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Abstract. The quotient of a Hermitian symmetric space of non-compact
type by a torsion-free cocompact arithmetic subgroup of the identity compo-
nent of the group of isometries of the symmetric space is called an arithmetic
fake compact Hermitian symmetric space if it has the same Betti numbers as
the compact dual of the Hermitian symmetric space. This is a natural gener-
alization of the notion of “fake projective planes” to higher dimensions. Study
of arithmetic fake compact Hermitian symmetric spaces of type An with even
n has been completed in [PY1], [PY2]. The results of this paper, combined
with those of [PY2], imply that there does not exist any arithmetic fake com-
pact Hermitian symmetric space of type other than An, n ≤ 4 (see Theorems 1
and 2 in the Introduction below and Theorem 2 of [PY2]). The proof involves
the volume formula given in [P], the Bruhat-Tits theory of reductive p-adic
groups, and delicate estimates of various number theoretic invariants.

1. Introduction.

1.1. Let G be a connected real semi-simple Lie group with trivial center
and with no nontrivial compact normal subgroups, and g be its Lie algebra. The
group Aut(G ) (= Aut(g)) of automorphisms of G is a Lie group with finitely
many connected components, and its identity component is G . We will denote the
identity component of Aut(G ) in the Zariski-topology by Int(G ). Let X be the
symmetric space of G (X is the space of maximal compact subgroups of G ), and
Xu be the compact dual of X. There is a natural identification of the group of
isometries of X with Aut(G ). We assume in this paper that X (and hence Xu)
is Hermitian. Then every holomorphic automorphism of X is an isometry. The
group Hol(X) of holomorphic automorphisms of X is a subgroup of finite index of
the group Aut(G ) of isometries, and it is known (see [Ta], the remark in Section
5) that Hol(X) ∩ Int(G ) = G .
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1.2. We will say that the quotient X/Π of X by a torsion-free cocompact
discrete subgroup Π of G is a fake compact Hermitian symmetric space, or a fake
Xu, if its Betti numbers are same as that of Xu; X/Π is an arithmetic fake compact
Hermitian symmetric space, or an arithmetic fake Xu, if, moreover, Π is irreducible
(i.e., no subgroup of Π of finite index is a direct product of two infinite normal
subgroups) and it is an arithmetic subgroup of G . Any such space can be endowed
with the structure of a smooth complex projective variety.

We note that if G contains an irreducible arithmetic subgroup, then the simple
factors of its complexification are isomorphic to each other, see [Marg, Corollary
4.5 in Chapter IX]. Also, if the real rank of G is at least 2, which is the case for all
G to be considered in Sections 4–7 of this paper, then by Margulis’ arithmeticity
theorem ([Marg, Chapter IX]), any irreducible discrete cocompact subgroup of G
(in fact, any irreducible lattice) is arithmetic.

If Π is a torsion-free cocompact discrete subgroup of G , then there is a natural
embedding of H∗(Xu,C) in H∗(X/Π,C), see [B, 3.1 and 10.2], and hence X/Π
is a fake Xu if and only if this embedding is an isomorphism.

1.3. Let G , X and Xu be as above, and let Π be a torsion-free cocompact
discrete subgroup of G . Let Z = X/Π. If Z is a fake Xu, then the Euler-Poincaré
characteristic χ(Z) of Z, and so the Euler-Poincaré characteristic χ(Π) of Π, equals
χ(Xu). As X has been assumed to be Hermitian, the Euler-Poincaré characteristic
of Xu is positive. On the other hand, it follows from Hirzebruch proportionality
principle, see [Ser, Proposition 23], that the Euler-Poincaré characteristic of X/Π
is positive if and only if the complex dimension of X is even. Using the results of
[BP], we can easily conclude that there are only finitely many irreducible arith-
metic fake compact Hermitian symmetric spaces of types other than A1. It is of
interest to determine them all.

1.4. Hermitian symmetric spaces have been classified by Élie Cartan; see
[H, Chapter IX]. We recall that the noncompact irreducible Hermitian symmetric
spaces are the symmetric spaces of Lie groups SU (n + 1 −m,m), SO(2, 2n − 1),
Sp(2n), SO(2, 2n − 2), SO∗(2n), an absolutely simple real Lie group of type E6

with Tits index 2E16′
6,2 , and an absolutely simple real Lie group of type E7 with

Tits index E28
7,3 (for Tits indices see Table II in [Ti1]). The complex dimensions

of these spaces are (n+1−m)m, 2n−1, n(n+1)/2, 2n−2, n(n−1)/2, 16 and 27
respectively. The Lie groups listed above are of type An, Bn, Cn, Dn, Dn, E6 and
E7 respectively. We will say that a symmetric space is one of these types if it is
a product of symmetric spaces of noncompact simple Lie groups of that type, and
say that a Hermitian locally symmetric space is of one of these types if its simply
connected cover is a Hermitian symmetric space of that type.

The purpose of this paper is to prove the following two theorems.
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Theorem 1. There does not exist an irreducible arithmetic fake compact
Hermitian symmetric space of type other than An.

Regarding spaces of type An, we have the following result.

Theorem 2. There does not exist an irreducible arithmetic fake compact
Hermitian symmetric space of type An with n > 4.

The proof of Theorem 1 is carried out in Sections 4–7. Arithmetic fake com-
pact Hermitian symmetric spaces of type An, with n even, have been studied in
detail in [PY1] and [PY2]. In [PY1] we have given a classification of “fake projec-
tive planes”, the first of which was constructed by David Mumford in [Mu] using
p-adic uniformization. Note that fake projective planes are arithmetic fake com-
pact Hermitian symmetric spaces of type A2. Using ingenious computer-assisted
group theoretic computations, Cartwright and Steger ([CS]) have shown that the
twenty eight classes of fake projective planes of [PY1] altogether contain fifty dis-
tinct fake projective planes up to isometry with respect to the Poincaré metric
[CS]. Since each of them supports two distinct complex structures [KK, Section
5], there are exactly one hundred fake projective planes counted up to biholo-
morphism. In [PY2] we have shown that arithmetic fake compact Hermitian
symmetric spaces of type An, with n even, can exist only for n = 2, 4, and have
constructed four arithmetic fake P 4

C , four arithmetic fake Grassmannians Gr2,5,
and five (irreducible) arithmetic fake P 2

C × P 2
C . (Fake P 4

C and fake Gr2,5 are of
type A4 and every fake P 2

C ×P 2
C is of type A2.) To prove Theorem 2 we therefore

assume that n is odd and > 3. The proof occupies Sections 8–9. We also prove
some results for n = 3, see Proposition 3 at the end of Section 8, and 9.3.

In the following subsection we will explain the strategy of the proof, and fix
notation which will be used throughout the paper.

1.5. Let G , X, Xu be as in 1.1; X will be assumed to be a Hermitian
symmetric space of one of the following types: An with n > 3 odd, Bn, Cn,
Dn, E6 and E7. Assume, if possible, that G contains a cocompact irreducible
arithmetic subgroup Π whose orbifold Euler-Poincaré characteristic χ(Π) equals
χ(Xu). Then there exist a number field k, a connected adjoint absolutely simple
algebraic k-group G of same type as X, real places v1, . . . , vr of k such that G(kv)
is compact for every real place v different from v1, . . . , vr, G is isomorphic to∏r

j=1 G(kvj )
◦ (and will be identified with it), and Π is an arithmetic subgroup

contained in G(k). It is obvious from this that k is totally real. If G is either of
type An (n > 1 arbitrary) or Dn with n odd, or of type E6, then for every real
place v of k, G is an outer form over kv, and hence the unique quadratic extension
` of k over which G is an inner form is totally complex. If G is of type Dn with
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n even, and it is not a triality form of type D4, then at every real place v of k, G

is an inner form, and hence either G is an inner k-form, or the unique quadratic
extension ` over which G is an inner form is a totally real field. If G is a triality
form of type D4, let ` be a fixed cubic extension of k contained in the smallest
Galois extension of k over which G is an inner form. For triality forms occurring
in this paper, ` is totally real. As Π is cocompact, by Godement compactness
criterion G is anisotropic over k (i.e., its k-rank is 0).

Let π : G → G be the simply connected cover of G defined over k. The kernel
of the isogeny π is the center C of the simply connected k-group G.

Description of C: For a positive integer a, let µa be the kernel of the endo-
morphism x 7→ xa of GL1. Then if G is of type 2An, its center is k-isomorphic to
the kernel of the norm map N`/k : R`/k(µn+1) → µn+1, and if G is of type 2E6, its
center is k-isomorphic to the kernel of the norm map N`/k : R`/k(µ3) → µ3. If G

is of type Bn, Cn or E7, then C is k-isomorphic to µ2. If G is an inner k-form of
type Dn with n even, then C is k-isomorphic to µ2×µ2, and if G is a non-triality
outer form of type Dn, C is k-isomorphic to R`/k(µ2) or to the kernel of the norm
map N`/k : R`/k(µ4) → µ4 according as n is even or odd. If G is a triality form
of type D4, let the cubic extension ` of k be as above. Then C is k-isomorphic to
the kernel of the norm map N`/k : R`/k(µ2) → µ2.

It is known, and easy to see using the above description of C, that for any real
place v of k, the order of the kernel of the induced homomorphism G(kv) → G(kv)
is n+1 if G is of type 2An, is of order 2 if G is of type Bn, Cn or E7, is of order 4 if
G is of type Dn, and of order 3 if it is of type 2E6. Moreover, as G(kv) is connected,
π(G(kv)) = G(kv)◦. Let G =

∏r
j=1 G(kvj

), and let Π̃ be the inverse image of Π
in G . Then the kernel of the homomorphism π : G → G is of order sr, and hence
the orbifold Euler-Poincaré characteristic χ(Π̃) of Π̃ equals χ(Π)/sr = χ(Xu)/sr,
where here, and in the sequel, s = n + 1 if G is of type An, s = 2 if G is of
type Bn, Cn or E7, s = 4 if G is of type Dn, and s = 3 if G is of type E6.
Now let Γ be a maximal discrete subgroup of G containing Π̃. Then the orbifold
Euler-Poincaré characteristic χ(Γ) of Γ is a submultiple1 of χ(Π̃) = χ(Xu)/sr.
Using the volume formula of [P], some nontrivial number theoretic estimates, the
Bruhat-Tits theory, and the Hasse principle for semi-simple groups (Proposition
7.1 of [PR]), we will show that G does not contain such a subgroup Γ. This will
prove Theorems 1 and 2.

1given two nonzero real numbers x and y, we say that y is a submultiple of x if x/y is an
integer.
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2. Preliminaries.

2.1. We will use the notations introduced in 1.5. Thus k will be a totally
real number field, G an absolutely simple simply connected algebraic k-group (of
one of the following nine types: 2An with n(> 3) odd, Bn, Cn, 1Dn, 2Dn, 3D4,
6D4, 2E6, and E7), C its center, G =

∏r
j=1 G(kvj

). We will think of G(k) as a
subgroup of G in terms of its diagonal embedding.

Vf (resp. V∞) will denote the set of non-Archimedean (resp. Archimedean)
places of k. As k admits at least r distinct real places, see 1.5, d := [k : Q] ≥ r.
For v ∈ Vf , qv will denote the cardinality of the residue field fv of kv. If G is an
outer form, ` will denote the quadratic or cubic extension of k as in 1.5. If G is
an inner form, let ` = k.

As explained in 1.5, to prove Theorems 1 and 2 it will suffice to show that G
does not contain a maximal arithmetic subgroup Γ (Γ arithmetic with respect to
the k-structure on G) whose orbifold Euler-Poincaré characteristic is a submultiple
of χ(Xu)/sr. Assume, if possible, that such a Γ exists. Then Λ := Γ ∩ G(k) is
a “principal” arithmetic subgroup, i.e., for every non-Archimedean place v of k,
the closure Pv of Λ in G(kv) is a parahoric subgroup and Λ = G(k) ∩∏

v∈Vf
Pv,

moreover, Γ is the normalizer of Λ in G ; see Proposition 1.4 (iv) of [BP]. Let
the “type” Θv of Pv be as in [BP], 2.2, and ΞΘv be as in 2.8 there. If Pv is
hyperspecial, then ΞΘv

is trivial. The order of ΞΘv
is always a divisor of s (s as

in 1.5). We note that for all but finitely many v ∈ Vf , Pv is hyperspecial.
In terms of the normalized Haar-measure µ on G =

∏r
j=1 G(kvj

) used in [P]
and [BP], and to be used in this paper, |χ(Γ)| = χ(Xu)µ(G /Γ) (see [BP, 4.2]).
Thus the condition that χ(Γ) is a submultiple of χ(Xu)/sr is equivalent to the
condition that µ(G /Γ) is a submultiple of 1/sr. We will show below that G does
not contain a maximal arithmetic subgroup Γ such that µ(G /Γ) is a submultiple
of 1/sr.

For a comprehensive survey of the basic notions and the main results of the
Bruhat-Tits theory of reductive groups over non-Archimedean local fields, used in
this paper, see [Ti2].

