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Abstract. We give the best possible upper bound for the number of
exceptional values of the Lagrangian Gauss map of complete improper affine
fronts in the affine three-space. We also obtain the sharp estimate for weakly
complete case. As an application of this result, we provide a new and simple
proof of the parametric affine Bernstein problem for improper affine spheres.
Moreover, we get the same estimate for the ratio of canonical forms of weakly
complete flat fronts in hyperbolic three-space.

Introduction.

The study of improper affine spheres has been related to various subjects in
geometry and analysis. In fact, improper affine spheres in the affine three-space
R3 are locally graphs of solutions of the Monge-Ampère equation det (∇2f) = 1,
and Calabi [3] proved that there exists a local correspondence between solutions
of the equation of improper affine spheres in R3 and solutions of the equation of
minimal surfaces in Euclidean three-space. Recently, Mart́ınez [29] discovered the
correspondence between improper affine spheres and smooth special Lagrangian
immersions in the complex two-space C2. Moreover, from the viewpoint of this
correspondence, he introduced the notion of improper affine maps, that is, a class
of (locally strongly convex) improper affine spheres with some admissible singular-
ities and gave a holomorphic representation formula for them. Later, the second
author [31], Umehara and Yamada [45] showed that an improper affine map is
a front in R3, and hence we call this class improper affine fronts in this paper.
Mart́ınez [29] also defined the Lagrangian Gauss map of improper affine fronts in
R3 and obtained the characterization of a complete (in the sense of [27], [29], see
also Section 1 of this paper) improper affine front whose Lagrangian Gauss map
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is constant. We note that the second author [31] constructed a representation
formula for indefinite improper affine spheres with some admissible singularities.

On the other hand, the study of value distribution property of the Gauss map
of complete minimal surfaces in Euclidean three-space has accomplished many sig-
nificant results. This study is a generalization of the classical Bernstein theorem
[1] and initiated by Osserman ([35], [36], [37]). Fujimoto ([8], [9], [10]) showed
that the best possible upper bound for the number Dg of exceptional values of
the Gauss map g of complete nonflat minimal surfaces in Euclidean three-space is
“four”. Ros [39] gave a different proof of this result. Moreover, Osserman ([36],
[37]) proved that the Gauss map of a nonflat algebraic minimal surface can omit
at most three values (By an algebraic minimal surface, we mean a complete mini-
mal surface with finite total curvature). Recently, the first author, Kobayashi and
Miyaoka [21] gave an effective ramification estimate for the Gauss map of a wider
class of complete minimal surfaces that includes algebraic minimal surfaces (this
class is called pseudo-algebraic minimal surfaces). It also provided new proofs of
the Fujimoto and the Osserman theorems in this class and revealed the geometric
meaning behind them. The first author obtained the same estimate for the hy-
perbolic Gauss map of pseudo-algebraic constant mean curvature one surfaces in
hyperbolic three-space H3 [19]. These estimates correspond to the defect relation
in Nevanlinna theory ([17], [22], [33] and [40]).

The purpose of this paper is to study value distribution property of the La-
grangian Gauss map of improper affine fronts in R3. The organization of this
paper is as follows: In Section 1, we recall some definitions and basic facts about
improper affine fronts in R3 which are used throughout this paper. We review,
in particular, the definitions of completeness in the sense of [27], [29] and weakly
completeness in the sense of [45]. In Section 2, we give the upper bound for the
totally ramified value number δν of the Lagrangian Gauss map ν of complete im-
proper affine fronts in R3 (Theorem 2.2). This estimate is effective in the sense
that the upper bound which we obtained is described in terms of geometric in-
variants and sharp for some topological cases. Moreover, as a corollary of this
estimate, we also obtain the best possible upper bound for the number Dν of ex-
ceptional values of the Lagrangian Gauss map in this class (Corollary 2.4). We
note that this class corresponds to that of algebraic minimal surfaces in Euclidean
three-space. In Section 3, by applying the Fujimoto argument, we give the optimal
estimate for Dν of weakly complete improper affine fronts in R3 (Theorem 3.2).
We note that the best possible upper bound for Dg of complete minimal surfaces
obtained by Fujimoto is “four”, but the best possible upper bound for Dν of this
class is “three”. As an application of this estimate, from the viewpoint of the
value distribution property, we provide a new and simple proof of the well-known
result ([2], [15]) that any affine complete improper affine sphere must be an elliptic
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paraboloid (Corollary 3.6). This result is the special case of the parametric affine
Bernstein problem of affine maximal surfaces, which states that any affine com-
plete affine maximal surface must be an elliptic paraboloid ([4], [28], and [44]).
In Section 4, after reviewing some definitions and fundamental properties on flat
fronts in H3, we study the value distribution of the ratio of canonical forms of
weakly complete flat fronts in H3. Flat surfaces (resp. fronts) in H3 are closely
related to improper affine spheres (resp. fronts) in R3 (See [30] and also [14]).
Indeed, we show that the ratio of canonical forms of weakly complete flat fronts
in H3 has some properties similar to the Lagrangian Gauss map of weakly com-
plete improper affine fronts in R3 (Propositions 3.1 and 4.4, Theorems 3.2 and
4.5, Corollaries 3.6 and 4.6). By Corollaries 3.6 and 4.6, we can prove that the
uniqueness theorems of complete surfaces (these results are called the parametric
Bernstein type theorems) for these classes follow from the Liouville property, that
is, the boundedness of their Gauss maps.

