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Abstract. We study the notion of a strongly normal sequence in the
dual E∗ of a Banach space E. In particular, we prove that the following three
conditions are equivalent:
(1) E∗ has a strongly normal sequence,
(2) (E∗, σ(E∗, E)) has a Schauder basic sequence,
(3) E has an infinite-dimensional separable quotient.

Introduction.

We put S(X) = {x ∈ X : ‖x‖ = 1} and B(X) = {x ∈ X : ‖x‖ ≤ 1} if X is a
normed space. Let E be a Banach space. A sequence (yn) ⊂ S(E∗) is normal in E∗

if limn yn(x) = 0 for every x ∈ E; clearly, the normal sequences coincide with the
normalized ω∗-null sequences. The excellent Josefson-Nissenzweig theorem states
that the dual of any infinite-dimensional Banach space contains a normal sequence
([5], [12]). It is easy to see that a sequence (yn) ⊂ S(E∗) is normal if and only if
the subspace {x ∈ E : limn yn(x) = 0} is dense in E. We will say that a sequence
(yn) ⊂ S(E∗) is strongly normal if the subspace {x ∈ E :

∑∞
n=1 |yn(x)| < ∞} is

dense in E ([18]). Clearly, every strongly normal sequence in E∗ is normal.
One of the most known open problems for Banach spaces is the separable

quotient problem: Does every infinite-dimensional Banach space has an infinite-
dimensional separable quotient? i.e. Does every infinite-dimensional Banach
space E has a closed subspace M such that the quotient space E/M is infinite-
dimensional and separable? ([1], [8], [10], [11], [15]–[22])

Recall that a sequence (xn) in a locally convex space F is: (1) a Schauder
basis of F if for each element x of F there is a unique sequence (αn) of scalars
such that x =

∑∞
n=1 αnxn and the coefficient functionals x∗n, n ∈ N , defined by

x∗n(x) = αn, are continuous on F ; (2) a Schauder basic sequence if it is a Schauder
basis of its closed linear span X in F .
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We shall prove that a Banach space E has an infinite-dimensional separable
quotient iff E∗ contains a strongly normal sequence iff E∗

σ = (E∗, σ(E∗, E)) has
a Schauder basic sequence (Theorem 3). Before, developing some ideas of [4], we
shall show that every strongly normal sequence in the dual E∗ of a Banach space
E contains a Schauder basic subsequence in E∗

σ (Theorem 1).
We state the following.

Problem. Does every normal sequence in the dual E∗ of a Banach space
E contains a strongly normal subsequence?

If this problem has a positive answer for a given infinite-dimensional Banach
space E, then by the Josefson-Nissenzweig theorem and Theorem 3, E has an
infinite-dimensional separable quotient.

We show that for every WCG (i.e. weakly compactly generated) Banach space
E our problem has a positive answer (Proposition 4). Next we give an example
of a normal sequence in the dual E∗ of some known non-WCG Banach space
E, which is not strongly normal but every subsequence of it contains a strongly
normal subsequence (Example).

Finally, we show that a Banach space E has no infinite-dimensional separable
quotient iff every continuous linear map from a Banach space to E with dense
range is a surjection iff every sequence of continuous linear maps from E to some
non-zero (or to every) Fréchet space F , which is point-wise convergent on a dense
subspace of E is point-wise convergent on E to some continuous linear map from
E to F (Theorem 6).

Results.

Johnson and Rosenthal proved that any normal sequence (yn) in the dual E∗

of a separable Banach space E has a Schauder basic subsequence (yk(n)) in E∗
σ ([4,

Theorem III.1]). Developing some ideas of their proof we shall show the following.

Theorem 1. Let E be a Banach space. Any strongly normal sequence (yn)
in E∗ contains a Schauder basic subsequence (yk(n)) in E∗

σ.

Proof. Let ϕ : E → E∗∗ be the canonical embedding map.
(A1) First we shall show that for every finite-dimensional subspace Y of E∗

and every ε ∈ (0, 1/2) there exists a finite subset H of S(E) such that for every
f ∈ S(Y ∗) there is an x ∈ H with ‖f − ϕ(x) | Y ‖ < 2ε.