2.2. All unexplained notations are as in [BP] and [P]. Thus for a number
field K, DK will denote the absolute value of its discriminant, hK its class number,
i.e., the order of its class group Cl(K). We will denote by hK,s the order of the
subgroup of Cl(K) consisting of the elements of order dividing s, where, as in 1.5,
s = n + 1 if G is of type An, s = 2 if G is of type Bn or Cn, s = 4 if G is of
type Dn, and s = 3 if G is of type E6. Then hK,s|hK . We will denote by UK the
multiplicative-group of units of K, and by Ks the subgroup of K× consisting of
the elements x such that for every normalized valuation v of K, v(x) ∈ sZ.
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2.3. For a parahoric subgroup Pv of G(kv), we define e(Pv) and e′(Pv) by
the following formulae (cf. Theorem 3.7 of [P]):

e(Pv) =
q
(dim Mv+dim Mv)/2
v

]Mv(fv)
. (1)

e′(Pv) = e(Pv) · ]M v(fv)

qdim Mv
v

= q(dim Mv−dim Mv)/2
v · ]M v(fv)

]Mv(fv)
. (2)

2.4. Let m1, . . . , mn (m1 ≤ · · · ≤ mn), where n is the absolute rank of G,
be the exponents of the Weyl group of G. For type An, mj = j; for types Bn and
Cn, mj = 2j − 1; for type Dn the exponents are 1, 3, 5, . . . , 2n − 5, 2n − 3 and
n− 1 (the multiplicity of n− 1 is two when n is even); for type E6, the exponents
are 1, 4, 5, 7, 8 and 11; and for type E7, the exponents are 1, 5, 7, 9, 11, 13 and
17. Then

• if either G is of inner type, or v completely splits in `,

e′(Pv) = e(Pv)
n∏

j=1

(
1− 1

q
mj+1
v

)
;

• if v does not split in ` and G is of type 2An with n odd, then

e′(Pv) = e(Pv)
(

1− 1
qn+1
v

) (n−1)/2∏

j=1

(
1− 1

q2j
v

)(
1 +

1
q2j+1
v

)
,

or

e′(Pv) = e(Pv)
(n+1)/2∏

j=1

(
1− 1

q2j
v

)

according as v does not or does ramify in `.
• if G is of type 2Dn and v does not split in `,

e′(Pv) = e(Pv)
(

1 +
1
qn
v

) n−1∏

j=1

(
1− 1

q2j
v

)
,

or
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e′(Pv) = e(Pv)
n−1∏

j=1

(
1− 1

q2j
v

)

according as v does not or does ramify in `.
• if G is a triality form (i.e., of type 3D4 or 6D4) and v does not completely split

in `, let ω be a nontrivial cube root of unity, then
( i ) if `v := `⊗k kv is a (cubic) field extension of kv,

e′(Pv) = e(Pv)
(

1− 1
q2
v

)(
1− ω

q4
v

)(
1− ω2

q4
v

)(
1− 1

q6
v

)
,

or

e′(Pv) = e(Pv)
(

1− 1
q2
v

)(
1− 1

q6
v

)

according as `v is a unramified or a ramified extension of kv,
( ii ) if ` ⊗k kv is a direct product of kv and a quadratic field extension of kv,

then

e′(Pv) = e(Pv)
(

1 +
1
q4
v

)(
1− 1

q2
v

)(
1− 1

q4
v

)(
1− 1

q6
v

)
,

or

e′(Pv) = e(Pv)
(

1− 1
q2
v

)(
1− 1

q4
v

)(
1− 1

q6
v

)

according as the quadratic extension is unramified or ramified
• if G is of type 2E6 and v does not split in `,

e′(Pv) = e(Pv)
(

1− 1
q2
v

)(
1 +

1
q5
v

)(
1− 1

q6
v

)(
1− 1

q8
v

)(
1 +

1
q9
v

)(
1− 1

q12
v

)
,

or

e′(Pv) = e(Pv)
(

1− 1
q2
v

)(
1− 1

q6
v

)(
1− 1

q8
v

)(
1− 1

q12
v

)

according as v does not or does ramify in `.
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2.5. Since qdim Mv
v > ]M v(fv) (cf. 2.6 of [P]), e′(Pv) < e(Pv). It is not

difficult to check by case-by-case computations, using (2) and the Bruhat-Tits
theory, that for all v ∈ Vf , and an arbitrary parahoric subgroup Pv of G(kv), e′(Pv)
is an integer. If, for example, either G is quasi-split over kv and splits over the
maximal unramified extension of kv (equivalently, G(kv) contains a hyperspecial
parahoric subgroup), or it does not split over the maximal unramified extension
of kv, then explicit computations can be avoided using the fact that the order of
a subgroup of a finite group divides the order of the latter, an analogue (see [Gi])
for reductive groups over finite fields of a result of Borel and de Siebenthal on
subgroups of maximal rank of a compact Lie group, and the fact that over a finite
field f, the groups of f-rational points of connected absolutely simple f-groups of
types Bm and Cm, for an arbitrary m, have equal order. A detailed proof of the
integrality of e′(Pv) for groups of type An is given in [GM].

2.6. Now we will use the volume formula of [P] to write down the precise
value of µ(G /Λ). As the Tamagawa number τk(G) of G equals 1, Theorem 3.7 of
[P] (recalled in 3.7 of [BP]), for S = V∞, provides us the following:

µ(G /Λ) = D
(1/2)dim G
k

(
D`

D
[`:k]
k

)(1/2)s( n∏

j=1

mj !
(2π)mj+1

)d

E , (3)

where n is the absolute rank of G, s is (n − 1)(n + 2)/2 if G is of type 2An with
n odd, 2n − 1 if G is of type 2Dn, 7 if G is a triality form (i.e., of type 3D4 or
6D4), 26 if G is of type 2E6, and 0 for all other groups under consideration in this
paper, and

E =
∏

v∈Vf

e(Pv),

with e(Pv) as in 2.3.

2.7. Let ζk, ζ` be the Dedekind zeta-functions of k and ` respectively. We
will let ζ`|k denote the function ζ`/ζk. If ` is a quadratic extension of k, which
will often be the case in this paper, ζ`|k is the Hecke L-function associated to the
nontrivial Dirichlet character of `/k. Recall that

ζk(a) =
∏

v∈Vf

(
1− 1

qa
v

)−1

,
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and if ` is a quadratic extension of k,

ζ`|k(a) =
∏′

(
1− 1

qa
v

)−1∏′′
(

1 +
1
qa
v

)−1

,

where
∏′ is the product over the non-Archimedean places v of k which split in

`, and
∏′′ is the product over the non-Archimedean places v which do not split

and also do not ramify in `. We will let the reader write down a similar product
expression for ζ`|k(a) = ζ`(a)/ζk(a) when ` is a cubic extension of k.

Using the values of e′(Pv) given in 2.4 we will rewrite the Euler product E
appearing in (3). For this purpose we define

Z =
n∏

j=1

ζk(mj + 1)

if G is of inner type;

Z = ζk(n + 1)
(n−1)/2∏

j=1

ζk(2j)ζ`|k(2j + 1)

if G is of type 2An with n odd;

Z = ζ`|k(n)
n−1∏

j=1

ζk(2j)

if G is of type 2Dn;

Z = ζk(2)ζ`|k(4)ζk(6)

if G is a triality form;

Z = ζk(2)ζ`|k(5)ζk(6)ζk(8)ζ`|k(9)ζk(12)

if G is of type 2E6. Then for all G,

E = Z
∏

v∈Vf

e′(Pv). (4)
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2.8. If G is of inner type, let

R = 2−dn

∣∣∣∣
n∏

j=1

ζk(−mj)
∣∣∣∣. (5)

If G is of type 2An with n odd, let

R = 2−dn

∣∣∣∣ζk(−n)
(n−1)/2∏

j=1

ζk(1− 2j)ζ`|k(−2j)
∣∣∣∣. (6)

If G is of type 2Dn (recall that ` is totally real or totally complex according
as n is even or odd), let

R = 2−dn

∣∣∣∣ζ`|k(1− n)
n−1∏

j=1

ζk(1− 2j)
∣∣∣∣. (7)

If G is a triality form (then ` is a totally real cubic extension of k), let

R = 2−4d
∣∣ζk(−1)ζ`|k(−3)ζk(−5)

∣∣. (8)

If G is of type 2E6 (then ` is a totally complex quadratic extension of k), let

R = 2−6d
∣∣ζk(−1)ζ`|k(−4)ζk(−5)ζk(−7)ζ`|k(−8)ζk(−11)

∣∣. (9)

Using the following functional equations for any totally real k and respec-
tively a totally real extension of arbitrary degree and a totally complex quadratic
extension ` of k,

ζk(2a) = D
1/2−2a
k

(
(−1)a22a−1π2a

(2a− 1)!

)d

ζk(1− 2a),

ζ`|k(2a) =
(

Dk

D`

)2a−1/2( (−1)a22a−1π2a

(2a− 1)!

)d([`:k]−1)

ζ`|k(1− 2a),

and

ζ`|k(2a + 1) =
(

Dk

D`

)2a+1/2( (−1)a22aπ2a+1

(2a)!

)d

ζ`|k(−2a),
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for every positive integer a, and the fact that dimG = n + 2
∑

mj , the volume
formula (3) and the explicit value of E given for each case in 2.7, we find that

µ(G /Λ) = R
∏

v∈Vf

e′(Pv), (10)

where R is as above.

2.9. We have the following

µ(G /Γ) =
µ(G /Λ)
[Γ : Λ]

=
R

∏
v∈Vf

e′(Pv)

[Γ : Λ]
. (11)

Let s be as in 1.5. Proposition 2.9 of [BP] applied to G′ = G and Γ′ = Γ implies
that any prime divisor of [Γ : Λ] divides s. Now since e′(Pv) is an integer for all
v ∈ Vf , we conclude from (11) that if µ(G /Γ) is a submultiple of 1, then any prime
which divides the numerator of the rational number R is a divisor of s. We record
this observation as the following proposition.

Proposition 1. If µ(G /Γ) is a submultiple of 1 (or, equivalently, the orb-
ifold Euler-Poincaré characteristic χ(Γ) of Γ is a submultiple of χ(Xu)), then every
prime divisor of the numerator of the rational number R divides s.

2.10. Let T be the set of all non-Archimedean places v of k such that either
(i) v does not ramify in ` (equivalently, G splits over the maximal unramified
extension of kv) and Pv is not a hyperspecial parahoric subgroup of G(kv), or (ii)
v ramifies in `, G is quasi-split over kv and Pv is not special. It can be easily
seen, using the relative local Dynkin diagram of G/kv given in 4.3 of [Ti2], that
if v /∈ T , then ΞΘv

is trivial; if v ∈ T ramifies in `, then ]ΞΘv
≤ 2.

If for a v ∈ Vf , Pv is hyperspecial, then obviously e′(Pv) = 1. On the other
hand, it is not difficult to see, by direct computation, that e′(Pv) > s for all v ∈ T .
Therefore, E =

∏
v∈Vf

e(Pv) >
∏

v∈Vf
e′(Pv) > s]T (cf. 2.5), and hence, we see

from (3) that

µ(G /Λ) > D
(1/2)dim G
k

(
D`

D
[`:k]
k

)(1/2)s( n∏

j=1

mj !
(2π)mj+1

)d

s]T . (12)

Since µ(G /Γ) = µ(G /Λ)/[Γ : Λ] is a submultiple of 1/sr (see 2.1), we conclude
that µ(G /Λ) ≤ [Γ : Λ]/sr. From bound (12) we now obtain:
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D
(1/2)dim G
k

(
D`

D
[`:k]
k

)(1/2)s( n∏

j=1

mj !
(2π)mj+1

)d

s]T <
[Γ : Λ]

sr
. (13)

3. Discriminant bounds.

We will recall discriminant bounds required in later discussions. We define
Mr(d) = minK D

1/d
K , where the minimum is taken over all totally real number

fields K of degree d. Similarly, we define Mc(d) = minK D
1/d
K , by taking the

minimum over all totally complex number fields K of degree d.
The precise values of Mr(d),Mc(d) for low values of d are given in the following

table (cf. [N]).

d : 2 3 4 5 6 7 8
Mr(d)d : 5 49 725 14641 300125 20134393 282300416
Mc(d)d : 3 117 9747 1257728.

The following proposition can be proved in the same way as Proposition 2 in
[PY2] has been proved.

Proposition 2. Let k and ` be a totally real number field and a totally
complex number field of degree d respectively.

∀d ≥ 2 3 4 5 6 7 8

D
1/d
k > 2.23 3.65 5.18 6.8 8.18 11.05 11.38

D
1/d
` > 1.73 3.28 4.62 5.78.

4. G of type Bn or Cn.

4.1. In this section we assume that G is of type Bn or Cn with n > 1. Then
its dimension is n(2n+1). The j-th exponent mj = 2j−1, s = 0, and the complex
dimension of the symmetric space X of G =

∏r
j=1 G(kvj

) is r(2n − 1) if G is of
type Bn, and is rn(n + 1)/2 if G is of type Cn. The center C of G is k-isomorphic
to µ2 and s = 2. The Galois cohomology group H1(k, C) is isomorphic to k×/k×2.
The order of the first term of the short exact sequence of Proposition 2.9 of [BP],
for G′ = G and S = V∞, is 2r−1. From the proof of Proposition 0.12 of [BP], we
easily conclude that ]k2/k×2 ≤ hk,22d. Let T be as in 2.10. We can adapt the
argument used to prove Proposition 5.1 in [BP], and the argument in 5.5 of [BP],
for S = V∞ and G′ = G, to derive the following bound from Proposition 2.9 of
[BP]:
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[Γ : Λ] ≤ hk,22d+r−1+]T . (14)

Hence, from (13) we obtain

D
1/d
k < f1(n, d, hk,2) :=

[{
2

n∏

j=1

(2π)2j

(2j − 1)!

}d

· hk,2

2

]2/(dn(2n+1))

. (15)

According to the Brauer-Siegel Theorem, for a totally real number field k of
degree d, and all real δ > 0,

hkRk ≤ 21−dδ(1 + δ)Γ
(

1 + δ

2

)d

(π−dDk)(1+δ)/2ζk(1 + δ), (16)

where Rk is the regulator of k. Now from (15) we get the following bound:

D
1/d
k < f2(n, d, Rk, δ) (17)

:=

[Γ
(

1 + δ

2

)
ζ(1 + δ)

π(1+δ)/2

n∏

j=1

(2π)2j

(2j − 1)!
·
{

δ(1 + δ)
Rk

}1/d
]2/(2n2+n−1−δ)

,

since ζk(1+δ) ≤ ζ(1+δ)d, where ζ = ζQ. Using the lower bound Rk ≥ 0.04 e0.46d,
for a totally real number field k, due to R. Zimmert [Z], we obtain the following
bound from (17):

D
1/d
k < f3(n, d, δ) (18)

:=

[Γ
(

1 + δ

2

)
ζ(1 + δ)

π(1+δ)/2e0.46

n∏

j=1

(2π)2j

(2j − 1)!
· {25δ(1 + δ)}1/d

]2/(2n2+n−1−δ)

.

