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Abstract. We study the notion of a strongly normal sequence in the
dual E* of a Banach space E. In particular, we prove that the following three
conditions are equivalent:

(1) E* has a strongly normal sequence,
(2) (E*,0(E*, E)) has a Schauder basic sequence,
(3) E has an infinite-dimensional separable quotient.

Introduction.

Weput S(X)={zeX:|z|=1}and B(X)={z e X :|z]| <1} if X isa
normed space. Let E be a Banach space. A sequence (y,,) C S(E*) is normalin E*
if lim,, y,,(z) = 0 for every x € Ej clearly, the normal sequences coincide with the
normalized w*-null sequences. The excellent Josefson-Nissenzweig theorem states
that the dual of any infinite-dimensional Banach space contains a normal sequence
([5], [12]). It is easy to see that a sequence (y,) C S(E*) is normal if and only if
the subspace {z € F : lim, y, () = 0} is dense in E. We will say that a sequence
(yn) C S(E*) is strongly normal if the subspace {x € E : Y| |yn(z)| < oo} is
dense in E ([18]). Clearly, every strongly normal sequence in E* is normal.

One of the most known open problems for Banach spaces is the separable
quotient problem: Does every infinite-dimensional Banach space has an infinite-
dimensional separable quotient? i.e. Does every infinite-dimensional Banach
space E has a closed subspace M such that the quotient space E/M is infinite-
dimensional and separable? ([1], [8], [10], [11], [15]-[22])

Recall that a sequence () in a locally convex space F is: (1) a Schauder
basis of F if for each element x of F' there is a unique sequence (a,) of scalars
such that @ = >°°° | @z, and the coefficient functionals x},n € N, defined by
*(x) = ay, are continuous on F; (2) a Schauder basic sequence if it is a Schauder

n
basis of its closed linear span X in F.

T
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We shall prove that a Banach space E has an infinite-dimensional separable
quotient iff E* contains a strongly normal sequence iff E* = (E*,0(E*, E)) has
a Schauder basic sequence (Theorem 3). Before, developing some ideas of [4], we
shall show that every strongly normal sequence in the dual E* of a Banach space
E contains a Schauder basic subsequence in E (Theorem 1).

We state the following.

PROBLEM. Does every normal sequence in the dual E* of a Banach space
E contains a strongly normal subsequence?

If this problem has a positive answer for a given infinite-dimensional Banach
space E, then by the Josefson-Nissenzweig theorem and Theorem 3, E has an
infinite-dimensional separable quotient.

We show that for every WCG (i.e. weakly compactly generated) Banach space
E our problem has a positive answer (Proposition 4). Next we give an example
of a normal sequence in the dual E* of some known non-WCG Banach space
E, which is not strongly normal but every subsequence of it contains a strongly
normal subsequence (Example).

Finally, we show that a Banach space E has no infinite-dimensional separable
quotient iff every continuous linear map from a Banach space to F with dense
range is a surjection iff every sequence of continuous linear maps from E to some
non-zero (or to every) Fréchet space F', which is point-wise convergent on a dense
subspace of E is point-wise convergent on E to some continuous linear map from
E to F (Theorem 6).

Results.

Johnson and Rosenthal proved that any normal sequence (y,,) in the dual E*
of a separable Banach space E has a Schauder basic subsequence (yj () in £ ([4,
Theorem III.1]). Developing some ideas of their proof we shall show the following.

THEOREM 1. Let E be a Banach space. Any strongly normal sequence (yy)
in E* contains a Schauder basic subsequence (Yi(n)) in Ej.

PrROOF. Let ¢ : E — E** be the canonical embedding map.

(A1) First we shall show that for every finite-dimensional subspace Y of E*
and every € € (0,1/2) there exists a finite subset H of S(E) such that for every
f€S(Y*) there is an x € H with || f — ¢(z) | Y| < 2e.

Let ¢ : (E/*Y) — (E/+Y)** be the canonical embedding map; clearly 1 is
an isometric isomorphism. Since (+Y)% =Y, the map
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a:Y = (E/AY), a(y)(z+ 1Y) =y(z), fory €Y,z € E,

is an isometric isomorphism ([14, 4.9(b)]). Thus the adjoint map
o (B =Y of (@ + 1Y) = p(2) | Y, forz € E,

is also an isometric isomorphism ([2, 8.6.18(a)]).