Finally, the authors would like to particularly thank to Professors Wayne
Rossman, Masaaki Umehara and Kotaro Yamada for their useful advice. The
authors also thank to Professors Ryoichi Kobayashi, Masatoshi Kokubu, Reiko
Miyaoka, Junjiro Noguchi and Yoshihiro Ohnita for their encouragement of our
study.

1. Preliminaries.

We first briefly recall some definitions and basic facts about affine differential
geometry. Details can be found, for instance, in [28] and [34]. Let Σ be an oriented
two-manifold, and (ψ, ξ) a pair of an immersion ψ : Σ → R3 into the affine three-
space R3 and a vector field ξ on Σ along ψ which is transversal to ψ∗(TΣ). Then
the Gauss-Weingarten equations of (ψ, ξ) are as follows:

{
DXψ∗Y = ψ∗(∇XY ) + g(X, Y )ξ,

DXξ = −ψ∗(SX) + τ(X)ξ,
(1.1)

where D is the standard flat connection on R3. Here, g is called the affine metric
(or Blaschke metric) of the pair (f, ξ). Indeed, we can easily show that the rank
of g is invariant under the change of the transversal vector field ξ. When g is
positive definite, we call ψ a locally strongly convex immersion. From now on, we
only consider the locally strongly convex case. Given an immersion ψ : Σ → R3,
we can uniquely choose the transversal vector field ξ which satisfies the following
conditions:

( i ) τ ≡ 0 (or equivalently DXξ ∈ ψ∗(TΣ) for all X ∈ X(Σ)),



802 Y. Kawakami and D. Nakajo

( ii ) volg(X1, X2) = det (ψ∗X1, ψ∗X2, ξ) for all X1, X2 ∈ X(Σ),

where volg is the volume form of the Riemannian metric g and det is the standard
volume element of R3. The transversal vector field ξ which satisfies the two
conditions above is called an affine normal (or Blaschke normal), and a pair (ψ, ξ)
of an immersion and its affine normal is called a Blaschke immersion. A Blaschke
immersion (f, ξ) with S = 0 in (1.1) is called an improper affine sphere. In this
case, the transversal vector field ξ is constant because τ ≡ 0. Thus a transversal
vector field ξ of an improper affine sphere is given by ξ = (0, 0, 1) after a suitable
affine transformation of R3. The conormal map N : Σ → (R3)∗ into the dual space
of the affine three-space (R3)∗ for a given Blaschke immersion (f, ξ) is defined as
the immersion which satisfies the following conditions:

( i ) N(f∗X) = 0 for all X ∈ X(Σ),
( ii ) N(ξ) = 1.

For an improper affine sphere with affine normal (0, 0, 1), we can write N = (n, 1)
with a smooth map n : Σ → R2.

Let C2 denotes the complex two-space with the complex coordinates ζ =
(ζ1, ζ2), where ζ = x +

√−1y (x, y ∈ R2). We consider the standard metric g′,
the symplectic form ω′, and the complex two-form Ω′ given by

g′ = |dζ1|2 + |dζ2|2,

ω′ =
√−1

2
(dζ1 ∧ dζ̄1 + dζ2 ∧ dζ̄2),

Ω′ = dζ1 ∧ dζ2.

Let L : Σ → C2 be an special Lagrangian immersion with respect to the
calibration <(

√−1Ω′). As in [12], L can be characterized as an immersion in C2

satisfying

ω′|L(Σ) ≡ 0, =(√−1Ω′|L(Σ)

) ≡ 0,

where < and = represent real and imaginary part, respectively.
Then there exists the following correspondence between improper affine

spheres in R3 and some nondegenerate special Lagrangian immersions in C2.

Fact 1.1 ([29, Theorem 1]). Let ψ = (x, ϕ) : Σ → R3 = R2 × R be an
improper affine sphere with the conormal map N = (n, 1). The map Lψ : Σ → C2

given by
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Lψ := x +
√−1n

is an special Lagrangian immersion such that

( i ) The induced metric dτ2 := 〈dx, dx〉 + 〈dn, dn〉 is conformal to the affine
metric g of ψ,

( ii ) The metric ds2 := 〈dx, dx〉 is a nondegenerate flat metric,

where 〈· , ·〉 denotes the standard inner product in R2.

Fact 1.2 ([29, Theorem 2]). Let Lψ = x +
√−1n : Σ → C2 be a special

Lagrangian immersion such that ds2 := 〈dx, dx〉 is nondegenarate. Then

ψ =
(

x,−
∫
〈n, dx〉

)

is an improper affine sphere which is well-defined if and only if
∫

c
〈n, dx〉 = 0 for

any loop c on Σ.

Next, using the notations defined as above, we introduce the notion of im-
proper affine fronts, which is a generalization of improper affine spheres with some
admissible singularities.

Definition 1.3 ([29, Definition 1]). A map ψ = (x, ϕ) : Σ → R3 = R2×R

is called an improper affine front if ψ is expressed as

ψ =
(

x,−
∫
〈n, dx〉

)

by a special Lagrangian immersion Lψ = x +
√−1n : Σ → C2, where 〈· , ·〉 de-

notes the standard inner product in R2. Nonregular points of ψ correspond with
degenerate points of ds2 := 〈dx, dx〉. We call ds2 the flat fundamental form of ψ.

From Facts 1.1 and 1.2, at the nondegenerate points of ds2, the induced metric
dτ2 := 〈dx, dx〉+ 〈dn, dn〉 is conformal to the affine metric g := −〈dx, dn〉.