4.2. It is obvious that for fixed n ≥ 2 and δ ∈ [0.04, 9], f3(n, d, δ) decreases
as d increases. Now we observe that for n ≥ 9, (2n − 1)! > (2π)2n. From this
it is easy to see that if for a given d, δ ∈ [0.04, 9], and n ≥ 8, f3(n, d, δ) ≥ 1,
then f3(n + 1, d, δ) < f3(n, d, δ), and if f3(n, d, δ) < 1, then f3(n + 1, d, δ) < 1.
In particular, if for given d, and δ ∈ [0.04, 9], f3(8, d, δ) < c, with c ≥ 1, then
f3(n, d′, δ) < c for all n ≥ 8 and d′ ≥ d.

We obtain by a direct computation the following upper bound for the value
of f3(n, 2, 3) for 6 ≤ n ≤ 14.
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n : 14 13 12 11 10 9 8 7 6
f3(n, 2, 3) < 1 1.1 1.2 1.3 1.4 1.6 1.8 2.1 2.4.

From the bounds provided by this table and the properties of f3 mentioned in the
preceding paragraph we conclude that f3(n, d, 3) < 2.1 for all n ≥ 7, and d ≥ 2.
As D

1/d
k < f3(n, d, 3), Proposition 2 implies that unless k = Q (i.e., d = 1), n ≤ 6.
We assert now that n ≤ 13. To prove this, we can assume, in view of the result

established in the preceding paragraph, that k = Q. By a direct computation we
see that f1(14, 1, 1) < 1. Hence, f1(n, 1, 1) < 1 for all n ≥ 14. As DQ = 1, from
bound (15) we conclude that n ≤ 13.

We will now assume that d ≥ 2 and consider each of the possible cases 2 ≤
n ≤ 6 separately.

• n = 6: For d ≥ 2, D
1/d
k < f3(6, d, 1) ≤ f3(6, 2, 1) < 2.4. Therefore, by

Proposition 2, d = 2 and Dk < 6, which implies that k = Q(
√

5) is the only
possibility.

• n = 5: For d ≥ 2, D
1/d
k < f3(5, d, 1) ≤ f3(5, 2, 1) < 2.9. Therefore, we infer

from Proposition 2 that d = 2 and Dk < 9. So there are two possible real
quadratic fields k, their discriminants are 5 and 8. Both the fields have class
number 1, and we use the bound (15) to obtain D

1/2
k < f1(5, 2, 1) < 2.8. So

only Dk = 5 can occur.
• n = 4: For d ≥ 3, D

1/d
k < f3(4, d, 1) ≤ f3(4, 3, 1) < 3.62, and from Proposition

2 we conclude that if n = 4, then d < 3. Let us assume that d = 2. Then
since D

1/2
k < f3(4, 2, 1.1) < 3.76, Dk < 15 and so the possible values of Dk are

5, 8, 12 or 13. The quadratic fields with these Dk have class number 1. Now
from bound (15) we obtain D

1/2
k < f1(4, 2, 1) < 3.4. Hence, Dk < 12, and only

Dk = 5, 8 can occur.
• n = 3: For d ≥ 4, as D

1/d
k < f3(3, d, 1) ≤ f3(3, 4, 1) < 5.1, from Proposition 2

we infer that if n = 3, then d < 4. If d = 3 = n, Dk < 133 from which we find
that Dk = 49 or 81. Now we consider the case where d = 2 (and n = 3). Since
D

1/2
k < f3(3, 2, 1) < 5.6, Dk < 32, and in this case the possible values of Dk

are 5, 8, 12, 13, 17, 21, 24, 28 or 29. The quadratic fields with these discriminants
have class number 1, and we use bound (15) to obtain D

1/2
k < f1(3, 2, 1) < 4.52.

Hence, Dk < 21 and only Dk = 5, 8, 12, 13, 17 can occur.
• n = 2: As D

1/d
k < f3(2, 7, 1) < 9, Proposition 2 implies that d ≤ 6.

¨ n = 2 and d = 6: As D
1/6
k < f3(2, 6, 1) < 9, Dk < 531441. One can check

from the table in [1] that hk = 1 for all the five number fields satisfying
this bound. We now use bound (15) to obtain D

1/6
k < f1(2, 6, 1) < 7.2. But

according to Proposition 2 there is no totally real number field k for which
this bound holds.
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¨ n = 2 and d = 5: As D
1/5
k < f3(2, 5, 1) < 9.3, Dk < 69569. Again, one can

check from the table in [1] that there are five such number fields and the
class number of each of them is 1. Now we use bound (15) to obtain D

1/5
k <

f1(2, 5, 1) < 7.1. Hence, Dk < 18043. From [1] we find that Dk = 14641 is
the only possibility.

¨ n = 2 and d = 4: As D
1/4
k < f3(2, 4, 0.9) < 9.74, Dk < 9000. According to

[1], there are 45 totally real quartic number fields with discriminant < 9000,
all of them have class number 1. We use bound (15) to obtain D

1/4
k <

f1(2, 4, 1) < 7.04. Hence, Dk < 2457. We find from [1] that there are eight
totally real quartic number fields k with Dk < 2457. Their discriminants are

725, 1125, 1600, 1957, 2000, 2048, 2225, 2304.

¨ n = 2 and d = 3: As D
1/3
k < f3(2, 3, 0.8) < 10.5, Dk < 1158. From table

B.4 of [C] we find that there are altogether 31 totally real cubics satisfying
this discriminant bound. Each of these fields have class number 1. We use
bound (15) to obtain D

1/3
k < f1(2, 3, 1) < 7, which implies that Dk < 343.

There are eight real cubic number fields satisfying this bound. The values of
Dk are

49, 81, 148, 169, 229, 257, 316, 321.

¨ n = 2 and d = 2: As D
1/2
k < f3(2, 2, 0.5) < 12, Dk < 144. From table

B.2 of totally real quadratic number fields given in [C], we check that the
class number of all these fields are bounded from above by 2. Hence, D

1/2
k <

f1(2, 2, 2) < 7.3. So Dk ≤ 53. Among the real quadratic fields with Dk ≤ 53,
there is only one field whose class number is 2, it is the field with Dk = 40.
All the rest have class number 1, and from bound (15) we conclude that
D

1/2
k < f1(2, 2, 1) < 6.8, i.e., Dk < 47. Therefore, the following is the list of

the possible values of Dk:

5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40, 41, 44.

To summarize, for G of type Bn or Cn, the possible n, d and Dk are given in
the following table.
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n d Dk

2, . . . , 13 1 1
6 2 5
5 2 5
4 2 5, 8
3 3 49, 81
3 2 5, 8, 12, 13, 17
2 5 14641
2 4 725, 1125, 1600, 1957, 2000, 2048, 2225, 2304
2 3 49, 81, 148, 169, 229, 257, 316, 321
2 2 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40, 41, 44.

4.3. We will show that none of the possibilities listed in the above table
actually give rise to an arithmetic fake compact Hermitian symmetric space of
type Bn or Cn. For this we recall first of all that G, and so also G, is anisotropic
over k (1.5). Now we observe that if G is a group of type Bn (n ≥ 2), then it is k-
isotropic if and only if it is isotropic at all the real places of k (this follows from the
classical Hasse principle for quadratic forms which says that a quadratic form over
k is isotropic if and only if it is isotropic at every place of k, and the well-known
fact that a quadratic form of dimension > 4 is isotropic at every non-Archimedean
place). Also, a k-group of type Cn (n ≥ 2) is k-isotropic if it is isotropic at all the
real places of k (this is known, and follows, for example, from Proposition 7.1 of
[PR]). These results imply that if d = 1, i.e., if k = Q, then G is isotropic, and
so d = 1 is not possible.

Now let us take up the case where d = 2, i.e., k is a real quadratic field, and
n = 2, 5 or 6. Then for any real place v of k where G is isotropic, the complex
dimension of the symmetric space of G(kv) is odd (recall from 1.4 that the complex
dimension of the symmetric space of G(kv) is 2n− 1 if G is of type Bn, and it is
n(n + 1)/2 if G is of type Cn). But as the complex dimension of the Hermitian
symmetric space X is even (since the orbifold Euler-Poincaré characteristic of Γ
is positive, see 1.3), we conclude that G must be isotropic at both the real places
of k (note that G is anisotropic at a place v of k if and only if G(kv) is compact).
From this observation we conclude that G is k-isotropic also in case d = 2, and
n = 2, 5 or 6. Therefore these cases do not occur.

4.4. To rule out the remaining cases listed in the table in 4.2, we compute
the value of R in each case (R as in (5)). The following table provides the minimal
monic polynomial defining k and the values of ζk needed for the computation of
R. It turns out that in none of the remaining cases the numerator of R is a power
of 2 and Proposition 1 then eliminates these cases.
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n d k Dk ζk(−1) ζk(−3) ζk(−5) ζk(−7)
4 2 x2 − 5 5 1/30 1/60 67/630 361/120
4 2 x2 − 2 8 1/12 11/120 361/252 24611/240.

n d k Dk ζk(−1) ζk(−3) ζk(−5)
3 3 x3 − x2 − 2x + 1 49 −1/21 79/210 −7393/63
3 3 x3 − 3x− 1 81 −1/9 199/90 −50353/27
3 2 x2 − 17 17 1/3 41/30 5791/63
3 2 x2 − 13 13 1/6 29/60 33463/1638
3 2 x2 − 3 12 1/6 23/60 1681/126
3 2 x2 − 2 8 1/12 11/120 361/252
3 2 x2 − 5 5 1/30 1/60 67/630.

n d k Dk ζk(−1) ζk(−3)
2 5 x5 − x4 − 4x3 + 3x2 + 3x− 1 14641 −20/33 1695622/165
2 4 x4 − 4x2 + 1 2304 1 22011/10
2 4 x4 − x3 − 5x2 + 2x + 4 2225 4/5 9202/5
2 4 x4 − 4x2 + 2 2048 5/6 87439/60
2 4 x4 − 5x2 + 5 2000 2/3 3793/3
2 4 x4 − 4x2 − x + 1 1957 2/3 3541/3
2 4 x4 − 6x2 + 4 1600 7/15 17347/30
2 4 x4 − x3 − 4x2 + 4x + 1 1125 4/15 2522/15
2 4 x4 − x3 − 3x2 + x + 1 725 2/15 541/15
2 3 x3 − x2 − 4x + 1 321 −1 555/2
2 3 x3 − x2 − 4x + 2 316 −4/3 874/3
2 3 x3 − x2 − 4x + 3 257 −2/3 1891/15
2 3 x3 − 4x− 1 229 −2/3 1333/15
2 3 x3 − x2 − 4x− 1 169 −1/3 11227/390
2 3 x3 − x2 − 3x + 1 148 −1/3 577/30
2 3 x3 − 3x− 1 81 −1/9 199/90
2 3 x3 − x2 − 2x + 1 49 1/21 79/210.

5. G of type Dn.

We will consider Hermitian symmetric spaces associated to Lie groups of type
Dn, with n ≥ 4. The noncompact irreducible Hermitian symmetric spaces of
these types are SO∗(2n)/U (n) and SO(2, 2n − 2)/S (O(2) × O(2n − 2)). In the
terminology of Élie Cartan, these are Hermitian symmetric spaces of types DIII
and BDI respectively.



700 G. Prasad and S.-K. Yeung

We note that any absolutely simple algebraic group G over Q of type 1Dn or
2Dn, with n ≥ 4, or a triality form of type D4, whose real rank is at least 2, is
Q-isotropic (note that if G is a triality form, then as at the unique real place of Q

the relative rank of G is 2, we see that in the Tits index of G over kv the central
vertex is distinguished for every place v of Q, and then it follows from Proposition
7.1 of [PR] that G is isotropic over Q), and hence, by Godement compactness
criterion, its arithmetic subgroups are non-cocompact in G(R). Since we are only
interested in compact Hermitian locally symmetric spaces (and SO(2, 2n− 2) is of
real rank 2, and for n ≥ 4, the real rank of SO∗(2n) is at least 2) in this section
the number field k will be a nontrivial extension of Q.

5.1. The exponents of the Weyl group of G of type Dn are 1, 3, 5, . . . , 2n−
5, 2n−3, together with n−1 which has multiplicity two if n is even and multiplicity
1 if n is odd. The center of G is of order 4 and dimG = n(2n− 1). Let T be as
in 2.10.

The following bounds for [Γ : Λ] can be obtained from Propositions 0.12, 2.9,
5.1 and the considerations in 5.5 of [BP].

Case (a): n is even, and G is of type 1Dn, i.e., it is of inner type. Then

[Γ : Λ] ≤ h2
k,22

2(d+r−1+]T ). (19)

Case (b): n is even and G is of type 2Dn. Then ` is a totally real quadratic
extension of k (see 1.5), and

[Γ : Λ] ≤ h`,222(d+r+]T )−1D`

D2
k

. (20)

Case (c): n is odd. Then G is of type 2Dn, ` is a totally complex quadratic
extension of k (see 1.5), and

[Γ : Λ] ≤ h`,422(d+r+]T ). (21)

Case (d): n = 4, G is a triality form of type D4, ` is a totally real cubic
extension of k such that over the normal closure of `/k, G is an inner form of a
split group.

[Γ : Λ] ≤ h`,222(d+r+]T )D`

D3
k

. (22)
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Case (a)

5.2. In this case, n (≥ 4) is even, G is of inner type, and (5) provides the
following value of R:

R := 2−dn

∣∣∣∣ζk(1− n)
n−1∏

j=1

ζk(1− 2j)
∣∣∣∣.

Letting

A(n) =
(2π)n

(n− 1)!
·

n−1∏

j=1

(2π)2j

(2j − 1)!

and using the bounds (13) and (19) we obtain the following:

D
1/d
k < a1(n, d, hk,2) :=

[
{4A(n)}d · h2

k,2

4

]2/(dn(2n−1))

. (23)

Using the Brauer-Siegel bound (16) and Zimmert’s lower bound for the reg-
ulator of totally real field k of degree d recalled in 4.1 we obtain the following
bound.

D
1/d
k < a2(n, d, δ) (24)

:=

[
[
Γ
(

1 + δ

2

)
ζ(1 + δ)

]2

(π)1+δe0.92
A(n) · {25δ(1 + δ)}2/d

]2/(2n2−n−2−2δ)

.

The argument for the proof of the following Lemma, which will be used in
later sections as well, is the same as in the first paragraph of 4.2.

Lemma 1. Let δ ∈ [0.04, 9]. For fixed values of n and δ, a2(n, d, δ) decreases
as d increases. Furthermore, for fixed values of d and δ, if n ≥ 8, then a2(n +
1, d, δ) < max(1, a2(n, d, δ)).