Hence for every f € S(Y™*) there is an x € S(F) with ||f — ¢(z) | Y| < e.
Indeed, for every f € S(Y*) there exist v € F and z € 1Y such that ¢(v) | Y = f,
lo++Y||=1and 1 < |lv+z|| < 1+e. Thus for u=v+z and = u/|u|| we
have z € S(E) and ||f — o(z) | Y] =1 — |Jul| 7! < &.

The set S(Y™*) is compact, so there exists a finite subset {f1,..., fn} of S(Y*)
with S(Y*) c Ul _) K(fm.€). Let z1,...,2, € S(E) with || fr, — @(z) | Y| <&
for 1 <m < n. Put H = {z1,...,2,}. Then for every f € S(Y*) there is an
x € H with ||f — p(zm) | Y| < 2e.

(A2) Since lim,, y,(z) = 0 for every z € E, using (Al) we can choose induc-
tively a strictly increasing sequence (k(n)) C IN and an increasing sequence (H,,)
of finite subsets of S(FE) such that for every n € N we have

(i) for every f € S(Y,F) there is an z € H, with ||f — p(z) | Y| < 2771,
where Y, is the linear span of the set {y;) :1<i<n};
(i) |yr(ns1)(@)] < 27772 for every € H,.

(A3) For every n € N and for all a1, ...,a,4+1 € K we have

n+1

Z QiYL (i)

i=1

Wk || < (1+2177)

Indeed, let n € N and ag,...,an41 € K. Put y = Z? 1 QY and 2 =
Qnt1Yk(nt1)- Then thereis f € S(Y*) with f(y) = [ly|| ([14, 3.3]). By (A2) there is
an x € H, with [|f —¢(2) | Ya| < 277" and |yk(nin) ()] < 27772 IF |2 > 2]y,
then [ly + 21| > llyll- T¢ [11] < 2llyl, then ly+ ] > |y
fW)l = 1f(y) —y(@)] = [=(2)] = llyll = [(f = o(2) |
(L=27")[lyll > (1 +2""") "My

Since [T77; (142'7™) < oo, using [9, 4.1.24], we infer that (yy(,,)) is a Schauder
basic sequence in E* such that || P,|| < [[r—, (1+2'7%) <1+2%" n € N, where
P, : Y =Y, 37 aiyky — i1 0l and Y is the closed linear span of
(Uk(n))-

(A4) The operator T : E — Y*, (Tz)(y) = y(z), x € E, y € Y, is well defined,

+2)(@)] = [y(2)] = [2(z)] =
Y)W = 12 1Yrns1) (2)] =
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linear and continuous. Let (f,) C Y* be the sequence of coefficient functionals
associated with the Schauder basis (yx(n)) in Y. Clearly, (fy) is a Schauder basis of
its closed linear span F in Y* ([9, 4.4.1]). Put G={z € E: Y, | |yn(z)| < oo}.

For © € E we have Ta = Y " Y(n) (@) fn. Indeed, let 2 € G. For n >
2 we get || full = Ifallllusey |l = [[Pa — Pac1l] < 2+ 257" < 18, so the series
> Yk(n) () fn is convergent in F. For y € Y we have (Tx)(y) = y(z) =
(En 1fn( )Yk n))( z) = En 1fn( )Y n)( z) = (Zzoz1yk(n)(x)fn)(y>v so Tz =
> 1 Yk) (@) fn € F. Hence T(E) = T(G) C T(G) C F. Let ¢ € E. Then

Tx = Z]=1 a; f; for some scalars aq, aq,.... Hence o, = (Z;; ;i fi) Wkm)) =
(Tx)(Yk(n)) = Ynm) (@), n € N, so Tx =371 Ygn) () fn-
(A5) For every g € F and every € > 0 there is # € E with ||z]| = ||g| such

that ||g — Tz| < e. Indeed, for every g € S(F) there is a sequence (g,) C S(F)
with lim g, = ¢ such that g, € F, for n € N, where F}, is the linear span of
the set {f1,..., fn}. Thus it is enough to show that for every n € N and every
g € S(F,) there is z € S(E) with ||g — Tz| < 27" Let n € N, g € S(F,) and
h=g|Yal "9
Since h | Y € S(Y¥), by (A2) there is an x € H,, with ||h | Y, —p(z) | Yol <
=l Put f = > 1 Yk(iy(x) fi. For y € Y, we have f(y) = Dy Yk () fily) =
(Zl L Fi@yk) (@) = y(x) = () (y), so f | Yn = p(z) | Ya.