For any improper affine front ψ : Σ → R3, considering the conformal structure
given by the induced metric dτ2 of its associated special Lagrangian immersion
Lψ, we regard Σ as a Riemann surface.

Since every special Lagrangian immersion in C2 is a holomorphic curve with
respect to the complex coordinates ζ = (ζ1, ζ2) (see [16]), we see that there exists
a holomorphic regular curve α : Σ → C2, α := (F, G), such that if we identify
vectors of R2 with complex numbers in the standard way:
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(r, s) = r +
√−1s, r, s ∈ R,

then we can write

x = G + F̄ , n = F̄ −G (1.2)

and since the inner product of two vectors ζi = ri +
√−1si (i = 1, 2) is given by

〈ζ1, ζ2〉 = <(ζ1ζ̄2), then the flat fundamental form ds2, the induced metric dτ2 and
the affine metric g are given, respectively, by

ds2 = |dF + dG|2 = |dF |2 + |dG|2 + dGdF + dFdG,

dτ2 = 2(|dF |2 + |dG|2), (1.3)

g = |dG|2 − |dF |2.

The nontrivial part of the Gauss map of Lψ : Σ → C2 ∼= R4 (see [5]) is the
meromorphic function ν : Σ → C ∪ {∞} given by

ν :=
dF

dG
(1.4)

which is called the Lagrangian Gauss map of ψ.
Mart́ınez [29] gave the following representation formula for improper affine

fronts in terms of two holomorphic functions. This generalized a formula in [7].

Fact 1.4 ([29, Theorem 3]). Let ψ = (x, ϕ) : Σ → R3 = C × R be an
improper affine front. Then there exists a holomorphic regular curve α := (F, G) :
Σ → C2 such that

ψ :=
(

G + F̄ ,
|G|2 − |F |2

2
+ <

(
GF −

∫
FdG

))
. (1.5)

Here, the conormal map of ψ becomes

N = (F̄ −G, 1).

Conversely, given a Riemann surface Σ and a holomorphic regular curve α :=
(F, G) : Σ → C2, then (1.5) gives an improper affine front which is well-defined if
and only if < ∫

c
FdG = 0 for any loop c in Σ.
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We call the pair (F, G) the Weierstrass data of ψ. Note that the singular
points of ψ correspond with the points where |dF | = |dG|, that is, |ν| = 1 ([29],
see also [31]).

An improper affine front ψ : Σ → R3 is said to be complete if there exists a
symmetric two-tensor T such that T = 0 outside a compact set C ⊂ Σ and ds2 +T

is a complete Riemannian metric on Σ, where ds2 is the flat fundamental form of
ψ. This definition is similar to the definition of completeness for fronts [27].

Fact 1.5. A complete improper affine front ψ : Σ → R3 satisfies the follow-
ing two conditions:

( i ) Σ is biholomorphic to Σγ\{p1, . . . , pk}, where Σγ is a closed Riemann surface
of genus γ and pj ∈ Σγ (j = 1, . . . , k) [13].

( ii ) The Weierstrass data (F, G) of ψ can be extended meromorphically to Σγ .
In particular, its Lagrangian Gauss map can also be a meromorphic function
on Σγ [29].

Each puncture point pj (j = 1, . . . , k) is called an end of ψ. On the other
hand, an improper affine front is said to be weakly complete if the induced metric
dτ2 as in (1.3) is complete. Note that the universal cover of a weakly complete
improper affine front is also weakly complete, but completeness is not preserved
when lifting to the universal cover. The relationship between completeness and
weakly completeness in this class is as follows:

Fact 1.6 ([45, Remark 4]). An improper affine front in R3 is complete if
and only if it is weakly complete, the singular set is compact and all ends are
biholomorphic to a punctured disk.

Finally, we give two examples in [29, Section 4] which play important roles
in the following sections.

Example 1.7 (Elliptic paraboloids). An elliptic paraboloid can be obtained
by taking Σ = C and Weierstrass data (cz, z), where c is constant. It is complete,
and its Lagrangian Gauss map is constant. Note that, if |c| = 1, then an improper
affine front constructed from this data is a line in R2.

Example 1.8 (Rotational improper affine fronts). A rotational improper
affine front is obtained by considering Σ = C\{0} and Weierstrass data (z,±r2/z),
where r ∈ R\{0}. It is complete and its Lagrangian Gauss map ν = ∓z2/r2. In
particular, ν omits two values, 0, ∞.
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2. A ramification estimate for the Lagrangian Gauss map of com-
plete improper affine fronts.

We first recall the definion of the totally ramified value number of a mero-
morphic function.

Definition 2.1 ([32]). Let Σ be a Riemann surface and h a meromorphic
function on Σ. We call b ∈ C ∪{∞} a totally ramified value of h when h branches
at any inverse image of b. We regard exceptional values also as totally ramified
values, here we call a point of C ∪ {∞}\h(Σ) an exceptional value of h. Let
{a1, . . . , ar0 , b1, . . . , bl0} ⊂ C ∪ {∞} be the set of totally ramified values of h,
where aj ’s are exceptional values. For each aj , set mj = ∞, and for each bj ,
define mj to be the minimum of the multiplicities of h at points h−1(bj). Then
we have mj ≥ 2. We call

δh =
∑

aj ,bj

(
1− 1

mj

)
= r0 +

l0∑

j=1

(
1− 1

mj

)

the totally ramified value number of h.