We obtain by a direct computation the following upper bound for the value
of a2(n, 2, 4) for small n.

n : 4 6 8
a2(n, 2, 4) < 10.7 3.33 2.13
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From Proposition 2 we now infer that k = Q for all even n ≥ 8. But as k 6= Q,
n = 4 or 6.

Consider first the case n = 6. For d ≥ 2, D
1/d
k < a2(6, 2, 1) < 3.2. Now using

Proposition 2 we conclude that d = 2 and Dk < 11, hence, Dk = 5 or 8. Since the
class number of the corresponding fields is 1, D

1/2
k < a1(6, 2, 1) < 2.82. As 2.822 <

8, we conclude that Dk = 5. Then k = Q(
√

5) and for this field ζk(−1) = 1/30,
ζk(−3) = 1/60, ζk(−5) = 67/630, ζk(−7) = 361/120 and ζk(−9) = 412751/1650.
Using these values, we compute R and find that its numerator is not a power of
2, now Proposition 1 rules out the case n = 6.

Consider now n = 4. For d ≥ 4, D
1/d
k < a2(4, 4, 1) < 5.7. Therefore, d ≤ 4,

and for d = 4, Dk < 1056. From the list of number fields in [1] we find that
the only possible value is Dk = 725 and the class number of the corresponding
number field is 1. Hence D

1/4
k < a1(4, 4, 1) < 4.9. According to Proposition 2 no

such number field exists.
For d = 3, D

1/3
k < a2(4, 3, 1) < 6. From the table of totally real cubics in

[1] we find that the class number of each of the four number fields satisfying the
above bound is 1. Hence, D

1/3
k < a1(4, 3, 1) < 5. So Dk can only take one of the

following two values,

49, 81.

For d = 2, D
1/2
k < a2(4, 2, 1) < 6.7; hence, Dk < 45. From the list of real

quadratics in [C] we find for real quadratic k with Dk < 45, hk ≤ 2. But then
D

1/2
k < a1(4, 2, 2) < 5. We conclude that Dk < 25 and then hk = 1. It follows

that D
1/2
k < a1(4, 2, 1) < 4.73. We conclude that Dk can only take one of the

following values,

5, 8, 12, 13, 17, 21.

Following is thus the list of possible totally real number fields k.

n d Dk

4 3 49, 81
4 2 5, 8, 12, 13, 17, 21.

In the following table, for each of these fields, we give the values of ζk required for
the computation of R for n = 4
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n d Dk ζk(−1) ζk(−3) ζk(−5)
4 3 49 −1/21 79/210 −7393/63
4 3 81 −1/9 199/90 −50353/27
4 2 5 1/30 1/60 67/630
4 2 8 1/12 11/120 361/252
4 2 12 1/6 23/60 1681/126
4 2 13 1/6 29/60 33463/1638
4 2 17 1/3 41/30 5791/63
4 2 21 1/3 77/30 17971/63.

Now computing R we find that its numerator is not a power of 2 and hence
according to Proposition 1 none of the k as above can give rise to an arithmetic
fake compact Hermitian space of type Dn with G of inner type.

Case (b)

5.3. In this case, n (≥ 4) is an even integer, G is of type 2Dn, s = 2n − 1,
s = 4, and ` is a totally real quadratic extension of k. The following value of R is
provided by (7):

R = 2−dn

∣∣∣∣ζ`|k(1− n)
n−1∏

j=1

ζk(1− 2j)
∣∣∣∣.

Letting

A(n) =
(2π)n

(n− 1)!
·

n−1∏

j=1

(2π)2j

(2j − 1)!

and using the bounds (13) and (20), we obtain the following bounds:

D
1/d
k < b1(n, d, h`,2) :=

[
{4A(n)}d · h`,2

2

]2/dn(2n−1)

, (25)

D
1/d
k < b2(n, d, δ) (26)

:=

[
[
Γ
(

1 + δ

2

)
ζ(1 + δ)

]2

(π)1+δe0.92
A(n) · {25δ(1 + δ)}1/d

]2/(2n2−n−2−2δ)

,

D
1/(2d)
` < t1(n, d, Dk, h`,2) :=

[
22d−1A(n)dh`,2D

(n(5−2n)−6)/2
k

]1/d(2n−3)
, (27)
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D
1/(2d)
` < t2

(
n, d, Dk, R`/w`, δ

)
(28)

:=

[
δ(1 + δ)
2R`/w`

D
(n(5−2n)−6)/2
k

[
A(n)

[
Γ
(

1 + δ

2

)
ζ(1 + δ)

]2

π1+δ

]d
]1/d(2n−4−δ)

,

D
1/(2d)
` < t3(n, d, Dk, δ) (29)

:=

[
25δ(1 + δ)D(n(5−2n)−6)/2

k

[
A(n)

[
Γ
(

1 + δ

2

)
ζ(1 + δ)

]2

π1+δe0.92

]d
]1/d(2n−4−δ)

.

To obtain the above bounds we have used D` ≥ D2
k, the Brauer-Siegel Theorem,

and the bound for the regulator due to Zimmert given in 4.1.

5.4. We obtain by a direct computation the following upper bound for the
value of b2(n, 2, 4) for small n.

n : 4 6 8
b2(n, 2, 4) < 7.6 3 2.1.

From Proposition 2, and Lemma 1, where in the latter the function a2(n, d, δ)
is replaced by b2(n, d, δ), we conclude that k = Q for all even n ≥ 8. But k 6= Q,
and hence n ≤ 6.

Consider now n = 6. For d ≥ 3, D
1/d
k < b2(6, 2, 2) < 3. Therefore, d = 2 and

Dk = 5, 8 are the only possibilities. Let us take up first the case where Dk = 8.
As D

1/4
` ≤ t3(6, 2, 8, 2) < 3.2, Proposition 2 rules out this case. Consider now the

case where Dk = 5, i.e., k = Q(
√

5). The following argument involving Hilbert
class fields will be used repeatedly. As D

1/4
` ≤ t3(6, 2, 5, 1) < 7.3. The Hilbert

class field of ` is a totally real number field (since ` is totally real) of degree h`

over ` (hence of degree 4h` over Q), and its root discriminant equals D
1/4
` which

is < 7.3. On the other hand, according to Proposition 2 Mr(6) > 8.18. So we
conclude that 4h` < 6 and, h` ≤ b5/4c = 1. Where here, and in the sequel, we
use bxc to denote the integral part of x. It follows that D

1/4
` ≤ t1(6, 2, 5, 1) < 5.5.

From [1] we see that there is only one number field ` containing k = Q(
√

5) with
this root discriminant bound. For this `, D` = 725, and ζ`|k(−5) = 2164. Now
using this value of ζ`|k(−5) and the values of ζk (for k = Q(

√
5)) given in 5.2

we compute the value of R and find that its numerator is not a power of 2. So
Proposition 1 rules out n = 6 with Dk = 5.

Consider now n = 4. As D
1/d
k < b2(4, 4, 2) < 5.17, Proposition 2 implies that

d ≤ 3.
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For d = 3, we know from Proposition 2 that Dk ≥ 49. Hence, D
1/6
` ≤

t3(4, 3, 49, 1) < 17. From Table IV of [Mart], Mr(14) > 17. So by considering
the Hilbert class field of `, we obtain h` ≤ b13/6c = 2. It follows that D

1/6
` ≤

t1(4, 3, 49, 2) < 8.6. But according to Proposition 2, Mr(7) > 11.05. Hence,
h` ≤ b8/6c = 1. This in turn implies that D

1/6
` < t1(4, 3, 49, 1) < 8.2, and

therefore, D` < 304007. It is seen from table t66.001 in [1] that there is only
one totally real number field ` of degree 6 for which this bound holds. For this `,
D` = 300125. Hence the only possibility for d = 3 is (Dk, D`) = (49, 300125).

Let us assume now that d = 2. For a real quadratic field k, either Dk = 5 or
8 or Dk ≥ 12. Consider first the quadratic fields k with Dk ≥ 8. Since D

1/4
` <

t3(4, 2, 8, 0.5) < 39.2. From Table IV of [Mart] we find that Mr(80) > 39.4.
Hence, by considering the Hilbert class field of `, we infer that h` ≤ b79/4c = 19.
Hence h`,2 ≤ 16. It follows that D

1/4
` ≤ t1(4, 2, 8, 16) < 16.79. As Mr(14) > 17,

by considering the Hilbert class field of `, we conclude that h` ≤ b13/4c = 3. So
h`,2 ≤ 2. But then D

1/4
` ≤ t1(4, 2, 8, 2) < 13.637 and hence, D` ≤ 34584.

Let us now consider real quadratic fields k with Dk ≥ 12. The discussion in
the preceding paragraph implies that h`,2 ≤ 2. As D

1/4
` ≤ t1(4, 2, 12, 2) < 9.47.

Proposition 2 gives that Mr(8) > 11.38. Hence, by considering the Hilbert class
field of `, we conclude that h` ≤ b7/4c = 1. But then as D

1/4
` ≤ t1(4, 2, 12, 1) <

8.834, so D` ≤ 6090.
From t44.001 again, we check that there are only 24 such totally real quartics,

with D` given below:

725, 1125, 1600, 1957, 2000, 2048, 2225, 2304, 2525, 2624, 2777, 3600,

3981, 4205, 4225, 4352, 4400, 4525, 4752, 4913, 5125, 5225, 5725, 5744.

Furthermore, with our assumption that Dk ≥ 12, we know that h` = 1, and as
D

1/2
k ≤ b1(4, 2, 1) < 4.84, Dk can only be one of 12, 13, 17, 21. Since D` is an

integral multiple of D2
k, we check easily that for Dk ≥ 12, the only possible values

for (Dk, D`) are (17, 4913), (13, 4225), (12, 2304), (12, 3600) and (12, 4752).
Consider now the case Dk = 5, i.e., k = Q(

√
5), and ` is a totally real number

field of degree 4 containing Q(
√

5). We will show that D
1/4
` ≤ 55. Assume to the

contrary that D
1/4
` > 55. We will first prove that R` ≥ 1.64. For this we shall use

some results of [F, Section 3]. In the following paragraph all unexplained notation
are from [F, Section 3], in which k has been replaced by `.

Recall that the image of the group of units of ` under the logarithmic embed-
ding `−{0} → R4 forms a lattice Λ` of rank 3. Let 0 < m`(ε1) ≤ m`(ε2) ≤ m`(ε3)
be the successive minima of the Euclidean absolute value on Λ`. Consider first the
case where Q(ε1) = `. In this case, using Remak’s estimate as stated in (3.15) of
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[F], we see that the following lower bound for the regulator of ` holds:

R` ≥
(

log D` − 4 log 4
401/2

)3

> 4.5.

Let us assume now that Q(ε1) is a proper subfield of `. Then Q(ε1) is a
real quadratic field. Among such fields, Q(

√
5) has the smallest regulator (see the

corollary in Section 3 of [Z]). Hence, the smallest fundamental unit ε1 can be taken
to be (1+

√
5)/2. Then m`(ε1) = 2 log((1+

√
5)/2). So, m`(ε2) ≥ 2 log((1+

√
5)/2).

From a result of Remak and Friedman, cf. (3.2) of [F], we know that

m`(ε3) ≥ 2
(

1
4

log |D`| − 1
2

log 5− log 2
)

> 2
(
log(55)− log(2

√
5)

)
.

(Note that A(`/k) = ((2/3)(8 − 2))1/2 = 2 in the notation of [F, p. 611].) Hence
from the bound (3.12) of [F] we obtain the following:

R` ≥ 1
2
√

2

3∏

i=1

m`(εi) ≥
√

2
(

log
(

1 +
√

5
2

))2

m`(ε3)

> 2
√

2
(

log
(

1 +
√

5
2

))2(
log(55)− log(2

√
5)

)
> 1.64.

This proves our assertion about R`. Now since w` = 2, we conclude that

D
1/4
` < t2(4, 2, 5, 0.82, 0.5) < 55,

contradicting the assumption that D
1/4
` > 55. Thus we have proved that D

1/4
` ≤

55.
We find, using Table IV of [Mart], that Mr(800) > 55. As D

1/4
` ≤ 55, by

considering Hilbert class field of `, we conclude that h` ≤ b799/4c = 199. Hence,
h`,2 ≤ 128. Then D

1/4
` < t1(4, 2, 5, 128) < 31.6. From Table IV of [Mart] we see

that Mr(41) > 31.7. Hence, again by considering the Hilbert class field of ` we
conclude that h` ≤ b40/4c = 10, so h`,2 ≤ 8. But then D

1/2d
` ≤ t1(4, 2, 5, 8) < 24.

Again, from Table IV of [Mart] we see that Mr(24) > 24. By considering the
Hilbert class field of `, we infer that h` ≤ b23/4c = 5. Hence, h`,2 ≤ 4. But then
D

1/4
` < t1(4, 2, 5, 4) < 22.32, and so D` < 248186. From the tables t44001–t44003

of [1] we find that for D` ≤ 248186, h` ≤ 3, and so h`,2 ≤ 2. It then follows that
D` ≤ bt1(4, 2, 5, 2)4c ≤ 187789.
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Here is the list of all the possibilities:

n d Dk D`

4 3 49 300125
4 2 17 4913
4 2 13 4225
4 2 12 2304, 3600, 4752
4 2 8 ≤ 34584
4 2 5 ≤ 187789.

5.5. Malle has provided us the list of pairs (k, `) satisfying the above con-
straints. The values of ζk and ζ`|k required to compute R for each of the possible
pairs (k, `), with Dk ≥ 12, have been tabulated below.

n d Dk D` ζk(−1) ζk(−3) ζk(−5) ζ`|k(−3)
4 3 49 300125 −1/21 79/210 −7393/63 8202104
4 2 17 4913 1/3 41/30 5791/63 366280/17
4 2 13 4225 1/6 29/60 33463/1638 35936
4 2 12 2304 1/6 23/60 1681/126 5742
4 2 12 3600 1/6 23/60 1681/126 25776
4 2 12 4752 1/6 23/60 1681/126 68944.

Using the values of ζk and ζ`|k given above, we can compute R. We see that
its numerator is not a power of 2 for any of the above (k, `), and Proposition 1
rules out all these pairs.

