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Abstract. Let p be a prime not equal to 2 or 3. We determine the
group of all modular units on the modular curve X1(2p), and its full cuspidal
class number. We mention a fact concerning the non-existence of torsion
points of order 5 or 7 of elliptic curves over Q of square-free conductor n as
an application of a result by Agashe and the cuspidal class number formula
for Xo(n). We also state the formula for the order of the subgroup of the
Q-rational torsion subgroup of J1(2p) generated by the Q-rational cuspidal
divisors of degree 0.

1. Introduction.

Let X be a modular curve. Let S be a subset of the set S. of all cusps on X,
and let C's be the subgroup of the divisor class group of X consisting of the classes
of divisors of degree 0 which are supported on S. (The group Cg, is called the
cuspidal divisor class group of X.) Kubert and Lang [7] considered the problem
to determine if C'g, is finite, and when it is finite to compute its order. (The order
of Cg, is called the cuspidal class number of X.) Manin [8] and Drinfeld [4] had
already proved the finiteness of Cg,_, but their method gave no information about
the order. Kubert and Lang [7] found an altogether different proof of the Manin-
Drinfeld theorem in which the whole point was to exhibit the group of modular
units on the modular curve X. (A function on X is called a modular unit on X
if its divisor is supported on S..) In the case X = X (n) where n is a power of a
prime p # 2,3, Kubert and Lang [7] could determine the cuspidal class number
of X(n). Kubert and Lang [7] also considered the case where n has more prime
factors than one, but there was an essential difficulty. In the case where n is a
power of a prime, the group of the modular units is generated by special functions
called Siegel units. But when n has more prime factors than one, the group of
the modular units contains square roots of Siegel units, and because of this fact
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the cuspidal class number was not determined. (For this fact, see Kubert [6] and
Stevens [12]).

When X is a modular curve of other type, several authors have considered its
cuspidal class number.

Let X = Xg(n). Ogg [10] determined the case where n is a prime, and Takagi
[16] determined the case where n is square-free. Also, Takagi [19] computed the
cuspidal class number of a curve which is a quotient of Xo(n) with n square-free
by Atkin-Lehner involutions.

Let X = X;(n). In this case, firstly Klimek [5] considered the subgroup Cg
of Cs, where S is the set Sy of 0-cusps under the assumption that n is a prime,
and computed its order. (A cusp on X;(n) is called a O-cusp if it lies over the cusp
0 of the curve Xo(n).) Kubert and Lang [7] also considered the subgroup Cg, in
the case where n is a power of a prime p # 2,3. Lastly, Yu [21] computed the
order of the subgroup Cg, in the case where n is an arbitrary integer. (Note that
there is a misprint in the formula of [21], which is corrected in Yang [20].)

As to the full cuspidal class number of X;(n), Takagi [13] determined the
case where n is a prime, and Takagi [14], [15], [17] determined the case where n
is a power of a prime with the exception of the case where n is an even power of
2.

The purpose of the present paper is to consider the modular curve X;(n) in
the case where n has more prime factors than one. In fact, we consider the case
n = 2p with p a prime as a first step. In view of the case of X (n) with n having
more prime factors than one, it seems possible that the group of the modular units
contains square roots of Siegel units. But, fortunately, our study reveals that it is
not the case at least in the case n = 2p, therefore, we can compute the cuspidal
class number of X;(2p).

One of our main results is the determination of the group of the modular units
on X1 (2p), which is given in Theorem 4.2. The other main result is the description
of the cuspidal class number of X;(2p) (Theorem 5.2), which is given as follows.

MAIN THEOREM. Let p be a prime # 2,3. Let h be the cuspidal class number
of the modular curve X1(2p). Then we have

b p22; LIy 1;[ {(4 —(2))? (iBg,¢)4},

where ¥ runs through all even, primitive Dirichlet characters modulo p.

In the theorem above, the symbol B, denotes the generalized Bernoulli
number relative to 1 defined by
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Bay = P]:Z_j ¥(a)B; <a>

p

with Ba(X) = X% — X + 1/6 (the second Bernoulli polynomial).

The study of the cuspidal divisor class group plays an important role in the
area of the arithmetic of the Jacobian variety of a modular curve. Let X be a
modular curve. Let i : P +— [(P) — (00)] be the cuspidal embedding of X into
its Jacobian Jx sending a point P to the divisor class of (P) — (c0). When P is a
cusp on X, the point i (P) is a torsion point on Jx.

Let X = Xp(n). Then X has a Q-rational model, which is defined by the
property that its function field is the field of modular functions for T'g(n) whose
Fourier coefficients belong to @. The cusp oo is a Q-rational point of Xg(n).
In particular, when n is square-free, all cusps on Xy(n) are Q-rational points of
Xo(n). Therefore, the cuspidal divisor class group is a Q-rational torsion subgroup
of Jo(n) (= J(Xo(n))). When n is a prime p, Ogg [11] conjectured and Mazur [9]
proved that the full @Q-rational torsion subgroup of Jy(p) is the cuspidal divisor
class group.

Let n be square-free. Let A be an elliptic curve over @ of conductor n. Let r
be a prime that does not divide 6n. Agashe [1] proved that if » divides the order
of the @Q-rational torsion subgroup A(Q):or of A(Q), then r divides the order of
the cuspidal divisor class group of Xy(n). By [9], the only primes that can divide
the order of A(Q)tor are 2, 3, 5 and 7. Therefore, the possible value of r is 5 or
7 with 7 { n. On the other hand, by the formula for the cuspidal class number of
Xo(n) in [16, Theorem 5.1], we can see that r divides the cuspidal class number
of Xo(n) if and only if at least one prime factor p of n satisfies p = +1 (modr).

Combining the result by Agashe [1] with that by [16, Theorem 5.1], we obtain
immediately the following theorem.

THEOREM. Let n be a square-free integer. Let A be an elliptic curve over
Q of conductor n.

(1) Assume that every prime factor p of n satisfies p Z 0,£1 (mod 5). Then A
has no Q-rational point of order 5.

(2) Assume that every prime factor p of n satisfies p Z 0,£1 (mod 7). Then A
has no Q-rational point of order 7.

Let X = X;(n). Then X has a Q-rational model, which is defined by the
property that its function field is the field of modular functions for I';(n) whose
Fourier coefficients belong to Q. The co-cusps are Q-rational points of X;(n). (A
cusp on Xi(n) is called an co-cusp if it lies over the cusp oo of the curve Xy(n).)
Therefore, the group Cs where S is the set S, of co-cusps is a Q-rational torsion
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subgroup of Ji(n) (= J(X1(n))). The order of the group Cs_ is equal to that of
the group Cs, which is known by [5], [7] and [21]. In the case where n is a prime
p # 2,3, Conrad, Edixhoven and Stein [3, Conjecture 6.2.2.] conjectured that the
full @-rational torsion subgroup of Ji(p) is the group Cgo, and verified it for a
few cases of p.

In order to study the Q-rational points in the cuspidal divisor class group, it
is necessary to consider the Q-rational cuspidal divisors of degree 0. In the case
where n is a prime p # 2,3, Chen [2] proved that the subgroup of J; (p) generated
by the classes of @Q-rational cuspidal divisors of degree 0 coincides with Cgs. In
some cases where n is not a prime, there occur Q-rational cusps which are not
0O-CUSPS.

Let n = 2p with p a prime # 2,3. In this case there exist Q-rational cusps
which are not oo-cusps. If a cusp P of X;(2p) is represented by a/c (€ Q U {o0})
with (a,¢) = 1 and (¢, 2p) = 2p/r, we say that P is of type r. The co-cusps are
the cusps of type 1. The cusps of type 2 are also Q-rational. The cusps of type
p or 2p are not Q-rational, therefore the subgroup C; 2) = Cs of Cg, with S the
set of cusps of type 1 or 2 coincides with the subgroup of J;(2p) generated by all
loo(P) with P a Q-rational cusp. In addition to the Q-rational cusps, there exist
Q-rational cuspidal divisors of degree 0. Put Day) = > 4, {(1/2) — (00)} and
Dpy = pea, 1(1/22) — (00)}, where Ay (respectively Az) denotes a complete set
of representatives of (Z/2pZ)* /{£1} (respectively (Z/pZ)*/{£1}). These are
Q-rational divisors of degree 0. Put Cq = C1 2y + Z[D(apy | + Z[D()]. Then
Cq coincides with the subgroup of J;(2p) generated by the classes of Q-rational
divisors of degree 0. Continuing the arguments in the present paper, we can prove
the following statement, and also determine the p-primary part of Cg. However,
those results and proofs will be given in other papers.

STATEMENT.  Let p be a prime # 2,3. Let C(y 2y and Cq be the subgroups
of J1(2p) defined above.

(1) Co =Cupg)-
(2) Let hqg be the order of Cq. Then we have

hg ="t p Il {a- ¢<2>>(i32,w)2},

where Y runs through all even, primitive Dirichlet characters modulo p.

In the following we describe the contents of each section. In Section 2 we
consider the modular curve X; (M) with M square-free. Here we parametrize the
set of cusps by an abelian group called a Cartan group, and identify the cuspidal



Cuspidal class number formula 27

divisor group with the group ring of the Cartan group. In particular some relations
between the divisors of Siegel functions are proved. In Section 3 we confine the
study to the case M = 2p. The purpose of this section is to prove that the group
of modular units is generated by Siegel functions. In Section 4 we determine the
group of modular units. In Section 5 we compute the cuspidal class number.