Because the Lagrangian Gauss map ν of an improper affine front ψ : Σ → R3 is
a meromorphic function on Σ, we can consider the totally ramified value number
δν of ν. By virtue of Fact 1.5, we regard Σ as a punctured Riemann surface
Σγ\{p1, . . . , pk}, where Σγ is a closed Riemann surface of genus γ and pj ∈ Σγ

(j = 1, . . . , k). Then we give the upper bound for δν of complete improper affine
fronts in R3. Here, we denote by Dν the number of exceptional values of ν. By
definition, it follows immediately that Dν ≤ δν .

Theorem 2.2. Let ψ : Σ = Σγ\{p1, . . . , pk} → R3 be a complete improper
affine front and ν : Σ → C ∪{∞} the Lagrangian Gauss map of ψ. Suppose that ν

is nonconstant and d is the degree of ν considered as a map on Σγ . Then we have

Dν ≤ δν ≤ 2 +
2
R

,
1
R

:=
γ − 1 + k/2

d
<

1
2
. (2.1)

In particular, Dν ≤ δν < 3.

Remark 2.3. The geometric meaning of “2” in the upper bound of (2.1) is
the Euler number of the Riemann sphere. The geometric meaning of the ratio R

is given in [21, Section 6].
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Proof. By Fact 1.6, if ds2 is complete, then dτ2 is a complete Riemannian
metric. Then the metric dτ2 is represented as

dτ2 = 2(|dF |2 + |dG|2) = 2
(

1 +
∣∣∣∣
dF

dG

∣∣∣∣
2)
|dG|2 = 2(1 + |ν|2)|dG|2. (2.2)

Since dτ2 is nondegenerate on Σ, the poles of ν of order k coincide exactly with the
zeros of dG of order k. By the completeness of dτ2, dG has a pole of order µj ≥ 1
at pj [37]. Moreover we show that µj ≥ 2 for each pj because G is single-valued
on Σγ . Applying the Riemann-Roch theorem to dG on Σγ , we have

d−
k∑

j=1

µj = 2γ − 2. (2.3)

Thus we get

d = 2γ − 2 +
k∑

j=1

µj ≥ 2(γ − 1 + k) > 2
(

γ − 1 +
k

2

)
, (2.4)

and

1
R

<
1
2
. (2.5)

Assume that ν omits r0 = Dν values. Let n0 be the sum of the branching
orders at the image of these exceptional values of ν. Then we have

k ≥ dr0 − n0. (2.6)

Let b1, . . . , bl0 be the totally ramified values which are not exceptional values and
nr the sum of branching order at the inverse image of bi (i = 1, . . . , l0) of ν. For
each bi, we denote

mi = min ν−1(bi){multiplicity of ν(z) = bi},

then the number of points in the inverse image ν−1(bi) is less than or equal to
d/mi. Thus we get

dl0 − nr ≤
l0∑

i=1

d

mi
. (2.7)
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This implies

l0 −
l0∑

i=1

1
mi

≤ nr

d
. (2.8)

Let nν be the total branching order of ν on Σγ . Then applying the Riemann-
Hurwitz formula to the meromorphic function ν on Σγ , we have

nν = 2(d + γ − 1). (2.9)

Hence, we obtain

δν = r0 +
l0∑

j=1

(
1− 1

mj

)
≤ n0 + k

d
+

nr

d
≤ nν + k

d
= 2 +

2
R

. ¤

The system of inequalities (2.1) is sharp in the following cases:
(i) When (γ, k, d) = (0, 1, n) (n ∈ N), we have

δν ≤ 2− 1
n

.

In this case, we can set Σ = C. Since Σ is simply connected, we have no period
condition. We define a Weierstrass data on Σ, by

(F, G) =
(

zn+1

n + 1
, z

)
. (2.10)

By Fact 1.4, we can construct a complete improper affine front ψ : Σ → R3 whose
Weierstrass data is (2.10). In particular, its Lagrangian Gauss map ν has δν =
2 − (1/n). In fact, ν = zn, and it has one exceptional value and another totally
ramified value of multiplicity n at z = 0. Thus (2.1) is sharp in this case.

(ii) When (γ, k, d) = (0, 2, 2), we have

Dν ≤ δν ≤ 2.

In this case, we can set Σ = C\{0}. On the other hand, a rotational improper
affine front (Example 1.8) has Dν = δν = 2. Thus (2.1) is also sharp in this case.

As a corollary of Theorem 2.2, we obtain the maximal number of exceptional
values of the Lagrangian Gauss map of complete improper affine fronts in R3.
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Corollary 2.4. Let ψ be a complete improper affine front in R3. If its
Lagrangian Gauss map ν is nonconstant, then ν can omit at most two values.

The number “two” is sharp, because the Lagrangian Gauss map of a rotational
improper affine front (Example 1.8) omits two values. Hence we provide the best
possible upper bound for Dν in complete case.

3. The maximal number of exceptional values of the Lagrangian
Gauss map of weakly complete improper affine fronts.

In this section, we study the value distribution of the Lagrangian Gauss map
of weakly complete improper affine fronts in R3. We begin to consider the case
where the Lagrangian Gauss map is constant.

Proposition 3.1. Let ψ : Σ → R3 be a weakly complete improper affine
front. If its Lagrangian Gauss map ν is constant, then ψ is an elliptic paraboloid.