For k = Q(
√

2), for which Dk = 8, there are 32 number fields ` containing k

and with D` ≤ 34584. For k = Q(
√

5), for which Dk = 5, there are 363 number
fields ` containing k and with D` ≤ 187789. In each of these 32 + 363 cases, we
have computed R (interested readers may write to either of the authors to obtain
the values). The numerator of R in none of the cases is a power of 2. Proposition
1 thus eliminates Case (b).

Case (c)

5.6. In Case (c), n is odd and G is of type 2Dn, s = 2n − 1, s = 4, ` is
a totally complex quadratic extension of totally real k (k 6= Q). Equation (7)
provides the following value of R:

R = 2−dn

∣∣∣∣ζ`|k(1− n)
n−1∏

j=1

ζk(1− 2j)
∣∣∣∣.
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Letting

A(n) =
(2π)n

(n− 1)!
·

n−1∏

j=1

(2π)2j

(2j − 1)!
,

from bounds (13) and (21), using the following bound provided by the Brauer-
Siegel Theorem for a totally complex number field ` of degree 2d,

h`R` ≤ w`δ(1 + δ)Γ(1 + δ)d((2π)−2dD`)(1+δ)/2ζ`(1 + δ), (30)

where δ > 0, h` is the class number and R` is the regulator of `, and w` is the order
of the finite group of roots of unity contained in `, and the bound R` ≥ 0.02w` e0.1d

due to R. Zimmert [Z], we obtain the following bounds:

D
1/d
k < c1(n, d, h`,4) :=

[
{4A(n)}dh`,4

]2/(dn(2n−1))

, (31)

D
1/d
k < c2(n, d, δ) (32)

:=
[{

4A(n)
Γ(1 + δ)ζ(1 + δ)2

(2π)1+δe0.1

}
· {50δ(1 + δ)}1/d

]2/(2n2−n−2−2δ)

,

D`

D2
k

< t(n, d, Dk, h`,4) :=
(
4dA(n)dh`,4

)2/(2n−1)
D−n

k , (33)

D
1/(2d)
` < u1(n, d, Dk, h`,4) :=

[(
4dA(n)dh`,4

)2/(2n−1)
D2−n

k

]1/(2d)
, (34)

D
1/(2d)
` < u2

(
n, d, Dk, R`/w`, δ

)
(35)

:=
[
δ(1 + δ)
R`/w`

D
(n(5−2n)−2)/2
k

{
4A(n)

Γ(1 + δ)ζ(1 + δ)2

(2π)1+δ

}d]1/d(2n−2−δ)

,

D
1/(2d)
` < u3(n, d, Dk, δ) (36)

:=
[
50δ(1 + δ)D(n(5−2n)−2)/2

k

{
4A(n)

Γ(1 + δ)ζ(1 + δ)2

(2π)1+δe0.1

}d]1/d(2n−2−δ)

.

5.7. We obtain by a direct computation the following upper bound for
c2(n, 2, 3) for small n.

n : 5 7 9
c2(n, 2, 2.6) < 4.2 2.5 1.78.
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It is obvious that the conclusion of Lemma 1 holds with the function a2(n, d, δ)
replaced by c2(n, d, δ). Also, for fixed d and δ, c2(n, d, δ) clearly decreases as n

increases. As k 6= Q, using Proposition 2 we conclude that n ≤ 7.
Consider now n = 7. For d ≥ 2, since D

1/d
k ≤ c2(7, 2, 2) < 2.5, Proposition

1 implies that d = 2 and Dk = 5 is the only possibility. But if Dk = 5, D
1/4
` ≤

u3(7, 2, 5, 1.5) ≤ 3.2, which according to Proposition 2 is not possible.

5.8. Consider now the case n = 5. As c2(5, 3, 1) < 4, Proposition 2 implies
that d ≤ 3. If d = 2, then Dk < 42 = 16, and hence, Dk = 5, 8, 12 or 13. On
the other hand, if d = 3, then Dk < 43 = 64, and Dk = 49 is the only possibility.
But then D

1/6
` ≤ u3(5, 3, 49, 1) < 4.4. According to Proposition 2 there does not

exist a totally complex ` of degree 6 satisfying this bound for D`. We conclude
therefore that d = 2.

Let now d = 2. If Dk ≥ 8, as D
1/4
` < u1(5, 2, 8, 2) < 5.52, and according to

Proposition 2, Mc(8) > 5.78, we conclude using the Hilbert class field of ` that
h` ≤ b7/4c = 1.

Let us consider the case Dk = 13. As t(5, 2, 13, 1) < 1.1, D` = 169. However,
there is no totally complex quartic field with discriminant 169. Hence Dk cannot
be 13.

Let us now assume that Dk = 12. As t(5, 2, 12, 1) < 1.7, the only possibility
for ` is D` = 144.

Suppose Dk = 8. Then k = Q(
√

2). As t(5, 2, 8, 1) < 12.36, D` ≤ 12·82 ≤ 768.
From the list of totally complex quartics in table t40.001 of [1] we see that those
which contain Q(

√
2), and have discriminant in the above range, have discriminant

in {256, 320, 512, 576}. (Note that there are two totally complex quartics with
discriminant 576, but only one of them contains Q(

√
2). Only the one containing

Q(
√

2) is of interest to us.)
Now let us assume that Dk = 5. Then k = Q(

√
5). As D

1/4
` ≤ u3(5, 2, 5, 0.7)

< 12.4, Mc(36) > 12.5 (Table IV of [Mart]), by considering the Hilbert class field
of `, we infer that h` ≤ b35/4c = 8. But then as D

1/4
` ≤ u1(5, 2, 5, 8) < 8.5,

and Mc(16) > 8.7 (Table IV of [Mart]), by again considering the Hilbert class
field of `, we conclude that h` ≤ b15/4c = 3. It follows that h`,4 ≤ 2 and hence,
D

1/4
` < u1(5, 2, 5, 2) < 7.85. Therefore, D` ≤ 3797. Moreover, D` is a multiple of

D2
k = 25, so D` ≤ 3775. According to the table in [1], the discriminant of the

totally complex quartic fields ` with D` ≤ 3775, and which contain Q(
√

5), is one
of the following:

125, 225, 400, 1025, 1225, 1525, 1600, 2725, 3025, 3625, 3725.

The class number of ` with D` = 3725 is 1 according to [Mart]. But t(5, 2, 5, 1) <
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130 and hence D` ≤ 52 · 129 < 3225. Hence ` with D` = 3725 can be excluded.

5.9. Among the pairs of (Dk, D`) obtained above, only some of them can be
discriminants of number fields k and ` such that ` is a totally complex quadratic
extension of k. We eliminate the rest. In conclusion, here are all the possibilities
in Case (c): n = 5, d = 2, ` is a totally complex quadratic extension of a real
quadratic number field k, and

n d Dk D`

5 2 12 144
5 2 8 256, 576
5 2 5 125, 225, 400, 1025, 1225, 1525, 1600, 2725, 3025, 3625.

Using the values of ζk and ζ`|k given in the following table for the pairs (k, `)
listed above, we computed R. Its numerator for none of the pairs (k, `) turned
out to be a power of 2. So by Proposition 1, Case (c) does not give rise to any
arithmetic fake compact Hermitian symmetric spaces.

Dk D` ζk(−1) ζk(−3) ζk(−5) ζk(−7) ζ`|k(−4)
12 144 1/6 23/60 1681/126 257543/120 5/3
8 256 1/12 11/120 361/252 24611/240 285/2
8 576 1/12 11/120 361/252 24611/240 15940/3.

For k = Q(
√

5), ζk(−1) = 1/30, ζk(−3) = 1/60, ζk(−5) = 67/630, ζk(−7) =
361/120, and

D` : 125 225 400 1025 1225
ζ`|k(−4) : 1172/25 1984/3 8805 608320 1355904

D` : 1525 1600 2725 3025 3625
ζ`|k(−4) : 3628740 4505394 49421124 872059200/11 178910784.

Case (d)

5.10. We shall finally consider triality forms of type D4. So assume now
that G is a triality form over a totally real number field k 6= Q. For such a G,
s = 7, s = 4, dim G = 28, and ` is a totally real cubic extension of k such that
over the normal closure of `/k, G is an inner form of a split group.

The exponents of the Weyl group of G are 1, 3, 3, and 5 (3 has multiplicity
2). The value of R in this case, provided by equation (8), is
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R = 2−4d
∣∣ζk(−1)ζ`|k(−3)ζk(−5)

∣∣.

Letting A = (2π)16/4320 and using bounds (13), (16) and (22), and Zimmert’s
lower bound for the regulator, we conclude that

D
1/d
k < d1(d, h`,2) :=

[
(4A)dh`,2

]1/(14d)
, (37)

D
1/d
k < d2(d, δ) :=

[
50δ(1 + δ)

[
A

{
ζ(1 + δ)Γ

(
1 + δ

2

)}3

2e1.38π(3/2)(1+δ)

]d
]2/d(25−3δ)

, (38)

D
1/(3d)
` < z1(d,Dk, h`,2) :=

(
(4A)dD

−13/2
k h`,2

)2/15d
, (39)

D
1/(3d)
` < z2(d,Dk, δ) (40)

:=

[
50δ(1 + δ)D−13/2

k

[
A

{
ζ(1 + δ)Γ

(
1 + δ

2

)}3

2e1.38π(3/2)(1+δ)

]d
]2/3d(4−δ)

.

Note that for a fixed value of δ ≥ 0.02, all the expressions on the right hand
side of the above bounds are decreasing in d. By a direct computation we find that
D

1/d
k < d2(4, 1.6) < 5.03. Using Proposition 2 we conclude from this that d < 4.

Consider now d = 3. As the smallest discriminant of a totally real cubic is 49,
and D

1/9
` < z2(3, 49, 1) < 10. But Mr(9) > 11.8 (see Table IV in [Mart]). Hence

d cannot be 3.
Consider now d = 2. As the smallest discriminant of a totally real quadratic

field is 5, and D
1/6
` < z2(2, 5, 0.7) < 22.2. But Mr(21) > 22.3 (Table IV in

[Mart]). So by considering the Hilbert class field of `, we conclude that h` ≤
b20/6c = 3, and hence, h`,2 ≤ 2. But then D

1/6
` < z1(2, 5, 2) < 10.4. According

to Proposition 2, Mr(8) > 11.38, so considering again the Hilbert class field of `,
we infer that h` ≤ b7/6c = 1. Now since D

1/6
` < z1(2, 5, 1) < 9.896, it follows that

D` ≤ b9.8966c = 939200.
Suppose Dk ≥ 8, then D

1/6
` < z1(2, 8, 1) < 8.1, which is smaller than the

lower bound for Mr(6) given by Proposition 2. Hence Dk can only be 5.
For Dk = 5, i.e., k = Q(

√
5), we find from table t66.001 of [1] that there

are 11 totally real sextics with discriminant bounded as above. For ` to be an
extension of degree three of k, it is necessary that D`/D3

k is an integer. Going
through the list of the 11 sextics, we are left with four possibilities for D`, these
are 300125, 485125, 722000 and 820125. Among these four sextics, only the one
with D` = 300125 contains Q(

√
5) as a subfield. This ` is given by x6−x5−7x4 +
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2x3 +7x2−2x−1. The values of ζk(−1), ζ`|k(−3), ζk(−5) and R are given below.

ζk(−1) ζk(−5) ζ`|k(−3) R

1/30 67/630 1295932432/7 5426717059/33075.

As the numerator of R is not a power of 2, from Proposition 1 we conclude that
arithmetic fake compact Hermitian symmetric spaces of type D4 cannot arise from
triality forms.

5.11. In conclusion, there does not exist an arithmetic fake compact Her-
mitian symmetric space of type Dn, n ≥ 4.

6. G of type 2E6.

6.1. In this section G is of type 2E6. Its dimension is 78 and the complex
dimension of the symmetric space of G =

∏r
j=1 G(kvj

) is 16r. The exponents of
the Weyl group of G are 1, 4, 5, 7, 8 and 11, s = 26, and s = 3. Let T be as in
2.10. The bound (13) in the present case is

(DkD`)13
(

4!5!7!8!11!
(2π)42

)d

3]T <
[Γ : Λ]

3r
. (41)

6.2. The center C of G is k-isomorphic to the kernel of the norm map
N`/k : R`/k(µ3) → µ3. As this map is onto, the Galois cohomology group H1(k, C)
is isomorphic to the kernel of the homomorphism `×/`×3 → k×/k×3 induced by
the norm map. We shall denote this kernel by (`×/`×3)•.

By Dirichlet’s unit theorem, Uk
∼= {±1}×Zd−1, and U`

∼= µ(`)×Zd−1, where
µ(`) is the finite cyclic group of roots of unity in `. Hence, Uk/U3

k
∼= (Z/3Z)d−1,

and U`/U3
`
∼= µ(`)3 × (Z/3Z)d−1, where µ(`)3 is the group of cube-roots of unity

in `. Now we observe that N`/k(U`) ⊃ N`/k(Uk) = U2
k , which implies that the

homomorphism U`/U3
` → Uk/U3

k , induced by the norm map, is onto. Therefore,
the order of the kernel (U`/U3

` )• of this homomorphism equals ]µ(`)3.
The short exact sequence (4) in the proof of Proposition 0.12 of [BP] gives

us the following exact sequence:

1 → (
U`/U3

`

)
• →

(
`3/`×3

)
• → (P ∩I 3)/P3,

where (`3/`×3)• = (`3/`×3)∩ (`×/`×3)•, P is the group of all fractional principal
ideals of `, and I the group of all fractional ideals (we use multiplicative notation
for the group operation in both I and P). Since the order of the last group of



Nonexistence of arithmetic fake compact Hermitian symmetric spaces 713

the above exact sequence is h`,3, see (5) in the proof of Proposition 0.12 of [BP],
we conclude that

]
(
`3/`×3

)
• ≤ ]µ(`)3 · h`,3.

Now we note that the order of the first term of the short exact sequence of
Proposition 2.9 of [BP], for G′ = G and S = V∞, is 3r/]µ(`)3.

