) K^{2 N /(N-2)}(1+t)^{-\gamma}, \quad 0 \leq t \leq \tilde{T}+T \tag{6.5}
\end{equation*}
$$

with

$$
\gamma=\min \left\{\frac{2}{r}, \frac{\alpha+2}{q \alpha+q+\alpha}-N, \frac{2(2+2 p-N p)}{(N-2) p}, \frac{2(2+2 q-N q)}{(N-2) q}\right\} .
$$

When $\Omega=R^{N}$ or V is star-shaped we can drop $2 / r$ in the definition of γ.
Next we consider the case $N=1,2$. Then we see $\theta_{1}=p / 2(p+1), \theta_{2}=$ $q / 2(q+1)$, and using the fact $E(t) \leq E(0)$ we have

$$
\begin{align*}
E(t) \leq & C_{0}(L)\left\{D(t)^{4 /(r+2)}+(1+t)^{(q \alpha+q+\alpha) /(q+2)(\alpha+1)} D(t)^{2(\alpha+2) /(q+2)(\alpha+1)}\right\} \\
& +C\left\{K^{p \tilde{\theta}} D(t)^{2} E(t)^{p(1-\tilde{\theta}) / 2}+K^{q \tilde{\theta}} D(t)^{2} E(t)^{q(1-\tilde{\theta}) / 2}\right\} \\
\leq & C_{0}(L)\left\{D(t)^{4 /(r+2)}+(1+t)^{(q \alpha+q+\alpha) /(q+2)(\alpha+1)} D(t)^{2(\alpha+2) /(q+2)(\alpha+1)}\right. \\
& \left.+K^{p \tilde{\theta}} D(t)^{2(1-\nu)}+K^{q \tilde{\theta}} D(t)^{2(1-\nu)}\right\} \tag{6.6}
\end{align*}
$$

with any $0 \leq \nu<1$. Applying Lemma 2.1 we have the following estimates.
Proposition 6.2. Let $K \gg 1$ and assume

$$
\left\|u_{t t}(t)\right\|+\left\|\nabla u_{t}(t)\right\| \leq K, \quad 0 \leq t \leq \tilde{T}+T
$$

Further assume that $N=1,2$ and $N<(\alpha+2) /(q \alpha+q+\alpha)$. Then we have

$$
\begin{equation*}
E(t) \leq C_{0}(L) K^{m}(1+t)^{-\gamma}, \quad 0 \leq t \leq \tilde{T}+T \tag{6.7}
\end{equation*}
$$

with

$$
m=p \tilde{\theta} \nu^{-1} \quad \text { and } \quad \gamma=\min \left\{\frac{2}{r}, \frac{\alpha+2}{q \alpha+q+\alpha}-N, \frac{1-\nu}{\nu}\right\}
$$

where $\nu, 0<\nu<1$, is arbitrary. (2/r can be dropped when V is star-shaped or $\Omega=R^{N}$.)

We shall choose ν as

$$
\frac{1-\nu}{\nu}=\min \left\{\frac{2}{r}, \frac{\alpha+2}{q \alpha+q+\alpha}-N\right\}
$$

that is,

$$
\nu=\max \left\{\frac{r}{r+2}, \frac{q \alpha+q+\alpha}{\alpha+2-(N-1)(q \alpha+q+\alpha)}\right\} .
$$

Then we see

$$
m=p \tilde{\theta} \min \left\{\frac{r+2}{r}, \frac{\alpha+2}{q \alpha+q+\alpha}-(N-1)\right\}
$$

By use of the estimates (6.5) and (6.7) with above m, γ we shall derive the estimate for $\left\|u_{t t}(t)\right\|+\left\|\nabla u_{t}(t)\right\|$. We employ a similar argument as in $[\mathbf{1 7}],[\mathbf{1 8}]$. We set

$$
E_{1}(t)=\frac{1}{2}\left(\left\|u_{t t}(t)\right\|^{2}+\left\|\nabla u_{t}(t)\right\|^{2}\right)
$$