In the present paper we denote by N, Z, Q, R, C, 15 the set of natural
numbers, the ring of rational integers, the field of rational numbers, the field
of real numbers, the field of complex numbers, the two-by-two identity matrix,
respectively.

2. Modified Siegel functions on the curves X;(M).

In this section we consider modular curves X;(M) with M square-free, and
construct modular units on X7 (M) by the use of modified Siegel functions. We
parametrize the cusps of X;(M) by an abelian group (called a Cartan group),
and identify the cuspidal divisor group with its group ring. In order to do it, we
consider a conjugate of the group I'y (M) which is a principal congruence subgroup
of G(v/M). In general, the cusps of the curve determined by a principal congruence
subgroup of G (\/M ) can be parametrized by an abelian group. This fact was used
in our previous papers [13]-[15] and [17], and proved in [18] for arbitrary principal
congruence subgroups of G(v/M).

2.1. Modular curves X;(M) and Xj.

Let T" be a Fuchsian group of the first kind. We denote by Xr the complete
nonsingular curve associated with the quotient space T'\$), where the symbol $
denotes the upper half plane.

Let M be a square-free integer fixed throughout this section with M # 1.
We denote by I'1(M) the subgroup of SLy(Z) consisting of all matrices (¢5)
(€ SLy(Z)) witha—1=d—-1=c¢=0 (mod M). When I" = I'y (M), we denote
the curve Xt by X;(M).

Let T be the set of all positive divisors of M, and regard it as a group with
the product defined by 7os = rs/(r, s)? where (r, s) denotes the greatest common
divisor of 7 and s (r,s € T'). Let & be the order defined by ¢ =% . Z\/r. We
denote by G(v'M) the subgroup of SLy(€) consisting of all elements a of the

form

(2.1)

a\/r bVr
eV dyr )’

where a,b,c,d € Z, r € T and r* = M/r. We call r the type of a, and denote it
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by t(a). Let I be the ideal of & defined by I = VM &. We denote by T'(I) the
subgroup of G(v M) consisting of all elements « satisfying

a =1 (modT), (2.2)

and call it a principal congruence subgroup of G(vM). When I" = T'(I), we denote
the curve Xr by X7;.
We have

I‘(I)_((l) \/3\7>_1r1(M) ((1) J‘%) (2.3)

Hence the curve X7 (M) is isomorphic to the curve X;.

2.2. The function field of the curve Xj.

We denote by §; the field of all automorphic functions with respect to the
group I'(I) such that their Fourier coeflicients belong to the cyclotomic field ky; =
Q(e2™/M) and by §; the field of all automorphic functions with respect to the
group G(v/M) such that their Fourier coefficients belong to the field Q. It is
known that the field k;; is algebraically closed in §, and the field C§; is the field
of all automorphic functions with respect to I'(I) (cf. [13, Proposition 1.6]).

Let f(7) (7 € ) be an automorphic function with respect to I'(I). If it has
no zeros and poles on §), we call f a modular unit with respect to I'(1) and also
a modular unit on the curve X;. Later (in Subsection 2.4) we construct modular
units contained in the field §7.

We denote by 4; the subgroup of GLo(&/I) consisting of all elements o which
can be represented by a matrix A (€ M3(0)) of the form

(2.4)

A a\/r byr*
eVrs dyr ]’

where a,b,c,d € Z, r € T and r* = M/r. Then it is known that the field §; is a
Galois extension of §1, and its Galois group is isomorphic to the group ¢4;/{£12}
([13, Section 1 (1.15)]). We denote by ¥;(=%) the group ¥4;/{£12}. Then we have

Gal(§1/81) = %1 (+). (2.5)

Let a be an element of ¢ or ¥;(+). We denote by o(«) the element of the Galois
group Gal(F/F1) corresponding to a by (2.5). Let « be represented by the matrix
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A in (2.4). Then the element 7 of T is determined only by a. We call r the type
of a, and denote it by ().

2.3. A summary of properties of Siegel functions.

Here we summarize some properties of Siegel functions, and in the next sub-
section construct modular units on X7.

For any element a = (ai,as) of the set Q% — Z?2, the Siegel function g, (7)
(1 € 9) is defined in [7]. It has the following ¢-product

o0 k
ga(7) = =g/ Bela) 2miaz(a =121 g, H (1-qrg. ( - qT), (2.6)

where ¢, = €2™7, q, = €*™* 2 = a17 + a, and By(X) = X? — X + 1/6 (the
second Bernoulli polynomial). If b = (by,by) € Z?2, then we have

9a+(7) = &(a, b)ga(T), (2.7)
where €(a, b) is a root of unity defined by
e(a,b) = exp [m'(blbg 4+ by +by+aby — agbl)}. (2.8)
If &« € SLy(Z), then we have
ga((7)) = (@) gaa(T), (2.9)
where 1) denotes the character of SLy(Z) appearing in the transformation formula

of the square of the Dedekind n-function. Explicitly the value of ¢)(«) at a = (‘Z g)
is given by

ori
(—1)(@=1/2 gxp [17;’{(19 —¢)d + ac(l — d2)}} if d is odd,

Pla) = o (2.10)
—i(—=1)(¢=1/2 exp [;;{(a +d)c+ bd(1 — 02)}} if ¢ is odd.

In particular, we note that ¢¥(—12) = —1. (It is known that the kernel of 1) is a
congruence subgroup of level 12 with index 12, and coincides with the commutator
subgroup of SLy(Z).)
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2.4. Modified Siegel functions relative to the ideal I.

Let I = /MO as above. Here we define the modified Siegel functions relative
to the ideal I which are suitable for I'(I). In [18], for an arbitrary non-zero ideal
I (# 0), the modified Siegel functions relative to the ideal I are defined, and their
basic properties are studied. Also in [16, Section 1] the case where the ideal I is
of the form I = n/m& is stated.

Let r be an element of T and 7* = M/r. Let A/I(T) be the set of all row vectors
u of the form

w= (fﬁfx/?) (2.11)

where z and y are rational integers satisfying u ¢ Z+/7 x Zv/r* = Z("). We call
the element r of T above the type of u and denote it by t(u). Put A7 = U, cr A/I(T)
(disjoint). If u is an element of A’ of type 7, and « an element of G(v/M) of type
s (r,s € T'), then the product ua is an element of A} of type r o s.

Let u = (a14/7,a2y/7*) be an element of Qv/7 x QvVr* — Z) (ay,as € Q,
r € T), and put u°® = (a1,a2) (€ Q* — Z?%). We define the modified Siegel function

gu(7) (T € §) by
9u(T) = Gue (\/T7 X T>. (2.12)

In particular, if u € A%, we say that g, (7) is a modified Siegel function relative to
the ideal 1.
Let u € A% be written as (2.11). Then we have the explicit product

2y [«
() = (—1 “mey (T £(r/2)Ba(a/r)
gu(T) = ( )eXp[ 5 g (T )] x

(1 _ er\gthrrk) (1 _ Cj\f[ytferrk) (213)

3

x (1= ¢ft")
k

1

with (pr = exp[2mi/M| and t = exp[2mwiT/v M].
For an element v = (by\/7,ba\/r*) of Z) (by,by € Z), write v° = (b, ba)
(€ Z?). For elements u € A/I(r) and v € Z(") we put

e(u,v) =e(u’,v°). (2.14)
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Let

a= (:\/\? Z{j;) (2.15)

be an element of G(v M) of type s (a,b,¢,d € Z, s € T). For an element r of T,
we put

o = ( “(:’ 31 b(r’*s*)> , (2.16)

Then the matrix a(") belongs to SLo(Z).
Now we have the following transformation formulae ([16, Proposition 1.1],
[18, Proposition 3.5]).

PROPOSITION 2.1.  Let u be an element of A of type r.

(1) Let v e Z0). Then guy(r) = £(u,v)gu (7).

(2) Let a € G(VHT). Then gu(a(r)) = by(a)gua(r), where () = ¥(a).

(3) Let aw € T'(I). Then gy(a(7)) = ey(a ) (@) gy (T), where e,(a) = e(u,v) with
v=ua—u(€Zm).

As an immediate consequence, we have the following proposition, which states
that the modified Siegel functions generate modular units on the curve X;. (For
the proof, see the arguments after [16, Proposition 1.1] or the proof of [18, Theo-
rem 3.1].)

PROPOSITION 2.2.  Let u be an element of A’ of type r. Let [2M,12] be the

least common multiple of 2M and 12. Then the function gLQM 121 depends only on

the residue class of u modulo Z"), and is invariant under the exchange u — —u.
Moreover, the function g,[fM 2 Gs an automorphic function with respect to T'(I),
has no zeros and poles on ), and its Fourier coefficients belong to the cyclotomic

field kyr = Q(eQm/M). Hence it is a modular unit contained in the field Fr.

2.5. The Galois action on the function g[ZM 2],
By Proposition 2.2 the function gq[f M.12] ( € A7) is an element of the function

field §;. Here we consider the action of the Galois group Gal(§;/§1) on g[zM 12

For each r € T, put
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" = (A7 1Z7) J {1} (2.17)
and
o =) " (disjoint). (2.18)
reT

Let u be an element of A7. We denote by [u] the class of u in &//. By
(20,12

Proposition 2.2 the function gy ! depends only on the class [u] of u. Therefore,
for any element v of &7/, we can denote by gl[,gM’u] the function gLQM’m] with

v=u]. Ifve Qfl/(r), we call r the type of v and denote it by #(v).