Let ψ : (E/⊥Y ) → (E/⊥Y )∗∗ be the canonical embedding map; clearly ψ is
an isometric isomorphism. Since (⊥Y )⊥ = Y , the map
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α : Y → (E/⊥Y )∗, α(y)(x + ⊥Y ) = y(x), for y ∈ Y, x ∈ E,

is an isometric isomorphism ([14, 4.9(b)]). Thus the adjoint map

α∗ : (E/⊥Y )∗∗ → Y ∗, α∗(ψ(x + ⊥Y )) = ϕ(x) | Y, for x ∈ E,

is also an isometric isomorphism ([2, 8.6.18(a)]).
Hence for every f ∈ S(Y ∗) there is an x ∈ S(E) with ‖f − ϕ(x) | Y ‖ < ε.

Indeed, for every f ∈ S(Y ∗) there exist v ∈ E and z ∈ ⊥Y such that ϕ(v) | Y = f ,
‖v + ⊥Y ‖ = 1 and 1 ≤ ‖v + z‖ < 1 + ε. Thus for u = v + z and x = u/‖u‖ we
have x ∈ S(E) and ‖f − ϕ(x) | Y ‖ = 1− ‖u‖−1 < ε.

The set S(Y ∗) is compact, so there exists a finite subset {f1, . . . , fn} of S(Y ∗)
with S(Y ∗) ⊂ ⋃n

m=1 K(fm, ε). Let x1, . . . , xn ∈ S(E) with ‖fm − ϕ(xm) | Y ‖ < ε

for 1 ≤ m ≤ n. Put H = {x1, . . . , xn}. Then for every f ∈ S(Y ∗) there is an
x ∈ H with ‖f − ϕ(xm) | Y ‖ < 2ε.

(A2) Since limn yn(x) = 0 for every x ∈ E, using (A1) we can choose induc-
tively a strictly increasing sequence (k(n)) ⊂ N and an increasing sequence (Hn)
of finite subsets of S(E) such that for every n ∈ N we have

( i ) for every f ∈ S(Y ∗
n ) there is an x ∈ Hn with ‖f − ϕ(x) | Yn‖ < 2−n−1,

where Yn is the linear span of the set {yk(i) : 1 ≤ i ≤ n};
( ii ) |yk(n+1)(x)| < 2−n−2 for every x ∈ Hn.

(A3) For every n ∈ N and for all α1, . . . , αn+1 ∈ K we have

∥∥∥∥
n∑

i=1

αiyk(i)

∥∥∥∥ ≤ (1 + 21−n)
∥∥∥∥

n+1∑

i=1

αiyk(i)

∥∥∥∥.

Indeed, let n ∈ N and α1, . . . , αn+1 ∈ K. Put y =
∑n

i=1 αiyk(i) and z =
αn+1yk(n+1). Then there is f ∈ S(Y ∗) with f(y) = ‖y‖ ([14, 3.3]). By (A2) there is
an x ∈ Hn with ‖f−ϕ(x) | Yn‖ < 2−n−1 and |yk(n+1)(x)| < 2−n−2. If ‖z‖ > 2‖y‖,
then ‖y + z‖ > ‖y‖. If ‖z‖ ≤ 2‖y‖, then ‖y + z‖ ≥ |(y + z)(x)| ≥ |y(x)| − |z(x)| ≥
|f(y)| − |f(y) − y(x)| − |z(x)| = ‖y‖ − |(f − ϕ(x) | Yn)(y)| − ‖z‖|yk(n+1)(x)| ≥
(1− 2−n)‖y‖ ≥ (1 + 21−n)−1‖y‖.

Since
∏∞

n=1(1+21−n) < ∞, using [9, 4.1.24], we infer that (yk(n)) is a Schauder
basic sequence in E∗ such that ‖Pn‖ ≤

∏∞
k=n(1+21−k) < 1+24−n, n ∈ N , where

Pn : Y → Y ,
∑∞

i=1 αiyk(i) →
∑n

i=1 αiyk(i) and Y is the closed linear span of
(yk(n)).

(A4) The operator T : E → Y ∗, (Tx)(y) = y(x), x ∈ E, y ∈ Y , is well defined,
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linear and continuous. Let (fn) ⊂ Y ∗ be the sequence of coefficient functionals
associated with the Schauder basis (yk(n)) in Y . Clearly, (fn) is a Schauder basis of
its closed linear span F in Y ∗ ([9, 4.4.1]). Put G = {x ∈ E :

∑∞
n=1 |yn(x)| < ∞}.