Proposition 6.3. Assume that

$$
\begin{equation*}
E(t) \leq C K^{m}(1+t)^{-\gamma}, \quad 0 \leq t \leq \tilde{T}+T, \tag{6.8}
\end{equation*}
$$

with some $m \geq 0$ and $\gamma>0$. Assume further that there exists $\epsilon, 0 \leq \epsilon \leq 1$, such that

$$
\begin{equation*}
\frac{\epsilon \gamma(2+4 \alpha-N \alpha)}{4}>1 \text { if } N \geq 3 \text { and } \frac{\epsilon \gamma(4+6 \alpha-N \alpha)}{2(4+2 \alpha-N \alpha)}>1 \text { if } N=1,2 . \tag{6.9}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
E_{1}(t) \leq\left\{C_{1}+C(\epsilon) E(0)^{\mu} K^{\eta}\right\}^{2}, \quad 0 \leq t \leq \tilde{T}+T \tag{6.10}
\end{equation*}
$$

where C_{1} is a constant depending on $\left\|u_{0}\right\|_{H_{2}}+\left\|u_{1}\right\|_{H_{1}}$ and the exponents μ, η are given by

$$
\begin{align*}
\mu & =(1-\epsilon) /(2+4 \alpha+N \alpha), \\
\eta & = \begin{cases}(N-2) \alpha / 2+\epsilon m(2+4 \alpha-N \alpha) / 4 & \text { if } N \geq 3, \\
\epsilon m(4+6 \alpha-N \alpha) / 2(4+2 \alpha-N \alpha) & \text { if } N=1,2 .\end{cases} \tag{6.11}
\end{align*}
$$

(When $N=2$, the exponent η in (6.10) should be replaced by $\eta+\delta, 0<\delta \ll 1$.)
Proof. Differentiating the equation we have formally,

$$
\begin{equation*}
u_{t t t}-\Delta u_{t}+\rho_{v}\left(x, u_{t}\right) u_{t t}=-g^{\prime}(u) u_{t} . \tag{6.12}
\end{equation*}
$$

Multiplying the equation by $u_{t t}$ and integrating we have

$$
\frac{d}{d t} E_{1}(t) \leq C \int_{\Omega}|u|^{\alpha}\left|u_{t}\right|\left|u_{t t}\right| d x \leq C\left(\int_{\Omega}|u|^{2 \alpha}\left|u_{t}\right|^{2} d x\right)^{1 / 2}\left\|u_{t t}(t)\right\|_{2}
$$

and hence

$$
\begin{equation*}
\frac{d}{d t} \sqrt{E_{1}(t)} \leq C\left(\int_{\Omega}|u|^{2 \alpha}\left|u_{t}\right|^{2} d x\right)^{1 / 2} \tag{6.13}
\end{equation*}
$$

(6.13) is valid in the distribution sense for the solutions $u(\cdot) \in X_{2, l o c}$. Here,

$$
\begin{align*}
& \int_{\Omega}|u|^{2 \alpha}\left|u_{t}\right|^{2} d x \\
& \quad \leq\left(\int_{\Omega}|u|^{2 N /(N-2)^{+}} d x\right)^{(N-2)^{+} \alpha / N}\left(\int_{\Omega}\left|u_{t}\right|^{2 N /\left(N-(N-2)^{+} \alpha\right)} d x\right)^{\left(N-(N-2)^{+} \alpha\right) / N} \\
& \quad \leq C\|u(t)\|_{\alpha+2}^{2 \alpha(1-\hat{\theta})}\|\nabla u(t)\|^{2 \alpha \hat{\theta}}\left\|u_{t}(t)\right\|_{2}^{2(1-\theta)}\left\|\nabla u_{t}(t)\right\|_{2}^{2 \theta} \tag{6.14}
\end{align*}
$$

with $\theta=(N-2)^{+} \alpha / 2$ and $\hat{\theta}=\left(2 N-(\alpha+2)(N-2)^{+}\right) /(4+2 \alpha-N \alpha)$. (A trivial modification is needed if $N=2$.) Hence,

