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Continuous limit of the difference second Painlevé equation
and its asymptotic solutions
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Abstract. The discrete second Painlevé equation dPyr is mapped to the
second Painlevé equation Py by its continuous limit, and then, as shown by
Kajiwara et al., a rational solution of dPyj also reduces to that of Py;. In this
paper, regarding dPyy as a difference equation, we present a certain asymptotic
solution that reduces to a triply-truncated solution of Py in this continuous
limit. In a special case our solution corresponds to a rational one of dPyy.
Furthermore we show the existence of families of solutions having sequential
limits to truncated solutions of Pyy.

1. Introduction.

The non-autonomous mapping

(aOn + 2)yn +a;
1—y2

dPyp Ynt1 + Yn—1 =
with ag, a1 € C is known as the discrete second Painlevé equation [2], [6], [8], [9].
If we put

ien =, y, =icv(x), ag= —ic®, a3 = —i’a,

this becomes

(2 —e2z)v(z) — 2

v(ztie) +ole —ie) = =5 Oy

, (L1)

which may be regarded as a difference equation with respect to the variable z.
Equation (1.1) is also written in the form
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20(x)3 + av(z) + a
1+ e2v(x)?

(ie) "2 (v(z + ie) + v(z — ie) — 2v(x)) = , (1.2)

and the limit € — 0 yields the second Painlevé equation
P v =20° + v+«

('=d/dz) [7]. lfa1/ap € Z or o € Z, then dPyy or (1.1) admits a rational solution
(see [4], [10]). Kajiwara et al. [4] proved that this rational solution reduces to
that of Py in the limit € — 0. In general, however, few results are known about
the relation between a solution of a difference equation and that of the resultant
differential equation of its continuous limit, or about the behaviour of a solution
in the process of the limit.

The purpose of this paper is to show that this continuous limit of (1.1) to
P11 may be analytically justified also for certain kinds of asymptotic solutions
of (1.1) including the rational solution mentioned above as a special case. Our
main results are stated in Section 2. In Theorem 2.2, for each oo € C, we present
an asymptotic solution of (1.1) that reduces to a triply-truncated solution of Py
as ¢ — (0. Furthermore, in Theorem 2.4 we describe one-parameter families of
solutions having sequential limits to truncated solutions of Pry.

The solution in Theorem 2.2 is asymptotic to a formal power series given in
Theorem 2.1, which is proved in Section 3. In Section 5, we derive a nonlinear
difference equation (cf. (5.3)) equivalent to (1.1) by using some lemmas given
in Section 4. In Section 6, for this equivalent equation, we show the existence
of a solution asymptotic to zero, from which our desired solution in Theorem
2.2 immediately follows. The equivalent equation may be regarded as a nonlinear
perturbation of an associated linear difference equation (cf. (6.1)). In our argument
we have to handle these equations in a domain where the value of |e2x| ranges from
0 to +00, and we need some appropriate expressions of solutions of this associated
linear equation uniformly valid in this domain. Such uniform expressions are given
in Corollary 6.3. In Section 7 we prove Theorem 2.4 by constructing the families
of solutions in strip domains. In showing their relation to truncated solutions of
Py1, we use the fact that the associated linear difference equation is mapped to
a differential equation of Airy type by its continuous limit. The final section is
devoted to the proof of Proposition 6.2 for a system of linear difference equations.
We find a fundamental matrix solution of it, which yields the uniform expressions
in Corollary 6.3. The key to constructing it is the Euler-Maclaurin summation
formula (cf. Lemma 8.7).

Throughout this paper, for functions ¢;(e,z) and ¢2(e,z) not necessarily
real-valued, we often write ¢1(e,z) < ¢a(e,x) or ¢a(e, x) > ¢1(e, ) if P1(g,2) =
O(¢2(e, ), that is, ¢1(e,2)/¢p2(e, z) = O(1).
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2. Main results.

Let us begin with a formal solution of (1.1).

THEOREM 2.1.  Equation (1.1) possesses a formal solution of the form

O(e,x) == Z cj(e)z™. (2.1)

Jj=1

The coefficients cj(e) are polynomials in % and o, which are uniquely determined,
and the first eleven of them are listed as follows:

ci(e a, ca(e) =c3(e) =0,

(e) =
(6) =2a(a® —1), cs(e) = cole) =0,

(e) = —da(a® —1)(3a”® — 10), cs(e) =0,
co(e) = —da(a? —1)(1202 — 35)e?
(e) =
(e) =

Cyl\E

Ccr\E

c10(e) = 8a(a? — 1)(12a* — 11702 4 280),

c11(e) = —4a(a® —1)(37a® — 84)e?

Moreover, v(e,x) has the properties:

(1) the series

do(x) == 0(0,z) = Y _¢;(0)z

Jj=1

is a formal solution of Pr;
(2) for each e € C, the series O(g,x) converges if and only if « € Z.

The second Painlevé equation Ppp possesses a solution vrr(z) admitting the
asymptotic representation

vii(z) ~ g(x) = Z cj(0)z ™7 (2.2)

Jj=1

as © — oo through any closed sector contained in |argz — | < 27/3, which is one
of the triply-truncated solutions of Pyr (see [3]). This is the unique solution that
satisfies (2.2) in a sector |argz — | < Oy with 7/3 < 6y < 27/3.

Formal series (2.1) is decomposed into two parts:
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0(e, x) = Do(x) + €204 (e, ) (2.3)
with

bu(e,2) =Y _cj(e)z™l, ¢(e) = e%(¢;(e) — ¢;(0) € C[).

Jj=1

For positive numbers €¢ and r, we define the interval F(gg) C R and the half-plane
H(r) C C by

E(g9): 0<e <ey, H(r): Rex < —r.

For x € H(r) we take argx so that |argxz — 7| < 7/2. Our solution admitting
0(g, x) as its asymptotic expansion is given by the following:

THEOREM 2.2. Let g9 be a given positive number. Then equation (1.1)
possesses a solution of the form

v(e, x) == vn(z) + %v. (e, 1)

in the domain E(go) x H(rg) C R x C, provided that ro = ro(e0) is sufficiently
large. Here

(1) v(e,z) and v (g, z) are continuous ine € E(gg) and holomorphic inx € H(rg);
(2) vi(e,x) admits the asymptotic representation

vi(g, ) ~ Di(e, ) = Z ci(e)z™d

j21
uniformly for e € E(gg) as v — oo through any closed sector contained in
large — 7| < w/2.

In addition, if a solution ¥(e, ) satisfies v(e,z) = O(z~1) uniformly for ¢ € E(eo)
in H(rg), then 0(e,z) = v(e, x).

REMARK 2.1. In a half-plane, an asymptotic property of v.(e,z) may be
described, at least, in a weaker form. For each integer N > 2, we have

N

v(e, ) = ch(&)x_j + O((Rex)™N71)
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uniformly for € € E(gg) as * — oo through H(r(()N))7 where TéN) > 710, in particular

r(()Q) =1y, is a sufficiently large positive number (cf. the argument in Section 6.3).

As an immediate consequence of Theorem 2.2 combined with Remark 2.1 we
have the following:

COROLLARY 2.3.  The solution v(e,x) satisfies v(e,xz) — vi(x) as e — 0
uniformly in the half-plane H(rg).

REMARK 2.2. If a € Z, the series ©(e,z) converges to a rational solution
of (1.1) (cf. Section 3), and vi(x) (= lim._,o v(e,x)) is also a rational solution of
Pyr. About rational solutions this corollary agrees with the result of [4].

For positive numbers § (< 7/2), r and R, let S_(4,r, R) and S;(d,r, R) be
the strip domains defined by, respectively,

S+(0,7,R):={x| —(r+ R) <Rex < —r, +(argx —m) >0} C H(r).

THEOREM 2.4. Let § (< m/2) be a given positive number. Then equation
(1.1) possesses one-parameter families of solutions ¥_(8) and ¥4 (9) given by

Vi (6) == {vi(o,e,3) :==v(e,2) + Vi(o,e,2) | 0 € C\ {0}}

with the properties:

(1) for every R > 1, Vi(o,e,x) restricted to E(es r) X S+(d, 75, R) are continuous
ine € E(eyr) and holomorphic inx € S1 (0,74, R), and admit the expressions

Vi(o,e,2) = oz " exp(_l /mi <pi(s,t)dt> (1+ O(z~1/2))

i€
0
with the integrands satisfying

(Pi(5755) = (1 + O(xil)) 10gpi(£a£)7

e~y _ cdp2
pr(e,x) =1+ 5 + /e "ie2x + T (2.4)
and with base points xoi = |m§\e(”ﬂ)i depending only on §, where e, p =

€o.r(0) (respectively, ro = ro(0)) is a sufficiently small (respectively, large)
positive number depending on (0,9, R) (respectively, only on (o,d)) and the
square root is chosen so that Rey/~ > 0 as Re(e ™e%x) — +o0;
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(2) for each o there exists a sequence {&,, | n € N} such that, for every R > 1,
vy (0, en, &) with e, < €51 converge uniformly on every compact set contained
in S+ (0,75, R) as e, — 0, and the limit functions in the strip domains coincide
with truncated solutions of P11 admitting the expressions

2
vn(z) +0Csa™exp ( F 3:163/2) (1+0(z~1/?)),
respectively, as x — oo through

S+(0,75,+00) := U S (,re, R) ={z | Rex < —r,, + (argax —m) > 4},
R>1

where Cy. € C \ {0} are some constants independent of o.

REMARK 2.3. The constants 7, and €, g satisfy ro < 7o and €5 r > €5/,R
if |o’'| > |o|. Furthermore, for § # &', if Si(8,7,(6), R) N S+(&',7,(8"), R") # 0,
then solutions vy (o, e, z) € ¥4 () with e < min{e, r(d), e, r(0’)} are continued
analytically to S1(¢',7,(8"), R'), respectively (see Section 7.2).

REMARK 2.4. From the expressions of ¢4 (g, ) given above, we may derive,
for fixed base points xoi,

1 (* i e T2y e T2y edy? ,
— t)dt = — 1 I 1 + —Tig2
= %igai(s, ) 53(< +— ) og( t— 1 Te sm)

1.2
F LZ + e”s?:v) + O(xl/z)

uniformly in E(eq) x H(ro) by using the facts that the primitive functions of log(z+
22 — 1) are zlog(z £ V22 — 1) F V22 — 1, respectively, and that log pL(e,t) =
O(et'/?). Hence, in E(ey.p) X S+(6,74, R),

Vi(o,e,2) = oexp ( T %x?’/g(l + o(l)))

2

as e“x — 0, x — oo, and

Vi(o,e,7) = oexp (; %(log(g%) —1—mi+ 0(1)))



Difference second Painlevé equation 739

as e2x — oo (see also Proposition 6.1, (3), (4) and Remark 6.1). For each &,
Vi(o,e,x) decay as ¢ — oo through Sy (4, 7,, R), respectively.