For x ∈ E we have Tx =
∑∞

n=1 yk(n)(x)fn. Indeed, let x ∈ G. For n ≥
2 we get ‖fn‖ = ‖fn‖‖yk(n)‖ = ‖Pn − Pn−1‖ ≤ 2 + 26−n ≤ 18, so the series∑∞

n=1 yk(n)(x)fn is convergent in F . For y ∈ Y we have (Tx)(y) = y(x) =
(
∑∞

n=1 fn(y)yk(n))(x) =
∑∞

n=1 fn(y)yk(n)(x) = (
∑∞

n=1 yk(n)(x)fn)(y), so Tx =∑∞
n=1 yk(n)(x)fn ∈ F . Hence T (E) = T (G) ⊂ T (G) ⊂ F . Let x ∈ E. Then

Tx =
∑∞

j=1 αjfj for some scalars α1, α2, . . . . Hence αn = (
∑∞

j=1 αjfj)(yk(n)) =
(Tx)(yk(n)) = yk(n)(x), n ∈ N , so Tx =

∑∞
n=1 yk(n)(x)fn.

(A5) For every g ∈ F and every ε > 0 there is x ∈ E with ‖x‖ = ‖g‖ such
that ‖g − Tx‖ < ε. Indeed, for every g ∈ S(F ) there is a sequence (gn) ⊂ S(F )
with lim gn = g such that gn ∈ Fn for n ∈ N , where Fn is the linear span of
the set {f1, . . . , fn}. Thus it is enough to show that for every n ∈ N and every
g ∈ S(Fn) there is x ∈ S(E) with ‖g − Tx‖ ≤ 27−n. Let n ∈ N , g ∈ S(Fn) and
h = ‖g|Yn‖−1g.

Since h | Yn ∈ S(Y ∗
n ), by (A2) there is an x ∈ Hn with ‖h | Yn−ϕ(x) | Yn‖ <

2−n−1. Put f =
∑n

i=1 yk(i)(x)fi. For y ∈ Yn we have f(y) =
∑n

i=1 yk(i)(x)fi(y) =
(
∑n

i=1 fi(y)yk(i))(x) = y(x) = ϕ(x)(y), so f | Yn = ϕ(x) | Yn.
By (A4) and (A2) we get ‖Tx − g‖ = ‖∑∞

i=1 yk(i)(x)fi − g‖ ≤ ‖f − g‖ +∑∞
i=n+1 |yk(i)(x)|‖fi‖ ≤ ‖f − g‖ +

∑∞
i=n+1 2−i−1(2 + 26−i) ≤ (‖f − h‖ + ‖h −

g‖) + 26−n. For u ∈ Fn we have ‖u‖ = sup{|u(Pny)| : y ∈ S(Y )} ≤ ‖u | Yn‖‖Pn‖,
so ‖f − h‖ ≤ ‖f | Yn − h | Yn‖‖Pn‖ = ‖ϕ(x) | Yn − h | Yn‖‖Pn‖ < 2−n−1(1 +
24−n) ≤ 24−n. Moreover ‖h− g‖ = ‖g|Yn‖−1 − 1 ≤ ‖g‖−1‖Pn‖ − 1 ≤ 24−n. Thus
‖Tx− g‖ ≤ 27−n.

(A6) We show that T (E) = F . Let g ∈ F . Using (A5) we choose an element
x1 ∈ E with ‖x1‖ = ‖g‖ such that ‖g − Tx1‖ < 2−1. Next we choose an element
x2 ∈ E with ‖x2‖ = ‖g − Tx1‖ such that ‖g − Tx1 − Tx2‖ < 2−2. This way
we can obtain a sequence (xn) ⊂ E such that ‖xn+1‖ = ‖g − ∑n

j=1 Txj‖ and
‖g −∑n+1

j=1 Txj‖ < 2−n−1 for n ∈ N . Clearly, the series
∑∞

j=1 xj is convergent in
E to some x and Tx = g.