Let v be an element of &7} with v = [u] (v € A}). Let « be an element of ¥;
or ¥;(+), and represented by a matrix A of the form (2.4). Then the product uA
belongs to A7. We denote by va the element of <7/ which is represented by uA.
The class va does not depend on the choice of u and A. This defines the action of
@ on the set 7/, and also of ¢;(%). If v is of type r and « is of type s, then va
is of type r o s. Concerning the Galois action on gLQM’H] we have the following.
(For the proof, see [13, (2.5)] or the proof of [18, Theorem 3.2].)

PROPOSITION 2.3.  Let ve<?] and o € 9;. Then we have (gLQM’lQ])U(a) =

[2M,12]
oo .

2.6. The Cartan group and the cuspidal prime divisors.
Let C; be the subgroup of ¢; consisting of all elements o which can be rep-
resented by a matrix A (€ Mz(0)) of the form

A= (aﬁ WF) (2.19)

bVT* av/r
with a,b € Z, r € T and (ar,br*, M) = 1. It is an abelian subgroup of ¢;, and
called a Cartan group.

Let H; be the subgroup of ¢; consisting of all elements o which can be
represented by a matrix B (€ M3(€)) of the form

B— ((1) 2) (2.20)

with d € Z and (d, M) = 1.
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We have the following
4 = HCrand HrNC; = 1. (2.21)

Let P, denote the prime divisor of §; defined by the g-expansion. Let P be a
prime divisor of §;, and vp the valuation of P. For any element o of Gal(F;/31),
we define the prime divisor P? by vpe(h?) = vp(h) (h € §1), which defines a right
action of the group Gal(Fr/81). We can prove the following (i), (ii), (iii) and (iv)
(cf. [13, Section 2.1], [18, Proposition 4.1]).

(i) The conjugates PZ are of degree one, hence the prime divisors P2 can be
regarded as prime divisors of the function field CF; and identified with
points on the curve Xj.

(ii) If & € ¢ is an element represented by a matrix A € G(v/M), then the
prime divisor Pgo(a) corresponds to the cusp on X7 represented by A~1(oc0).

(iii) The set of all elements a € ¥; satisfying PLU™ = P coincides with the
group +Hj.

(iv) Let ¢,(I) be the subgroup of ¢; consisting of all elements which can be rep-
resented by the matrices A of the form (2.4) satisfying det(A4) =1 (mod I).
Then we have ¥ = 4, (I)H;, and for any element « € 4,,(I) there exists an
element A € G(v/M) such that a = A (mod I) ([13, Proposition 1.1]).

By (2.21) and (iii), every conjugate PZ can be written as P2 with a unique
element o of Cr(+) = Cr/{x12}. By (i), (ii) and (iv) any conjugate PZ can be
identified with a cusp on X;. Conversely it is known that any cusp on X; can be
represented by a point A~*(co) with A € G(v/M). Thus the group C7(+) and the
set of cusps on the curve X; correspond bijectively by the mapping a — PZ®).

We call the conjugates PZ the cuspidal prime divisors.

2.7. The divisor of the function g,[,ZM’u].

By Proposition 2.2 the function gLQMJQ] (v € o7]) is an element of the function

field ;. Here we determine the divisor of g,[,2M’12] as an element of Fr.

For any € R we denote by (z) the real number defined by 0 < (z) < 1
and (z) = z (mod Z). Let v = [u] with u = (a1/r, asV/7r*) € A/I(T) (a1,a2 € Q).
Then the number By({a1)) depends only on v but not on the choice of u because
of the equation Ba({—x)) = Ba((z)). Therefore we can denote it by By((v$)). The
following proposition can be proved in the same way as [13, Proposition 2.3] or
[14, Theorem 2.1], and is proved in the case where I is an arbitrary ideal in [18,
Theorem 4.2]. But for completeness we give the proof.

PROPOSITION 2.4. Let v be an element of <ff with t(v) = r. Then the
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[2M,12]

divisor ofg as an element of F is given by

dlv( [2M, 12]) _ [2M,12]

Z (ro t(a))BQ(«UQ)D)PgO(a—l).

aeCr(£)

PROOF. Let v = [u] with u = (a1/T,a2V/r*) € A'I(T) (a1,a2 € Q). We can
choose the representative u so as to satisfy 0 < a; < 1. Let us write a; = z/r with
x € Z. Then, in the product (2.13), x + rk and —z + rk are non-negative integers
for all k € Z with k = 1. Since the number vp__ ( [2M, 12]) is equal to the order of

LQM 12 with respect to t = exp[2miT/v/ M], by (2.13), we have
2M, 12 20, 12 .
vp_ (g[2M 12]) %ng(al) — [27]7”32(@1)). (2.22)
Let a be an element of Cy(%). Then v, -1, (gLZM 12]) =vp, ((ngM’lzl)a(a)) =

(gl[?of\/[ 12]) (Proposition 2.3). Combining this equation with (2.22) above, we

have the desired formula, which completes the proof. O

Let Z be the free abelian group generated by the cuspidal prime divisors of Fy,
and 2 the subgroup of & consisting of all elements of degree 0. Let R = Z[C(+)]
be the group ring of C;(4), and Ry the additive subgroup of R consisting of all
elements of degree 0. Let

0: PR (2.23)

be the isomorphism defined by the mapping PZ® ~ a. Then we have (%) =

Ry. Concerning the product in R we have the following.

PROPOSITION 2.5. Let v € & and o € Cr(£). Then we have
o (div (g2M12)) = o (div (g2M12)).

Proor.  Put o(div (gi""")) = Y g0, w) fo(B)B with f,(3) € Z. Then
fo(B)=v ) (gLQM 12]) Multiplying cp(dlv ( [2M 12])) by a we have

(le ( (2, 12] = Z fu(ﬁ)aﬁ = Z fv(ail

BeCr (%) YECT(E)
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The coefficient f,(a~17) is equal to  pota—in (gLQMvm]) = Vpetr ((gLQMJ?])U(O&)).

By Proposition 2.3, we have

o ()7 ) = i (217
Thus -1 - : : . . [2M,12]
us we have f,(a7'y) = fua(y), which implies ap(div (go )
o(div (gq[?éw’lz])). Thus the proof is completed. O

2.8. Representatives of &/}.

Let u be an element of A’ of type r. It is obvious that Mu € Z() (see (2.11)).
Let [ be the least natural number such that lu € Z("). Then we say that u is of
order l. Since any element u’ of [u] is also of order I, we call | the order of the
class [u]. Let /(1) (respectively ;" (1)) be the subset of &7/ (respectively o7}
consisting of all elements of order . Then we have the following decomposition

] = U ] (l) (disjoint). (2.24)
I#1,€T

For each [, we define the element w; € A'I(M) by
1
wy = (l\/M,o) (2.25)

Concerning the group action of C7(+) on &7/ we have the following.

PROPOSITION 2.6. Letl# 1, € T. Then the set <7/(l) is an orbit of Cy(L),
and ] (1) = [w]Cr(L).

PrOOF. Elementary. O

Let %"y) (r € T') be the subset of A/I(T) consisting of all elements v of the form

(2.11) satisfying one of the following conditions:
(i)z=0,and 0 <y/r* <1/2,
(i) 0<z/r<1/2,and 0 S y/r* < 1.

Put Zr = U,cr %}7'). We call the elements of #Z; reduced. For each | (I #
1,€T), let 2\ (1) be the subset of 2" consisting of all elements of order [, and
put Zr(l) = U,er %gr)(l). Then the sets %, %}T), Z1(l) and %gr)(l) are the
complete sets of representatives of .7/, JZ%I/(T), {(l) and ;zfll(r)(l) respectively.



36 T. TAKAGI

2.9. Square roots of g, with u of order 2.

Let [ = 2 (when M is even). Then the set %}”(2) contains only one element
which is (0, (1/2)v/r*) or ((1/2)4/7,0) according as 2{r or 2| r. It is known that
if u is of order 2 the function g, (7) is a square of a product of (modified) Siegel

functions up to a constant. For definiteness, for u € %}T)(Q), we denote by /g (T)
one of the two square roots of g, (7) as follows:

V90,0/2)vm) (1) = \fexp{ } tr/24H (14, (2.26)

k=1
9((1/z>ﬁ,o>(7)=exp[ } t‘r/‘*gl—[ —her/2y, (2.27)

where t = exp[27mi(7/vV M)]. (These are the same as [16, (2.5), (2.6)].) Then, for
example, these functions can be written as follows:

90,0/2)v) () = € X 90,174y (T) X 9(172) y7,(1/2)v7) (T): (2.28)
91/2)vr0)(T) = (=€) X ga/ayv7.0) (T) X 9ajay /2 v (T), - (229)

where ¢ = exp[27i - 7/16].

2.10. Relations between the modified Siegel functions (1).
We define the notation g, (7) as follows.

Gu (T) =

gu(T)  if the order of u is not 2,
(2.30)

Vau(r) if u€ Zr(2).