REMARK 2.5. For each ¢ such that ic® € R\ {0}, equation (1.1) admits
asymptotic solutions that can be continued meromorphically to the whole complex
plane C. Such solutions are easily obtained from the asymptotic solutions given
by [11, Theorems 2.11 and 2.12]. It is easy to see that, for every R > 1, the
solutions vy (0,¢,x) with € € E(e, g) are continued meromorphically to the strip
domain —(r, + R) < Rex < —r,. For vy (o,¢e,z) and v(e, x) except for rational
solutions, however, the possibility of their meromorphic continuation to C' is an
open problem.

3. Proof of Theorem 2.1.

In this and the subsequent two sections, € denotes a complex parameter.
Set v(z) = 3,5, ¢j(€)x™7 and substitute it into (1.2). Since

v(z +ie) + v(x —ie) — 2v(x)

= ch(s)m_j((l +ier™ ) 4+ (1 —dex™ ') = 2)

=223y} Cj(é)]g!)% (—1)ke2k=1)g—i=2k, (3.1)
J>1k>1
we have
3 2
a+c(e) + Z cji1(e)r™ = -2 (Z cj(a)x_j> -2 (1 + &2 (Z cj(a)x_j> )

Jjz1 Jj=1

> ZZ Cj(s)(j)Qk (_1)k€2(k71)x7j72k (3.2)
with (j)ox :=j(j +1)---(j + 2k — 1). Comparing the coefficients of 277 on both
sides, we have

c1(e) = —a, ca(e) =c3(e) =0,

cj(e) =I(%ci(e), ... ci—1(e)) (5 >4),

where I1;(¢%;¢1, ..., ¢j—1) are polynomials in (e%,¢1,...,cj_1) with integer coeffi-
cients. Then c;(e) € C[e?] (j > 1) are recursively determined, and we obtain the
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formal solution o(e,x) of (1.1) as in Theorem 2.1.
Equality (3.2) with € = 0 is written in the form

3
ate) o0 + 2(2 cj<0>xf) = >3+ e (0)a 2,

j=21 Jj>1 Jj>1

which implies that 0g(z) is a formal solution of Py;.

To prove property (2) of the theorem, suppose that o(e,z) with € # 0 con-
verges around = co. By (1.1), it is continued meromorphically to the whole
complex plane and must be a rational solution of (1.1). Then the corresponding
dPy; with ag = —ie?, a1 = —ie3a also admits the rational solution y,, = ied(e, ien),
and, by [12, Theorem 2.2], we have a; /ag = « € Z. In case ¢ = 0, the convergence
of 9(0,z) = 9p(x) implies o € Z (see [5]). Thus the only if part of (2) has been
verified. To show the if part, suppose that « € Z and that € # 0. Let vy.()
be the corresponding rational solution of (1.1) [4], [10]. It is easy to see that
Vae(2) = —az™! + O(x™?) around x = oo, and hence the Laurent series expan-
sion of it must coincide with o(e, z), since the coefficients of ¥(e, z) are uniquely
determined as shown above. This fact implies the convergence of 9(e, z). The case
e = 0 is treated by the same argument for Pr;. Thus we obtain Theorem 2.1.

4. Lemmas concerning asymptotic series.

Let X(0,r) denote the sector defined by
X0,r): |argz —7| <0, |x|>r

with 7 > 0, # > 0. Recall that the formal series 9(e,x) is decomposed as in (2.3).
By [14, Theorem 9.6] or [13, Theorem 5.1], there exists a function v, (e, z) with
the properties:

(1) vu(e,x) is holomorphic for |g| < gy, € X(27/3,1);
(2) Yu(e,x) ~ (g, ) uniformly for |e| < g9 as  — oo through X(27/3,1).

Since the solution wvir(z) of Prp admits asymptotic expression (2.2) in a sector
of opening angle § = 7/2 + 0, where ¢ is a small positive number, we have the
following:

LEMMA 4.1.  The function

(e, x) := v () + 24 (e, 1)
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is holomorphic and bounded for |e| < €9, © € X(n/2 + §,r"), and admits the
asymptotic representation (e, x) ~ 0(e,x) uniformly for |e| < ey as x — oo
through 3(mw/2 + 6,7"), where v’ is a sufficiently large positive number.

Recall (3.1) with v(z) = d(e,2) = >_;5, ¢ (e)x™7 as a formal series, and define

ém(g) € Cle?] by

> Emle)a™™ =b(e,x + ig) + i(e, x — ie) — 20(c, x)

m>3

= ¢i(e)z I (1 +iex™) 7 + (1 —iex™ ") 7 = 2). (4.1)
jz1

By Lemma 4.1, for every positive integer IV, we have
N .
Ue, )= ¢i(e)a + 0@ N
j=1
in X(n/2 + 4,7"), and hence
Y(e,x +ie) + (e, x —ie) — 2¢(e, 1)

cj(e)z /(L +iex™ )T+ (1 —dex™ )T —=2)+ Oz V71

N
=2 (
j=1
N
= Z Em(e)z™™ + Oz N7
m=3
uniformly for |e| < g as far as z +ie € X(7/2 + §,7). This implies

Y(e,x+ie) + (e, —ie) — 2¢(e, ) ~ Z Em ()™ (4.2)

m>3
uniformly for |¢| < ¢ as & — oo through 3(7/2,7') if 7 is sufficiently large. The

following lemma gives another asymptotic expression. Note that this expression
cannot be derived directly from (4.2).

LEMMA 4.2.  Let vii(e, ) be a function such that

Y(e,x +ic) + (e, x —ie) — 2Y(e,x) = —0jj(x) + v, (e, ).
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Then it admits an asymptotic representation of the form

Vix (€, ) ~ Z e (e)a™™

m>3

with ¢, () € C|e?] uniformly for || < g9 as x — oo through X(w/2,7).

PROOF. Since the asymptotic expansions of vrr(x) and 1. (e, ) are valid in
X(n/2 +6,r"), we have, for each m € N,

o @)~ 86 @) = 3o () ey (O (43)
%w*(&w) ~ %@*(E7x) = ;(—1)m(j)mc;<5)m—j—m (4.4)

as x — oo through (7w /2,7'). Let N be a given positive integer. Note that
vir(z +i€) + v (x — ie) — 21 (x)

2 2(-1)N
= —e%vfi(x) + 1541)1(?)(37) +- 4 ((2]\7))!82NUI(12N) (x) + Ron(g,2)  (4.5)

with

1 i€
m/@ (ie — t)2N+1 (UI(I2N+1)(x +1) +UI(I2N+1)(x _ t))dt.

RZN (5a Jf) =
By (4.3), we have vl(;n)(:v) = O(z=™1) for every m € N, and Roy(e,z) =
O(e2N+22=2N=2) Hence substitution of (4.3) with 4 < m < 2N into (4.5) yields
the asymptotic representation

e (vu(x + ie) + vn(z — ie) — 2vu(x) + 20fj(2)) ~ > _ ()™ (4.6)
m>3

with &3(g) = ¢}(g) = 0 uniformly for |e| < g9 as  — oo through (7 /2,7'). Here
the coefficients & () € C[e?] are uniquely determined. Similarly, using (4.4), we
derive

e 2 (Yu(e, 4 ie) + i(e,  — ig) — 20, (e, 1)) ~ Z & ()™ (4.7)

m>3
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with & (g) € C[e?]. From (4.6) and (4.7), it follows that

V(e,x +ie) + (e, x —ie) — 20(e, x) = —20f1(x) + v, (e, 1)
With Ve (e, 2) ~ 3, 5400, (€) + & (g))x~™, which completes the proof.

5. Equivalent equation.

For |e| < g, equation (1.1) is written in the form
v(x +ig) + v(x —ie) — 2v(x) + 2av(x) = E(e, x,v(x)),

where

2,2
9 gv

— m((Z — EQl')U — a€2).

E(e,x,v) = —ae

743

The function Z(e,z,v) is holomorphic for || < eo, |v| < &5, |#| > 1, and is

expanded into a convergent series of the form

E(e,z,0) = —ag? — 2e%0% 4 &4 ZEl(a,x)vl.
1>2

Here Za(e,7) = «, E3(e,2) = , and Z;(e,z) (I > 4) are polynomials in z and &>
satisfying Za, (g,7) = O(e?V™%) and Zg,41(g,2) = O(?~*z) uniformly for |g| <
€0, |x| > 1. Let us substitute v(x) = w(z) + (e, x) into (5.1). If |w(z) + (e, x)|

is sufficiently small, we obtain

w(x +ie) + w(x —ic) — (2 — 2x)w(x) = g(e, 2, w(x))

with

gle,z,w) =E(e, z,w + (e, x))
— (e, x +ie) — (e, x —ie) + 2¢ (g, x) — 52331/)(5, x)

=¢t Z Zie, x) (w4 P(e, x) — ae? — 262 (w + (e, z))?

1>2

— (e, +ie) — (e, x —ig) + 2(e, ) — 2a (e, 2).

Then
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gole, ) :=g(e,x,0) = — (e, x + ie) — (e, x —ic) + 24 (e, x)

—&®(a+zy(e,z) + 24 (e, 2)%) + &* Z Zi(e, x)(e, x).