Using the above observations, together with Proposition 2.9 and Lemma 5.4
of [BP], and a close look at the arguments in 5.3 and 5.5 of [BP] for S = V∞ and
G as above, we can derive the following upper bound:

[Γ : Λ] ≤ h`,33r+]T . (42)

This, together with (41) leads to the following bound:

(DkD`)13 <

(
(2π)42

4!5!7!8!11!

)d

h`. (43)

6.3. Let

A =
(2π)42

4!5!7!8!11!
.

From bound (42), using (30), we obtain

(DkD`)13 < h`A
d ≤ Ad δ(1 + δ)Γ(1 + δ)dD

(1+δ)/2
` ζ`(1 + δ)

(R`/w`)(2π)d(1+δ)
.

Hence,

D13
k D

13−(1+δ)/2
` < Ad δ(1 + δ)Γ(1 + δ)dζ`(1 + δ)

(R`/w`)(2π)d(1+δ)
. (44)

As D2
k ≤ D`, and ζ`(1 + δ) ≤ ζ(1 + δ)2d, we conclude that

D38−δ
k < Ad δ(1 + δ)Γ(1 + δ)dζ(1 + δ)2d

(R`/w`)(2π)d(1+δ)
.

Therefore,
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D
1/d
k <

[{
A

Γ(1 + δ)ζ(1 + δ)2

(2π)1+δ

}
·
{

δ(1 + δ)
R`/w`

}1/d]1/(38−δ)

. (45)

Using the lower bound R` ≥ 0.02w` e0.1d due to R. Zimmert [Z], we obtain from
this the following:

D
1/d
k < f(d, δ) :=

[{
A

Γ(1 + δ)ζ(1 + δ)2

(2π)1+δe0.1

}
· {50δ(1 + δ)}1/d

]1/(38−δ)

. (46)

From bound (43) we also obtain,

D`

D2
k

<
[
AdD−39

k h`

]1/13
. (47)

Furthermore, using (44) and Zimmert’s bound R` ≥ 0.02w`e
0.1d, we get the fol-

lowing:

D`

D2
k

< p(d,Dk, δ) :=
[{

A
Γ(1 + δ)ζ(1 + δ)2

(2π)1+δe0.1

}
·
{

50δ(1 + δ)
D38−δ

k

}1/d]2d/(25−δ)

. (48)

6.4. For a fixed δ ≥ 0.02, f(d, δ) clearly decreases as d increases. For d ≥ 2,
D

1/d
k < f(d, 2) ≤ f(2, 2) < 2.3. We conclude now from Proposition 2 that d ≤ 2,

and for d = 2, Dk ≤ 5. Then Dk = 5. It follows from bound (48) that D`/D2
k <

p(2, 5, 2) < 2. Hence, D`/D2
k = 1 and D` = 25, which contradicts the bound given

by Proposition 2. We conclude that d = 1, i.e., k = Q.
It is known, and follows, for example, from Proposition 7.1 of [PR], that a

Q-group G of type 2E6, which at the unique real place of Q is the outer form of
rank 2 (this is the form 2E16′

6,2 which gives rise to a Hermitian symmetric space),
is isotropic over Q. This contradicts the fact that G is anisotropic over Q (1.5),
and hence we conclude that groups of type 2E6 do not give rise to arithmetic fake
compact Hermitian symmetric spaces.

7. G of type E7.

7.1. In this section G is assumed to be of type E7. The dimension of G is
133, the exponents of its Weyl group are 1, 5, 7, 9, 11, 13 and 17; and s = 2. The
dimension of the symmetric space X of G =

∏r
j=1 G(kvj ) is 27r. Let T be as in

2.10. The bound (13) in this case gives us the following:
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D
133/2
k <

[Γ : Λ]
2r+]T

·
(

(2π)70

5!7!9!11!13!17!

)d

. (49)

The center C of G is k-isomorphic to µ2. The Galois cohomology group
H1(k, C) is isomorphic to k×/k×2. The order of the first term of the short exact
sequence of Proposition 2.9 of [BP], for G′ = G and S = V∞, is 2r−1. From the
proof of Proposition 0.12 of [BP], we easily conclude that ]k2/k×2 ≤ hk,22d. We
can adapt the argument used to prove Proposition 5.1 in [BP], and the argument
in 5.5, of [BP], for S = V∞ and G′ = G, to derive the following bound:

[Γ : Λ] ≤ hk,22d+r−1+]T . (50)

Combining (49) and (50) we obtain the following bound:

D
133/2
k < 2d−1

(
(2π)70

5!7!9!11!13!17!

)d

hk,2. (51)

7.2. Let

B =
(2π)70

5!7!9!11!13!17!
.

From (51) we obtain the following:

D
1/d
k <

[
2B

(
hk,2

2

)1/d]2/133

.

Using the Brauer-Siegel bound (16) for totally real number fields, and the obvious
bound ζk(1 + δ) ≤ ζ(1 + δ)d, we obtain

D
1/d
k <

[
B

Γ
(

1 + δ

2

)
ζ(1 + δ)

π(1+δ)/2
·
{

δ(1 + δ)
Rk

}1/d
]2/(132−δ)

. (52)

Now using the lower bound Rk ≥ 0.04 e0.46d due to R. Zimmert [Z] again, we get

D
1/d
k < φ(d, δ) :=

[
B

Γ
(

1 + δ

2

)
ζ(1 + δ)

π(1+δ)/2e0.46
· {25δ(1 + δ)}1/d

]2/(132−δ)

. (53)



716 G. Prasad and S.-K. Yeung

7.3 For a fixed δ ≥ 0.04, φ(d, δ) clearly decreases as d increases. By a direct
computation we see that φ(2, 4) < 2, and hence for all totally real number field k

of degree d ≥ 2,

D
1/d
k < φ(d, 4) ≤ φ(2, 4) < 2.

From this bound and Proposition 2 we conclude that d can only be 1, i.e., k = Q.
But then r = 1 and the complex dimension of the associated symmetric space X

is 27. Then the Euler-Poincaré characteristic of any quotient of X by a cocompact
torsion-free discrete subgroup of G is negative (1.3), and hence it cannot be a
fake compact Hermitian symmetric space. Another way to eliminate this case is
to observe that an absolutely simple Q-group of type E7 is isotropic if it is isotropic
over R (this result follows, for example, from Proposition 7.1 of [PR]).

8. G of type 2An with n odd.

8.1. We shall assume from now on that G is an absolutely simple simply
connected k-group of type 2An with n > 1 odd. We retain the notation introduced
in Sections 1, 2. In particular, ` is the totally complex quadratic extension of k

over which G is an inner form, d = [k : Q], s = n + 1; Γ, Λ, for v ∈ Vf , the
parahoric subgroups Pv of G(kv) are as in 2.1, and T is as in 2.10. We recall that
for every non-Archimedean v /∈ T , ΞΘv

is trivial. For all v ∈ T , ]ΞΘv
|(n+1) and

e(Pv) > e′(Pv) > n + 1. We also recall from 2.1 that µ(G /Γ) is a submultiple of
1/(n + 1)r, hence, (n + 1)rµ(G /Γ) ≤ 1.

The center C of G is the kernel of the norm map N`/k : R`/k(µn+1) → µn+1.
Therefore, we get the following exact sequence:

1 → µn+1(k)/N`/k(µn+1(`)) → H1(k, C) → (
`×/`×n+1

)
• → 1, (∗)

where (`×/`×n+1)• is the kernel of the homomorphism `×/`×n+1 → k×/k×n+1 in-
duced by the norm map N`/k : `× → k×. By Dirichlet’s unit theorem, Uk

∼= {±1}×
Zd−1 and U`

∼= µ(`) × Zd−1, and hence, Uk/Un+1
k

∼= {±1} × (Z/(n + 1)Z)d−1

and U`/Un+1
`

∼= µn+1(`) × (Z/(n + 1)Z)d−1. Since N`/k(U`) ⊃ N`/k(Uk) = U2
k ,

the image of the homomorphism U`/Un+1
` → Uk/Un+1

k induced by the norm map
N`/k contains U2

k/Un+1
k (∼= (2Z/(n + 1)Z)d−1), and hence the kernel (U`/Un+1

` )•
of this homomorphism is of order at most ]µn+1(`)·2d−1. The short exact sequence
(4) in the proof of Proposition 0.12 of [BP] gives us the following exact sequence:

1 → (
U`/Un+1

`

)
• →

(
`n+1/`×n+1

)
• → (P ∩I n+1)/Pn+1,
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where `n+1 is the subgroup of `× consisting of all x such that for every nor-
malized non-Archimedean valuation v of `, v(x) ∈ (n + 1)Z, (`n+1/`×n+1)• =
(`n+1/`×n+1) ∩ (`×/`×n+1)•, P is the group of all fractional principal ideals of
`, and I the group of all fractional ideals (we use multiplicative notation for the
group operation in both I and P). Since the order of the last group of the
above exact sequence is h`,n+1, see (5) in the proof of Proposition 0.12 of [BP],
we conclude that ](`n+1/`×n+1)• ≤ ]µn+1(`) · 2d−1h`,n+1.

Let c be the order of the kernel of the norm map N`/k : µn+1(`) → µn+1(k) =
{±1}. Then the order of the first term of (∗) is 2c/]µn+1(`), whereas the order of
the first term of the short exact sequence of Proposition 2.9 of [BP], for G′ = G

and S = V∞, is (n+1)r/c. Now from Lemma 5.4 of [BP] and the arguments given
in 5.3 and 5.5 of that paper we obtain the following upper bound (note that we
need to replace “n” in 5.3 and 5.5 of [BP] with “n + 1” since the group G in this
and the next section is of type 2An):

[Γ : Λ] ≤ h`,n+12d(n + 1)r+]T . (54)

For the group G under consideration here, dimG = n2 + 2n, the exponent
mj = j and s = (n−1)(n+2)/2, so the volume formula (3) gives us the following:

µ(G /Λ) = D
(n2+2n)/2
k

(
D`

D2
k

)(n−1)(n+2)/4( n∏

j=1

j!
(2π)j+1

)d ∏

v∈Vf

e(Pv). (55)

For v ∈ T , as e(Pv) > (n + 1), and moreover for all v ∈ Vf , e(Pv) > 1, using (54)
and (55) we find that

1 ≥ (n + 1)rµ(G /Γ)

> D
(n2+2n)/2
k

(
D`

D2
k

)(n−1)(n+2)/4( n∏

j=1

j!
(2π)j+1

)d 1
2dh`,n+1

. (56)

As D2
k|D`, from (56) we obtain the following bound for Dk:

D
1/d
k < f1(n, d, h`,n+1) :=

[{
2

n∏

j=1

(2π)j+1

j!

}d

· h`,n+1

]2/d(n2+2n)

. (57)

Since ζ`(1 + δ) ≤ ζ(1 + δ)2d, for δ > 0, we obtain the following bound from (57)
and (30)
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D
1/d
k < f2

(
n, d, R`/w`, δ

)
(58)

:=
[{

2
Γ(1 + δ)ζ(1 + δ)2

(2π)1+δ

n∏

j=1

(2π)j+1

j!

}
·
{

δ(1 + δ)
R`/w`

}1/d]2/(n2+2n−2δ−2)

.

Using the lower bound R` ≥ 0.02w` e0.1d due to Zimmert, we obtain the
following from (30)

1
h`,n+1

≥ 1
h`
≥ 0.02

δ(1 + δ)

(
(2π)1+δe0.1

Γ(1 + δ)

)d 1

D
(1+δ)/2
` ζ`(1 + δ)

. (59)

Since D` ≥ D2
k, and ζ`(1 + δ) ≤ ζ(1 + δ)2d, we get the following for all δ in the

interval [0.02, 6.5].

D
1/d
k < f3(n, d, δ) (60)

:=
[{

2
Γ(1 + δ)ζ(1 + δ)2

(2π)1+δe0.1

n∏

j=1

(2π)j+1

j!

}
· {50δ(1 + δ)}1/d

]2/(n2+2n−2δ−2)

.

Now the following three bounds for the relative discriminant D`/D2
k are ob-

tained from (56), (59) and (30).

D`

D2
k

< p1(n, d, Dk, h`,n+1) (61)

:=
[
h`,n+1 ·

{
2

n∏

j=1

(2π)j+1

j!

}d

D
−(n2+2n)/2
k

]4/(n−1)(n+2)

.

D`

D2
k

< p2

(
n, d, Dk, R`/w`, δ

)
(62)

:=
[

δ(1 + δ)

(R`/w`)D
(n2+2n−2δ−2)/2
k

{
2Γ(1+δ)ζ(1+δ)2

(2π)1+δ

n∏

j=1

(2π)j+1

j!

}d]4/(n2+n−2δ−4)

.

D`

D2
k

< p3(n, d, Dk, δ) (63)

:=
[

50δ(1 + δ)

D
(n2+2n−2δ−2)/2
k

·
{

2Γ(1 + δ)ζ(1 + δ)2

(2π)1+δe0.1

n∏

j=1

(2π)j+1

j!

}d]4/(n2+n−2δ−4)

.
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We also get the following bound for D` from (56).

D
1/(2d)
` < q1(n, d, Dk, h`,n+1) :=

[
h`,n+1

D
(n+2)/2
k

·
{

2
n∏

j=1

(2π)j+1

j!

}d]2/d(n−1)(n+2)

,

(64)
which in turn provides the following bound using (30) and (59)

D
1/(2d)
` < q2

(
n, d, Dk, R`/w`, δ) (65)

:=
[

δ(1 + δ)

(R`/w`)D
(n+2)/2
k

·
{

2Γ(1+δ)ζ(1+δ)2

(2π)1+δ
·

n∏

j=1

(2π)j+1

j!

}d]2/d(n2+n−2δ−4)

.

We now state the following simple lemma.

Lemma 2. Let δ ∈ [0.02, 6.5]. For fixed values of n and δ, f3(n, d, δ) de-
creases as d increases. Furthermore, for fixed values of d and δ, if n ≥ 7, then
f3(n + 1, d, δ) < max(1, f3(n, d, δ)).

8.2. Let us begin determination of the totally real number field k. Let
f3(n, d, δ) be as in (60). By a direct computation we obtain the following upper
bound for the value of f3(n, 2, 3) for small n.

n : 13 11
f3(n, 2, 3) < 2.1 2.4.

Hence for n ≥ 13 and d ≥ 2, f3(n, d, 3) ≤ f3(13, 2, 3) < 2.1, which in view of
Proposition 2 implies that k = Q.