Here, we do not define the notation §,(7) for u which is of order 2 but ¢ %;(2).
Put

@)= I . (2.31)

ueRy” (p)

Then the function £ )(T) can be expressed using the Dedekind 7-function 7(7).
In fact, Put

H(r) = n(}) t1/24H (2.32)
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with ¢t = exp[27i(7/v M)]. Then we have

P) () — H((por)r)
fﬁ )(T)-—-C(Par) X “‘}izg;j“* (2.33)
where
\/Pexp {271’2' i 1] ifptr,
e(p,r) = . (2.34)
exp[—Qm’-p } ifp|r

([16, Proposition 2.2]). The following proposition gives relations between the
functions g, (7) with u reduced and of prime orders.

PROPOSITION 2.7.  Let r be an element of T

(1) Let p be a prime factor of M. Then, we have

() % 1910) = Vpexp |~ 2mi P2

(2) Let p and q be two different prime factors of M. Then we have

1) _ 1)
R 58

PROOF.

(1) By (2.33) we have

@) (). $0) (= @) H((por)7) elp,por) - H(rr) _ .\
fr ( ) fpor( ) H(TT) H((pO’I")T) (pa ) (p7p )7

which is equal to \/pexp[—27i- (p —1)/8] by (2.34).
(2) Since ¢(p,r) = c(p,qor) by (2.34), we have, by (2.33),

P(r)  H((por)r)- H((qor)r)

@y H(rr)-H((pogor)r)’

q
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which is symmetrical about p and gq. Hence p and ¢ can be exchanged with
each other. g

2.11. Relations between the modified Siegel functions (2).
Here we give another type of relations between the functions g, (7).

PROPOSITION 2.8. Let k and | be two elements of T with (k,1) = 1 and
l # 1. Then we have

N(k,)
. N(k,l 5
danvio™ = DY T 3 pgayeapmvio ()
=0
where N(k,1) =k —1 or (1/2)(k — 1) according as !l # 2 orl = 2.

REMARK 2.1. Note that if a notation g, (7) with u of order 2 appears in the
equation of the proposition, then wu is reduced, hence it is well-defined.

PROOF. Put t = exp[27i(7/vVM)] and u = ((1/(kl) + z/k)Vkl,0). First,
we consider the case [ = 2. By (2.27), we have

Javio) () = \/Ia/2vz0 (T :exp{ ] rlmH —##71). (2.35)

If0 <z =< (1/2)(k—1)—1, then the order of u is not 2, and if z = (1/2)(k—1),
then v = ((1/2)V2k,0). Hence, if 0 < 2 < (1/2)(k — 1) — 1, we have
901/ (k) +a/k)VRL0) (T)
= 91/ (k1) +2/k)VFL0) (T)
_thQ(l/(Qk)+x/k) (1 _ t1+2ac) H (1 _ t2kh+1+2x) (1 _ t2kh—1—2x)’ (2.36)

h=1

and if © = (1/2)(k — 1), by (2.27), we have
ﬁ((1/(kz)+z/k)m,o)(7): 9((1/2)@,0)(7)

_ p|: 7TZ:| St k/24 H tQkh k? (237)

By (2.35), (2.36) and (2.37), we can prove the equation of the proposition easily.
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Next, we consider the case [ # 2. Then we have

9oy (™) = 9amvio (T)

— 7t(1/2)lB2(1/l) ﬁ (1 _ t1+lh) (1 _ tl*1+lh). (238)
h=0

Since for all x the order of u is not 2, we have

g((1/(kz)+z/k)m,o)(7)
= g((l/(kl)+z/k)m,0)(7)
o0
— _4(1/2)klBa(1/ (kl)+z/k) H (1 _ t1+lac+klh) (1 _ tl—1+(k—1—z)l+klh). (2_39)

h=0
By (2.38) and (2.39), we can prove the equation of the proposition easily. O

REMARK 2.2. Proposition 2.8 is a special case of a general relation con-
cerning the modified Siegel functions, which is a generalization of the distribution
relation of the ordinary Siegel functions.

2.12. Relations between the elements 6;.

Let ¢ : 2 = R be the isomorphism (2.23). Put Zg = 2®Q and Rg = R®Q.
Then we have the isomorphism Zq = Rg extending ¢, which we also denote by
©.

Let f(7) be a function such that {f(7)}¢ is a modular unit in the function
field 1 for some integer e € IN. Then we define the element div(f) of Z¢g by

div(f) = L div(fe). (2.40)

e

In particular, let v be any element of <//(I) (I # 1,€ T), and v = [u] with
u € Z1(l). We denote by div(g,) the element div(g,).
Let v € &/ and o € Cr(+£). Then, by Proposition 2.5, we have

ap(div(go)) = (div(Gua))- (2.41)

Let w; (I #1,€ T') be the element (2.25). We denote by 6; the element of Rq
defined by

0 = @(dlv(g[wz])) (2.42)
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Let St([w;]) be the stabilizer of [w;]:
St(fwi]) = {a € Cr(£) | [wila = [wi]}. (2.43)
If o € St([w;]), then, by (2.41), we have
ab; = 0,. (2.44)

We denote by C}T) (respectively C}T)(:I:)) the subset of C; (respectively
C1(%)) consisting of all elements of type r.
About the group St([w;]) we have the following.

PROPOSITION 2.9.  Let | be an element of T with | # 1.

(1) The stabilizer St([w;]) of [wy] is the subgroup of C}l)(i) consisting of all ele-
ments o which can be represented by matrices of the form (8 2) with a € Z
satisfying a = 1(mod) and (a, M) = 1.

(2) Ifl # 2, then St(Jw)) = (Z/1*Z)*.

(3) If 1 =2, then St([w))) = C\V(+) = (Z/MZ)*/ £ 1.

PROOF.

(1) and (3) can be proved easily.

(2) Let a € St([w;]) be represented by a matrix (&%) with a = 1(mod ) and
(a, M) =1. Since [ # 2, the class of a in (Z/M Z)* depends only on «, hence the
class of a in (Z/1*Z)* is determined by «, which we denote by ¥ («). Then it is
easy to see that ¢ gives an isomorphism St([w;]) = (Z/1*Z)*. O

Let us denote by [r] (r € T') the element of C(+) which is represented by the
matrix

(W W) | 0.45)

VG

The following theorem is a restatement of Proposition 2.7 in the language of divi-
sors, and gives relations between the elements 6; with [ primes.

THEOREM 2.1.  In the group ring Rqg, we have the following relations.

(1) Let p be a prime factor of M. Then we have
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( S a) (1 + [p])0, = 0.

acc (4)

(2) Let p and q be two different prime factors of M. Then we have

! 1
ISt([wﬂ)l( 2 “>(1+[pQ])9p—W< > a>(1+[pq})9q-

acCM (+) acCM (4)

ProOOF. Let p be a prime factor of M. For each r (¢ T), let
R(C’;T)(:I:)/St([wp])) be a complete set of representatives ( C C;T)(j:)) of the
quotient set C}T)(:l:)/St([wp]). By Proposition 2.6, the set @/I’(T) (p) consists of
all elements [wpla with a € R(Cﬁr*)(i)/St([wP])). Note that if aq # oo (o €

R(CY(£)/5t([wp))), i = 1,2), then [wy]a; # [wylas. By (2.31) and (2.41), we
have

p(div(f) = > @div(gn)) = Y ¢(div(du,a)

UGW;(") (p) @

(%:a> O, (2.46)

where o runs through R(C’}T*)(i)/St([wp])). Let s be any element of 7. Since,
if & runs through R(C;T*)(:t)/St([wp])), then «[s] runs through a complete set of
representatives of C’}“OT)*)(:E)/St([wp]), we have by (2.46)

o(div (£2)) = (Za) 1519,. (2.47)

[e%

(1) By (2.46), (2.47) and (1) of Proposition 2.7, with r = M, we have

0= (div (/% - 17),)) = (Za)<1+ 7)o, (2.48)

[

where « runs through R(C;l)(i)/St([wp])). Since the right-hand side of (2.48) is
equal to
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|5t([1wp])| ( 2 a) (1 +[p))b, (2.49)

acc(4)

(1) is proved.
(2) By (1) of Proposition 2.7, (2.46) and (2.47), with » = M, we have

(p)
ol () ) = et (147 200)

qoM
= (Za)(l + [pq])6p, (2.50)

[0

where a runs through R(C}l)(i)/St([wP])). The term (2.50) is equal to

|St([1wp])|( > a)(1+[pq])9p- (2.51)

eci (+)

By (2) of Proposition 2.7, we can exchange p and ¢ in (2.50), whence the relation
of (2) follows. O

Let a be an integer which is prime to M. We denote by Jj,) the element of
™M (£) represented by the matrix (a9).

The following theorem is a restatement of Proposition 2.8 in the language of
divisors.

THEOREM 2.2. Let k and l be two elements of T with (k,l) =1 and ] # 1.

(1) In the group ring Rg, we have the following relation

160 = 5 i, )“>[S]2}9“’

t €St ([w;]

where t runs through all positive divisors of k with s = k/t.
(2) Let t be a positive divisor of k. Let a be an integer satisfying a = —1 (mod t)
and a =1 (modt*), and put 6; = 5. Then we have

1 ifl 2,

St([we=]) N St([wye]) = {{17&} ifl = 2.
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In particular, if t =1 or t* = 2, the intersection is the trivial group.

(3) Let t be a positive divisor of k, and put s = k/t. If s = £1 (modl), then we
have

(L5 e (5 e

a€St([wyx] a€St([wex])

In particular, if | = 2 or 3, then the equation above holds for any t.