1>2

Let us take 7/ = 1”(g9) > 7 so large that |1(e,z)| < e5'/2 for |e| < o, = €
Y(w/2,r"). By Lemma 4.2, go(e, z) is written as follows:

gole, ) = 2vfi(x) — *van(e, @)

— (a4 z(vn(z) + 2Yu(e, 2)) + 2(vn(z) + 2. (e, m))g)

—+ 84 Z El(ﬁ, l‘) (1}11(33) + EQw*(& x))l

1>2
=& (vfi(z) — a — zop(z) — 2vn(2)?) + g (e, )

=e'gi(e, ),

where g& (e, ) admits an asymptotic expression of the form

golesw) ~ D & (e, & (e) € ClY
iz1

uniformly for |e] < €9 as & — oo through X(7/2,7"). Since 0(e, z) satisfies (5.1)
as a formal series, by (4.1), (4.2) and Lemma 4.1, we have go(e,z) ~ 0 uniformly
for |e] < 0. Hence we conclude that ¢;*(¢) = 0 for every j > 1, namely that
e~4go(e, ) ~ 0. Furthermore, if |w| < 5'/2,

g(f, T, w) - 90(& .13) = 54 Z 31(67 Qf) ((w + w(‘f’ x))l - ¢(€7 x)l>

1>2

— 22 ((w + 9(e, ) — vle, )
=g? Zgl(fﬂf)wl’ (5:2)

1>1
where

al
2 _
e“gile,z) = i wg(s,m,w)

w=0

The coeflicients g;(e, z) are holomorphic for |e] < g, z € X(7/2,7") and expressed
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by asymptotic series in £ ~!. Using

gi(e,x) = —6(e,2)? + €2 ZlEl(s,x)¢(a,x)l_17

1>2

we obtain the estimate g1(g,2) = O(|z7%| + |e2z7 ) = O(z™'). For | > 2 we
have go(e,z) = O(e?) and gi(e,z) = O(¢'=3x) (I > 3) uniformly for |¢| < &0,

x € %(m/2,r"). By the further change of the unknown w(z) = x~tu(z), we get

1+iex™!

u(x +ie) — (2 — %) (1 +icx™ Hu(x) + Tu(x — ie)

1 —tex—
= (z +ie)g(e, z, x  u(x))

= (z +i€)go(e, x) + 2 Z(l + iz D" Mg (e, 2)u(x).
I>1

Thus we have

PROPOSITION 5.1. By v(x) = x lu(x) + 9 (e, ), equation (1.1) is changed
mnto

1+iex?!

u(z +ie) — (2 — e%2) (1 + iz~ u(z) + F—

u(x —ie) = G(e,z,u(x)). (5.3)

The function G(g,z,u) is holomorphic for |e| < e, © € X(n/2,7"), |z7 u| <
551/2, and is expanded into the convergent series

G(e,z,u) = Go(e, x) + &2 ZG;(E, z)ul

1>1
with the coefficients Gy(e,x) satisfying
574G0(5,$) ~0, G1(€,1') :O(mil)v

Go(e,x) = O(e?z™ 1), Gi(e,x) = O(" 3227 (1> 3)

uniformly for |le| < g9 as x — oo through X(w/2,v"), where r" is a sufficiently
large positive number.
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6. Proof of Theorem 2.2.

If the domain H(r) is stable under both operations x — x % ic, or if every
x € H(r) satisfies x +ic € H(r), then ¢ € R. For this reason we consider (5.3)
for (e,2) € E(gg) x H(r). In this and the remaining sections, € denotes a positive
parameter.

6.1. Associated linear equation.

To prove Theorem 2.2, we construct a solution of (5.3) such that e 2u(z) ~ 0
in any closed sector contained in |argz — w| < w/2. Let us regard (5.3) as a
nonlinear perturbation of the linear equation

1+iex!

u(z +ie) — (2 — *x)(1 + iex™ Mu(z) + 1—jex—1

u(x —ie) = 0. (6.1)

To find linearly independent solutions of (6.1), we set

u(x) = ( ulz) )
w(z) — (1 +iex™ (1 —iex™1) " tu(z — ic)

and consider a system of difference equations of the form

u(z +ie) = Ae, z)u(z), o
Afe,z) = (1 _€2$(12+i5$f1) _+12z'sx—1 1) |
S tier) 1

where u(z) is the unknown of (6.1). The characteristic equation for A(e,x) is
0> — (2 —22)(1 +icx ™ )p+ (14 2icz™) =0

admitting the roots

e o
pi(e,x) = <1+e7”2>(1+zsx b

eta? .
+ (4 + emszx) (14 iex=1)2 4 222, (6.3)

where the square root is chosen so that Rey/~ > 0 as Re(e ™e%z) — +o00. The
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simplified quadratic equation p? — (2 — &22)p + 1 = 0 admits the roots p (e, z)
given by (2.4). A relation between pi (e, x) and p} (e, z) will be discussed in the
final section.

PROPOSITION 6.1.  Let 73 be a sufficiently large positive number. Then
p+(g,x) have the properties below:

(1) p+(e,x) are continuous in € € E(eqy) and holomorphic in x € H(r(®);

(2) |p_(e,2)] <1< |py(g,2)| and Re p+(e, ) > 0 for (e,x) € E(eg) x H(r®);
(3) pr(e,z) = (e7™e22)* (1 F 2(e22) ! + O((e?2)72)) as ez — oo through
E(go) x H(r®);

(4) px(e,2) = 1+e(e ™) /2(1 4+ O(ex'/?)) as e2x — 0 through E(go) x H(r®);
(5) if the sequence {(en,x,) | n € N} C E(go) x H(r®)) satisfies |p_ (e, xn)| — 1
or |ps(enyTn)| — 1 as n — oo, then €2z, — 0 as n — oo.

PROOF. Since pi(e,x) do not have branch points as far as e2x # 0,4,
property (1) immediately follows, and properties (3) and (4) are easily checked.
We may set

p(e,x) = po(e,x) ' T (e, x) = pole, )e ),

Here po(e,z) > 0, 0(e,2) € R, and pg(e, ) satisfies po(e, ) — +00 as 2z — o0o.
Note that

Re(p_(g,2) + p1(e,2)) = (po(e,z) ™" + po(e,z)) cosb(e, z) = Re(2 — e’z) > 2

for (e,z) € E(eg) x H(r®). This implies |§(e, z)| < 7/2 and po(e,z) # 1, which
yield property (2). If po(en,zn) — 1, then, by the inequality above, we have
O(en,xpn) — 0, so that —e2x,, = p_(ep, Tpn) + pi(En,Tn) —2 — 0 as n — co. Thus
(5) is verified. O

Concerning a fundamental matrix solution for (6.2) we have the following
result, which will be proved in the final section.

PROPOSITION 6.2.  System (6.2) possesses a fundamental matriz solution of
the form

U(s,ac)z( ! ! )(I+P(a,m)) (C(E’x) 0)

1710*-&-(531:) lip*—(av'r) 0 C+(€,:17)

with
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Cile,7) = exp(1 / @i(a,t)dt>, 20 € H(F),

(23 o

which is continuous in € € E(gg) and holomorphic in x € H(7), provided that 7 is
sufficiently large. Here P(e,z) = (Pi;(e,x)) (i,§ =1,2) and p+(e,x) are a square
matriz and functions, respectively, with the properties:

(1) P(g,z) = O((Rex)~Y/2) uniformly for ¢ € E(gq) as x — oo through H(F);

(2) for i = 1,2, Py(e,x) = O(x~?) (respectively, Pip(c,2) = O(x~?)) in
H()N{z |Imx > 0} (respectively, H(7) N {z | Imx < 0});

(3) x(e,x) = (1+ O(z71))log p+(e,x) uniformly for (e,x) € E(eq) x H(F);

(4) Rep_(g,2) <0 and Rep(e,2) >0 in E(g9) x H(T).

In addition the relation
C(e,x+ie)Cy (6,2 +ie) = (_(g,2)¢4 (6, 2) (1 + Oex ™)) (6.4)
holds in E(eg) x H(F).

From Proposition 6.2, we immediately obtain linearly independent solutions
of (6.1).

COROLLARY 6.3.  Equation (6.1) admits linearly independent solutions
uy (e, ) expressed as

uy(e,z) = (14 O((Rex)_l/z))g}(g, x)

in E(eo) x H(F). IfImax > 0 (respectively, Ima < 0), the error term O((Rex)~1/?)
of u_ (e, z) (respectively, uy (e, x)) may be replaced by O(z~1/2).

REMARK 6.1. By Proposition 6.1, (3) and (4), in E(eo) x H(7), the solutions
ug (g, ) behave as

ug(g,x) = exp ( T %x?’/z(l + 0(1)))

as €22z — 0, £ — oo, and

ug (e, z) = exp <:F %(log(szx) —1—mi+ 0(1))>

as 8233‘ — OQ.
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Since |1 — e%z/4| > |1 — Re(2z) /4] > 1, we have

gta?
pi(e,x) —pi(e,x) =2 < Yl 52:)3) (14 iex=1)2 4 222

> ext/?(1 + iex \/—1+O 8) > exl/?

uniformly in E(go) x H(7), and hence det U(e,z) > ex'/2¢_(e,x)Cy (¢, x). Then,
by (6.4), the Casorati determinant for u_(e,z) and uy (g, x) is

A L U— (E,J)) ’U/+(€,.23)
(&)= u_(e,x +1ie) uy(e,x+ic)
1 u_(e, x + ie) ut (e, x + i)
- X(E) ju(e,m+ie) — x(e 2)u_(e,2) uy(e,x+ig) — x(2, 2)u (e, 7)
= x(e,z) " tdet Ule, z +ie) > ex/?C_(e,2)C4 (e, ), (6.5)

where y(g,2) = 1 + 2iez~!

6.2. Summation equation.
Let us consider the summation equation

w(e,z) = (e, z;w(e, x))
o — u_(g,x)uy (e, x + kie)
- Z Ale, ;c_ + kie) G(

g,z + kie,w(e, x + kic))

)G(e, x + kie,w(e, z + kie)), (6.6)

i u_ (e, x + kic)uy (e,

— Ale, x + kie)
which is derived by Lagrange’s method of variation of constants (cf. [1, Section
5]). Every solution of (6.6) satisfies (5.3), provided that the right-hand member
converges. We would like to construct a solution of (6.6) such that e ?w(e,x) ~ 0
in any closed sector contained in | arg xz — | < 7/2. By Proposition 5.1, rechoosing
7 larger if necessary, we may suppose that G(e,z, u) has the following properties:

(a) for e € E(eo), © € H(7), |a~u| < e51/3,

|G(e, 2, u)| < |Go(e, )| + %2 ul, (6.7)
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(b) for € € E(ep), v € H(7), |z~ 1], [z 1wy < 561/3,
|G (e, z,v2) — G(e,z,v1)| < 2z vy — vy (6.8)

By Proposition 5.1, for every positive integer v, there exists a positive number M,
depending on v such that

|Go(e, )| < M,e*|z|™ (6.9)
uniformly in E(gg) x H(7). Furthermore we need the following fact (cf. [1, p. 24]):
LEMMA 6.4. Ifa > 1, then
— 1
—1 —a+1
—_— R
Z |z + kie|® <& (Re)

k=—o0

uniformly in E(eg) x H(7). Furthermore,

> 1
Z ﬁ < E_liC_aJrl
prs |x + kie|

uniformly in E(eg) x (H(7) N {z | Imz > 0}).

Proor. In H(7),

oo 1 oo 5_0’ oo 5_‘1
Z |x_|_]ﬂ‘€|a - Z T a Z Tm 2 Rex 2\a/2
e () ()

1€ I I
2e7¢ e @
<+ 2
Rez|® * Z Rez

’ 9

2)0./2

< 2 + Z E_a < 2 +e7@ /Oo ds
a a € ca
|R€z|a ] <m+ ’Rex > |R€ZE| |Rez/e| S

mz1 <m2 +

g

2 e @

< Reale + ‘Rex — < e "(Rex) M.