$$
\begin{align*}
\int_{\Omega}|u|^{2 \alpha}\left|u_{t}\right|^{2} d x & \leq C K^{(N-2)^{+} \alpha} E(t)^{\alpha(2+\hat{\theta} \alpha) /(\alpha+2)+1-\theta} \\
& \leq C \begin{cases}K^{(N-2) \alpha} E(t)^{(2+4 \alpha-N \alpha) / 2} & \text { if } \quad N \geq 3 \\
E(t)^{(4+6 \alpha-N \alpha) /(4+2 \alpha-N \alpha)} & \text { if } \quad N=1,2 .\end{cases} \tag{6.15}
\end{align*}
$$

We make a simple device

$$
E(t) \leq E(0)^{1-\epsilon} E(t)^{\epsilon}, \quad 0 \leq \epsilon \leq 1 .
$$

Then, if $N \geq 3$, it follows from (6.13) and (6.15) that

$$
\begin{align*}
\sqrt{E_{1}(t)} & \leq \sqrt{E_{1}(0)}+C K^{(N-2) \alpha / 2} E(0)^{(1-\epsilon)(2+4 \alpha-N \alpha) / 4} \int_{0}^{t} E(s)^{\epsilon(2+4 \alpha-N \alpha) / 4} d s \\
& \leq C_{1}+C E(0)^{\mu} K^{(N-2) \alpha / 2} \int_{0}^{t} K^{\epsilon m(2+4 \alpha-N \alpha) / 4}(1+s)^{-\gamma \epsilon(2+4 \alpha-N \alpha) / 4} d s \tag{6.16}
\end{align*}
$$

for any $\epsilon, 0 \leq \epsilon \leq 1$. Under the assumption (6.9) we have the estimate (6.10) with $C(\epsilon)=C /\{\epsilon \gamma(2+4 \alpha-N \alpha)-4\}$. When $N=1,2$ we have, instead of (6.16),

$$
\begin{align*}
\sqrt{E_{1}(t)} \leq & C_{1}+C K^{\epsilon m(4+6 \alpha-N \alpha) / 2(4+2 \alpha-N \alpha)} \\
& \times \int_{0}^{t}(1+s)^{-\gamma \epsilon(4+6 \alpha-N \alpha) / 2(4+2 \alpha-N \alpha)} d s \tag{6.16}
\end{align*}
$$

and (6.10) follows, where $C(\epsilon)=C /\{\epsilon \gamma(4+6 \alpha-N \alpha)-2(4+2 \alpha-N \alpha)\}$.
Now we are in a position to complete the proof of our Theorems 2.2 and 2.3.
We first assume (6.2), $\left\|u_{t t}(t)\right\|+\left\|\nabla u_{t}(t)\right\| \leq K, 0 \leq t \leq \tilde{T}+T$. Then, by Propositions 6.1, 6.2, we have the estimate (6.8), where m, γ are given as in Propositions 6.1, 6.2, according to the case $N \geq 3$ and $N=1,2$.

Assume (6.9) and take $K \gg 1$ such that $K^{2}>2 C_{1}^{2}$. Then, if $E(0)$ is sufficiently small, we have from (6.10) with $\epsilon=1$,

$$
E_{1}(t) \leq \frac{1}{2}(K-\tilde{\epsilon})^{2}
$$

with some $\tilde{\epsilon}>0$. This implies

$$
\left\|u_{t t}(t)\right\|+\left\|\nabla u_{t}(t)\right\| \leq K-\tilde{\epsilon}<K, \quad 0 \leq t \leq \tilde{T}+T,
$$

and we conclude that the estimates (6.2) and (6.5) (or (6.7)) hold in fact on $[0, \infty$). The condition (6.9) with $\epsilon=1$ becomes

$$
\begin{equation*}
\gamma>\frac{4}{2+4 \alpha-N \alpha} \text { if } N \geq 3 \text { and } \gamma>\frac{2(4+2 \alpha-N \alpha)}{4+6 \alpha-N \alpha} \text { if } N=1,2 . \tag{6.9}
\end{equation*}
$$