PRrROOF. (1) Since the following equations hold in the set 7}

(s [,
(5w - ().

we have, by Proposition 2.8,

TR0 = D e(div(ge)), (2.52)

where v = [(((1 + lz)/kl)v/M,0)].

Let A be the set of all integers 1 + lz with 0 < o < N(k,l). Then A is a
complete set of representatives of Z/kZ or (Z/kZ)/ + 1 according as [ # 2 or
I = 2. Let ¢ be any positive divisor of k, and put s = k/t. Let A(t) be the subset
of A consisting of all integers a (€ A) with (a,k) = s. Then we have the disjoint
union

A=JA®). (2.53)

t

Let B(t) be the set of integers a/s with a € A(t). Then it is easy to see that
B(t) is a complete set of representatives of (Z/tZ)* or (Z/tZ)*/ + 1 according
as | # 2 or ! =2. By (2.52) and (2.53) we have

"] Z Z (div(gy)) (2.54)

t beB(t)

where v = [((b/It)v/'M,0)].



44 T. TAKAGI

Let b € B(t). Since [s]* = d[s5+], we have

(o= [ 2mn). e

Since (b,t) = 1 and (s+s*, M) = 1, we have (b(s+s*),t) = 1. Let a be an integer
with (a, M) = 1 satisfying

a=b(s+s") (modt), (2.56)
a =1 (modt*). (2.57)

We have a = 1 (mod!) by (2.57) because [ | t*. Also we have b(s+ s*) = 1 (mod 1)
because s* = 0(mod!) and bs = 1 (mod!) since bs € A. Hence we have

a=0b(s+s") (modl). (2.58)
By (2.56) and (2.58) we have
a =b(s+ s*) (modlt). (2.59)

By (2.55) and (2.59) we have

(CYD) R (R

By (2.57), the element dj, belongs to St([ws-]). Thus we have shown that for each
b € B(t) there exists an element « € St([wy+]) such that

(5v31.0) |15 = fwn 2.:61)

Let o and 3 be elements of St([w;-]). It is easy to see that [wi]a = [wy]B if
and only if a3~ € St([wy]). For any b € B(t), let ¢(b) be the class of « in the
factor group of St([ws+]) by St([we<]) N St([wye]) where « is an element of St([we«])
satisfying the relation (2.61). Then it is easy to see that ¢ is a bijection between
the sets B(t) and St([w])/(St([we]) N St([wie]))-

Let b € B(t) and v = [((b/It)v/M,0)]. Let a € St([w;-]) be an element which
satisfies the relation (2.61). Then we have
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p(div(g)) = als] 0, (2.62)

whence

> e(div(gn) = (Z a) [s] 726, (2.63)

beB(t)

where o runs through a complete set of representatives of St([w-])/(St([we<]) N
St([wy])). Since the term on the right-hand side of (2.63) is equal to

! -2
|5t([wt*])ﬂSt([wzt])|< 2 )a>[s] Ou (2.64)

a€St([wex]

(1) is proved.

(2) Let o € St(Jwe+]) N St([wye]). Then there exist two integers a and b such
that a = d,) = o) with (a, M) = (b, M) =1, a = 1 (mod t*), and b = 1 (mod It).
Since d,) = O], we have a = £b(mod M). Assume that a = b(mod M). Since
a = 1(modt*) and a = b = 1(modt), we have a = 1(mod M), which gives

a = 1. Next, assume that a = —b(mod M). Since ! | ¢*, we have 1 = a =
—b = —1(mod!), whence 2 = 0(mod!), which implies [ = 2. Thus, if [ # 2, the
intersection contains only the unity. If [ = 2, we have a = —b = —1 (mod t) and

a = 1 (mod t*), hence the unique possible element is oo = ;. In fact, if | = 2, it is
easy to see that the element ¢, is contained in both St([w+]) and St([wy]). This
proves the equation of (2). If t =1 or t* = 2, then §; = 1, which proves (2).

(3) If s = +1 (mod!), then we have s + s* = +1 (mod!) because [ | s*. If
s = 1(modl) (respectively s = —1 (modl)), let a be an integer with (a, M) = 1,
a =1(modt*) and a = s+s* (modt) (respectively a = —(s+s*) (modt)), and b be
an integer with (b, M) =1, b =1 (modlt) and b = s+ s* (mod(t* /1)) (respectively
b= —(s+s*)(mod(t*/1))). Then df, € St([ws-]) and ) € St([wy]). It is easy
to see that ab = s + s* (mod M) or —(s + s*) (mod M) according as s = 1 (mod )
or —1(mod1) respectively. Since [s]* = 8[,14-), we have [s]? = ju = 0y €
St([wy])St([wye]). This proves (3). O

COROLLARY 2.1.  Assume that M is even with M # 2 and l is an odd factor
of M with I # 1. Then we have

O = (17120 = [217%) 6.

PRrROOF. In the theorem, put k = 2. O
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COROLLARY 2.2. Assume that M = pyps with p1 and po different primes.

(1) We have the following relation

( 2 )a>0M = (Ip2] ™" = [p2]7*) Oy,

a€St([wp, ]

(2) In particular, if p1 = 2, then we have

( 3 a>9M=(£pz}‘1—1)92.

acC)(+)
(3) In particular, if po = 2, then we have
Orr = (217"~ [2]72)6p,-

Proor. In the theorem, put [ = p; and k = po. O

REMARK 2.3. Let .% be the group of all Siegel units in the field §;, where
we say that a modular unit in §; is a Siegel unit if it can be expressed as a
product of the modified Siegel functions g, (7) with u € %y up to a constant. Let
div() denote the group of principal divisors of all Siegel units in the field §;.
Let ¢ be the isomorphism (2.23). Then ¢(div()) is an ideal of the group ring
R, and generated by the elements 0; with [ # 1,€ T. If M is a prime, then the
ideal ¢(div(¥”)) is generated by only one element 6),. But, if M is composite,
except the case where M = 2p with p a prime # 2, the ideal ¢(div(”)) has the
generator set {6;} consisting of more than two elements, and the relations between
the elements 0; are complicated. On the contrary, in the case where M = 2p with
p a prime # 2, the ideal ¢(div(.7)) is generated by two elements 6, and 6, by the
relation (3) of Corollary 2.2. This is the reason why we confine our study to the
case M = 2p in the later sections.

3. The fullness of the Siegel units.

Henceforth we consider the modular curve X;(2p). We use the notation and
the results in the previous section under the assumption that

M = 2p, (3.1)

where p is a prime with p # 2.
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In this section, we prove that the group % of the modular units in §; has
the maximal possible rank 2p — 3, and that any function in .% can be expressed
as a product of the modified Siegel functions up to a constant. In later sections
we shall assume that p # 3.

3.1. The cuspidal divisor class group.

It is easy to see that the number of the elements of C7(=£) is equal to 2(p—1).
Hence the number of the cusps on the curve X; (or X;(2p)) is also equal to 2(p—1).

Let 2 and %, be as before. Let & or Z¢ be the group of all modular units
in §7 or C§; respectively. Later (in Corollary 3.1) we shall see that #c = C*.%#
and the divisor group div(.%#) can be identified with the divisor group div(Z¢).
Therefore we call the factor group

C = Do /div(F) (3.2)

the cuspidal divisor class group on the curve X; and the order of € the cuspidal
class number of X1 or of X1 (2p).

3.2. Divisors of modified Siegel functions.
The following proposition gives the explicit representations of 6;.

PROPOSITION 3.1.  For each l =2, p, 2p, the element 0; is given as follows.
In each summation, the element « runs through the group Cy(x) with the described

type.
(1) Letl=2. Then we have

e s s
t

t(a)=1 t(a)=2 t(a)=p

=

(2) Letl=p. Ift(a) =1 or2, we assume that « is represented by a matriz (8 2)

a\/§\/;77
OT(\/ﬁa\/5

9p=t(§_1p32(<p>) e 2 ()

t(a)=

—I—éz Zoz

t(a)=p t(a)=2p

(e

) (a € Z) respectively. Then we have

(3) Let I = 2p. Ift(a) = 1 or 2, we assume that « is represented by a matriz
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(“ 0) or (a\/5 VP ) (a € Z) respectively. Then we have

0a \/17 a\/§
a - p
= Zol(55) ot 2 ()
t(a)=1 t(a)=2
1 41 1
t(a)=p t(a)=2p
PrROOF. These follow from Proposition 2.4. O

The following proposition gives relations concerning the elements 6, and 6,,.

PROPOSITION 3.2.  Concerning the elements 0 and 0,,, we have the following
relations. In the relations in (2) and (3), the element o runs through the group
Cr(x) with the described type.

(1) For 02 we have
(14 f2)62 =0,

where Bo denotes any element of Cr(£) of type 2.
(2) For 6, we have

(2073 0

t(a)=1 t(a)=p

(3) For 6y and 8, we have

( Z at Y ) (1 + Bap)be,

t(a)= t(a)=2p

where B2, denotes any element of Cr(%) of type 2p.