3
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If Imx > 0, then
> 1 > €
S (e

< i e’

ko<k+m+‘fm
e

2)(1/2
e ds

1
a K Ta +€7a/ a
) |.Z" (|Rez|+Imz)/e S

e

< e M|Rex| +Imz) T < ettt

which implies the desired estimate. ]

For each positive integer N and for a positive number r, denote by Fn(r)
the family of functions u(e, x) with the properties:

(1) u(e, z) is continuous in € € E(gp) and holomorphic in z € H(r);
(2) |u(e, )| < e?|Rez|™™ in E(gg) x H(r).

Then concerning the operator .7 (g, x; - ) we have the following:

LEMMA 6.5.

(1) For every positive integer N > 2, there exists a positive number ry such
that 7 (e, z;u(e, z)) € Fn(rn) if ule,z) € Fn(rn).

(2) There exists a positive number 1l > ro such that

|,5”(5,33; va(e,x)) — Y(s,x;vl(e,x))} < sup lva(e, ) — vi(e, )]

E(eo)xH(r})

N |

if vi(e,x), va(e, z) € Fa(r}).

ProOOF. By Proposition 6.2, (4) and Corollary 6.3, we have, uniformly for
k< -1,

u_(e,x)uy(e,x + kic) 1 /I
— _(e,t)dt
(- (&, + kie)Cy (e, @ + kie) <P\ ki o0

0
< exp (/ Rep_(e,z+ iss)ds) <1
k

in E(ep) x H(7). Similarly, uniformly for k& > 0,
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u_(e,x + kie)uy (e, x)

1.
C_ (g, + kie)(y (e, x + kie) <

Suppose that N > 2, and that r > 7. Using Lemma 6.4 together with (6.5), (6.7)
and (6.9) with v = N + 1, we have, for u(e,z) € Fn(r),

|7 (e, mu(e,2))| < D €% Rew + kie] N2 < &2 Rea| VT2,

k=—oc0

which implies . (g, x;u(e, z)) € Fn(r), provided that r = ry > 7 is sufficiently
large. Thus the first assertion is proved. Using (6.8), we have, for v (e, x),
va(g,x) € Fa(r) with r > 1,

|y(5,x;v2(5,x)) - y(s,x;vl(a,x)ﬂ

< Z elx + kig|73/? sup|va(e, & + kie) — vy (e, x + kie)|
ke —o0 keZ
< |Rez|™Y2  sup  |va(e, z) — vi(e, ).
E(eo)xH(r)

Choosing r = rf > ry sufficiently large, we obtain the second assertion. O

6.3. Construction of an asymptotic solution.
By Lemma 6.5, (1), we may define a sequence {w,(¢,z) | n € N} by

wol(e,x) =0, wnt1(e, @) = L(e, x;wn (e, x))
such that, for every integer N > 2,
{wn(g,x) |m € N} C Fn(rn). (6.10)
From Lemma 6.5, (2), it follows that

Sup  |wpti(e, @) —wnle,2)| <277 sup  |wi(e, )| <2777 (rh) 73,
E(eo0)x H(ry) E(eo)xH(r3)

which implies that wy, (e, z) converges to some function we(g,z) € F2(rh) uni-
formly for (e,z) € E(eo) x H(r}). Furthermore,
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sup |wn (g, 2) — weo (g, )| — 0
E(eo)xH(r})

|~

|y(57x;wn(5,l')) *y(e,x;wm(e,x)ﬂ <

as n — 00, and hence we (g, x) is a solution of (6.6).

Let N be a given positive integer such that N > 2. By (6.10), the solution
Weo (g, ) belongs to Fn(ry) as well. Then, for any small positive number 4, we
have £ 2|weo (g, 2)| < |Rez|™N < (sind)~N|x|~V if |argz — 7| < 71/2 -0, |z| >
rn/sind. Since e 2weo (g, z) is bounded in H(r}), this fact implies e 2wy (g, 2) =
O(z~") in the sector | arg z—7| < 7/2—6, |z| > r}/sin . Therefore e 2w (g, ) ~
0 uniformly for ¢ € E(gp) as * — oo through any closed sector contained in
largx — 7| < /2.

Taking ro = 4 > 72, we obtain the solution u(e,z) = ws (g, z) of (5.3) in
E(go9) x H(rg), from which the desired solution v(e,z) = 1(g,7) + 2™ weo (¢, ¥)
of (1.1) immediately follows. The fact woo(e,2) € Fn(ry) mentioned above also
yields the expression of v, (g, ) in H(réN)) with 7"62) = 7y as in Remark 2.1.

6.4. Uniqueness.

Suppose that v(e,z) and v(e,x) are as in Theorem 2.2. Then (e, x) :=
x(0(e,x) — (e, x)) is a solution of (5.3) such that

i(e,z) = z(v(e, ) + O(z™") — ¥(e,2)) = O(1) (6.11)

in E(ep) X H(rp). By the same argument as in the proof of Lemma 6.5, (1), we
have .7 (e, z; (e, z)) = O((Rex)~'/?) in E(eg) x H(ro). The function (e, z) is
also a solution of the inhomogeneous difference equation

1+dex!

u(z +ie) — (2 — 2x)(1 +iex Mu(z) + T—

u(x — ie) = G(e, x, U(e, x)),

and hence it is written in the form
i(e,x) = @ (e, 2)u_(e,2) + @4 (€, 2)us (5,0) + (e, 25l 7))

in E(eg) x H(rg), where w (e, x) are suitably chosen periodic functions with the
period ie. Since |u_(g,x)| and |uy (e, z)| diverge as Imz — —oo and as Imx —
+00, respectively, wy (¢, ) must vanish identically. Hence (e, z) is a solution of
(6.6) with estimate (6.11). By the same argument as in the proof of Lemma 6.5,
we have
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weo (&, @) — (e, 2)| = |.7 (€, 25wos (€, @) — L (e, 2;U(e, 7))

< |Rez|”Y?  sup |woo (&, ) — U(e, x)],
E(eo)xH(rY

provided that r} is sufficiently large. Therefore wy (g, ) = (e, z), which implies
v(e,z) = 0(e, z). This completes the proof of Theorem 2.2.

7. Proof of Theorem 2.4.

7.1. Another equivalent equation.
Let us substitute v(z) = v(e,z) + 2~ y(x) into (5.1) or (1.1). Since v(e, z) is
a solution of (5.1), equation (5.1) is written in the form

y(x +ie) — (2 —e%z)(1 +iex™ Hy(x) + %y(m —ie) = G(e,z,y())
with
Gle,z,y) := (x + ie) (E(e, z,v(e,z) + 27 'y) — E(e, z,0(e, 2)))
= (x + ie) (54 Z Ei(e,2) ((a 'y +v(e,2) — v(e, 2)!)
1>2
—22%((z7 'y +v(e, ) — v(e, :v)3)>
= 62Zél(s,x)yl, (7.1)
1>1
where
~ l ~
2Gy(e,x) = ll' a—ylG’(s,z,y) -

Observing that v(e,z) = ¥(e,z) + O(e22~?) uniformly for € € E(gg), x € H(ro)
(cf. Remark 2.1), and comparing with (5.2), we have G, (¢, z)—G (g, ) = O(e2z 7).
Thus, instead of Proposition 5.1, we have

PROPOSITION 7.1. By v(z) = 2 ty(z) + v(e, z), equation (1.1) is changed
mnto
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1+ dex™?! ~

y(x +ie) — (2 — %) (1 + iex Vy(z) + y(z —ie) = G(e,x,y(x)), (7.2)

1—dex—1

where G(e,x,y) is continuous in e € E(eq) and holomorphic in (z,y) satisfying
x € H(rg), |x~y| < ey5'/2, and is expanded into the convergent series

Gle,x,y) = & Z(N}'l(s,x)y

1>1

with coefficients satisfying

Gi(e,z) =0z Y), Gale,x)=0(2z™Y), Gile,z) = 032 (1>3)

uniformly for e € E(eg) as © — oo through H(rg).

To prove Theorem 2.4 consider the summation equation
y(e.2) = ou_(e,7) + S (e, 5y (e, 7)) (7.3)

with

iu g, x)uy (e, + kie) — uy (e, x)u_ (g, x + kie)

=& zy(e ) Ale,x + kie)

k=0
x G(e,x + kie, y(e, x + kie)).
Note that u_ (e, 2) depends on the base point z( in the expression of {_ (¢, ), which
will be specified soon. Every solution of (7.3) satisfies (7.2). Putting y(e,z) =
u_(e,z)w(e,z) in (7.3), we have
w(e,z) = (e, z;w(e, x)) (7.4)

with

B uy(e,x+kie)  uy(e,z)u_(e,x + kie)
(e 330 2) J+Z< Ale,x + kie)  u_(e,2)A(e, x + kig)

X u_ (e, x + kie)G* (e, z + kiz, w(e, x + ki),

where
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G*(e,zy) =Y Gile,v)u_(e,2)' 1y

1>1

7.2. Construction of solutions.
Let 6 be a sufficiently small positive number. Then, by Propositions 6.1 and
6.2,

p_(e,x) = iex/? (1 + O(|ex'/?| + |271])) (7.5)

uniformly in E(gq) x H(rg) as far as |¢2x| < Jy. Let § (< m/2) be a given positive
number as in Theorem 2.4. In E(eq) x H(rg), consider the function

1 [ 2 2
Qe,x) = E/ w_(g,t)dt = §x3/2(1 + O(lex'/?| + lz7) — gxg/Q
zo

with zg := roe!("=9) / cos §, where a constant related to O(-) is independent of z.
By Z = (2/3)x%/? the line arg x = 7 — ¢ is mapped to the line arg Z = 37/2—35/2.
Hence, choosing 7o = 7g(xg) > ro sufficiently large, and rechoosing §y smaller if
necessary, we may suppose that, as far as |e2x| < g, by the conformal mapping
Z = Q(e,x) the part of this line contained in H(7() is mapped to a curve along
which Re Z monotonically decreases.