Thus, Theorems 2.2 and 2.3 are proved for the case $E(0)$ is sufficiently small. Next we show the estimates (6.2) and (6.5) (or (6.7)) on $[0, \infty)$ without smallness condition on $E(0)$. Note that (6.10) implies

$$
\begin{equation*}
\left\|u_{t t}(t)\right\|+\left\|\nabla u_{t}(t)\right\| \leq C_{1} K^{\eta}, \quad 0 \leq t \leq \tilde{T}+T \tag{6.10}
\end{equation*}
$$

Assume that there exists $\epsilon, 0 \leq \epsilon \leq 1$ such that (6.9) holds and $\eta<1$. Then we can conclude that for a large $K \gg 1$, the estimates (6.2) and (6.5) (or (6.7)) hold in fact on $[0, \infty)$. We first consider the case $N \geq 3$. Then the required condition is reduced to

$$
\frac{4}{\gamma(2+4 \alpha-N \alpha)}<\epsilon<\frac{2(2+2 \alpha-N \alpha)}{m(2+4 \alpha-N \alpha)}
$$

for some $0 \leq \epsilon \leq 1$. It is easy to see that the condition is equivalent to:

$$
\frac{4}{\gamma(2+4 \alpha-N \alpha)}<1
$$

and

$$
\frac{4}{\gamma(2+4 \alpha-N \alpha)}<\frac{2(2+2 \alpha-N \alpha)}{m(2+4 \alpha-N \alpha)}
$$

Thus, the required condition is further reduced to

$$
\begin{equation*}
\gamma>\max \left\{\frac{4}{2+4 \alpha-N \alpha}, \frac{2 m}{2+2 \alpha-N \alpha}\right\}=\frac{4 N}{(N-2)(2+2 \alpha-N \alpha)} . \tag{6.17}
\end{equation*}
$$

Theorem 2.2 for the case without smallness condition on $E(0)$ is now proved.
When $N=1,2$ we see by a similar argument that the required condition is

$$
\begin{equation*}
\gamma>\max \left\{\frac{2(4+2 \alpha-N \alpha)}{4+6 \alpha-N \alpha}, m\right\} \tag{6.18}
\end{equation*}
$$

We know

$$
m=p \tilde{\theta} \min \left\{\frac{r+2}{r}, \frac{\alpha+2}{q \alpha+q+\alpha}-(N-1)\right\}, \quad \tilde{\theta}=\frac{N}{2}
$$

and

$$
\gamma=\min \left\{\frac{2}{r}, \frac{\alpha+2}{q \alpha+q+\alpha}-N\right\}
$$

Hence (6.18) becomes

$$
\begin{align*}
& \min \left\{\frac{2}{r}, \frac{\alpha+2}{q \alpha+q+\alpha}-N\right\} \\
& \quad>\max \left\{\frac{2(4+2 \alpha-N \alpha)}{4+6 \alpha-N \alpha}, p N \min \left\{\frac{r+2}{2 r}, \frac{\alpha+2}{2(q \alpha+q+\alpha)}-\frac{N-1}{2}\right\}\right\} . \tag{6.20}
\end{align*}
$$

When V is star-shaped we replace (6.20) by

$$
\begin{equation*}
\frac{\alpha+2}{q \alpha+q+\alpha}-N>\max \left\{\frac{2(4+2 \alpha-N \alpha)}{4+6 \alpha-N \alpha}, \frac{p N(\alpha+2)}{2(q \alpha+q+\alpha)}-\frac{N-1}{2}\right\} . \tag{6.20}
\end{equation*}
$$

Thus we have proved Theorem 2.3 for the case without smallness condition on $E(0)$.

Appendix.

Here we prove the following simple unique continuation theorem used in the proof of Proposition 3.4.