8.3. Now we will determine the degrees d of possible k for n ≤ 11 using
(60). We get the following table by evaluating f3(n, d, δ), with n given in the first
column, d given in the second column, and δ given in the third column

n d δ f3(n, d, δ) <

11 3 2 2.4
9 3 1.9 2.9
7 3 1.6 3.63
5 4 1.3 5.12
3 7 1 10.

Taking into account the upper bound in the last column of the above table, Propo-
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sition 2 implies the following bound for d for each odd integer n between 3 and
11.

n : 11 9 7 5 3
d ≤ 2 2 2 3 6.

8.4. We will now narrow down the possibilities for d further. We begin with
larger values of n.

For n = 11, 9 and 7, we know that d ≤ 2.
For n = 11 and d = 2, D

1/2
k ≤ f3(11, 2, 2) ≤ 2.5, so Dk = 5. Then D`/D2

k ≤
bp3(11, 2, 5, 2)c = 1. Hence D` = 25, but there is no such `. This implies that if
n = 11, then k = Q.

For n = 9 and d = 2, D
1/2
k ≤ f3(9, 2, 2) < 3. Hence, Dk = 5 or 8. As

bp3(9, 2, 5, 2)c = 3 and bp3(9, 2, 8, 1.6)c = 1. So D` ≤ 75, but there is no ` of
degree 4 for which this bound holds, and we conclude that if n = 9, then again
k = Q.

8.5. We shall now consider the case n = 7 and d = 2. As D
1/2
k ≤

f3(7, 2, 1) < 3.8, Dk = 5, 8, 12 or 13. Computations give that bp3(7, 2, 5, 1.3)c = 11,
bp3(7, 2, 8, 1.3)c = 3, bp3(7, 2, 12, 1.3)c = 1 and bp3(7, 2, 13, 1)c = 1. Hence D` is
bounded from above by max(52 · 11, 82 · 3, 122, 132). From the list of number fields
given in [1], we conclude that the class number of all these totally complex quartic
` is 1. Hence the pairs (k, `) belong to the list of [PY1, 8.2] (see also [PY1,
7.10]). Also, the bound for the relative discriminant D`/D2

k can be improved to
bp1(7, 2, 5, 1)c = 8, and bp1(7, 2, 8, 1)c = 2 in the first two cases. Now checking
against the list of [PY1, 8.2], we conclude that the following are the only possible
pairs (k, `).

C1, C11.

We eliminate these pairs by computing R and then using Proposition 1. The
values of ζk and ζ`|k required for the computation of R are given below.

(k, `) ζk(−1) ζ`|k(−2) ζk(−3) ζ`|k(−4) ζk(−5) ζ`|k(−6) ζk(−7)
C1 1/30 4/5 1/60 1172/25 67/630 84676/5 361/120
C11 1/6 1/9 23/60 5/3 1681/126 427/3 257543/120.

8.6. Consider now n = 5. We know that d ≤ 3. Assume, if possible, that
d = 3. As D

1/3
k < f3(5, 3, 1) < 5.3, we see from the table of totally real cubics given

in [C] that Dk is either 49 or 81. On the other hand, D`/D2
k ≤ bp3(5, 3, 49, 1)c = 16
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and D`/D2
k ≤ bp3(5, 3, 81, 1)c = 4 for the two cases respectively. So D` ≤ max(492·

16, 812 · 4) = 492 · 16. The class number of all totally complex sextic fields ` with
D` ≤ 492 · 16 is 1. Now the bound for the relative discriminant D`/D2

k can be
improved to bp1(5, 3, 49, 1)c = 6, and bp1(5, 3, 81, 1)c = 1 in the two cases. Among
the pairs (k, `) listed in [PY1, 8.2], none satisfy these conditions. Hence, d < 3.

Assume now d = 2. As D
1/2
k < f3(5, 2, 1) < 5.54, Dk ≤ 30. From Fried-

man [F] we know that R`/w` ≥ 1/8 except when D` = 117, 125 and 144.
Therefore, apart from the three exceptional cases, we conclude that D`/D2

k ≤
bp2(5, 2, 5, 1/8, 1)c = 82. Since the discriminant in each of the three exceptional
cases is smaller than 82 · 52, we conclude that the bound D`/D2

k ≤ 82 always
holds. So D` ≤ 302 · 82 = 73800. From the list in [1] of totally complex
quartics ` with D` ≤ 73800, we see that h` ≤ 15 and hence h`,6 ≤ 12. Then
D

1/2
k < f1(5, 2, 12) < 5.1, and so Dk ≤ 24. We know that either Dk = 5 or Dk ≥ 8.

In the latter case, as bp1(5, 2, 8, 12)c = 17. Thus D` ≤ max(52 ·82, 242 ·17) = 9792.
By checking the list of totally complex quartic number fields in [1] again, we con-
clude that h` ≤ 5 and hence h`,6 ≤ 4. Then D

1/2
k < f1(5, 2, 4) < 4.87, so Dk ≤ 21.

We now compute bp1(5, 2, Dk, 4)c for 5 ≤ Dk ≤ 21 to get the following bound for
D`:

Dk : 5 8 12 13 17 21
bp1(5, 2, Dk, 4)c : 48 15 5 4 2 1

D` ≤ 1200 960 720 676 578 441.

The list of number fields satisfying the above constraint was provided by Malle
using the tables in [1]. It turns out that all the number fields involved are listed
in the tables in [PY1, 8.2]. Moreover, all have class number 1. It follows that D`

is bounded by bp1(5, 2, Dk, 1)c.

Dk : 5 8 12 13 17 21
bp1(5, 2, Dk, 1)c : 40 12 4 3 1 1

D` ≤ 1000 768 576 507 289 441.

From the table in [PY1, 8.2], we conclude that the following are the only possi-
bilities for the pair (k, `).

C1, C2, C3, C8, C9, C11, C17.

We eliminate each of the above pairs by computing R, using the following values
of ζk and ζ`|k, and then use Proposition 1.



722 G. Prasad and S.-K. Yeung

(k, `) ζk(−1) ζ`|k(−2) ζk(−3) ζ`|k(−4) ζk(−5)
C1 1/30 4/5 1/60 1172/25 67/630
C2 1/30 32/9 1/60 1984/3 67/630
C3 1/30 15 1/60 8805 67/630
C8 1/12 3/2 11/120 285/2 361/252
C9 1/12 92/9 11/120 15940/3 361/252
C11 1/6 1/9 23/60 5/3 1681/126
C17 1/3 32/63 77/30 64/3 17971/63.

8.7. The case n = 3 requires more detailed considerations. We will only
consider totally real k with d > 1 in this subsection.

• We know from 8.3 that d ≤ 6. Consider first d = 6. Then Dk ≥ 300125 (see
Section 3). Hence, D

1/12
` ≤ q2(3, 6, 300125, 1/8, 1) < 12. According to Table IV

of [Mart], Mc(32) > 12, so considering the Hilbert class field of ` which is an
extension of degree h` of `, we infer that h` ≤ b31/12c = 2. Hence h`,n+1 ≤ 2.
Now applying bound (64) we obtain D

1/6
k ≤ D

1/12
` ≤ q1(3, 6, 300125, 2) < 7,

which contradicts Proposition 2.
• Consider now d = 5. In this case Dk ≥ 14641. Hence, D

1/10
` ≤ q2(3, 5, 14641,

1/8, 1) < 14. According to Table IV of [Mart], Mc(52) > 14.1. Using again the
Hilbert class field of ` we conclude that h` ≤ b51/10c = 5, and hence h`,4 ≤ 4.
Then D

1/10
` ≤ q1(3, 5, 14641, 4) < 7.74. So D` < 7.7410 < 7.72 × 108. On

the other hand, Schehrazad Selmane [Sel] has shown that the totally complex
number field of degree 10, containing a totally real quintic field, with smallest
absolute discriminant is the cyclotomic field Q(ζ11) generated by a primitive
11-th root ζ11 of unity. This field has absolute discriminant 119. Since 119 >

7.72× 108, we conclude that d 6= 5.
• Consider now d = 4. In this case Dk ≥ 725. Hence D

1/8
` ≤ q2(3, 4, 725, 1/8,

0.86) < 17.43. According to Table IV of [Mart], Mc(140) > 17.49, so consid-
ering the Hilbert class field of ` we find that h` ≤ b139/8c = 17. So h`,4 ≤ 16
and then D

1/8
` ≤ q1(3, 4, 725, 16) < 9.7. According to Table IV of [Mart],

Mc(20) > 9.8 which by considering the Hilbert class field of ` implies that
h` ≤ b19/8c = 2 and h`,4 ≤ 2. It follows that D

1/8
` ≤ q1(3, 4, 725, 2) < 8.7.

According to Table IV of [Mart], Mc(16) > 8.7. Hence, again by consid-
ering the Hilbert class field of ` implies that h` ≤ b15/8c = 1. But then
D

1/8
` ≤ q1(3, 4, 725, 1) < 8.386. So D` ≤ b8.3868c < 2.45 × 107. Also,

D
1/4
k < f1(3, 4, 1) < 7.146. Hence, Dk ≤ 2607. We also know that D`/D2

k ≤
bp1(3, 4, 725, 1)c = 46. Any such pair (k, `) lies in the list of pairs tabulated in
[PY1, 8.2]. We find that the possible pairs are C34–C37 in the notation used in
[PY1, 8.2]. Again, we eliminate each of the pairs by computing R using the
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following zeta values and applying Proposition 1.

(k, `) ζk(−1) ζ`|k(−2) ζk(−3)
C34 4/15 128/45 2522/15
C35 2/3 12 3793/3
C36 5/6 411 87439/60
C37 1 46/3 22011/10.

• Consider now d = 3. The three smallest absolute discriminants of totally real
cubic fields are 49, 81 and 148. Let us consider first the totally real cubic
fields k with Dk ≥ 148. Note that D

1/6
` < q2(3, 3, 148, 1/8, 0.7) < 18.1, since

R`/w` ≥ 1/8 except for the six sextics whose discriminants are listed in [PY1,
7.3]. The root discriminant of these six sextics clearly satisfy the above bound.
We see from Table IV in [Mart] that Mc(180) > 18.1. Hence, considering the
Hilbert class field of `, we conclude that h` ≤ b179/6c = 29 and so h`,4 ≤ 16.
Then D

1/6
` < q1(3, 3, 148, 16) < 10. Again from Table IV of [Mart] we find

that Mc(22) > 10.25, and as before considering the Hilbert class field of `, we
conclude that h` ≤ b21/6c = 3. So h`,4 ≤ 2. Then D

1/6
` < q1(3, 3, 148, 2) < 8.7.

Furthermore, D
1/3
k < f1(3, 3, 2) < 7.37. Hence D` ≤ b8.76c = 433626 and

148 ≤ Dk ≤ b7.373c = 400. There are only three pair of number fields (k, `)
satisfying the above bounds and h` = 1 for each of the ` occurring in these
three pairs from which we conclude that D

1/6
` < q1(3, 3, 148, 1) < 8.31. Hence,

D` < 329311. But there are no pairs (k, `) of totally real cubic k, and totally
complex quadratic extension ` of k with 148 ≤ Dk ≤ 400 and D` < 329311.

We will consider now the unique totally real cubic field k1 with Dk1 = 81. Note
that k1 = Q[x]/(x3− 3x− 1), the regulator Rk1 ≥ 0.849 according to [C]. Now by
listing m such that the value φ(m) of the Euler function φ is a divisor of 6, we see
that unless ` is Q(ζ18), w` = 2, 4 or 6 (note that Q(ζ14) does not contain k1). As
` is a CM field which is a quadratic extension of k1, R` = 22Rk1/Q, where Q = 1
or 2 (cf. [W]), hence unless ` is Q(ζ18), R`/w` ≥ 2 × 0.849/6 = 0.283. So either
` = Q(ζ18) or D

1/6
` < q2(3, 3, 81, 0.283, 0.66) < 19.4. From Table IV of [Mart]

we find that Mc(340) > 19.4. Hence, by considering the Hilbert class field of `,
we successively get the following improved bounds for h`,4: h` ≤ b339/6c = 56, so
h`,4 ≤ 32. Therefore, D

1/6
` < q1(3, 3, 81, 32) < 11.6. Again in Table IV of [Mart]

we see that Mc(30) > 11.6. So h` ≤ b29/6c = 4, and D
1/6
` < q1(3, 3, 81, 4) < 10.1.

But according to Table IV of [Mart], Mc(22) > 10.2. Hence, h` ≤ b21/6c = 3, and
h`,4 ≤ 2. It follows that D`/D2

k1
≤ bp1(3, 3, 81, 2)c = 120, from which we conclude

that D` ≤ 120 ·812 = 787320. Malle provided us a complete list of totally complex
quadratic extensions ` of the above k1 with D` ≤ 787320. This list consists of
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three fields whose absolute discriminant, defining monic polynomial and the value
of ζ`|k1(−2) are given below.

D` ` ζ`|k1(−2)
19683 x6 − x3 + 1 −104/27
419904 x6 + 6x4 + 9x2 + 1 −7826
465831 x6 − 3x5 + 9x4 − 13x3 + 15x2 − 9x + 3 −10944.

The first of these fields is Q(ζ18). We shall denote the three pairs (k1, `) with `

from this list, and k1 = Q[x]/(x3 − 3x− 1), E1, E2 and E3 respectively.
Let us now consider the unique totally real cubic field k2 with Dk2 = 49.