Proof. Since the metric dτ2 is represented as (2.2), if ν is constant, then
the Gaussian curvature Kdτ2 of dτ2 vanishes identically on Σ. By the Huber
theorem, Σ is a closed Riemann surface of genus γ with k points removed, that
is, Σ = Σγ\{p1, . . . , pk}. Moreover we obtain the formula (see [6, Corollary 1] or
[42])

1
2π

∫

Σ

(−Kdτ2)dA = −χ(Σγ)−
k∑

j=1

ordpj
(dτ2),

where dA denotes the area element of dτ2 and χ(Σγ) the Euler number of Σγ .
Since the metric dτ2 is complete, ordpj

dτ2 ≤ −1 holds for each end pj . Thus if ν

is constant, then we get γ = 0 and

k∑

j=1

ordpj (dτ2) = −2. (3.1)

Since dτ2 is well-defined on Σ, we need to consider the following two cases:

(a) The improper affine front ψ has two ends p and q, and ordpdτ2 = ordqdτ2 =
−1,

(b) The improper affine front ψ has one end p, and ordpdτ2 = −2.

In this class, the case (a) cannot occur because F and G are single-valued on Σ.
Thus we have only to consider the case (b). Then we may assume that p = ∞ after
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a suitable Möbius transformation of the Riemann sphere Σ0. Since ν is constant,
dF and dG are well-defined on Σ0, and it holds that

ord∞dF = ord∞dG = −2.

We thus have dF = cdz and dG = dz, that is, F (z) = cz and G(z) = z for some
constant c. Hence the result follows from Example 1.7. ¤

We next give the best possible upper bound for the number of exceptional
values of the Lagrangian Gauss map of weakly complete improper affine fronts in
R3.

Theorem 3.2. Let ψ be a weakly complete improper affine front in R3. If
its Lagrangian Gauss map ν is nonconstant, then ν can omit at most three values.

The number “three” is sharp because there exist the following examples.

Example 3.3 (Improper affine fronts of Voss type). We consider the La-
grangian Gauss map ν and the holomorphic one-form dG on Σ = C\{a1, a2} for
distinct points a1, a2 ∈ C, by

ν = z, dG =
dz∏

j(z − aj)
. (3.2)

Since F and G are not well-defined on Σ, we obtain an improper affine front
ψ : D → R3 on the universal covering disk D of Σ. Since the metric dτ2 is
complete, we can get a weakly complete improper affine front whose Lagrangian
Gauss map omits three values, a1, a2 and ∞.

Before proceeding to the proof of Theorem 3.2, we recall two function-
theoretical lemmas. For two distinct values α, β ∈ C ∪ {∞}, we set

|α, β| := |α− β|√
1 + |α|2

√
1 + |β|2

if α 6= ∞ and β 6= 0, and |α,∞| = |∞, α| := 1/
√

1 + |α|2. Note that, if we take
v1, v2 ∈ S2 with α = $(v1) and β = $(v2), we have that |α, β| is a half of the
chordal distance between v1 and v2, where $ denotes the stereographic projection
of S2 onto C ∪ {∞}.

Lemma 3.4 ([10, (8.12) p. 136]). Let ν be a nonconstant meromorphic func-
tion on ∆R = {z ∈ C; |z| < R} (0 < R ≤ +∞) which omits q values α1, . . . , αq.
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If q > 2, then for each positive η with η < (q − 2)/q, there exists some positive
constant C > 0 such that

|ν′|
(1 + |ν|2)∏q

j=1|ν, αj |1−η
≤ C

R

R2 − |z|2 . (3.3)

Lemma 3.5 ([9, Lemma 1.6.7]). Let dσ2 be a conformal flat metric on an
open Riemann surface Σ. Then, for each point p ∈ Σ, there exists a local diffeo-
morphism Ψ of a disk ∆R0 = {z ∈ C; |z| < R0} (0 < R0 ≤ +∞) onto an open
neighborhood of p with Ψ(0) = p such that Ψ is a local isometry, namely, the pull-
back Ψ∗(dσ2) is equal to the standard Euclidean metric on ∆R0 and, for a point
a0 with |a0| = 1, the Ψ-image Γa0 of the curve La0 = {w := a0s; 0 < s < R0} is
divergent in Σ.

Proof of Theorem 3.2. This is proved by contradiction. Suppose that ν

omits four distinct values α1, . . . , α4. For our purpose, we may assume α4 = ∞ and
that Σ is biholomorphic to the unit disk because Σ can be replaced by its universal
covering surface and Theorem 3.2 is obvious in the case where Σ = C by the little
Picard theorem. We choose some η with 0 < η < 1/4 and set λ := 1/(2 − 4η).
Then 1/2 < λ < 1 holds. Now we define a new metric

dσ2 = |G′z|2/(1−λ)

(
1
|ν′z|

3∏

j=1

( |ν − αj |√
1 + |αj |2

)1−η)2λ/(1−λ)

|dz|2 (3.4)

on the set Σ′ := {z ∈ Σ; ν′z(z) 6= 0}, where dG = G′zdz and ν′z = dν/dz. Take a
point p ∈ Σ′. Since the metric dσ2 is flat on Σ′, by Lemma 3.5, there exists a local
isometry Ψ satisfying Ψ(0) = p from a disk ∆R = {z ∈ C; |z| < R} (0 < R ≤ +∞)
with the standard Euclidean metric onto an open neighborhood of p in Σ′ with
the metric dσ2, such that, for a point a0 with |a0| = 1, the Ψ-image Γ of the
curve La0 = {w := a0s; 0 < s < R} is divergent in Σ′. For brevity, we denote the
function ν ◦Ψ on ∆R by ν in the followings. By Lemma 3.4, we get