PROOF.
(1) By (1) of Theorem 2.1 we have (Zaed”(i) @) (1+[2])f2 = 0. Since afy = 6
(1) " -
for any o € C}/(£) by (3) of Proposition 2.9, we have (ZQEC§1>(i) @)y =
’C’I ‘92 and (Zaec§1)(i) a) [2]02 = |C’§1)(j;)‘5292 with (2 any element of
C;Q)(i). Hence we have ’C}l)(i)‘(l + 32)02 = 0. This proves (1).
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(2) By (1) of Theorem 2.1 we have (Zaec§1>(i) a)(1 + [p])f, = 0. Since

(Eaec§1>(i) a)p] = Zae(]}”)(i) a, we have the relation of (2).
(3) By (2) of Theorem 2.1 we have

1 1
sl X e)arit - mrs (X a)ur e

acCV(4) acCV(4)

Since |St([wy])| = 1 by (2) of Proposition 2.9, the left-hand side of the equation
above is equal to (Zt(a):l Ot Dt (a)=2p @)0,. Also since St([ws]) = C’}l)(:l:)
by (3) of Proposition 2.9, the right-hand side of the equation above is equal
to (1 + f2p)02. This proves (3). O

The following proposition gives relations between 6y, and §; with [ = 2, p.

ProrosITION 3.3.  Concerning the elements 02, and 0, with | = 2, p, we
have the following relations.

(1) For 05 we have

( Z 04)92;9 (="' —1)62,

t(a)=1

where « runs through the group Cr(+) with t(a) = 1.
(2) For 0, we have

02, = (2] = [2]72)0,.

PROOF. These are the same as (2) and (3) of Corollary 2.2. O

3.3. Relations between the modified Siegel functions.
The following proposition gives relations between the functions §,(7) with
u € Xy.

PROPOSITION 3.4.

(1) Let u be any element of Z1(2p). Then the function §,(7) can be expressed as
a product of the functions g, (1) with v’ € Z1(p) up to a constant.

(2) J;he tpmducts Hueﬂ?(lm(p)u%?’)(p) Gu(T) and Hue%§2)(p)u%§2”>(p) Ju(T) are con-
stants.

(3) The products Hue@}l’@)u%f)@) gu(T) and Hueﬁgp>(2)u@§zp>(2) gu(T) are con-
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stants.
(4) The products Hue%;l)@)u%?p)@) Ggu(T) and Hue%z)@)u%gp)@) Ju(T) can be ex-
pressed as products of the functions G, (T) with v’ € Z1(p) up to constants.

ProOOF. These statements follow from the relations between the elements
0;, the equation (2.41) and Proposition 2.6.

(1) This follows from (2) of Proposition 3.3.

(2) Multiplying the relation of (2) of Proposition 3.2 by an element of C7(+) of
type 2, we have (Zt(a):Q A+ a)=2p «)6, = 0. The statement of (2) follows
from these relations.

(3) Multiplying the relation of (1) of Proposition 3.2 by an element of Cj(+) of
type p, we have B,02 + B2,02 = 0, where 5, (respectively (2,) denotes an
element of Cr(+) of type p (respectively 2p). The statement of (3) follows
from these relations.

(4) Multiplying the relation of (3) of Proposition 3.2 by an element of C7(+) of
type 2, we have (Zt((x)=2a + Zt(a):p a)Hp = [abs + [pba, where By (re-
spectively (,) denotes an element of Cr(%) of type 2 (respectively p). The
statement of (4) follows from these relations. O

3.4. A generating set of Siegel units.

Let . be the group of all Siegel units in the field §;, where we say that
a modular unit in §; is a Siegel unit if it can be expressed as a product of the
modified Siegel functions §,(7) with u € Z; up to a constant.

We define the subsets Z§(p) and %3 of % by

#w = (U a0~ tw))o( U 20 - we)) 63

i=1,p 1=2,2p

A7 = %5 (p) U{wa} (3.4)

1021 )
(respectively (J;_s 2, %’;Z)(p)), and wy is the element defined by (2.25). We note
that 22\°7)(2) = {w,}.

where w1y (respectively u(z)) is an arbitrarily chosen element of |J

PrOPOSITION 3.5.  Any function g in ¥ can be written as g = c -
(1Guwy )™ (02) Hue@g(p)(gu)m(“) with ¢ € ki, and m(u) € Z (u € %#7).

ProOOF. Let g be any function in .. Then g is a product of the functions
Ju wWith u € Z; up to a constant. We can remove the functions g, with u € %2;(2p)
from the expression of g by (1) of Proposition 3.4. Also we can remove the functions
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Gy With u € %’}1)(2) U %’;p)(Z) by (3) of Proposition 3.4, and the function g, with
u € %}2) (2) by the combination of (3) and (4) of Proposition 3.4. (Note that each
set %’}”(2) (r € T) contains only one element.) Thus g can be expressed as a
product of g, with u € Z;(p) U %’}2”(2) up to a constant. Let u(;) (respectively
u(2)) be the element of %}”(p) U%’;p)(p) (respectively %’;2)(}7) U%§2p) (p)) in (3.3).
Then we can remove the functions g, ,, and gy, from the expression of g by (2)
of Proposition 3.4. Thus g can be written as a product of the functions §, with
u € %37 (p) U%;QP)Q) and a constant. Let u € Z7(p). Then, by (2.13), the Fourier
coefficients of g, = g, belong to kps. Let u € ﬂgzp)@). Since %}21’)(2) = {ws},
we have §, = Ju,. By the definition (2.27) the Fourier coefficients of the product
1+ Guw, belong to kjs. This proves the proposition. O

3.5. The fullness of the Siegel units.

Here we prove that the functions g, with u € #7 are independent, and that
. coincides with the group % of all modular units in F;.

Let ™) be the function field defined in [13, Section 1.5]. Tt is the field of
all automorphic functions with respect to the congruence subgroups of G(\/M )
such that their Fourier coefficients belong to the cyclotomic fields. Then the field
CFM) coincides with the field of all automorphic functions with respect to the
congruence subgroups of G(v/M).

Let u be any element of Z;. Let a be any element of ¢; or ¢;(+). Since the set
Z; is a complete set of representatives of 27/, there exists a uniquely determined
element ' € #Z; such that [u'] = [u]a, which we denote by u o a:

[uoa] = [u]a. (3.5)

It is obvious that if u € %’y) (1) and t(a) = s, then uoax € %’}TOS) ().
Since each set %}T)@) (r € T) contains only one element, we denote the
unique element of %’;”(2) by u(")(2).

LEMMA 3.1.  Letl be a prime, and let m : Z1(2) U%;(p) — Z be a mapping.
Assume that there exists a function g € CFM) such that

I @ =g

u€ER(2)UZ1(p)

Then we have the following.

1) Let « be any element of 9, and let u be any element of 748 p). Then
T
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—m(u(2)oa) +m(u?(2)oa)+ m<<;\/ﬁ, o) o a)

= m(uo «) (modl).

(2) Let uy and uy be any elements of %’}T)(p) (r € T). Then m(u) =
m(uz) (modl).

PROOF. The statement (2) follows immediately from (1) if we take as «
any element of type r. We prove (1). The relation of the lemma implies that g
belongs to the field F™). Let G 44 and U be the groups defined in [13, p. 352], and
0 Gay — Aut(F™M)) be the homomorphism defined in [13, p. 355]. Let = a~!,
and f; an element of U such that § = f; (modI) (cf. [13, Proposition 1.4]).
Then we have gy, B = (a constant)g,os by Proposition 2.3. Applying the element
(1) to the equation of the lemma, we have [T,c 2, 202, () (Guop)™™ = g} where
g1 = (a constant)g?(®1). Let m; be the mapping from %;(2) UZ%;(p) to Z defined
by m1(u) = m(uoa). If w runs through #Z;(2) UZ;(p), then so does uo 3. We have,
therefore, Hue%(z)u%,(p) (Gu)™ ™ = g Let f be a non-zero element of CFM)
with 37, arqk its Fourier expansion where gn = exp[27i(7/(NVM))] (N € N).
Let ahqf{, be the lowest term. Then the power series f* = f/(ahqf{,) is called the
reduced form of f (cf. [7, p.88]). Let g and g7 be the reduced forms of g, and g,
respectively. Then we have

I @™ =" (3.6)

UER] (2)U=%1 (p)

By the g-products (2.13), (2.26) and (2.27), we see that each g is a power series
L+ayt+--- int = exp[27i(7/v/M)] with coefficients in the ring 0,s of the algebraic
integers in the field kp;. By (3.6), g7 is also a power series 1 + byt + -+ in ¢ with
coefficients in the field kp;. By a consequence of a theorem of Shimura [7, Lemma
3.1 in Chapter 4], the coefficients of g have bounded denominators. Thus, by
(3.6) and the Gauss lemma for power series with bounded denominators, we see
that the power series g7 also has coeflicients in the integer ring ojs. Let a; be the
coefficient of ¢ in the power series §i. If u € %}”(2), then we have

1 ifr=1,ie u=u®(2)=(0,(1/2)v2p),
ap =< -1 ifr=2ie u=u®(2)=((1/2)v2,0), (3.7)
0 if r =p or 2p,
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by (2.26) and (2.27). If u € R(IT) (p), then we have

—(G+¢ ") ifr=1andu=(0,(b/p)v2p) (1 Sb= (p—1)/2),
ap =< —1 if r = p and u = ((1/p)/p,0), (3.8)

0 otherwise,

by (2.13), where ¢, = exp[2mi/p]. Let ¢1 be the coefficient of ¢ in the power series
expansion of the left-hand side of (3.6). Then we have, by (3.7) and (3.8),

= (u(2) = @) =1 ( (350 )
- (pgjjﬂ (¢h+ ¢, 0)ma ((o Z@)). (3.9)

Since ¢; is also the coefficient of ¢ in the power series expansion of (g7)!, and the
coeflicients of the power series gi are integers, it must be congruent to 0 modulo
I. This implies that, by [7, Lemma 2.3 in Chapter 4], the following congruences
hold

i (1D (2)) = my (u®(2)) — ((;\/ﬁ, o))
=—m <<o z\/%» (mod 1) (3.10)

forall b (1 £ b < (p—1)/2). Since any element of %}1)@) can be written as
(0, (b/p)+/2p), this completes the proof. O

LEMMA 3.2. Letl be a prime, and let m : Z7 — Z be a mapping. Assume
that there exists a function g € CFM) such that

IT @)™ =4"

UERY

Then m(u) = 0 (mod!) for all u € %3.