By (A4) and (A2) we get [T — gll = || 3272, vk (@) fi — 9l < If —gll +
it @ @A < N = gll + 22,0277 12+ 2577 < (If = Al + Ik -
gll) +2°7". For u € F,, we have [[ul| = sup{|u(Pny)| : y € S(Y)} < |lu | Yall[| Pall,
so |lf =Rl < If I Ya =k [ YalllPull = lle(@) | Yo — R | Yall[|Pall < 277711 +
24=m) < 247" Moreover ||h —g|| = |lg|Ynl ™' =1 < ||lg|| 7| Pull — 1 < 24~™. Thus
Tz — g| <27

(A6) We show that T(F) = F. Let g € F. Using (A5) we choose an element

z1 € E with [|z1|| = ||g|| such that [|g — Tz1]] < 27'. Next we choose an element
1y € E with |lz2|| = |lg — T1|| such that ||g — Tz — Taz|| < 272. This way
we can obtain a sequence (z,) C E such that [[z,41]| = [lg — >2j_, Ta;l| and

llg — Z"H Tzj|| <27""! for n € N. Clearly, the series > i, xj is convergent in
FE to some x and Tz = g.

(A7) The sequence (g,) C F™* of coefficient functionals associated with the
Schauder basis (f,,) in F'is a Schauder basis in F}. The adjoint map 7% : F* — E*
is an isomorphism of F¥ and the closed subspace T*F* of E* ([14, 4.14 and
4.15]). Thus the sequence (T*g,) is a Schauder basic sequence in EX. We have
(T*gn)(x) = gn(Tz) = gn(zz 1Yk() (@) fi) = Yr(n) () for © € E and n € N, so
T*gn = Yr(n) for n € N. We have shown that (y(n)) is a Schauder basic sequence
in B O
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Let E be a Banach space. By the Banach-Steinhaus theorem every sequence
(yn) C E* which is point-wise bounded on E is bounded. We will say that a se-
quence (y,) C E* is pseudobounded if it is point-wise bounded on a dense subspace
of E and sup,, ||y.|| = oco.

For Schauder basic sequences in E* we have the following.

PROPOSITION 2. Let E be a Banach space and let (y,) be a Schauder ba-
sic sequence in EX. If (y,) C S(E*), then (yn) is strongly normal in E*. If
sup,, |[ynll = oo, then (yn) is pseudobounded in E*. Every pseudobounded sequence
(zn) in E* has a Schauder basic subsequence in E*.

PrROOF. Denote by Y the closure of the linear span of the set {y,, : n € N}
in E}. Then there is a sequence (z,) C E such that y,(z,) = 0nm for all
n,m € N and y(z) = Y 07, y(@n)yn(z) for all y € Y,z € E. For the linear span
X of the set {z,, : n € N} we have

X+ V) r=xuv)r=Xx*n*y)r =xtny = {0}

Thus X + 1Y is dense in E, so the subspaces {z € E : >.°7 | |y,(z)| < oo} and
{z € E : sup, |yn(x)| < oo} are dense in E, too.

Let (k(n)) C N be a strictly increasing sequence with || zj (|| > n? forn € N.
Put v, = zg(n)/||2km) |l for n € N. The sequence (v,) is strongly normal in E*,
since {z € E : sup,, |z2,(z)| < oo} C{z € E: Y 0, |vn(z)| < co}. Using Theorem
1 we infer that the sequence (zj(n)) has a Schauder basic subsequence in E}. [

Using the last proposition we get the following.

THEOREM 3. Let E be a Banach space. Then the following conditions are
equivalent:

(1) E has an infinite-dimensional separable quotient;

(2) E* has a strongly normal sequence;
(3) EZ has a Schauder basic sequence;
(4) E* has a pseudobounded sequence.