(A7) The sequence (gn) ⊂ F ∗ of coefficient functionals associated with the
Schauder basis (fn) in F is a Schauder basis in F ∗σ . The adjoint map T ∗ : F ∗ → E∗

is an isomorphism of F ∗σ and the closed subspace T ∗F ∗ of E∗
σ ([14, 4.14 and

4.15]). Thus the sequence (T ∗gn) is a Schauder basic sequence in E∗
σ. We have

(T ∗gn)(x) = gn(Tx) = gn(
∑∞

i=1 yk(i)(x)fi) = yk(n)(x) for x ∈ E and n ∈ N , so
T ∗gn = yk(n) for n ∈ N . We have shown that (yk(n)) is a Schauder basic sequence
in E∗

σ. ¤
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Let E be a Banach space. By the Banach-Steinhaus theorem every sequence
(yn) ⊂ E∗ which is point-wise bounded on E is bounded. We will say that a se-
quence (yn) ⊂ E∗ is pseudobounded if it is point-wise bounded on a dense subspace
of E and supn ‖yn‖ = ∞.

For Schauder basic sequences in E∗
σ we have the following.

Proposition 2. Let E be a Banach space and let (yn) be a Schauder ba-
sic sequence in E∗

σ. If (yn) ⊂ S(E∗), then (yn) is strongly normal in E∗. If
supn ‖yn‖ = ∞, then (yn) is pseudobounded in E∗. Every pseudobounded sequence
(zn) in E∗ has a Schauder basic subsequence in E∗

σ.

Proof. Denote by Y the closure of the linear span of the set {yn : n ∈ N}
in E∗

σ. Then there is a sequence (xn) ⊂ E such that yn(xm) = δn,m for all
n,m ∈ N and y(x) =

∑∞
n=1 y(xn)yn(x) for all y ∈ Y, x ∈ E. For the linear span

X of the set {xn : n ∈ N} we have

(X + ⊥Y )⊥ = (X ∪ ⊥Y )⊥ = X⊥ ∩ (⊥Y )⊥ = X⊥ ∩ Y = {0}.

Thus X + ⊥Y is dense in E, so the subspaces {x ∈ E :
∑∞

n=1 |yn(x)| < ∞} and
{x ∈ E : supn |yn(x)| < ∞} are dense in E, too.

Let (k(n)) ⊂ N be a strictly increasing sequence with ‖zk(n)‖ ≥ n2 for n ∈ N .
Put vn = zk(n)/‖zk(n)‖ for n ∈ N . The sequence (vn) is strongly normal in E∗,
since {x ∈ E : supn |zn(x)| < ∞} ⊂ {x ∈ E :

∑∞
n=1 |vn(x)| < ∞}. Using Theorem

1 we infer that the sequence (zk(n)) has a Schauder basic subsequence in E∗
σ. ¤

Using the last proposition we get the following.

Theorem 3. Let E be a Banach space. Then the following conditions are
equivalent :

(1) E has an infinite-dimensional separable quotient ;
(2) E∗ has a strongly normal sequence;
(3) E∗

σ has a Schauder basic sequence;
(4) E∗ has a pseudobounded sequence.

Proof. (1) ⇒ (2). By [6, Proposition 1], there exists a biorthogonal se-
quence ((xn, yn)) ⊂ E × E∗ such that A = (lin{xn : n ∈ N} +

⋂∞
n=1 ker yn) is

a dense subspace in E; clearly we can assume that (yn) ⊂ S(E∗). The sequence
(yn) is strongly normal in E∗, since {x ∈ E :

∑∞
n=1 |yn(x)| < ∞} ⊃ A.

Using Theorem 1 we get (2) ⇒ (3). By [20, Proposition 1], we obtain (3) ⇒
(1). Using Proposition 2 we get the equivalence (3) ⇔ (4). ¤
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It is known that every infinite-dimensional WCG Banach space has an infinite-
dimensional separable quotient. We shall show the following ([18]).

Proposition 4. Let E be a WCG Banach space. Then every normal se-
quence (yn) in E∗ contains a strongly normal subsequence.

Proof.

Case 1: E is separable. Let X = {xn : n ∈ N} be a countable dense subset
of E. For every n ∈ N we choose k(n) ∈ N with |yk(n)(xi)| < n−2 for 1 ≤ i ≤ n;
we can assume that the sequence (k(n)) is strictly increasing. Then the sequence
(yk(n)) is strongly normal in E∗, since {x ∈ E :

∑∞
n=1 |yk(n)(x)| < ∞} ⊃ X.