Proposition A.1. We assume Hyp.B. Let $u(\cdot) \in \tilde{X}_{2}(T) \equiv L^{\infty}\left([0, T] ; \dot{H}_{2} \cap\right.$ $\left.L^{\alpha+2}\right) \cap W^{1, \infty}\left([0, T] ; \dot{H}_{1}\right) \cap W^{2, \infty}\left([0, T] ; L_{\text {loc }}^{2}(\Omega)\right)$ be a solution of the problem

$$
u_{t t}-\Delta u+g(u)=0 \quad \text { in } \Omega \times[0, T]
$$

with $u_{t}(x, t)=0$ on $\omega \cup \Omega(R)^{c}$. Then there exists $T_{0}>0$ and $\epsilon>0$ such that if $T>T_{0}$ and $E(0)<\epsilon$, we have $u(x, t) \equiv 0$ on $\Omega \times[0, T]$.

Proof. Set $w(x, t)=u_{t}(x, t)$ and $w_{\delta}(x, t)=w(x, \cdot) * \rho_{\delta}(\cdot)$ where $\rho_{\delta}(t)$ is a mollifier with supp $\rho_{\delta}(\cdot) \subset(-\delta, \delta), 0<\delta \ll 1$. Then $w_{\delta} \in C\left([0, T] ; H_{2}(\Omega(2 R))\right) \cap$ $C^{1}\left([0, T] ; H_{1}(2 R)\right)$ is a solution of the problem

$$
\begin{equation*}
w_{\delta, t t}-\Delta w_{\delta}+g^{\prime}(u) w * \rho_{\delta}(t)=0 \text { in } \Omega(2 R) \times[\delta, T-\delta] . \tag{A.1}
\end{equation*}
$$

Now applying the same, in fact, a simpler argument deriving (3.10) to (A.1) and noting that $w_{\delta, t}=w_{\delta}=0$ on $\omega \cup \Omega(R)^{c}$ we have

$$
\begin{aligned}
& \frac{d}{d t} \tilde{\chi}_{k}(t)+\epsilon_{1} \int_{\Omega(R)}\left(\left|w_{\delta, t}\right|^{2}+\left|\nabla w_{\delta}\right|^{2}\right) d x \\
& \quad \leq C \int_{\Omega(R)}\left|g^{\prime}(u) w * \rho_{\delta}(t)\right|\left(\left|w_{\delta, t}\right|+\left|w_{\delta}\right|\right) d x
\end{aligned}
$$

$$
\begin{align*}
& \leq C \sup _{t-\delta \leq s \leq t+\delta}\left(\int_{\Omega(R)}|u|^{2(\alpha+1)} d x\right)^{\alpha / 2(\alpha+1)} \sup _{t-\delta \leq s \leq t+\delta}\|\nabla w(s)\|\left(\left\|w_{\delta, t}(t)\right\|+\left\|w_{\delta}(t)\right\|\right) \\
& \leq C E(0)^{\alpha / 2} \sup _{t-\delta \leq s \leq t+\delta}\|\nabla w(s)\|\left(\left\|w_{\delta, t}(t)\right\|+\left\|w_{\delta}(t)\right\|\right) \tag{A.2}
\end{align*}
$$

where $\tilde{\chi}_{k}(t)$ is defined with u replaced by w_{δ} (note that here in the definition of $\tilde{\chi}_{k}(t)$, we set $\left.E(t)=(1 / 2)\left(\left\|w_{\delta, t}(0)\right\|^{2}+\left\|\nabla w_{\delta}(t)\right\|^{2}\right)\right)$. Integrating (A.2) in t and letting δ tend to 0 we have

$$
\begin{align*}
& \tilde{\chi}_{k}(t)+\epsilon_{1} \int_{0}^{T} \int_{\Omega(R)}\left(\left|w_{t}\right|^{2}+|\nabla w|^{2}\right) d x d s \\
& \quad \leq \tilde{\chi}_{k}(0)+C E(0)^{\alpha / 2} \int_{0}^{T}\left(\left\|w_{t}(t)\right\|^{2}+\|\nabla w(t)\|^{2}\right) d t \tag{A.2}
\end{align*}
$$