PrOOF. (1) = (2). By [6, Proposition 1], there exists a biorthogonal se-
quence ((zn,yn)) C E x E* such that A = (lin{z, : n € N} + (), —  kery,) is
a dense subspace in E; clearly we can assume that (y,) C S(E*). The sequence
(yn) is strongly normal in E*, since {z € E: >~ |yn(z)| < 00} D A.

Using Theorem 1 we get (2) = (3). By [20, Proposition 1], we obtain (3) =
(1). Using Proposition 2 we get the equivalence (3) < (4). O
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It is known that every infinite-dimensional WCG Banach space has an infinite-
dimensional separable quotient. We shall show the following ([18]).

PropPOSITION 4. Let E be a WCG Banach space. Then every normal se-
quence (yn) in E* contains a strongly normal subsequence.

PROOF.

Case 1: E is separable. Let X = {x, : n € N} be a countable dense subset
of E. For every n € N we choose k(n) € N with |y, (2;)] <n™2 for 1 <i < n;
we can assume that the sequence (k(n)) is strictly increasing. Then the sequence
(Yk(ny) 1s strongly normal in E*, since {x € E: > " |ypm)(z)| < co} D X.

Case 2: F is not separable. By [3, Proposition 1], there is a continuous linear
projection ) : E — FE with ||Q]| = 1 such that F = Q(F) is a separable closed
subspace of E and (y,) C Q*(E*). Let i : FF — E be the identity embedding.
Put P: E — F,x — Qz. Then Q = iP and Q*(E*) = P*(i*(E*)) C P*(F*), so
(yn) C P*(F*). Moreover P(B(E)) = B(F). Therefore for every z € F* we have

[P*2[| = sup{|(P"2)(z)| : € B(E)} = sup{|2(Pz)| : x € B(E)}
= sup{|z(z)| : # € B(F)} = [|z].

Since (yn) C P*(F*) N S(E*), there is (z,) C S(F*) with P*z, = y,, n € N.
Thus (zy,) is a normal sequence in F"*. By Case 1, (z,) contains a strongly normal
subsequence (zj(n)) in F*. Then the subspace ({x € F : > | |zxm) ()| < oo} +
ker P) is dense in E, so the subspace {z € E : >, |yr(n) ()| < oo} is dense in
E. Thus (yx(n)) is strongly normal in E*. O

EXAMPLE. The linear space E = {(z,) € ¢o : supy | 22:1 Zp| < oo} with
the norm ||z|| = supy, | 22:1 Znl, x = (z,), is a Banach space and it is not WCG
([17]). Let fp,: E — K, x = () — Zn, n € N. Then (f,) C E*, lim,, f,(z) =0
for every x € E and 1 < || f,|| £ 2 for n € N. Put y, = f./||full, n € N; clearly
(yn) is a normal sequence in E*. We shall prove that a subsequence (yj(n)) of (y,)
is strongly normal in E* if and only if the sequence (k(n)) C IN does not contain
arbitrary long series of successive integers. In particular the normal sequence (y,,)
is not strongly normal but every subsequence of it contains a strongly normal
subsequence.

PrROOF. Let (k(n)) C N be a strictly increasing sequence.

Assume that (k(n)) contains arbitrary long series of successive integers. Then
for every s € N there is n(s) € N such that k(n(s) + 1);...;k(n(s) + 2s) are
successive integers; we can assume that n(s+ 1) > n(s) + 2s for s € N. Put
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st ifk(n(s) +1) <1< k(n(s) + s) for some s € IN;
z=1¢—s1 ifk(n(s)+s+1) <1< k(n(s) + 2s) for some s € N;
0 for all other [ € N.