Case 2: E is not separable. By [3, Proposition 1], there is a continuous linear
projection Q : E → E with ‖Q‖ = 1 such that F = Q(E) is a separable closed
subspace of E and (yn) ⊂ Q∗(E∗). Let i : F → E be the identity embedding.
Put P : E → F, x → Qx. Then Q = iP and Q∗(E∗) = P ∗(i∗(E∗)) ⊂ P ∗(F ∗), so
(yn) ⊂ P ∗(F ∗). Moreover P (B(E)) = B(F ). Therefore for every z ∈ F ∗ we have

‖P ∗z‖ = sup{|(P ∗z)(x)| : x ∈ B(E)} = sup{|z(Px)| : x ∈ B(E)}
= sup{|z(x)| : x ∈ B(F )} = ‖z‖.

Since (yn) ⊂ P ∗(F ∗) ∩ S(E∗), there is (zn) ⊂ S(F ∗) with P ∗zn = yn, n ∈ N .
Thus (zn) is a normal sequence in F ∗. By Case 1, (zn) contains a strongly normal
subsequence (zk(n)) in F ∗. Then the subspace ({x ∈ F :

∑∞
n=1 |zk(n)(x)| < ∞}+

kerP ) is dense in E, so the subspace {x ∈ E :
∑∞

n=1 |yk(n)(x)| < ∞} is dense in
E. Thus (yk(n)) is strongly normal in E∗. ¤

Example. The linear space E = {(xn) ∈ c0 : supk |
∑k

n=1 xn| < ∞} with
the norm ‖x‖ = supk |

∑k
n=1 xn|, x = (xn), is a Banach space and it is not WCG

([17]). Let fn : E → K, x = (xk) → xn, n ∈ N . Then (fn) ⊂ E∗, limn fn(x) = 0
for every x ∈ E and 1 ≤ ‖fn‖ ≤ 2 for n ∈ N . Put yn = fn/‖fn‖, n ∈ N ; clearly
(yn) is a normal sequence in E∗. We shall prove that a subsequence (yk(n)) of (yn)
is strongly normal in E∗ if and only if the sequence (k(n)) ⊂ N does not contain
arbitrary long series of successive integers. In particular the normal sequence (yn)
is not strongly normal but every subsequence of it contains a strongly normal
subsequence.

Proof. Let (k(n)) ⊂ N be a strictly increasing sequence.
Assume that (k(n)) contains arbitrary long series of successive integers. Then

for every s ∈ N there is n(s) ∈ N such that k(n(s) + 1); . . . ; k(n(s) + 2s) are
successive integers; we can assume that n(s + 1) > n(s) + 2s for s ∈ N . Put
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zl =





s−1 if k(n(s) + 1) ≤ l ≤ k(n(s) + s) for some s ∈ N ;

−s−1 if k(n(s) + s + 1) ≤ l ≤ k(n(s) + 2s) for some s ∈ N ;

0 for all other l ∈ N .

Clearly z = (zl) ∈ E. Let x ∈ E with
∑∞

n=1 |yk(n)(x)| < ∞. Then
∑∞

n=1 |xk(n)| =∑∞
n=1 |fk(n)(x)| = ∑∞

n=1 ‖fk(n)‖|yk(n)(x)| < ∞. For s ∈ N we have

1 =
k(n(s)+s)∑

l=k(n(s)+1)

zl =
∣∣∣∣

k(n(s)+s)∑

l=1

(zl − xl)−
k(n(s)+1)−1∑

l=1

(zl − xl) +
k(n(s)+s)∑

l=k(n(s)+1)

xl

∣∣∣∣

≤ ‖z − x‖+ ‖z − x‖+
n(s)+s∑

m=n(s)+1

|xk(m)|.

Hence for s ∈ N we get 1 ≤ 2‖z−x‖+
∑n(s)+s

m=n(s)+1 |xk(m)|. Since
∑∞

m=1 |xk(m)| <
∞ we have lims

∑n(s)+s
m=n(s)+1 |xk(m)| = 0. Thus ‖z − x‖ ≥ 1/2. It follows that the

set {x ∈ E :
∑∞

m=1 |yk(m)(x)| < ∞} is not dense in E, so the subsequence (yk(n))
of (yn) is not strongly normal in E∗.

Assume now that (k(n)) does not contain arbitrary long series of successive
integers. Then there are two strictly increasing sequences (t(n)), (w(n)) ⊂ N and
m ∈ N such that

(1) t(n) ≤ w(n) ≤ t(n) + m− 2 for n ∈ N ;
(2) w(n) + 1 < t(n + 1) for n ∈ N ;
(3)

⋃
n{l ∈ N : t(n) ≤ l ≤ w(n)} = {k(n) : n ∈ N}.