where $\tilde{\chi}_{k}(t)$ is defined with u replaced by w. Further, by the standard energy identity we see

$$
\begin{align*}
& \sup _{0 \leq t \leq T}\left(\left\|w_{t}(t)\right\|^{2}+\|\nabla w(t)\|^{2}\right) \\
& \quad \leq \inf _{0 \leq t \leq T}\left(\left\|w_{t}(t)\right\|^{2}+\|\nabla w(t)\|^{2}\right)+2 \int_{0}^{T} \int_{\Omega(R)}\left|g^{\prime}(u) w \| w_{t}\right| d x d t \\
& \quad \leq \inf _{0 \leq t \leq T}\left(\left\|w_{t}(t)\right\|^{2}+\|\nabla w(t)\|^{2}\right)+C E(0)^{\alpha / 2} \int_{0}^{T}\left(\left\|w_{t}(t)\right\|^{2}+\|\nabla w(t)\|^{2}\right) d t \tag{A.3}
\end{align*}
$$

It follows from (A.2) ${ }^{\prime}$, A.3) and the fact $\tilde{\chi}_{k}(0) \leq C\left(\left\|w_{t}(0)\right\|^{2}+\|\nabla w(0)\|^{2}\right)$ that

$$
\begin{align*}
& \left(\epsilon_{1}-C E(0)^{\alpha / 2}\right) \int_{0}^{T}\left(\left\|w_{t}(t)\right\|^{2}+\|\nabla w(t)\|^{2}\right) d t \\
& \quad \leq C \inf _{0 \leq t \leq T}\left(\left\|w_{t}(t)\right\|^{2}+\|\nabla w(t)\|^{2}\right) \leq C \frac{1}{T} \int_{0}^{T}\left(\left\|w_{t}(t)\right\|^{2}+\|\nabla w(t)\|^{2}\right) d t \tag{A.4}
\end{align*}
$$

Thus we conclude that if $E(0)$ is small and T is sufficiently large, then $w(t) \equiv$ const. for $0 \leq t \leq T$. Since $w(x, t)=0$ for $|x| \geq R$ we have $w(x, t) \equiv 0$ and hence, $u(x, t)=u(x)$, independent of t. Returning to the original equation we see

$$
\begin{equation*}
-\Delta u+g(u)=0 \text { in } \Omega \tag{A.5}
\end{equation*}
$$

By the assumption $E(0)<\infty$ and Hyp.B we know $u \in \dot{H}_{1} \cap L^{\alpha+2}$, and hence (A.5) implies

$$
\|\nabla u\|^{2}+\int_{\Omega} g(u) u d x \leq 0
$$

and we conclude $u(x) \equiv 0$.
Acknowledgements. The author would like to thank the referee for his/her careful reading of the manuscript and useful comments.