R ≤ C
1 + |ν(0)|2
|ν′z(0)|

4∏

j=1

|ν(0), αj |1−η < +∞. (3.5)

Hence

Ldσ(Γ) =
∫

Γ

dσ = R < +∞, (3.6)
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where Ldσ(Γ) denotes the length of Γ with respect to the metric dσ2.
We assume that Ψ-image Γ tends to a point p0 ∈ Σ\Σ′ as s → R. Taking

a local complex coordinate ζ in a neighborhood of p0 with ζ(p0) = 0, we can
write dσ2 = |ζ|−2λ/(1−λ)w|dζ|2 with some positive smooth function w. Since
λ/(1− λ) > 1, we have

R =
∫

Γ

dσ ≥ C ′
∫

Γ

|dζ|
|ζ|λ/(1−λ)

= +∞

which contradicts (3.5). Hence Γ diverges outside any compact subset of Σ as
s → R.

On the other hand, since dσ2 = |dz|2, we obtain by (3.4)

|G′z| =
(
|ν′z|

3∏

j=1

(√
1 + |αj |2
|ν − αj |

)1−η)λ

. (3.7)

By Lemma 3.4, we have

Ψ∗dτ =
√

2|G′z|
√

1 + |ν|2|dz|

=
√

2
(
|ν′z|(1 + |ν|2)1/2λ

3∏

j=1

(√
1 + |αj |2
|ν − αj |

)1−η)λ

|dz|

=
√

2
( |ν′z|

(1 + |ν|2) ∏4
j=1 |ν, αj |1−η

)λ

|dz|

≤
√

2Cλ

(
R

R2 − |z|2
)λ

|dz|.

Thus, if we denote the distance d(p) from a point p ∈ Σ to the boundary of Σ
as the greatest lower bound of the lengths with respect to the metric dτ2 of all
divergent paths in Σ, then we have

d(p) ≤
∫

Γ

dτ =
∫

La0

Ψ∗dτ =
√

2Cλ

∫

La0

(
R

R2 − |z|2
)λ

|dz| ≤
√

2Cλ R1−λ

1− λ
< +∞

because 1/2 < λ < 1. However, it contradicts the assumption that dτ2 is complete.
¤
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As a corollary of Theorem 3.2, we provide a new and simple proof of the
uniqueness theorem for affine complete improper affine spheres from the viewpoint
of the value distribution property.

Corollary 3.6. Any affine complete improper affine sphere must be an
elliptic paraboloid.

Proof. Because an improper affine sphere has no singularities, the com-
plement of the image of its Lagrangian Gauss map ν contains at least the circle
{|ν| = 1} ⊂ C ∪ {∞}. Thus, by exchanging roles of dF and dG if necessarily, it
holds that |ν| < 1, that is, |dF | < |dG|. On the other hand, we have

g = |dG|2 − |dF |2 < 2(|dF |2 + |dG|2) = dτ2.

Thus if an improper affine sphere is affine complete, then it is also weakly complete.
Hence, by Proposition 3.1 and Theorem 3.2, it is an elliptic paraboloid. ¤

4. Value distribution of the ratio of canonical forms for weakly
complete flat fronts in hyperbolic three-space.

We first summarize here definitions and basic facts on weakly complete flat
fronts in H3 which we shall need. For more details, we refer the reader to [11],
[24], [25], [27] and [43].

Let L4 be the Lorentz-Minkowski four-space with inner product of signature
(−,+,+,+). Then the hyperbolic three-space is given by

H3 = {(x0, x1, x2, x3) ∈ L4 | − (x0)2 + (x1)2 + (x2)2 + (x3)2 = −1, x0 > 0} (4.1)

with the induced metric from L4, which is a simply connected Riemannian three-
manifold with constant sectional curvature −1. Identifying L4 with the set of 2×2
Hermitian matrices Herm(2) = {X∗ = X} (X∗ :=

t
X) by

(x0, x1, x2, x3) ←→
(

x0 + x3 x1 + ix2

x1 − ix2 x0 − x3

)
(4.2)

where i =
√−1, we can write

H3 = {X ∈ Herm(2); det X = 1, trace X > 0}
= {aa∗; a ∈ SL(2,C)} (4.3)
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with the metric

〈X, Y 〉 = −1
2

trace (XỸ ), 〈X, X〉 = −det(X),

where Ỹ is the cofactor matrix of Y . The complex Lie group PSL(2,C) :=
SL(2,C)/{±id} acts isometrically on H3 by

H3 3 X 7−→ aXa∗, (4.4)

where a ∈ PSL(2,C).
Let Σ be an oriented two-manifold. A smooth map f : Σ → H3 is called a

front if there exists a Legendrian immersion

Lf : Σ → T ∗1 H3

into the unit cotangent bundle of H3 whose projection is f . Identifying T ∗1 H3

with the unit tangent bundle T1H
3, we can write Lf = (f, n), where n(p) is a unit

vector in Tf(p)H
3 such that 〈df(p), n(p)〉 = 0 for each p ∈ M . We call n a unit

normal vector field of the front f . A point p ∈ Σ where rank (df)p < 2 is called a
singularity or singular point. A point which is not singular is called regular point,
where the first fundamental form is positive definite.