Let z ∈ E. For s ∈ N we put xs = (xs,l), where

xs,l =





0 if t(n) ≤ l ≤ w(n) for some n ≥ s;

w(n)+1∑

i=t(n)

zi if l = w(n) + 1 for some n ≥ s;

zl for all other l ∈ N .

Since |∑w(n)+1
i=t(n) zi| ≤ m max{|zi| : i ≥ t(n)}, n ∈ N and limn max{|zi| : i ≥

t(n)} = 0, we have xs ∈ c0. Moreover for l ∈ N we have
∑l

i=1 xs,i =
∑t(n)−1

i=1 zi

if t(n) ≤ l ≤ w(n) for some n ≥ s, and
∑l

i=1 xs,i =
∑l

i=1 zi for all other l ∈ N .
Thus xs ∈ E. Since xs,k(n) = 0 if k(n) ≥ t(s), we have
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∞∑
n=1

|yk(n)(xs)| =
∞∑

n=1

|fk(n)(xs)|
‖fk(n)‖

=
∞∑

n=1

|xs,k(n)|
‖fk(n)‖

< ∞;

so (xs) ⊂ {x ∈ E :
∑∞

n=1 |yk(n)(x)| < ∞}. For s ∈ N we have
∑l

i=1(zi − xs,i) =∑l
i=t(n) zi, if t(n) ≤ l ≤ w(n) for some n ≥ s; and

∑l
i=1(zi−xs,i) = 0 for all other

l ∈ N . Thus ‖z − xs‖ ≤ m max{|zi| : i ≥ t(s)} for s ∈ N ; so lims ‖z − xs‖ = 0.
Hence the set {x ∈ E :

∑∞
n=1 |yk(n)(x)| < ∞} is dense in E. Therefore (yk(n)) is

strongly normal in E∗. ¤

By the equivalence (1) ⇔ (4) in Theorem 3 we obtain the following well known
result ([1], [17]); our proof is quite different from the the original one.

Corollary 5. A Banach space has an infinite-dimensional separable quo-
tient if and only if it contains a dense non-barrelled subspace.

Proof. Assume that a Banach space E has an infinite-dimensional sepa-
rable quotient. By Theorem 3, the space E∗ has a pseudobounded sequence (yn).
Put G = {x ∈ E : supn |yn(x)| < ∞} and V = {x ∈ E : supn |yn(x)| ≤ 1}. Using
the Banach-Steinhaus theorem we infer that G is a proper and dense subspace of
E. The set V is a barrell in G and it is not a neighbourhood of zero in G, since V

is closed in E. Thus G is not barrelled.
Assume that a Banach space E contains a dense non-barrelled subspace G.

Let W be a barrell in G which is not a neighbourhood of zero in G. The closure
V of W in E is absolutely convex and closed in E. The linear span H of V is
a dense proper subspace of E. For every n ∈ N there is xn ∈ (E \ V ) with
‖xn‖ < n−2. By the Hahn-Banach theorem for every n ∈ N there is zn ∈ E∗ with
|zn(xn)| > 1 such that |zn(x)| ≤ 1 for all x ∈ V . Then ‖zn‖ ≥ n2 for n ∈ N and
supn |zn(x)| < ∞ for x ∈ H; so (zn) is pseudobounded in E∗. By Theorem 3, E

has an infinite-dimensional separable quotient. ¤

Applying Corollary 5 we get our last result.

Theorem 6. Let E be an infinite-dimensional Banach space. Let F be a
non-zero locally convex space. Then the following conditions are equivalent :

(1) Every separable quotient of E is finite-dimensional ;
(2) Every continuous linear map from a Banach space to E with dense range is a

surjection;
(3) Every family {Tγ : γ ∈ Γ} ⊂ L(E, F ) which is point-wise bounded on a dense

subspace H of E is equicontinuous;
(4) Every sequence (Tn) ⊂ L(E, F ) which is point-wise convergent to zero on a

dense subspace G of E is point-wise convergent to zero on E;
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If additionally F is sequentially complete then above conditions are equivalent
to the following

(5) Every sequence (Tn) ⊂ L(E, F ) which is point-wise convergent on a dense
subspace G of E is point-wise convergent on E to some T ∈ L(E, F ).

Proof.