References

[1] L. Aloui, S. Ibrahim and K. Nakanishi, Exponential energy decay for damped KleinGordon equation with nonlinearities of arbitrary growth, Comm. Partial Differential Equations, 36 (2011), 797-818.
[2] G. Chen, Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain, J. Math. Pures Appl. (9), 58 (1979), 249-273.
[3] F. John, Blow-up solutions of nonlinear wave equations in three space dimensions, Manuscripta Math., 28 (1979), 235-268.
[4] J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev., 30 (1988), 1-68.
[5] J.-L. Lions and W. A. Strauss, Some non-linear evolution equations, Bull. Soc. Math. France, 93 (1965), 43-96.
[6] T. Matsuyama, Asymptotics for the nonlinear dissipative wave equation, Trans. Amer. Math. Soc., 355 (2003), 865-899.
[7] K. Mochizuki and T. Motai, On energy decay-nondecay problems for wave equations with nonlinear dissipative term in R^{N}, J. Math. Soc. Japan, 47 (1995), 405-421.
[8] T. Motai, Asymptotic behavior of solutions to the Klein-Gordon equation with a nonlinear dissipative term, Tsukuba J. Math., 15 (1991), 151-160.
[9] M. Nakao, A difference inequality and its applications to nonlinear evolution equations, J. Math. Soc. Japan, 30 (1978), 747-762.
[10] M. Nakao, Energy decay of the wave equation with nonlinear dissipative term, Funkcial. Ekvac., 26 (1983), 237-250.
[11] M. Nakao, Decay of solutions of the wave equation with a local nonlinear dissipation, Math. Ann., 305 (1996), 403-417.
[12] M. Nakao, Decay of solutions to the Cauchy problem for the Klein-Gordon equation with a localized nonlinear dissipation, Hokkaido Math. J., 27 (1998), 245-271.
[13] M. Nakao, Energy decay for the linear and semilinear wave equations in exterior domains with some localized dissipations, Math. Z., 238 (2001), 781-797.
[14] M. Nakao, Global and periodic solutions for nonlinear wave equations with some localized nonlinear dissipation, J. Differential Equations, 190 (2003), 81-107.
[15] M. Nakao, Global attractors for nonlinear wave equations with nonlinear dissipative terms, J. Differential Equations, 227 (2006), 204-229.
[16] M. Nakao, Global attractors for nonlinear wave equations with some nonlinear dissipative terms in exterior domains, Int. J. Dyn. Syst. Differ. Equ., 1 (2008), 221-238.
[17] M. Nakao, Energy decay to the Cauchy problem of nonlinear Klein-Gordon equations
with a sublinear dissipative term, Adv. Math. Sci. Appl., 19 (2009), 479-501.
[18] M. Nakao, Remarks on the energy decay for nonlinear wave equation with nonlinear localized dissipative terms, Nonlinear Anal., 73 (2010), 2158-2169.
[19] M. Nakao, Energy decay to the Cauchy problem for a generalised nonlinear Klein-Gordon equation with a nonlinear dissipative term, Int. J. Dyn. Syst. Differ. Equ., 3 (2011), 349-362.
[20] M. Nakao and I. H. Jung, Energy decay for the wave equation in exterior domains with some half-linear dissipation, Differential Integral Equations, 16 (2003), 927-948.
[21] M. Nakao and K. Ono, Global existence to the Cauchy problem of the semilinear wave equation with a nonlinear dissipation, Funkcial. Ekvac., 38 (1995), 417-431.
[22] A. Ruiz, Unique continuation for weak solutions of the wave equation plus potential, J. Math. Pures Appl. (9), 71 (1992), 455-467.
[23] H. Sunagawa, Large time behavior of solutions to the Klein-Gordon equation with nonlinear dissipative terms, J. Math. Soc. Japan, 58 (2006), 379-400.
[24] G. Todorova and B. Yordanov, The energy decay problem for the wave equations with nonlinear dissipative terms in R^{N}, Indiana Univ. Math. J., 56 (2007), 389-416.
[25] G. Todorova, D. Ugŭrlu and B. Yordanov, Regularity and scattering for the wave equation with a critical nonlinear damping, J. Math. Soc. Japan, 61 (2009), 625-649.
[26] D. L. Russell, Exact boundary value controllability theorems for wave and heat processes in star-complemented regions, Differ. Games, Control Theory, Proc. Conf. Kingston, 1973, Lecture Notes in Pure Appl. Math., 10, Dekker, NY, 1974, pp. 291-319.
[27] E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping, Comm. Partial Defferential Equations, 15 (1990), 205-235.
[28] E. Zuazua, Exponential decay for the semilinear wave equation with localized damping in unbounded domains, J. Math. Pures Appl. (9), 70 (1991), 513-529.

Mitsuhiro NaKaO
Faculty of Mathematics
Kyushu University
Moto-oka 744
Fukuoka 819-0398, Japan
E-mail: mnakao@math.kyushu-u.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 35B35, 35L70.
 Key Words and Phrases. energy decay, nonlinear wave equation, localized dissipation.