Let R be a given number such that R > 1. To treat (7.4) we choose the path
of integration in the expressions of (1 (e,z) as follows: for z € S_(4,r, R) with
r > 7o, set I'(xg,z) := [x0, (z)s] U [(x)s,2]. Here (z)s := Rex — iRex-tand is the
point at which the line argz = 7 — J intersects the vertical line passing through
x, [xo, (z)s] is a segment joining xg to (x)s, and [(x)s, 2] is one joining (z)s to
along the vertical line. Then we set

Ci(e,x) = exp(1 /F(IO’I) @i(e,t)dt). (7.6)

i€

Let s_(r) := re'™ %) /cos§ and s_(r + R) := (r + R)e* ™9 / cos § be the vertices
of S_(d,r, R) on the line argx = m — §, and let [s_(r), s_(r + R)] denote the edge
of S_(d,r, R) joining these vertices. For each r > 7y we may choose &, r = &, r(0)
so small that, for every (g,2) € E(é, r) X [s_(r),s_(r+ R)], the inequality |e2z| <
00/2 is valid. Then we have

LEMMA 7.2.  There exists a positive number My independent of R such that,
for every r > Ty, the inequality |(—(e,z)| < My holds uniformly for (e,x) €
E(éT)R) X S_ ((5, T, R)
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PROOF.  Set &g := 7e’"™%) /cosd. If (e,2) € E(é,r) x [s_(r),s_(r + R)],
then

¢ (e, 2)| = [¢- (e, Zo)|exp(Q(e, ) — Q(e, T0)) | < |¢-(e,T0)| < Mo

uniformly in E(eg), where My is some positive number, because, as shown above,
the image of [z, (x)s] N H(7p) under the mapping Z = Q(e, z) is a curve along
which Re Z is monotone decreasing. Then, by Proposition 6.2, (4), for (g,z) €

E(&,r) x S_(4,7, R)
e p(l /x w_(e t)dt)‘
X - —\&,
1€ (w)s

Imz—Im (z)s
< M, exp(g/ Rep_(e, (z)s + zs)ds) < My,
0

¢~ (&, 2)| = |- (&, (2)5)]

which completes the proof. O
Since

G (e,z,y) = & Z Gi(e, z)u—(e,x) " (u—(e, x)y)l,

1>1
by Proposition 7.1 and Lemma 7.2, it satisfies, for every r > 7,
|é*(5,x7y)’ < e2rly (7.7)
and
’é*(€7xa y2) - é*(‘gvx’ylﬂ < 82$_1|y2 - yll
uniformly for (¢,2) € E(&, r) x S_(6,7, R), |y|,|v1],|y2] < ryo. Here yo, which
is sufficiently small, and each constant related to the order estimates above are
independent of » and R. By Proposition 6.2, (4) together with (6.5), for every

k>0,

u_(e,z + kie)uy (e, + kie)
Ale,x + kie)

< e Mz + kie) V2, (7.8)
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u_ (g, + kie)?uy (e, z)
u_(e,x)A(e, x + kie)

u_(e,x + kie)uy (¢, 1‘)
u_(g,x)uy e,z + Ims)

N + kie)~Y/?

1 z+k18
< e Ya + kie)™Y?%e p(zg/ ©_(g,t) — <p+(s7t))dt)
k
< e Ya + kie) /2 exp(/ (e, +ies) — g0+(5,x+iss))ds>
0
< e Ya + kie)V2, (7.9)

For each o # 0, let %, (r,&é, g) be the family of functions y(c,e,z) continuous
in € € E(¢, r), holomorphic in z € S_(4,r, R) and satisfying |y(o,¢,z)| < 2|0]
uniformly for (¢,x) € E(&, r) x S_(d,r, R). Then, using the estimates above, by
the same argument as in the proof of Lemma 6.5, we easily check the following
property concerning #* (e, x; - ) :

LEMMA 7.3.  There exists a positive number r, such that *(e,x;y(o, €, x))
€ Fo(ro,eor) ifylo,e,z) € Z5(ro,€0,r) and that

‘y—*(5’x;y2(0757x)) - yf(a,x;yl(a,s,x))’

1
< 3 sup ly2(0,e,2) — y1(0,£,2)| (7.10)
E(eo,rR)XS- (8,75, R)

if y1(o,e,2),y2(0,6, %) € Fo(rs,€0,R), Where eo p = €5,r(0) =&, R =Er, R(J).

It is easy to see that r, and €, r may be chosen so that r, <75/, €5 r > €5/ ,R
if |o’'| > |o].
Define a sequence {w,(0,&,z) | n € N} by

WO(J,€,I) = 0’ wn+1(cr,5,x) = Y_*(e,x;wn(a,e,x)).

Then, by Lemma 7.3, wy,(0,¢€,2) € Fo (s, 4,r) converges to some we(0,€,x) €
Fo(To,€0,r) uniformly for (e,z) € E(esr) x S_(d,7,, R), which is a solution
of (7.4). Substituting we(c,&,x) into the right-hand member of (7.4) and using
Lemma 6.4, (7.7), (7.8) and (7.9), we obtain ws (0, ¢, x) = o(1 + O(x~1/?)), since
S_(0,75, R) is contained in the upper half-plane. By Corollary 6.3 equation (7.2)
admits the solution
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y(z) = u_(e, 2)woo (0, &, 2) = oC_(e, ) (1 + O(z~/2)).

Note that a constant related to O(x~'/?) is independent of R. This yields the
expression of V_(o,e,7) = 27 u_(g,2)woo (0,6, 2) in Theorem 2.4. Let R’ be a
given number such that R’ > R. Then, for ¢ < &, g/, equation (7.4) admits
a solution w? (0,e,2) = o(1 + O(z~Y/2)) in S_(d,r,,R'). Using (7.10), by the
same argument as in Section 6.4, we can show the uniqueness property, that is,
g(a, £,2) = Weo(o,e,2) in S_(4,7,, R). Consequently, V_(c,e,2) may be contin-
ued analytically to S_(d,r,, R') if € is sufficiently small. The function V, (o,e, x)
in S4(6,7s, R) is constructed by the same argument. Thus (1) of Theorem 2.4 is
verified.

For another pair (&', R’) such that S_(d,r,(8),R) N S_(&',r,(8"), R") # 0,
equation (7.4) admits a solution w% & (0,e, ) = o(1+0(x~/2)). Since (_ (e, x) is
given by (7.6), u_ (e, z) depends on the base point g = r9e’(" =9 / cos §, and we de-
note it by u_ s(e,x). For e < min{e, g/ (0’),e0,r(d)}, there exists a constant mul-
tiplier Css such that u_ s(e,z) = Cssru— 5 (g, ). Then (7.3) with (o, u_ s(¢, x))
coincides with the equation with (6Cjssr,u— 5 (¢,x)), and, by (7.10) restricted to
S_(8,74(8),R) N S_(8',75(8"), R"), we have wo ' (6Cs5/, €, ) = weo (0, €, 2). This
fact implies that V_ (o, e, z) has the property as in Remark 2.3.

w

7.3. Relation to truncated solutions of Py;.
The following proposition describes the relation between (6.1) and the Airy
equation.

PROPOSITION 7.4.  There exists a sequence {e,, | n € N} such that uy (e, )
converge uniformly on every compact set contained in H(Tg) as €, — 0, and
the limit functions ux o(z) are linearly independent solutions of the differential
equation (x~1u)"” —u = 0 admitting the expressions

2
e ugo(2) = Cxa™ exp (3F 3333/2) (1+0(z=3/2)),

respectively, as x — oo through H (), where Cy # 0 are constants of integration.

PrROOF. Let {X, | v € N} be a sequence of compact sets satisfying X; C
Xy C---C X, C- and |J~, X, = H(fo). Note that uy (e, ) are holomorphic
inz € )?1 and bounded in E(eg) X )~(1 (cf. Remark 6.1), where )?1 is some bounded
domain containing X;. By the Vitali-Montel theorem there exists a sequence
{69,) | m € N} C E(go) such that ui(ggb)mc) converge uniformly on X; to

functions ui(}o(a:), respectively, as e'a) — 0. We may choose a subsequence {553) |

m € N} C {5%) | m € N} such that ui(sg),x) converge uniformly on Xo
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to ufo(x) which are the analytic continuations of ui(lo(a:) to Xy, respectively.

Repetition of this procedure yields {sg,'{) | me N} (v > 1) related to X,,. Then
we obtain the sequence {e,, = e | n € N} such that uy(e,, ) together with

their derivatives converge to holomorphic functions uy o(z) in H (7o) uniformly on
every X,. Write (6.1) in the form

—zw(z) = e (w(z + ie) + w(z — ie) — 2w(z))
-2

=@ e

/ia (ie — )3 (W™ (@ + t) + w® (x — t))dt
0

with w(z) = 2~ 'u(x), and substitute ¢ = &, and w(z) = 2~ 'ug(e,,x). For
x € X; we take the limit £, — 0 to conclude that = 1uy o(x) are solutions of the
Airy equation w”’ — xw = 0. By (7.5), (7.6) and the corresponding expression of
w4 (e, ), or by Remark 2.4, if ¢ is sufficiently small, then

us(e,z) = exp < T §x3/2(1 + O(lex'/?| + x1|))> (7.11)

uniformly for (e,2) € E(gg) x H (7o) satisfying |e2z| < §y. For each X, let n, be
an integer such that, for every n > n,,, the inequality |2 x| < Jy holds on X,,. Put
€ =¢p, for n > n, in (7.11) and take the limit &, — 0. Then we have

g o(z) exp < + §x3/2> < exp(O(2/?)) (7.12)

uniformly for z € X,, where every constant related to the order estimates is
independent of X,. Hence z~'uy o(z) satisfy (7.12) uniformly in H (7o), which
implies that these are Airy functions expressible as in the proposition. O

Let {e, | n € N} be the sequence given by Proposition 7.4 and let {R, | v €
N} be a sequence satisfying 1 < Ry < Ry <-+- < R, <--- and R, — oo. Recall
the sequence of compact sets {X, | v € N} considered in the proof of Proposition
7.4. To the function 2V_(0,e,2) = ou_(g,z)(1 + O(z~'/?)) and the sequence
{X,NS_(6,75,R,) | v € N} in place of u_(e,2) and {X, | v € N}, we apply the
same reasoning as in the proof of Proposition 7.4 to obtain a subsequence {e,, |
k€ N} C {en | n € N} such that, for each v, V_(0,&,1), ) with e,4) < €o.R,
converges uniformly on every compact set contained in S_ (8,74, R,) as €,() — 0.
Here a constant related to O(z~'/2) is independent of R,. Let us renumber the
sequence thus obtained as {e,, | n € N}. Then, for every R > 1, V_(0,,,z) with
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en < €4, R COLVErges on every compact set contained in S_(d,7,, R), and the limit
function admits the analytic continuation V_ (o, x) to S_(J,rs, +00) satistying
xV_o(0,2) = ou_o(x)(1+O0(x~/?)) in S_(8,r,, +00). The desired expression of

lim v_(0,&,,2) = lim (v(en, x) + V_(0,en,)) = vu(z) + V- o(0, 2)

en—0 En—

in S_(0,7,,+00) is obtained by using Proposition 7.4.
It remains to show that the limit function satisfies Pyr. In view of (7.3) we set

¥(e.a,) = G BB e (0.c,0)

—u T ’U,+(€,€) _ u+(€,z)u_(5,§)
=u-( )<A<e,5> u(a,mm(a,o)

X U_(e, 5)6* <€, ga W) .