(1) ⇒ (2). Let T be a continuous linear map from a Banach space X to E

such that the range T (X) is dense in E. By Corollary 5, T (X) is barrelled. Using
the open mapping theorem we infer that the map T is open (i.e. for every open
subset U in X the set T (U) is open in T (X)). By the Banach-Schauder theorem
([7, 15.12(2)]), T (X) is closed in E; so T (X) = E.

(2) ⇒ (1). By Corollary 5 it is enough to show that every dense subspace M

of E is barrelled. Let D be a barrell in M and let B be the closed unit ball in M .
Denote by S the closure of the set C = D ∩ B in E and by H the linear span of
S. Let p : H → [0;∞) be the Minkowski functional of S. Since S is a bounded
and complete barrell in H, p is a complete norm in H and the embedding map
i : (H, p) → E is a continuous linear map with dense range; so H = E. Thus S is
a neighbourhood of zero in E. Hence D is a neighbourhood of zero in M , because
D ⊃ C = S ∩M . Thus M is a barrelled space.

(1) ⇒ (3). By Corollary 5, H is a dense barrelled subspace of E. Us-
ing the Banach-Steinhaus theorem we infer that the family {Tγ |H : γ ∈ Γ} is
equicontinuous. Let V be a closed neighbourhood of zero in F . For some open
neighbourhood U of zero in E we have Tγ(U ∩ H) ⊂ V for all γ ∈ Γ. Hence
Tγ(U) ⊂ Tγ(U ∩H) ⊂ Tγ(U ∩H) ⊂ V for all γ ∈ Γ. Thus the family {Tγ : γ ∈ Γ}
is equicontinuous.

(3) ⇒ (4). By (3) the sequence (Tn) is equicontinuous. Let x ∈ E. Let W,V

be neighbourhoods of zero in F with V − V ⊂ W . For some neighbourhood U

of zero in E we have Tn(U) ⊂ V for n ∈ N . Moreover there exists y ∈ E with
y − x ∈ U such that limn Tn(y) = 0. For some n0 ∈ N we have Tn(y) ∈ V for
n ≥ n0. Since Tn(x) = Tn(y) − Tn(y − x) and V − Tn(U) ⊂ V − V ⊂ W , so
Tn(x) ∈ W for n ≥ n0. Thus limn Tn(x) = 0 for every x ∈ E.

(4) ⇒ (1). Suppose, to the contrary, that E has an infinite-dimensional
separable quotient. By Theorem 3, E∗

σ has a Schauder basic sequence (yn); we
can assume that limn ‖yn‖ = ∞, so (yn) is pseudobounded in E∗ (Proposition 2).
Put zn = yn/

√
‖yn‖ for n ∈ N . Then limn ‖zn‖ = ∞. Let z ∈ F with z 6= 0.

For every n ∈ N the map Tn : E → F , x → zn(x)z, is linear and continuous.
Since {x ∈ E : supn |yn(x)| < ∞} ⊂ {x ∈ E : limn zn(x) = 0}, the sequence
(Tn) ⊂ L(E, F ) is point-wise convergent to zero on a dense subspace of E. By (4),
(Tn) is point-wise convergent to zero on E. By the Banach-Steinhaus theorem,
(Tn) is equicontinuous, so supn ‖zn‖ < ∞; a contradiction.
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Assume now that F is additionally sequentially complete.
(3) ⇒ (5). By (3), the sequence (Tn) is eqiucontinuous. Let x ∈ E. Let

W,V be neighbourhoods of zero in F with (V − V ) − (V − V ) ⊂ W . For some
neighbourhood U of zero in E we have Tn(U) ⊂ V for n ∈ N . Moreover there
exists y ∈ E with y − x ∈ U such that the sequence (Tn(y)) is convergent in F

to some element z. Let n0 ∈ N with Tn(y) − z ∈ V for n ≥ n0. For n,m ≥ n0

we have Tnx − Tmx = [((Tny − z) − Tn(y − x)) − ((Tmy − z) − Tm(y − x))] ∈
(V − V )− (V − V ) ⊂ W . It follows that (Tnx) is a Cauchy sequence in F , so it is
convergent in F to some Tx for every x ∈ E. Clearly, the map T : E → F, x → Tx

is linear. If x ∈ U , then (Tnx) ⊂ V ; hence Tx ∈ W . Thus T (U) ⊂ W ; so T is
continuous.

The implication (5) ⇒ (4) is obvious. Thus (5) is equivalent to conditions
(1)–(4). ¤
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