The parallel front ft of a front f at distance t is given by ft(p) =
Expf(p)(tn(p)), where “Exp” denotes the exponential map of H3. In the model
for H3 as in (4.1), we can write

ft = (cosh t)f + (sinh t)n, nt = (cosh t)n + (sinh t)f, (4.5)

where nt is the unit normal vector field of ft.
Based on the fact that any parallel surface of a flat surface is also flat at

regular points, we define flat fronts as follows: A front f : Σ → H3 is called a
flat front if, for each p ∈ M , there exists a real number t ∈ R such that the
parallel front ft is a flat immersion at p. By definition, {ft} forms a family of flat
fronts. We note that an equivalent definition of flat fronts is that the Gaussian
curvature of f vanishes at all regular points. However, there exists a case where
this definition is not suitable. For details, see [27, Remark 2.2].

We assume that f is flat. Then there exists a (unique) complex structure on
Σ and a holomorphic Legendrian immersion

Ef : Σ̃ → SL(2,C) (4.6)
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such that f and Lf are projections of Ef , where Σ̃ is the universal covering surface
of Σ. Here, Ef being a holomorphic Legendrian map means that E−1

f dEf is off-
diagonal (see [11], [26], [27]). We call Ef the holomorphic Legendrian lift of f .
The map f and its unit normal vector field n are

f = EfE ∗f , n = Efe3E
∗
f , e3 =

(
1 0
0 −1

)
. (4.7)

If we set

E−1
f dEf =

(
0 θ
ω 0

)
, (4.8)

the first and second fundamental forms ds2 = 〈df, df〉 and dh2 = −〈df, dn〉 are
given by

ds2 = |ω + θ̄|2 = Q + Q̄ + (|ω|2 + |θ|2), Q = ωθ

dh2 = |θ|2 − |ω|2 (4.9)

for holomorphic one-forms ω and θ defined on Σ̃, with |ω|2 and |θ|2 well-defined
on Σ itself. We call ω and θ the canonical forms of f . The holomorphic two-
differential Q appearing in the (2, 0)-part of ds2 is defined on Σ, and is called the
Hopf differential of f . By definition, the umbilic points of f coincide with the
zeros of Q. Defining a meromorphic function on Σ̃ by the ratio of canonical forms

ρ =
θ

ω
, (4.10)

then |ρ| : Σ → [0,+∞] is well-defined on Σ, and p ∈ Σ is a singular point if and
only if |ρ(p)| = 1.

Note that the (1, 1)-part of the first fundamental form

ds2
1,1 = |ω|2 + |θ|2 (4.11)

is positive definite on Σ because it is the pull-back of the canonical Hermitian
metric of SL(2,C). Moreover, 2ds2

1,1 coincides with the pull-back of the Sasakian
metric on T ∗1 H3 by the Legendrian lift Lf of f (which is the sum of the first
and third fundamental forms in this case, see [27, Section 2] for details). The
complex structure on Σ is compatible with the conformal metric ds2

1,1. Note that
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any flat front is orientable ([24, Theorem B]). In this section, for each flat front
f : Σ → H3, we always regard Σ as a Riemann surface with this complex structure.

The two hyperbolic Gauss maps are defined by

G =
E11

E21
, G∗ =

E12

E22
, where Ef = (Eij). (4.12)

By identifying the ideal boundary S2
∞ of H3 with the Riemann sphere C ∪ {∞},

the geometric meaning of G and G∗ is given as follows ([11], [25, Appendix A],
[38]): The hyperbolic Gauss maps G and G∗ represent the intersection points
in S2

∞ for the two oppositely-oriented normal geodesics emanating from f . In
particular, G and G∗ are meromorphic functions on Σ and parallel fronts have the
same hyperbolic Gauss maps. We have already obtained an estimate for the totally
ramified value numbers of the hyperbolic Gauss maps of complete flat fronts in H3

in [20]. This estimate is similar to the case of the Gauss map of pseudo-algebraic
minimal surfaces in Euclidean four-space (see [18]). Let z be a local complex
coordinate on Σ. Then we have the following identities (see [27]):

s(ω)− S(G) = 2Q, s(θ)− S(G∗) = 2Q, (4.13)

where S(G) is the Schwarzian derivative of G with respect to z as in

S(G) =
{(

G′′

G′

)′
− 1

2

(
G′′

G′

)2}
dz2

(
′ =

d

dz

)
, (4.14)

and s(ω) and s(θ) is the Schwarzian derivative of the integral of ω and θ, respec-
tively.

Here, we note on the interchangeability of the canonical forms and the
hyperbolic Gauss maps. The canonical forms (ω, θ) have the U(1)-ambiguity
(ω, θ) 7→ (eisω, e−isθ) (s ∈ R), which corresponds to

Ef 7−→ Ef

(
eis/2 0

0 e−is/2

)
. (4.15)

For a second ambiguity, defining the dual E \
f of Ef by

E \
f = Ef

(
0 i
i 0

)
,
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then E \
f is also Legendrian with f = E \

f E \
f

∗
. The hyperbolic Gauss maps G\, G\

∗
and canonical forms ω\, θ\ of E \

f satisfy

G\ = G∗, G\
∗ = G, ω\ = θ, θ\ = ω.

Namely, the operation \ interchanges the roles of ω and θ and also G and G∗.
A flat front f : Σ → H3 is said to be weakly complete (resp. of finite type) if

the metric ds2
1,1 as in (4.11) is complete (resp. of finite total curvature). We note

that the universal cover of a weakly complete flat front is also weakly complete,
but completeness is not preserved when lifting to the universal cover.