Note that k2 = Q[x]/(x3 − x2 − 2x + 1), and from [C] we find that its regulator
is larger than 0.525. Hence, as for k1, we see that except for the cyclotomic
field Q(ζ14) which has class number 1 and discriminant 75 = 16807, w` = 2, 4
or 6, and for the noncyclotomic `, R`/w` ≤ 2 × 0.525/6 = 0.175. Therefore,
D`/D2

k2
≤ bp2(3, 3, 49, 0.175, 0.64)c = 62697, and hence D` ≤ 62697 · 492. Malle

provided the authors a list of totally complex quadratic extensions ` of k2 for
which this bound holds. For every ` in this list, h` ≤ 30, and hence, h`,4 ≤ 16.
Therefore, D

1/6
` < q1(3, 3, 49, 16) < 12.02. From Table IV in [Mart] we see that

Mc(34) ≥ 12.4. We conclude, as before, by considering the Hilbert class field of
`, that h` ≤ b33/6c = 5, so h`,4 ≤ 4. Then D

1/6
` < q1(3, 3, 49, 4) < 10.96. Hence

D` < 1.74 × 106. From the list provided by Malle, we see that there are eleven
candidates for `, each with class number h` ≤ 2. Therefore, D` < bp1(3, 3, 49, 2)c×
492 = 1306144. For all totally complex quadratic extension ` of k2 satisfying this
bound, h` = 1 and hence we conclude that D` < bp1(3, 3, 49, 1)c × 492 = 991613.
From the list provided by Malle, we see that the possible ` are:

D` ` ζ`|k2(−2)
16807 x6 − x5 + x4 − x3 + x2 − x + 1 −64/7
64827 x6 − x5 + 3x4 + 5x2 − 2x + 1 −2408/9
153664 x6 + 5x4 + 6x2 + 1 −2306
400967 x6 − 2x5 + 5x4 − 7x3 + 10x2 − 8x + 8 −25536
573839 x6 − x5 + 4x4 − 3x3 + 8x2 − 4x + 8 −62208
602651 x6 − 3x5 + 10x4 − 15x3 + 21x2 − 14x + 7 −70392
909979 x6 − 2x5 + 7x4 − 12x3 + 21x2 − 15x + 13 −196216.

We shall denote the seven pairs (k2, `) with k2 = Q[x]/(x3 − x2 − 2x + 1), and
` one of the fields from the above list, by Ej , 4 ≤ j ≤ 10. Note that three pairs
belonging to the above two lists coincide with pairs of number fields in [PY1,
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Section 8]: E4 = C31, E5 = C32 and E1 = C33.
Using the value of ζ`|k(−2) given in the last column of the above two tables

and the values of ζk(−1) and ζk(−3) given below for k = k1 and k2, we compute
R = 2−9ζk(−1)ζ`|k(−2)ζk(−3) for each of the ten pairs Ej , j ≤ 10. We find that
the numerator of none of them is a power of 2. Proposition 1 then implies that d

cannot be 3 either.

ζk1(−1) = −1
9
, ζk1(−3) =

199
90

; ζk2(−1) = − 1
21

, ζk2(−3) =
79
210

.

The following is a summary of what we have proved above.

Proposition 3.

( i ) If n ≥ 5, then d = 1, i.e., k = Q.
( ii ) If n = 3, then d ≤ 2.

9. G of type 2An with n > 1 odd and k = Q.

9.1. We shall assume in the sequel that k = Q which according to Propo-
sition 3 is the case if n ≥ 5. Then r = 1 and ` = Q(

√−a) for some square-free
positive integer a. By setting d = 1 and Dk = 1 in bounds (61) and (62) we obtain

D` ≤ κ1(n, h`,n+1) := bp1(n, 1, 1, h`,n+1)c,
D` ≤ κ2

(
n,R`/w`, δ

)
:=

⌊
p2

(
n, 1, 1, R`/w`, δ

)⌋
.

9.2. We easily see that for fixed δ (≥ 0.02) and n, κ2 decreases as R`/w`

increases, and for fixed δ ≥ (0.02) and R`/w`, κ2 decreases as n increases
provided n ≥ 7. Since the regulator of a complex quadratic field is 1, and
w` = 2 for any complex quadratic field ` different from Q(

√−3) and Q(
√−1),

R`/w` = 1/2 for all complex quadratic ` with D` > 4. Now for n ≥ 17, as
κ2(n, 1/8, 1.8) ≤ κ2(17, 1/8, 1.8) = 2, and there is no complex quadratic num-
ber field with discriminant ≤ 2, we conclude that n ≤ 15. For n = 15, un-
less ` = Q(

√−3), we know that D` ≤ κ2(15, 1/4, 1.6) = 3. Hence, if n = 15,
` = Q(

√−3). For odd integers n between 3 and 13, unless ` = Q(
√−3) or

Q(
√−1), with D` = 3 and 4 respectively, we can use the bound D` ≤ κ2(n, 1/2, δ),

with δ as indicated below, to obtain:

n : 13 11 9 7 5 3
δ : 1.3 1 0.9 0.7 0.5 0.26

D` ≤ 4 6 10 21 68 2874.
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9.3. We will now improve the bound for the discriminant D` in case n =
3. From the Table t20.001–t20.002 of [1] we see that the class number of every
complex quadratic number field ` with D` ≤ 2874 is ≤ 76, and hence, h`,4 ≤ 64. So
we obtain the bound D` ≤ κ1(3, 64) = 1926. We can improve this bound further
as follows. From Table t20.001 we see that h` ≤ 52, and hence h`,4 ≤ 32, for all
complex quadratic ` with D` ≤ 1926. Now we observe that, for n = 3 and k = Q,
combining equations (3), (4), and using the bounds (54), (n + 1)rµ(G /Γ) ≤ 1,
e′(Pv) ≥ 1 for all v ∈ Vf , and e′(Pv) > n + 1 for all v ∈ T (2.10), we get the
following upper bound for D`:

D` <

⌊[
h`,4 ·

{
2

3∏

j=1

(2π)j+1

j!

}
· 1
ζQ(2)ζ`|Q(3)ζQ(4)

]2/5⌋
(66)

≤
⌊[

h`,4 ·
{

2
3∏

j=1

(2π)j+1

j!

}
· 1
ζQ(2)1/2ζQ(4)

]2/5⌋
=: κ̃1(h`,4) (67)

where we have used the fact that ζQ(2)1/2ζ`|Q(3) > 1 (see Lemma 1 in [PY2]).
Hence we conclude that D` ≤ κ̃1(32) ≤ 1363.

9.4. We can improve the bounds for D` for 15 > n ≥ 5 as follows. From
the table of complex quadratics in [C], we know that h` ≤ 5 for D` ≤ 68. Hence
h`,n+1 ≤ 5 for n ≥ 5.

We now compute the values of κ1(n, j) for 5 ≤ n < 15 and 1 ≤ j ≤ 5.

κ1(n, 1) κ1(n, 2) κ1(n, 3) κ1(n, 4) κ1(n, 5)
n = 5 47 52 55 57 59
n = 7 18 19 20 20 20
n = 9 10 10 10 10 10
n = 11 6 6 6 6 6
n = 13 4 4 4 4 4.

Comparing the above table with the table of complex quadratic number fields
(cf. [C]) in terms of discriminants and class number, we obtain the following pos-
sibilities for D` and a (recall that ` = Q(

√−a)):

n D` a

15 3 3
13 3, 4 3, 1
11 3, 4 3, 1
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9 3, 4, 7, 8 3, 1, 7, 2
7 3, 4, 7, 8, 11, 15 3, 1, 7, 2, 11, 15
5 3, 4, 7, 8, 11, 15, 19, 20, 23 3, 1, 7, 2, 11, 15, 19, 5, 23

24, 31, 35, 39, 40, 43 6, 31, 35, 39, 10, 43
47, 51, 52, 55, 56 47, 51, 13, 55, 14.

In the above we have used the fact that for ` = Q(
√−a), where a is a square-free

positive integer, D` = a if a ≡ 3 (mod 4), and D` = 4a otherwise.

9.5. To prove Theorem 2 (stated in the Introduction) we compute R in
each of the cases occurring in the second table of 9.4 using the following values of
ζ := ζQ and ζ`|Q.

j : −1 −3 −5 −7 −9 −11 −13 −15
ζ(j) : −1/12 1/120 −1/252 1/240 −1/132 691/32760 −1/12 3617/8160.

Listed below are the values of ζ`|k, for (k, `) = (Q,Q(
√−3)),

ζ`|Q(−2) ζ`|Q(−4) ζ`|Q(−6) ζ`|Q(−8) ζ`|Q(−10) ζ`|Q(−12) ζ`|Q(−14)
−2/9 2/3 −14/3 1618/27 −3694/3 111202/3 13842922/9,

and the values of ζQ(
√−a)|Q required to compute R for 5 ≤ n ≤ 13, a 6= 3, are

given below:

a ζ`|Q(−2) ζ`|Q(−4) ζ`|Q(−6) ζ`|Q(−8) ζ`|Q(−10) ζ`|Q(−12)
1 −1/2 5/2 −61/2 −1385/2 −50521/2 2702765/2
7 −16/7 32 −1168 565184/7
2 −3 57 −2763 250737
11 −6 2550/11 −21726
15 −16 992 −165616.

a : 19 5 23 6 31 35 39
ζ`|Q(−2) : −22 −30 −48 −46 −96 −108 −176
ζ`|Q(−4) : 2690 3522 6816 7970 25920 42372 73120

a : 10 43 47 51 13 55 14
ζ`|Q(−2) : −158 −166 −288 −268 −302 −400 −396
ζ`|Q(−4) : 79042 106082 169920 229700 257314 341984 362340.
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Explicit computation of R in each of the above cases shows that for every
odd integer n > 7, the numerator of R has a prime divisor which does not divide
n + 1. In view of Propositions 1 and 3, this proves Theorem 2 for n > 7.

For n = 7, 5, we list below the value of R for those a in the second table in
9.4 for which the prime divisors of the numerator of R divide n + 1.

n a ζ`|Q(−2) ζ`|Q(−4) ζ`|Q(−6) R

7 3 −2/9 2/3 −14/3 1/16124313600 = 1/(215 · 39 · 52)
5 3 −2/9 2/3 1/78382080 = 1/(210 · 37 · 5 · 7)
5 1 −1/2 5/2 1/9289728 = 1/(214 · 34 · 7)
5 7 −16/7 32 1/158760 = 1/(23 · 34 · 5 · 72)
5 31 −96 25920 3/14.

We need to consider only the a appearing in the above table.

9.6. In our treatment of groups of type 2An, with n odd, we have not so far
made use of the assumption that Γ is cocompact, or, equivalently, G is anisotropic
over k, see 1.5. We will now use the fact that G is anisotropic over k = Q to
exclude n = 7, 5. This will complete our proof of Theorem 2.

From the well-known description of absolutely simple simply connected Q-
groups of type 2An we know that there is a division algebra D with center ` and
of degree d :=

√
[D : `], d|(n + 1), D given with an involution σ of the second

kind, and a nondegenerate Hermitian form h on D (n+1)/d defined in terms of the
involution σ, so that G is the special unitary group SU (h) of h.

If D = `, then h is a Hermitian form on `n+1 such that the quadratic form q

on the 2(n + 1)-dimensional Q-vector space V = `n+1 defined by

q(v) = h(v, v) for v ∈ V,

is isotropic over R (since G is isotropic over R, i.e., G(R) is noncompact). Then
as n ≥ 3, q is isotropic over Q by Meyer’s theorem and hence G is isotropic over Q.
But this is not the case. Therefore, D 6= `, i.e., D is a noncommutative division
algebra of degree d > 1.

Using the structure of the Brauer group of a global field, we see that there
is at least one prime p which splits over ` such that Qp ⊗Q D = (Qp ⊗Q `)⊗` D
is isomorphic to Mm(Dp) × Mm(Do

p), where Dp is a noncommutative central
division algebra over Qp of degree dp > 1, Do

p is its opposite, and m = d/dp.
The involution σ interchanges the two factors of Mm(Dp)×Mm(Do

p), and hence,
G(Qp) ∼= SL(n+1)/dp

(Dp).
In the rest of this section n is either 7 or 5, a and R are as in the last table of
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9.5. The non-Archimedean place of Q corresponding to a prime p will be denoted
by p. Now let p be a prime which splits in ` = Q(

√−a) and Dp is a noncommu-
tative division algebra with center Qp. Then (see the computation in 2.3(ii) of
[PY2]) e′(Pp) is an integral multiple of f7(p) := (p− 1)(p3 − 1)(p5 − 1)(p7 − 1) if
n = 7, and it is an integral multiple of either f5(p) := (p − 1)(p3 − 1)(p5 − 1) or
g5(p) := (p− 1)(p2 − 1)(p4 − 1)(p5 − 1) if n = 5.

Now let T be as in 2.10. Recall that for every prime q, e′(Pq) is an integer,
and for q ∈ T , e′(Pq) > n+1. Also recall that µ(G /Γ) is a submultiple of 1/(n+1),
and

µ(G /Γ) =
R

∏
e′(Pq)

[Γ : Λ]
=

Re′(Pp)
∏

q 6=p e′(Pq)
[Γ : Λ]

. (68)

As every prime divisor of [Γ : Λ] divides n+1, we conclude that every prime divisor
of the numerator of Re′(Pp) divides n+1. Also since [Γ : Λ] ≤ 2h`,n+1(n+1)1+]T

(cf. (54)), we see that

Re′(Pp)
2h`,n+1(n + 1)2

≤ µ(G /Γ) ≤ 1
(n + 1)

, (69)

and hence,

Re′(Pp) ≤ 2h`,n+1(n + 1). (70)

Now we note that the class number of the complex quadratic field ` = Q(
√−a), for

a = 3, 1, 7 is 1, and for a = 31 the class number is 3. The first two primes {p1, p2}
which split in Q(

√−a) are {7, 13}, {5, 13}, {2, 11} and {2, 5} for a = 3, 1, 7 and
31 respectively. Let R be as in the last column of the last table of 9.5. By direct
computations we see that if n = 7 and a = 3, Re′(Pp) ≥ Rf7(7) > 16, and if n = 5
and a = 31, both Rf5(2) and Rg5(2) are larger than 36. On the other hand, if
n = 5 and a = 3, 1 or 7, both Rf5(p2) and Rg5(p2) are larger than 12, and at
least one prime divisor of the numerator of Rf5(p1) and Rg5(p1) is different from
2 and 3. We conclude from these observations that n cannot be 5 or 7. Thus we
have proved Theorem 2.

Corrections in [PY2]: (i) In line 11 on page 381 and in the last two lines
on page 386, “χ(Γ)” and “χ(Λ)” should be replaced with “|χ(Γ)|” and “|χ(Λ)|”
respectively. (ii) In the statement of Theorem 2 on page 402, “χ(Xu)/n” should
be replaced with “χ(Xu)”.

We note that a revised version of [PY1] which incorporates corrections and
additions given in the “Addendum” has recently been posted on the arXiv.
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