Clearly z = (%) € E. Let ¢ € E with Y0 | [y(n) ()| < 00. Then -7 | |zym)| =
D omen Wy @) = 32021 ko) 1Yk (ny (2)] < 00. For s € N we have

k(n(s)+s) k(n(s)+s) k(n(s)+1)—1 k(n(s)+s)
l= > a=| ) (@-w- ) (@-wm+ ),
I=k(n(s)+1) =1 =1 l=k(n(s)+1)
n(s)+s
<lr—all+lz—al+ 3 |rrm
m=n(s)+1

Hence for s € N we get 1 < 2||z — x| —i—Z:Ln( ):_z)ﬂ |Z(m)]- Since Y07 [@p(m)| <

oo we have lim, an( n(s )41 |Zk(m)| = 0. Thus ||z — z|| > 1/2. It follows that the
set {z € E: 3" | |yk(m)(x)| < co} is not dense in E, so the subsequence (yy(n))
of (y,) is not strongly normal in B*.

Assume now that (k(n)) does not contain arbitrary long series of successive
integers. Then there are two strictly increasing sequences (¢(n)), (w(n)) C N and

m € IN such that

(1) t(n) <w(n) <t(n)+m—2 for n € N;

(2) w(n)+1<t(n+1) for n € N;

3) U {leN:tn) <l<w(n)} ={k(n):ne N}

Let z € E. For s € N we put zs = (x5,), where

0 if t(n) <1 < w(n) for some n > s;

w(n)+1
T, = Z zi if I = w(n) + 1 for some n > s;

i=t(n)
2 for all other [ € N.

Since | Y7 :);)1 zi| < mmax{|z| : i > t(n)}, n € N and lim, max{|z]| : i >

t(n)} = 0, we have 25 € ¢y. Moreover for [ € N we have 22:1 Ts; = ng)fl Zi
if t(n) <1 < w(n) for some n > s, and 22:1 Ts; = 22:1 z; for all other I € N.
Thus z, € E. Since z, () = 0 if k(n) > t(s), we have
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|fk(n) xs |msk
Ye(n)\Ts)| =
Z"““ = Z el ank(n)n

s0 (zs) C{x € E: 307 |ynm)(x)] < oo}. For s € N we have Zﬁzl(zi —Ts4) =
Zé:t(n) zi, if t(n) <1 < w(n) for some n > s; and Zizl(zi — ;) = 0 for all other
l € N. Thus ||z — z4|| < mmax{|z]| : i > t(s)} for s € N; so limg ||z — z4|| = 0.
Hence the set {x € E: 3" [yrn)(x)] < oo} is dense in E. Therefore (yx(,)) is
strongly normal in E*. O

By the equivalence (1) < (4) in Theorem 3 we obtain the following well known
result ([1], [17]); our proof is quite different from the the original one.

COROLLARY 5. A Banach space has an infinite-dimensional separable quo-
tient if and only if it contains a dense non-barrelled subspace.

PROOF. Assume that a Banach space F has an infinite-dimensional sepa-
rable quotient. By Theorem 3, the space E* has a pseudobounded sequence (yy,).
Put G ={z € E : sup, |yn(x)| < oo} and V = {z € E : sup,, |yn(x)| < 1}. Using
the Banach-Steinhaus theorem we infer that G is a proper and dense subspace of
E. The set V is a barrell in G and it is not a neighbourhood of zero in G, since V'
is closed in E. Thus G is not barrelled.

Assume that a Banach space E contains a dense non-barrelled subspace G.
Let W be a barrell in G which is not a neighbourhood of zero in G. The closure
V of W in E is absolutely convex and closed in E. The linear span H of V is
a dense proper subspace of E. For every n € N there is z,, € (F\ V) with
|lzn]| < n~2. By the Hahn-Banach theorem for every n € N there is 2, € E* with
|2 (2,)| > 1 such that |z,(z)| < 1 for all z € V. Then ||z,|| > n? for n € N and
sup,, |zn(z)| < 0o for © € H; so (z,) is pseudobounded in E*. By Theorem 3, E
has an infinite-dimensional separable quotient. O

Applying Corollary 5 we get our last result.

THEOREM 6. Let E be an infinite-dimensional Banach space. Let F' be a
non-zero locally convex space. Then the following conditions are equivalent:

(1) Every separable quotient of E is finite-dimensional;

(2) Every continuous linear map from a Banach space to E with dense range is a
surjection;

(3) Every family {T, : v € T'} C L(E, F) which is point-wise bounded on a dense
subspace H of E is equicontinuous;

(4) Every sequence (T,,) C L(E,F) which is point-wise convergent to zero on a
dense subspace G of E is point-wise convergent to zero on E;
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If additionally F is sequentially complete then above conditions are equivalent
to the following

(5) Ewvery sequence (T,,) C L(E,F) which is point-wise convergent on a dense
subspace G of E is point-wise convergent on E to some T € L(E, F).