Fact 4.1 ([24, Proposition 3.2]). If a flat front f : Σ → H3 is weakly
complete and of finite type, then Σ is biholomorphic to Σγ\{p1, . . . , pk}, where Σγ

is a closed Riemann surface of genus γ and pj ∈ Σγ (j = 1, . . . , k).

Each puncture point pj (j = 1, . . . , k) is called a WCF-end of f . We can
assume that a neighborhood of pj is biholomorphic to the punctured disk D∗ =
{z ∈ C; 0 < |z| < 1}.

Fact 4.2 ([11], [27], [24, Proposition 3.2]). Let f : D∗ → H3 be a WCF-
end of a flat front. Then the canonical forms ω and θ are expressed

ω = zµω̂(z)dz, θ = zµ∗ θ̂(z)dz, (µ, µ∗ ∈ R, µ + µ∗ ∈ Z),

where ω̂ and θ̂ are holomorphic functions in z which do not vanish at the origin.
In particular, the function |ρ| : D∗ → [0,∞] as in (4.10) can be extended across
the end.

Here, |ω|2 and |θ|2 are considered as conformal flat metrics on D∗
ε for suffi-

ciently small ε > 0. The real numbers µ and µ∗ are the order of the metrics |ω|2
and |θ|2 at the origin respectively, that is,

µ = ord0|ω|2, µ∗ = ord0|θ|2. (4.16)

Since ds2
1,1 = |ω|2 + |θ|2 is complete at the origin, it holds that

min{µ, µ∗} = min
{
ord0|ω|2, ord0|θ|2

} ≤ 1. (4.17)

for a WCF-end. By (4.9), the order of the Hopf differential is
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ord0Q = µ + µ∗ = ord0|ω|2 + ord0|θ|2. (4.18)

We call the WCF-end regular if both G and G∗ have at most poles. Then the
following fact holds.

Fact 4.3 ([11], [24, Proposition 4.2]). A WCF-end f : D∗ → H3 of a flat
front is regular if and only if the Hopf differential has a pole of order at most two
at the origin, that is, ord0Q ≥ −2 holds.

Now we investigate the value distribution of the ratio of canonical forms for
weakly complete flat fronts in H3. We consider the case where the ratio is constant.

Proposition 4.4. Let f : Σ → H3 be a weakly complete flat front. If the
meromorphic function ρ defined by (4.10) is constant, then f is congruent to a
horosphere or a hyperbolic cylinder. Here, a surface equidistance from a geodesic
is called a hyperbolic cylinder [27].

Proof. In general, the function ρ is defined on the universal covering sur-
face Σ̃ of Σ. However, in this case, we can consider that ρ is constant on Σ. Then
the metric ds2

1,1 defined by (4.11) is represented as

ds2
1,1 = |ω|2 + |θ|2 =

(
1 +

∣∣∣∣
θ

ω

∣∣∣∣
2)
|ω|2 = (1 + |ρ|2)|ω|2. (4.19)

Thus the Gaussian curvature Kds2
1,1

of ds2
1,1 vanishes identically on Σ. By Fact 4.1,

Σ is biholomorphic to a closed Riemann surface of genus γ with k points removed,
that is, Σ = Σγ\{p1, . . . , pk}. Moreover we obtain the formula ([24, (3.2)])

1
2π

∫

Σ

(−Kds2
1,1

)
dA = −χ(Σγ)−

k∑

j=1

ordpj

(
ds2

1,1

)
,

where dA denotes the area element of ds2
1,1 and χ(Σγ) the Euler number of Σγ .

Since the metric ds2
1,1 is complete, for each WCF-end pj , ordpj

ds2
1,1 ≤ −1 holds.

Thus, in this case, we get γ = 0 and

k∑

j=1

ordpj
(ds2

1,1) = −2. (4.20)

Since ds2
1,1 is well-defined on Σ, we need to consider the following two cases:
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(a) The flat front f has two WCF-ends p and q, and ordpds2
1,1 = ordqds2

1,1 = −1,
(b) The flat front f has one WCF-end p, and ordpds2

1,1 = −2.

In the case (a), f is congruent to a hyperbolic cylinder. In fact, the WCF-ends
are asymptotic to a finite cover of a hyperbolic cylinder ([11], [25]). In the case
(b), then ρ ≡ 0. Because, if not, then it holds that ordpQ = −4 by (4.18). On the
other hand, the identities (4.13) imply that the WCF-end p is regular. However,
by Fact 4.3, it does not occur. Hence the Hopf differential Q = ωθ also vanishes
identically on Σ, and then f is a horosphere. ¤

Applying the same argument as in the proof of Theorem 3.2 to the ratio ρ of
weakly complete flat fronts in H3, we give the following result for ρ.

Theorem 4.5. Let f : Σ → H3 be a weakly complete flat front and ρ the
meromorphic function on Σ̃ defined by (4.10). If ρ is nonconstant, then ρ can omit
at most three values.

As a corollary of Theorem 4.5, we can obtain the uniqueness theorem of weakly
complete flat surfaces in H3. Note that Sasaki [41], Volkov and Vladimirova [46]
have already obtained the same result for complete flat surfaces in H3 (See also
[11, Theorem 3]).

Corollary 4.6. Any weakly complete flat surface in H3 must be congruent
to a horosphere or a hyperbolic cylinder.

Proof. Because a weakly complete flat surface has no singularities, the
complement of the image of ρ contains at least the circle {|ρ| = 1} ⊂ C ∪ {∞}.
From Proposition 4.4 and Theorem 4.5, it is a horosphere or a hyperbolic cylinder.

¤
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