u—(&,€)

By the same argument as in deriving (7.8) and (7.9) we can verify the estimates

u_(e,z + it)uy (e, z + it)
Ae,x +it)

< e Na+it)~12

u_(g,x +it)%uy (g, )
u_(e,z)A(e,x + it)

e Mo +iat)"V?

uniformly for ¢ > 0 in E(es g) X S_(J, 75, R). Combining these with (7.7), we have
(e, z, x4 it) < u_(e,z) - elx + it| ~3/? (7.13)

uniformly for ¢ > 0 in E(e, g) X S—(d,75, R). Let X be a compact set contained

in S_(4,rs, R), and consider the set [X]:={xz+it|z € X,t >0} C S_(4,75, R).
Note that

_ i \IJ(E,{I;,g) ~ ~
Ve(e,2,6) = o /|é—5|—5x/2 i < |g,§f§§/g|w(g’x’§)‘

uniformly for £ € [X], where dx := min{1, dist([X],dS_(d, rs, R))}. Using (7.13)
together with this fact we have

Ve(e,z, 2+ it) < u_(e, ) - ela + it ~*/?
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uniformly for ¢t > 0 in E(e, g) % [X]. Then
oo
S (e,x;2V_(0,e,1)) — / U(e,z,x +ies)ds
0

00 00 1 (k+1)e
:Z\I/(a,a:,ac—l—kie) —Zf/ V(e,z,x +it)dt
k

k=0 k=0 = ke
= Z*/ (U(e,z,x + kie) — (e, x, x + it))dt
€ Jke
k=0
0 1 (k+1)e ke 0
:Z—/ (/ \Pg(e,x,erit)dt)dt
k=0 € Jke t
0 (k+1)e
<<u,(€7x)Z/ ez +it| 3/ 2dt
k—o Y ke

o0
<<su,(g,x)/ |z +it| 73/ 2dt < ex™V2u_(¢,2)
0

uniformly in E(e, r) % [X]. Hence, by (7.3), the function V_(o,¢, z) satisfies the
relation

xV_(0,e,z) = ou_(e,x)(1 + O(ex™/?)) + / U(e,z,x +ies)ds (7.14)
0
with

/ U(e,x,x + ics)ds
0

_ /oo U— (57 x)u+(5, g) — U+(E, x)u— (57 f) é(é‘,f, fV, (0‘, , f))df,

ie Ag, )

where the path of integration of the last integral is the vertical line £ = x + it
(t > 0) starting from z. Put € = ¢, in (7.14). Since

i€n
Uy (En, @ +in) — g (En, T) = iepty (en, ) + / (ien — t)ulf (en, z + t)dt,
0

using Proposition 7.4 again, we have (i, ) ™! (us (en, T+icn) —us(en, ) — vy o(2)
as £, — 0 uniformly on every compact set contained in S_(J,7,, R). Observe that
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(ien) " A(en, ) — u_o(E)uy (&) —uto(§)u’ o(§) as e, — 0, and that (e, z, z+
it) satisfies (7.13) uniformly for ¢ > 0 in E(e, r) X S_(0,75, R). We take the limit
€n — 0in (7.14) to obtain

oo

o . u— o(@)u4,0(§) — us o(x)u—_o(§)
$V770(0,$) = 7,0( )"‘2/$ u_70(£)u/+70( )—U+ 0(6) ( )

x E((€7 - €VE0(0,€) +on(€))” — vn(€)) dg

for & € [X], since, by (7.1), lim., 02;2G(en, & 9) = —26((€7 1y + on(€))® —
vrr(€)?). This implies that y = 2V_ ¢(0, z) is a solution of the equation

z(zly) —zy = 2x((fﬂ*1y + ’UH(CE))3 - UH(x)B)'

Consequently the limit function vir(z) + V_ o(0, ) = lim,,, .o v_(0, €5, x) satisfies
Pyr. This completes the proof of Theorem 2.4.
8. Proof of Proposition 6.2.

In this section, we often use the symbol f(e,z) := f(e,x + i), in particular
T =+ €.

8.1. Preliminaries.
Recall the characteristic roots p (g, z) given by (6.3). There exists a relation
between p? (¢, x) and p4 (e, z) described as follows:

LEmMmA 8.1. If r£3) is sufficiently large, then

pi(e,x) = px(e, ) (14 O(ex™))
uniformly in E(gg) x H(rf’)).

Proor. For each € 6 E(so), the functions py (e, z) and p% (e, z) are holo-
morphic in = € H( ) if 7*) is sufficiently large. If |e2x| < do,

cdp2

cdg2
<4 —ex )(1 +ier=1)2 + 2072 = (1 +icx 1) (1 + O(z™3)) o g2z,

where d is sufficiently small. Then
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* (e, x -3 4,2
M(l +ier H T -1k 5 x(s . Ef —e2r < ex?
+\< +\<

for |e2z| < 8o. If |22 > do,

eta? eta?
( Y 5%) (1 +iex=1)2 + 2272 = (1 +iex” 1) (1 + O(2272)) 4 " g2z,

since |1 —e2x /4] > 1. Using this, we also obtain the same estimate. Consequently

Pi(e.x) = pile,x)(1+0(ea))

uniformly in E(eg) x H (ri?’)). The relation for p* (¢,2) and p_ (e, z) immediately

follows from p* (e, z)p% (e,2) = 14 2icx~" and p_(e,z)p4(g,2) = 1. O

The coefficient A(e, ) of (6.2) is diagonalised as follows:

T(s,x)lA(e,x)T(e,x):<p “ee) 0 )

0 pilex)

where

e 1 1
(5’1:) - 1- pj_(e,x) 1- ,0*_ (E,l‘) .

Then, by u(xz) = T(e,z)v(zx), system (6.2) is changed into
v(x +ie) = Ble, x)v(x), (8.1)
priez) 0 )

B(e,z) = T(e,x +ig) ' T(e, x) ( 0 o (e, 2)
tex

By a straight-forward computation, we have
T(e,x +ic) ' T(e,x) = I+ hi(e,z)(I — L) + ha(e,2)(K — J).

Here
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hi(e,x) = W, ha(e, @) :=

Mg, x) = Pi(e,2) —;—pi(s,x) = (1 - 8;) (1 +iex™ 1),

* _ * 4 .2
ule,z) = pi(e @) — pl(e @) _ \/(84% —52x>(1+isx—1)2+52x—2,

(8.2)

and J, K and L are matrices given by

(Y () =)

These matrices satisfy

JP=-K*=1*=1,
JK=-KJ]=-L, KL=-LK=-J LJ=-JL=K.

To evaluate hj(g,z) and hs(e, z) we note the following fact.

LEMMA 8.2.  Let n be a complex parameter. Then

(e, (L+n)z) = ple, z)(1 4 O0(n)) (8.3)

uniformly for |n| < no, € € E(eo), € H(rY), where ng is sufficiently small, and

,rl/

" 1s sufficiently large. Furthermore,

_77523:)\(5, x)

TR U L N CO

(e, (L +n)z) — ple,x) =
PrOOF. Note that

(e, (1 +n)x)* — ple, x)?
ple, (L +n)z) + p(e, )

ple, (1 +n)z) — ple, x) = (8.5)

and that p(e,z)? = —%zfi(e,r) with fi(e,z) := (1 — e22/4)(1 +iex~1)? — 273,
Then the numerator is
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— (L+n)e’zale, (1+n)x) + 2wjle, x)
—(1+n)ez(fi(e

(1 +n)z) — file, ) — ne*zile, )
2

1+ 77)621;( - 7754 ® 4 O(nx_1)>

2 e’z 3 -1 -3
—ne‘x 1—T+O(|E\+|&:x |+ ]27°))

2 e -1 3 -1 2
= —netw 1—7+O(|$ |+ [z - a7 + [ne”al)

= —ne®z Ae,2) (1 + O(|z~ | + [n])) (8.6)

uniformly for |n| < no, ¢ € E(eg), € H(r)), if ny is sufficiently small and

r” is sufficiently large. Suppose that |e2x| < &y, where &y is sufficiently small.

Substituting this into (8.5) and using p(e, (1 +n)z) + u(e, ) > /7 and ev/z <
w(e, x), we have

ple, (L+n)z) — ple,z) < neve < nu(e, z).

For |e2z| > &g, using u(e, (1 + n)z) + ple,x) > ez and u(e,z) > 2z, we also
obtain (8.3). Estimate (8.6) together with (8.3) yields (8.4), which completes the
proof. O

Then we have

LEMMA 8.3.  The functions hy(e,z) and ha(e,x) are expressed as

ie® e, )

hlew) =7 et O(z71)) = O(ex ™),
hg(&',l‘) = (4 + O(|52$—2| + |g4 —ll)) @ _ O(E.’L‘_l)

uniformly in E(eq) x H(r).

PROOF. By Lemma 8.2 with n = icz ™!, we have

ie3\(e, x)

ey (HOG™)

Ale,z) — ple,z) = —
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and fi(e,x) = p(e,z)(1 + O(ez™')), which yield the estimate for hy(e,z). Using

- i3
Ae, ) — Me,x) = —3 +O0(%r72),

we obtain the expression of hs(e, x). O

8.2. Reduction of system (8.1).
Let us write the coefficient B(e, z) of (8.1) in the form

B(e,x) = bo(e,z)] + bi(e,2)J + ba(e,2) K + bs(e,x) L. (8.7)
Here
bo(e, x) := A&, ) + ha(e, 2)A(e, x) — ha(e, 2)u(e, v),
b1(57x) (va) + hl(g’x)ﬂ( ) 2(5’35))‘( )
bQ(Eax) _h1(€ ZL’)/J(Z-?,(E) + h2(€,1’))\(€,1'),
bs(e,z) :== —hi(g,2)A(e, ) + ha(e, x)u(e, x).