PROOF. We extend the domain of the mapping m from Z¢ to Z;(2) U
Z1(p) by setting m(u) = 0 for any u € Z7(2) UZ;(p) — %2. Since m(uM(2)) =
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m(u?(2)) = 0, we have m(((1/p)y/p,0)) = m(u) (modi) for all u € %’;1)(19) by
(1) of Lemma 3.1 with @ = 1. By this and (2) of Lemma 3.1, we have m(u;) =
m(ug) (modl) for any wuy,us € %’;D(p) U %’}p) (p). By the definition (3.3) of Z¢,
there exists an element u;) of 2" (p) U %) (p) which is not contained in Z5.
Then m(u(;)) = 0, hence we have

m(u) = 0 (mod 1) for all u € 2" (p) U 2P (p). (3.11)

Next, in (1) of Lemma 3.1, we assume that « is an element of type 2. Then
uM(2) oo = u?(2) and u?(2) o = u™(2). Since m(u™(2)) = m(u?(2)) = 0,
we have m(((1/p)/p,0) o) = m(u) (mod 1) for all u € £\ (p). By this and (2) of
Lemma 3.1, we have m(u;) = m(uz) (mod!) for any uy,us € %}2)(])) u %EQP) (p).
Again by the definition (3.3) of %7, there exists an element wu (s of %52) (p) U

%§2p) (p) which does not contained in Z7. Since m(u(s)) = 0, we have

m(u) = 0 (modl) for all u € 2\ (p) U 2" (p). (3.12)

Last, in (1) of Lemma 3.1, we assume that « is an element of type p. Then
uM(2) o a = u®(2) and u?(2) o a = u®)(2). Since m(uP)(2)) = 0, we have
m(u)(2)) + m(((1/p)/p,0) 0 @) = m(u) (mod) for all u € Z¥ (p). This and
(3.11) imply that

m(u®(2)) = 0 (mod1). (3.13)

By the congruences (3.11), (3.12) and (3.13) we have the proof. O
The following theorem shows the fullness of the Siegel units in §;.

THEOREM 3.1.  The functions G, (v € #5%) are independent, and the group
& |k} has the mazimal possible rank 2p — 3.

PROOF. Assume that Hue%? (§)™™) =1 with m(u) € Z. Since 1 = 1! for
any prime [, we have m(u) = 0 (mod!) for all u € Z§ by Lemma 3.2. Since [ can
be any prime, we have m(u) = 0 for all u € #9. This proves the independence of
the functions g, (u € %5). Since the functions (§,)%* (u € %#5) are contained in
& (Proposition 2.2), the independence and Proposition 3.5 show that the rank of
the group . /k; is equal to |%Z7]| = 2p — 3. On the other hand, since the number
of the cusps on the curve X7 is 2(p — 1), it is the maximal possible value. This

proves the theorem. O
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The following theorem shows that the unit group .# coincides with the group
. It is the main theorem of this section.

THEOREM 3.2.  Concerning the group # we have the following.

(1) The unit group F coincides with the group 7.
(2) The group F /ky; has the mazimal possible rank 2p — 3.
(3) Any function g in .F can be written as g = ¢ - (i, )™"2) Hue%?(p) (g)™

with ¢ € ky; and m(u) € Z (u € #Y), and this expression is unique.

PROOF. Since .# contains ., (2) follows immediately from Theorem 3.1.
We prove (1). Let g be any function in %#. Then, by Theorem 3.1, some power
of g can be expressed as a product of the functions g, (v € Z5) up to a constant.
By the repeated use of Lemma 3.2, we obtain that g itself can be expressed as a
product of the functions g, (u € #Z%) up to a constant, whence g € .. This proves
(1). (3) follows from (1), Proposition 3.5 and the independence of §, (u € %Y%)
(Theorem 3.1). Note that g, = g, for u € Z5(p). O

REMARK 3.1. In the next section (in Theorem 4.1) we shall prove that the
integer m(ws) must be even.

COROLLARY 3.1. Jc=C*%.

PROOF. Let g be any function in .#¢. Then, by (2) of Theorem 3.2, some
power of g belongs to C*.%. This implies that there exists a non-zero constant ¢
such that the Fourier coefficients of cg belong to kj;. Hence, we have g € C*.%.
This completes the proof. O

4. Determination of the unit group on X;(2p).

In this section we determine the group % of the modular units in the function
field §;. Henceforth we assume that p # 3, therefore

p#2,3. (4.1)

The reason why we exclude the case p = 3 is that it is exceptional and that
the modular curve X;(6) coincides with the modular curve Xy(6). The group of
the modular units and the cuspidal class number of the curve Xy(6) are already
determined in [16].

REMARK 4.1. In [16], the group of modular units of X,(6) is described by
the functions hp (1) (r € T'). We give the relations of these functions and our
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functions g, (u € #5) in the following. Assume that p = 3. Since the set %’;T) (3)
(r € T) contains only one element, we denote it by u(")(3). Then we have

Gus (1) = c1 - hyg (D) { g (M)},

—1
Guir (3)(T) = c2 - hygor) (T) {2y (1) }

(r € T), where ¢; and ¢y are non-zero constants.

4.1. Definition of the characters ®,,.

Let u be any element of %Z;. Since (§,)?*? is an automorphic function with
respect to the group I'(I) (Proposition 2.2), we can define the character ®,, of I'(I)
by

Let g(7) be a function of the form

91 = ()™ T (gulr))™® (4.4)

u€Z1(p)

where m(wq) and m(u) are integers. Then the function g(7) is an automorphic
function with respect to T'(J) if and only if the following equation holds for every
aecT(I):

(@0, ()} ] {®ule)y™™ =1. (4.5)

uEZ1(p)

4.2. Generators of the factor group I'(I)/T'(48p0).

In addition to the fact that the power (g,)?*? of any function g, (u € %;) is
automorphic, the function g, itself is an automorphic function. In fact we have
the following.

PROPOSITION 4.1.

(1) Letwu be an element of Z1(2). Then the function §, is an automorphic function
with respect to the principal congruence subgroup T'(480).

(2) Let u be an element of Z;(p). Then the function g, (= gu.) is an automorphic
function with respect to the principal congruence subgroup I'(12p0).

(3) Letu be an element of Z#1(2)UZ1(p). Then the function g, is an automorphic
function with respect to the principal congruence subgroup T'(48p0).
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PRrROOF. (3) follows immediately from (1) and (2). We prove (1). By (2.31)
the function ¢, coincides with the function fﬁZ) with 7 = t(u), and it coincides
with the function f[(f]) defined in [16, (2.9) in Section 2] under the condition that

M = 2p and Ty = 1. Since the function f[(f}) is an automorphic function with
respect to I'(48¢’) by [16, Lemma 4.1], (1) is proved. Next, we prove (2). Since
our u belongs to the set A’; in the notation of [16, Section 1.3] with J = ,/p&, the
function g, is an automorphic function with respect to the group I'([2L%,12]0)
by [16, Proposition 1.3] where L; = p. Since [2L%,12] = 12p, (2) is proved. O

COROLLARY 4.1.  Let u be an element of Z1(2)UZ(p). Then the character
®,, is trivial on the subgroup I'(48p0) of T'(I).

By Corollary 4.1, in order to determine the character ®,,, it is sufficient to
determine its values at some elements of T'(]) which generate the factor group
I'(I)/T(48p0).

For each prime factor ¢ of 48p, let ay and B, be arbitrarily chosen elements
of G(vVM ) of type 1 so as to satisfy the following congruences:

co= (5 V) (ot 0). =1y Gmod g Tamo), o
s= (A 0) ea o), =1 mea g Sape),

where f =4 or 1 according as g = 2 or # 2.
For ¢ = 2 or 3, let 7, be an arbitrarily chosen element of G(v/ M) of type 1
so as to satisfy the following congruences:

-1
= (7)) modafo). =1 (modqaspo). (1)

where f =4 or 1 according as ¢ = 2 or 3, and d = 5 or —1 according as ¢ = 2 or
3.

Let +4 be an arbitrarily chosen element of G(v/ M) of type 1 so as to satisfy
the following congruences:

vh = (‘01 01> (mod 160), =15 (mod 3p0). (4.9)

Then it is easy to see that the set of the elements cy, 54, 74, 75 defined above



58 T. TAKAGI

is contained in T'(I) and generates the factor group I'(I)/T'(48p0).