PRroor.

(1) = (2). Let T be a continuous linear map from a Banach space X to E
such that the range T'(X) is dense in E. By Corollary 5, T'(X) is barrelled. Using
the open mapping theorem we infer that the map 7T is open (i.e. for every open
subset U in X the set T'(U) is open in T(X)). By the Banach-Schauder theorem
([7, 15.12(2)]), T(X) is closed in E; so T'(X) = E.

(2) = (1). By Corollary 5 it is enough to show that every dense subspace M
of E is barrelled. Let D be a barrell in M and let B be the closed unit ball in M.
Denote by S the closure of the set C = DN B in E and by H the linear span of
S. Let p: H — [0;00) be the Minkowski functional of S. Since S is a bounded
and complete barrell in H, p is a complete norm in H and the embedding map
i:(H,p) — FE is a continuous linear map with dense range; so H = E. Thus S is
a neighbourhood of zero in E. Hence D is a neighbourhood of zero in M, because
DD>C=S5NM. Thus M is a barrelled space.

(1) = (3). By Corollary 5, H is a dense barrelled subspace of E. Us-
ing the Banach-Steinhaus theorem we infer that the family {T,|H : v € T'} is
equicontinuous. Let V be a closed neighbourhood of zero in F. For some open
neighbourhood U of zero in E we have T,(U N H) C V for all v € . Hence
T,U)cT,(UNH) CT,(UNH) CV forall y € I'. Thus the family {T, : v € T'}
is equicontinuous.

(3) = (4). By (3) the sequence (T,) is equicontinuous. Let = € E. Let W,V
be neighbourhoods of zero in F' with V — V C W. For some neighbourhood U
of zero in E we have T,,(U) C V for n € N. Moreover there exists y € E with
y —x € U such that lim,, T,,(y) = 0. For some ng € N we have T,,(y) € V for
n > ng. Since Ty(x) = Top(y) — Th(ly —z) and V = T,,(U) C V-V C W, so
T,.(z) € W for n > ng. Thus lim,, T,,(x) = 0 for every = € F.

(4) = (1). Suppose, to the contrary, that E has an infinite-dimensional
separable quotient. By Theorem 3, E* has a Schauder basic sequence (y,); we
can assume that lim,, ||y, || = oo, so (yn) is pseudobounded in E* (Proposition 2).
Put z, = yn//|lyn|| for n € N. Then lim, ||z,| = co. Let z € F with z # 0.
For every n € N the map T,, : E — F, © — z,(x)z, is linear and continuous.
Since {z € E : sup, |yn(z)| < oo} C {z € F : lim, z,(x) = 0}, the sequence
(T,,) C L(E, F) is point-wise convergent to zero on a dense subspace of E. By (4),
(T},) is point-wise convergent to zero on E. By the Banach-Steinhaus theorem,
(T},) is equicontinuous, so sup,, [|z,|| < oo; a contradiction.
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Assume now that F' is additionally sequentially complete.

(3) = (5). By (3), the sequence (T},) is eqiucontinuous. Let z € E. Let
W,V be neighbourhoods of zero in F' with (V — V) — (V —V) C W. For some
neighbourhood U of zero in E we have T,,(U) C V for n € N. Moreover there
exists y € F with y — a € U such that the sequence (T),(y)) is convergent in F
to some element z. Let ng € N with T, (y) — z € V for n > ng. For n,m > ng
we have Thao — Tne = [(Thy — 2) — Th(y — ) — (Thy — 2) — Tr(y — 2))] €
(V-V)—(V-V)cCW. It follows that (T,z) is a Cauchy sequence in F, so it is
convergent in F' to some T, for every z € E. Clearly, the map T': F — F,x — T,
is linear. If x € U, then (T,,x) C V; hence Tx € W. Thus T(U) C W; so T is
continuous.

The implication (5) = (4) is obvious. Thus (5) is equivalent to conditions
(1)—(4). O
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