These quantities are estimated as follows:

PROPOSITION 8.4. We have

bo(e,z) = Me,2)(1 4+ O(ex™)),  bi(e,z) = ple, 2)(1 4+ O(lex™ | + |=73|)),

bo(e,z) < ex™, by(e,2) < ex?

uniformly in E(eg) x H(r!). Moreover, the diagonal entries of B(e,x) are
bo(&‘,l‘) :l: b1(€,1‘) = pi(E,I>(1 —+ 0(65671)).
PROOF. From the estimate hy(e,x) — ha(e, z)u(e, 2)/Ne, ) < ex™!, the

expression of by (e, z) immediately follows. The function by (e, z) is written in the
form

bi(e,2) = e, z) (1 T hae,z) — ha(e, )

Using Lemma 8.3 and considering the cases |¢%z| > §y and |e2z| < §p, we have
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A(e, ) Ae, z) 2 -2 3 —1 -1 -3
. - 0 +
hi(e, x) h2(€,$)ﬂ(5,x) ()2 (le®z™2 + e’z ]) < |lex™ | + |77

uniformly in E(eg) x H(r}), which implies the expression of b1 (¢, z). Furthermore,

(e,2) 5/ 2 -1 -1
ba(e,z) < cef(JaT H e ) < ex T
&) p(e, ) {
Note that
ie® A, )® -1 i’ 2,.—2 4,.—1
bs(é,x)Z—T'u(e’x)Q(l—kO(x ))+T+O(|E 72 + etz h).
If |e22| < 8o, we immediately obtain bz(e,7) < ez~ !, since 3 = ex~! - £22. For

|e22| > dg, using the estimate

)\(E,gj)Q . (1 _ 821‘/2)2 B L
ple, )2 (1—e2x/2)2 — 1+ 207 2(1 4+ jex—1)—2 14+ 0((e%x)™),

we deduce b3(e,7) < ex~!. The expressions of the diagonal entries of B(e,x)
immediately follow from Lemmas 8.1 and 8.3. U

To reduce the power exponent of the estimate for bs(e, ), we apply a trans-
formation of the form

v(z) = (I +p(e,z)K)y(x),

which changes (8.1) into

y(a +ic) = D(e, 2)y(a), (8.8)
1
D(e,x) = W(do(s,xﬂ +di(e,2)J +da(e, ) K + dg(s,x)L)
with
do(e,x) = (1 +p(e,x)p(e,x))bo(e,x) + (P(e,x) — p(e, x))ba(e, x),
di(e,x) = (1 —p(e,x)p(e,x))b1(e,x) + (P(e,x) + p(e, x))b3(e, x),
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The diagonal entries of D(e,x) are

do(e,z) £ dy(g, ) .

de(ew)i=—3 + (e, x)?

Let us set p(e, x) := (1/2)bs(e, x)/b1(e,x). Then we have
PROPOSITION 8.5.  Ifr} is sufficiently large, then

—3/2 —3/2
|, B

ple,z) < lex | + |z ple,z) < ez | + |z

and

do(e,x) = Ae, ) (1 + O(lea™ | +[277))),
d1(€7x) = u(s,x) (1 + O(|€x71| + ‘x73|>)7

do(e, ) <ex™, dz(e,2) < ex™?

uniformly in E(eo) x H(r}). Furthermore,
di(e,2) = (bo(e,2) £ bi(e,2)) (1 + Oex™?)) = pr(e,2)(1+ O(ex™))

uniformly in E(go) x H(r}).

ProOF. Note that ex'/? < pu(e, ) < ex'/? as €2z — 0. By the definition
of p(e, ) together with Proposition 8.4, we have p(e,z) < ex~! if [e2x| > Jy, and
p(e, ) < =3/ if |e%z| < &y, since p(e, x) < ez~ /u(e, ). Thus we have

ex~?

p(e, )

in E(eo) x H(r!). By Lemma 8.2, |u(e,  + rolz|e?)| > |u(e,z)|/2 for 0 < 6 < 27
if ko > 0 is sufficiently small, and hence we have p(e,t) < ez~/u(e, z) on the
circle |t — x| = kg|z|, from which it follows that

73/2|

ple,x) < < lez ™ + |z

0 1 / p(e, t) gx 2
S plE,x) = . dt < .
Ox =50 lt—a|=rol| (t—T)? u(e, )

Hence,
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x+ie 2,.—2
ple,z) —p(e, x :/ —ple,t)dt <
o) —pea) = [ Splend <
and
— ex”! -1 ~3/2
ple,x) € —— < |ex™ | + |z |
p(e, )

in E(eg) x H(ry) with 77 =/ /(1 — ko). Then

ds(e,z) = —p(e,x)p(e, )bz (e, x) — (ﬁ(e,x) - p(E,:c))b1 (e,2)

52172

1 —3/21\2.,.—1 b 9
< |(|€l‘ |+ |z |)ex |+ 7#(&95) 1(e,2)| K ex™ .
Using
_ AMe,z) 5 o
ple,x) —p(e,x))bo(e, x) K ——=e“x™ 7,
(Ple.) — e, ). ) <

we obtain the estimate for dy(e,z). Let us write do(e, ) + dy (¢, ) in the form
do(e,x) + dy (e, ) = BE(e, ) + BE(e, 7)
with
Bi(e,x) := bo(e,2) £ bi(e,2) + p(e, 2)B(e, z) (bo (e, 2) F bi (e, 7)),
By (e,2) == (Ple,x) — p(e, ))ba(e, @) £ (Ble, @) + ple. @) ba(e, @).

Suppose that |e2z| is small. Observe that by(e, z) by (e, z) = 1 + O(ex'/?), and
that

BE (e, ) — (bo(e, ) £ b1 (e, z) + Ple, 2)* (bo (e, 2) F bi(e, 2)))
= 15(57 33) (p(é‘, 3?) - Tj(& 1‘)) (b0(57 .%') + bl (57 .%'))
< f)(g, 'T) (p(57 :L‘) - f)(& CC))

2,2
-1 £7 3

Lex
p(e, z)

<Lz
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Then

5%:(6,%) _ bo(E,(E):Ebl(E,(E)—l—ﬁ(&l’)z(bo(&l’):Fbl(&l')) —
1+p(2)2 1+p(e,7)2 +0(ex)
2p(e, )%b1 (g, x)

1+7p(e, x)?

=bg(e,z) £ bi(e,x) F + O(ez™?)

=bo(e,z) £ b1(e,x) + O(W) + O(ex™3)

= (bo(e.) £ b1 (2. )) (1 + O(ca™2))
as €2z — 0. Combining this with

By (e.2) < (Ip(e, 2)| + [p(e, @)]) (Ib2(e, )| + [bs (e, 2)])

g2z 2
< —— < ez ?(bo(e, ) £ bi(e,2)),

p(e, )

we obtain the expressions of di(e,z) = (Bif(e,z) + B (e, x))/(1 + ple, x)?) as
g2z — 0. On the other hand, if |e2z| > &y, where dp > 0 is a sufficiently small
fixed number, we have

(B (e,2) — (bo(e, @) £b1(e,))) (bo(e, x) £ bi(e,2)) 7"

2,.—2
1 ez _
< pq:(é‘,.]f)pi(&‘, Z‘) 1p(57$)p(65 Z‘) < p+(57$)2’u( B < 22

£, x)

and

-1
B (e, 2) (bole, ) £ by (e, 2)) ™! < po(e, ) —— - ea~! < 2272,

(e, )

From these combined with Proposition 8.4 the expressions of d (e, ) in the do-
main |e2x| > §p immediately follow, since 1+ p(e,x)? = 1+ O(|e22 72| + [z73|) =
1+ O(ex™2) if |e%x| > Jp. Thus we obtain the desired expressions of the diagonal
entries uniformly valid in E(eg) x H(r}). This completes the proof. O

By a further transformation of the form

y(z) = (I +q(e,z)L)y(z),
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system (8.8) is taken into

§(z + i) = Die,2)i(x), (8.9)
- 1
bEn = e ana —ae 09

X (czo(a,x)l—i— dy(e,x)J + dy(e, 2)K + cig(a,ac)L)

with
~0(5,$) = (1 - Q(‘ga x)@(&ﬂﬁ))do(&%) - (6(8,%) - Q(‘ga Z))dg(é‘,l’),
di(e,x) == (14 q(c,2)q(e, 2))di (e, z) — (qle, x) + q(e,2))da (e, @),
~2(€7x) = (]- + (](E, 33)@(&53))@(6,50) - (6(571.) + q(s, x))dl(gvx)v
~3(8,$) = (1 - q(&‘, x)@(fax))d:s(&m) - (6(5756) - q(é‘, a:))do(s,m).

We put q(g,z) := (1/2)da(e,x)/d1 (g, ). By an argument analogous to that of the
proof of Proposition 8.5, we have

gx”! —1 -3/2) = gx”! —1 —3/2
g6, 2) €« —— <L ez | + | , de,2) €K ——= < |ex™ |+ |z |
pu(e, ) p(e, @)
2,.-2
ez
qe,z) —qle, ) K
1(ev) ~ gleve) < S0

uniformly in E(eg) x H(r3), where 3 is a sufficiently large positive number. Then,

do(e, ) = e, z) (1 + O(lez ™| + [27%))),

di(e,x) = pe,2) (1 + Olex™"| + [27%))),

do(e,2) < ex™?, di(e,r) < ex 2.

Note that the diagonal entries of 5(5, x) are given by

~ - cio(g,x) + ch(g,a:)
(6T = e 2P0 - a2

with
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do(e,z) £ dy (e, z)
=do(e,z) £ di(e,z) — q(e, 2)q(e, ) (do (e, 2) F di (e, z))

- (6(65 1:) - q(&,ﬁﬁ))dg(éi,ZE) + (6(671') + q(é‘,x))dQ(E,Zﬂ).

By the same argument as in the case of d4 (e, z), we derive

do(e,2) £ di(g, 2)
1—7q(e,x)?

= (do(z, @) = dy (e, 2)) (1 + O(ez™2))

uniformly in E(gg) x H(r3). Hence

Lo = BEDZGED

= (bo(e,z) £b1(e,2)) (1 + O(ex™?)) = pa(e,z) (1 + Ofex™1)).

(14+0(ex™?)) = dx(e,2) (14 O(ex™?))

Similarly we can find a couple of transformations

g(x) = (I +p.(e,2)K)y(x), Y(x)= I+ qu(e, z)L)w(x)
with
pile, ) < lex 2|+ 272, qule,x) < |ez 72|+ 2%/

such that, by the composite of them, the magnitude of off-diagonal entries of

D(e,z) is reduced to O(ez~?). Thus we obtain

PROPOSITION 8.6.  Let 1. be a sufficiently large positive number. In E(gg) X
H(r.), by the transformation

u(z) =T(e,z)(I + P(e, z))w(z)

system (6.2) is reduced to a system of the form

(8.10)

w(z 4 ie) = F(e,x)w(x), F(e,z) = (f—(e,o:) flg(s,x)> .

f21 (577;) f+(€,l‘)

Here
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(1) P(e, ) is a square matriz such that P(e,z) < z~ in E(eo) x H(ry);
(2) frale,x) < ex™®, far(e,x) < ex™ and

fi(e,x) = pi(e,2) (14 O(ez™))

in E(gg) x H(ry).

8.3. Exponential part of a fundamental matrix solution.

To construct a fundamental matrix solution of (8.10) we need some lemmas.
The following is a variant of the Euler-Maclaurin formula, which enables us to
calculate an approximate sum of a given function.

LEMMA 8.7.  For a given function ¢(x) and for a given number € # 0, the
integral

v(o)i= 1 [ (60— 560+ o) Ja

satisfies
x+e€
Oz +e€) — d(x) = o) + 276/ (x+e—1)2(x —t)2¢W (t)dt.

Proor. Forl=0,1,2, put

wa) =1 [ oV0at
Then
Do(z +€) — ()
= 00+ 50+ G0+ 5160w b5 [ ke 0o

_ / € 17" € (3) 1 e t3 (4) Hdt
=5 @ = T @ - 5o -5 [ =00
%2(<I>2(x +€) — Po(x))
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Summing these equalities, we obtain the desired formula. O

LEMMA 8.8. Let n be a complex parameter. Then
p+(g,z +nx) = p+(e,2) (1+ O(n))

uniformly for (e,x) € E(eg) X H(rs) asn — 0.

PROOF. Since pi (e, ) = pi(—e2z) with p(2) := 1+ 2/2 4+ /2 + 22/4, it
is sufficient to show that

p+(z +nz) = p+(2) (1+0(n)) (8.11)
uniformly for Rez > 0 as 7 — 0. Note that py (z) satisfy

p_(2)> 2" asz— oo, p+(2) >z as z— oo,

pr(z)>1 asz—0,
and

pl(z) < z7? asz— oo, p(z) <1 asz— oo,

P(z) < 272 as z —0.

Then we have

p(z4nz)—p(2) <Knz- 272 < np_(2) as z — 0o,
pr(z4+nz) — py(z) < nz- 1K nps(z) as z — 00,
P (2 +12) — pa(z) < nz- 27 Y2 < npa(2) as z — 0.

In a compact set contained in {z | Rez > 0, z # 0}, we have the uniform estimates
p+(z) > 1 and p/y (2) < 1, from which (8.11) immediately follows. This completes
the proof of the lemma. O

By Lemma 8.7 with ¢(z) = log f1 (g, z) and € = ie, we obtain

1 xr
Ti(e,2) = E/ p (e, t)dt

o]

with
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pilem) = log 2 e.2) — = (log fa(e.m)), + UL (log foem),,. (812)
which satisfy
(e, +ie) — T+(g, )
= log fu(e,2) + ﬁ ;+i5(x —t+ie)*(z — t)*(log fi(at))w)dt (8.13)

(z = 0/0x, (4y) = 0*/0t"). Here xy € H(r,) is some fixed point. By Proposition
8.6 and Lemma 8.8, for a sufficiently small fixed positive number xg, we have, on
the circle |t — x| = ko|z|,

log f+(g,t) —log fi(e, ) < |log ps(e,t) —log ps (e, 2)| + [ex ™| < 1,

and hence

(log f1 (e, 7)), = % . Wdt
< (log f1(e,2)| + 1)z~ < ([log px(e,2)| + 1)z~
Thus we obtain
e(log fi(e,z)), < ex™ ' (|log p+ (e, )| +1)
uniformly in E(go) x H(r.). Similarly,

e?(log f1(e,)),, < *a™*([log (e, 2)| + 1),

e*(log fu (e, t))(4t) < 't (Jlog ps (e, t)| +1) < e*t7*(1 + |log(e?t)|).
Observing the fact

log p+(e,z) > 1 if [2x| > &, log p (g, 2) > ex'/? if |e%z] < &
(cf. Proposition 6.1, (4), (5)), we have

log f+(e,x) =log px(e,2) + O(ex™') = (14+ Oz~ ")) log p+ (e, x),
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and ex~! < r7llogps(e,x). By these inequalities, functions (8.12) and (8.13)
are expressed as

pi(e,x) = (1 + 0(9:71)) log p+ (g, x), (8.14)

Ti(e, 2 +ic) — 74(e, ) = log f+(g,2) + O(e*z~*log ) (8.15)

in E(eg) x H(ry). Then

x

(e (e, ) = exp(Tx(e, 7)) = exp(ilg/w %(E,t)dt)

satisfy
Ci(ga T+ ZE) = Ci(ev 37) exp(log fi(€7 33) + 0(533374 IOg JZ‘))
=(e(e,2)fr(e,2)(1+ Oz *logz))

=(x(e,2)(fe(e,2) + O(ez*log)) (8.16)

in E(go) x H(r,). Hence the diagonal matrix diag(¢_(e,z), (4(¢,2)) is a funda-
mental matrix solution for a system

w(x + ie) = Fy(e, x)w(e, x) (8.17)
with
(Pen) o
Fole ) = < 0 fi(ax))

fL(e,x) = fe(e,2)(14+ O(e*x ™ logz)) = fi(e,z) + O(ez ?log ).
The following fact plays an important role in constructing our solution.
LEMMA 8.9. Rep_(g,2) <0 and Repi(e,z) > 0 in E(eg) X H(ry).

PROOF.  Since log ps (e, 2) = £e(e™™2)/2(1 4+ o(1)) as 22 — 0, we have
Jarg(log p- (. 2))] = [arg(e ™2)"/2 + arg(1 + o(1)] < = +o(1),

jarg(log p—(e,2)) — 7| < T+ o(1),
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and hence |Re(log p+(c,2))| > (1/2)|Im(log p (e, 2))| for |e%z| < &y in E(go) x
H(ry), if 0¢ is sufficiently small. Then, by (8.14),
£ Repa(e,2) = +Re(log pa (6, 2)) + O(x~ Tm(log pa (¢, 7))
= +Re(log p+(g,2)) - (1 +O(z™1)) > 0.
By Proposition 6.1, (2) and (5), we have |p_(g,z)| < 1 — 08, |p+(c,2)] > 1+ 6

and | arg p4 (g, )| < /2 for |e2x| > &g in E(eo) x H(r.), where ) is some positive
number. Then, by (8.14), we also obtain + Re 4 (g,7) > 0 for |e2x| > &. O

8.4. Construction of a fundamental matrix solution.
Comparing (8.10) with (8.17), we write (8.10) in the form

w(x +ie) = F(e,x)w(z), F(e,x)= Fo(e,z)+ Qe,x), (8.18)

where Q(e, z) is a square matrix such that Q(e,z) = O(ex=/2) in E(go) x H(r,).
Put w(z) = (_(g,z)z(x) in (8.18). Then it becomes

z(x +ie) = (Fy(e,x) + Q7 (e, 2))z(x) (8.19)
with
1 0
Fi(e,z) = fie,z) |,
f2(e, )
O (e,2) = O(ex™3/?), (8.20)

because (_(e,z2)(_(g,z +ie)"t = fO(e,2)"! < p_(g,2)7! < |e%x| + 1. The
system z(z + ic) = FJ(e,x)z(z) admits the fundamental matrix solution

A(e, z) == diag(1, (4 (g,2) /(- (e, 2)).

To treat (8.19) we note that a linear system z(x + i) = F(x)z(z) + f(z) admits
the solution

0
z(z) =Y (z)e+ Y (x) Z Y (z + kie) "' f(x + (k — 1)ie)

k=—o00

or
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z(z) =Y (z)e—Y(x) > Y(x+ (k+1)ie)~" f(z + kie),
k=0

provided that the summation on the right-hand side converges, where Y (x) denotes
a fundamental matrix solution for the homogeneous system z(x + i) = F(x)z(z)
and c is a constant column vector. Consider the summation equation

z(z) = Z(e, x5 2(x))

= (é) —Ae, z) i Ale,x + (k + 1)ie) 'Q" (e, = + kie)z(x + kie). (8.21)
k=0

Every solution of this equation satisfies (8.19). For r > r., let .%y(r) denote the
family of vector functions z(e,z) = *(21(g, ), 22(¢,)) continuous in € € E(gp),
holomorphic in z € H(r) and satisfying |21(e,z) — 1] < 1, |z2(e,x)| < 1 in E(gp) X
H(r). By Lemma 8.9 the (2.2)-entry of A(e,z)A(e,z + (k + 1)ie) ! satisfies

‘ C* (57 x+ (k + 1)i€)<+ (Ev I)
C_(g,2)Cy (e, + (k+ 1)ie)

1 z+(k+1)ie
exp(iS / (30— (57 t) — P+ (Ea t))dt> ’

k+1
< exp </ Re(p_ (g, +ies) — o1 (e, + ias))ds) <1 (8.22)
0

in E(eg) x H(r), if r is sufficiently large. Furthermore, by (8.20) and Lemma 6.4,

ZHQ*(E,QE + kie)|| < & Z |z + kie| 7*/? < (Rex) /2, (8.23)
k=0 k=0
where || - || denotes the standard norm of matrices. By these inequalities, there

exists a sufficiently large positive number 7 such that the linear operator £ (e, z; - )
has the following properties:

(1) Z(e,z;2(e,2)) € Fo(T) if z(e,x) € Fo(F);

(2) for any z(e,x), 2(¢,xz) € Fo(7),

Hf(a,x;i(s,x)) - f(s,x;z(a,x))“ < 1 sup ||2(6,x) - z(&x)”.
2 B(eo)x H(7)
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Then the sequence defined by
20(5’.%) :t(1a0>7 Zn+1(6,f£) :Z(s,x;zn(s,z))

converges to a solution z.,(g,x) of (8.21) or (8.19) such that z.,(g,x) € Fo(7).
Moreover, by (8.21), (8.22) and (8.23) it is easy to see that

2oo(e,2) = 1(1,0) + O((Re )~ 1/?)

in F(eg) x H(F). Therefore (8.18) admits a solution expressed as

w_(e,2) = (_(, ) (1 + O((Rex)—1/2)>

O((Rex)~'/?)

Similarly we obtain another solution of the form

ex) /2
w+<s,x>=<+<e,x>< OliRez)™") )

1+ O((Rex)~1/?)

Then

_ ((g,2) 0
)= (w_(c,x) wi(e,x)) = ex)”1/?
W(e, z) ( (e,2) wi(e, )) (I+O((Rez)™%)) ( 0 C+(€,x)>

is a fundamental matrix solution for (8.18). This combined with the transformation
of Proposition 8.6 yields a fundamental matrix solution for (6.2) written in the
form

Ue,x) = T(e,x)(I + P(e,x)) W (e, z)

(—(e,z) 0O )

=T(e,x)(I + P(e,r)) ( 0 (i(em)

as in Proposition 6.2. Furthermore, if Imz > 0, then, by Lemma 6.4, we have
Sore o 12 (e, @ + kie) || < 271/2 instead of (8.23). Using this, we may deduce

O(x~1/?
w_(g,2) =(_(g,) (1 Ol )>

O(z=1/?)
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for Imz > 0, which implies (2) of Proposition 6.2. The property (4) of Proposition
6.2 is given by Lemma 8.9, and relation (6.4) follows from (8.16) combined with
Proposition 8.6, (2). Thus we obtain Proposition 6.2.
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