4.3. The values of ®,,,.
Here we give the values of the character ®,,, at the elements oy, By, Vg, V-

PROPOSITION 4.2.  The values of the character ®., at the elements aq, By,
Vg V5 are gien as follows:

exp %-519 if =2,
Pua(0) =4 exp _%m ifq=3,
1 _ _ if ¢ = p,
exp %-5 if g =2,
(00 = exp % ifq=3,
1 _ if ¢ = p,

(I>w2(’72) = -1, (I)wz(vé) = (I>w2(73) =1

PrROOF. The character ®,,, is already determined in [16]. In fact, as was
seen in the proof of (1) of Proposition 4.1, the function §,,(7) coincides with the
function f[(;p)] (7) defined in [16, Section 2, (2.9)] under the condition that M = 2p

and Tp = 1, whence the character ®,,, coincides with the character @EQQ;] defined
in [16, Section 4.1]. In fact, the domain of the character @E;I))} is the subgroup I'r,
with Ty = 1 which is the subgroup of G(v/M) consisting of all elements of type 1,
and our character ®,,, is the restriction of (I)gz))] to the group I'(I).

The value ®,,,(ay) is given in [16, Proposition 4.1] as @E)p)(aq) with p = [2p]
and p = 2. For example, let ¢ = 2. Then @, (a2) = égl))] (a2) = —exp[(—2mi/8
- (p — 2p)]. Since — exp[(—27i/8)(p — 2p)] = exp|(2mi/8) - dp] - exp[(2mi/8) - p] =
exp[(2mi/8) - 5p|, we have the desired value. The values ®,,, (o) for other ¢ can be
obtained similarly. The value ®,,,(3,;) is given in [16, Proposition 4.1] as <I>£)p ) (Bq)
with p = [2p] and p = 2. Let ¢ = 2 as an example. Then ®,,,(82) = <I>f221)7] (B2) =
—exp[(27i/8)(2—1)], which is equal to exp[(27i/8) - 5] and gives the desired value.
The values ®,,(8,) for other ¢ can also be obtained similarly. The value ®,,,(,)

(¢ = 2,3) is given in [16, Proposition 4.1] as @E,p)('yq) with p = [2p] and p = 2,
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which gives the desired value. We prove that ®,,,(7%) = 1. Let v, be the element
of G(vV M) defined in [16, p. 195]. It is an element of type 1 chosen so as to satisfy
the following congruences:

-1
Tp = (dO 2) (mod p@), =15 (mod 480),
where d is a primitive root modulo p. (Though the element 7, depends on the
choice of d, we did not indicate its dependence in its notation because as is seen
in [16, Proposition 4.2] the values of <I>§}’ ) do not depend on d.) Then we have
v, % g x APY/% = 1, (mod 48p@). Since <I>(2)](—12) = 1 by definition and

[2p
‘I’f;;] (v3) = @EQQI))] (7p) = 1 by [16, Proposition 4.1], we have CI)S;] (v4) = 1, which
gives @, (v4) = 1. This completes the proof. O

4.4. The values of ®,, with u € Z(p).
Let u € %"}r) (p). Then g, = g,. The value of the character ®,, at o (€ T'(1))
is given by

q)u(o‘) = Eu(a)wr(a) (410)

by Proposition 2.1.
Let « be an element of I'(]) written as

a= (C\;% b‘{?) (4.11)

where a,b,¢,d € Z. Then, by (2.10), (2.16) and the definition of ¥,.(«), we have

() = (=1)1@D/2 exp {217; (br — er®)d + acr*(1 — d2)}} . (4.12)

LEMMA 4.1.  The values of ¥, at the elements oy, By, Vg, V5 are given as
follows.

(1) For a = v2,73,73,p, By, we have

1 ifa:727737apu/6pa
Yr(a) = . ,
-1 if a=1s.
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(2) For a = ag, a3, we have

Yr(a) =

(3) For a = 9,03, we have

exp [247” ~r*] if a = (s,
Yr(a) = 9
exp[—gz-r*} if « = 3.

PROOF. In the following we assume that the element « is written as in
(4.11).

(1) In this case we have b = ¢ = 0(mod 12), whence ¥,(a) = (—1)(¢=1/2 by
(4.12). Since d = 1 or 3 (mod4) according as o = 2,73, Qp, Fp OF @ = 75, we
have the desired value.

(2) In this case we have ¢ = d— 1 = 0 (mod 12), whence 9, () = exp[(27i/12) - br]
by (4.12). If a = ae, we have b = 3b; with some by € Z. Since b = 1 (mod 4),
we have by = —1 (mod 4). These imply ¢, (az) = exp[(—27i/4) - r]. If a = ag,
we have b = 4b; with some b; € Z. Since b = 1(mod3), we have b; = 1
(mod 3). These imply v, (a3) = exp[(27i/3) - 7].

(3) In this case we have b = d — 1 = 0 (mod 12), whence ¢,.(a) = exp[(27i/12) -
(—er®)] by (4.12). If a = B, we have ¢ = 3¢y with some ¢; € Z. Since ¢ =
1(mod4), we have ¢; = —1(mod4). These imply ©,.(82) = exp[(27i/4) - r*].
If « = (B3, we have ¢ = 4¢; with some ¢; € Z. Since ¢ = 1(mod 3), we have
¢1 =1 (mod 3). These imply 9, (83) = exp[(—2mi/3) - r*]. O

The value e, (a) (a € [(I)) is given by
eu(a) = e(u, v) (4.13)

with
v =u(a— 1p), (4.14)

where &(u,v) is defined by (2.14) and (2.8).
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LEMMA 4.2. Letu € %’y) (p) be of the form u = ((x/p)y/7,0) (z € Z) with
r = 2p, p. Then the values of €, at the elements oy, By, V4, V5 are given as
follows.

(1) For o = a2a627’727757a35ﬁ3a'y37ﬁp} we have Eu(Oé) =1
(2) For o = o, we have

omi
exp [mxﬂ if r =2p,
cula) = g
e [zm' 1+p 2} ,
exp —Tac ifr=np.

PROOF. Let a be written as in (4.11). Then the element v in (4.14) is given
by

o= (02 e ),

whence we have e, (a) = exp[mi], where £ is an element of @ satisfying
b
gsz-i—i—f~bx~fzf~x(p+m)-f(mod2Z). (4.15)
p p p p p

We note that r/p € Z.

(1) For o = o, B2, 72, V5, 3, 83,73, Bp, we have b = 0 (mod p), whence the last
term in (4.15) is an integer. Since z(p + x) = 0 (mod 2), we have £ = 0 (mod 2Z).
Thus we have g, (a) = 1.

(2) For a = a;, we have b = 0 (mod 2), which implies £ = (z/p) - bz - (r/p)
(mod 2Z) by the second term in (4.15). Since we also have b = 1 (mod p), put b =
1+byp with an integer b;. Then we have £ = (z%/p) - (r/p)+bi1z?-(r/p) (mod 22).
If r = 2p, then we have ¢ = 22%/p (mod2Z), which gives the desired value of
eu(ay) for the case r = 2p. If r = p, then we have £ = 2%/p + bj2? (mod 22).
Since b = 1 + b1p = 0(mod?2), we have b; = 1(mod2), whence we have £ =
2?/p+ 2% = (2%/p)(1 + p) (mod2Z). This gives the desired value of e, (c,) for
the case r = p. O

LEMMA 4.3. Letu€ %ET) (p) be of the form u = (0, (y/p)Vr*) (y € Z) with
r =1, 2. Then the values of €, at the elements aq, By, vq, V4 are given as follows.

(]-) For a = O‘2aﬁ277237§7a3;/6)3773705p; we have 8u(Oé) =1
(2) For = f3,, we have
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-
exp [—;Z -yQ] ifr=1,
Euﬁ =
() 2mi 1+p ,]
exp| — — - —y if r=2.
P 2

PROOF. Let a be written as in (4.11). Then the element v in (4.14) is given
by

()

whence we have e, (a) = exp[mi], where £ is an element of @ satisfying

*

yp—y) - % (mod 22). (4.16)

E=cy- L
p
We note that r*/p € Z.

(1) For o = o, B2, Y2, V5, 3, B3, V3, 0p, we have ¢ = 0 (mod p), whence the last
term in (4.16) is an integer. Since y(p —y) = 0 (mod 2), we have £ = 0 (mod 22).
Thus we have €, (a) = 1.

(2) For a = fp, we have ¢ = 0(mod?2), which implies { = (—y/p) - cy -
(r*/p) (mod 2Z) by the second term in (4.15). Since we also have ¢ = 1 (mod p),
put ¢ = 1 + ¢1p with an integer b;. Then we have £ = (—y?/p) - (7*/p) — c1y* -
(r*/p) (mod2Z). If r = 1, then r* = 2p, whence we have £ = —2y?/p (mod2Z),
which gives the desired value of €,(3,) for the case r = 1. If = 2, then * = p,
whence we have ¢ = —42?/p — ¢1y? (mod 2Z). Since ¢ = 1 + ¢;p = 0 (mod 2), we
have ¢; = 1 (mod 2), whence we have £ = —4%/p —y? = (—y?/p)(1 + p) (mod 22).
This gives the desired value of €,(8,) for the case r = 2. O

By Lemmas 4.1, 4.2 and 4.3, we have the values of the character ®, with
u € Z1(p) as follows.

PROPOSITION 4.3.  Let u € %Egp)(p) and write u = ((z/p)/2p,0) (z € Z).
Then the values of the character ®,, at the elements g, By, Vq, V5 are given as
follows:
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[ 2m
_2nt ifag =3
B (ay) = eXp_ 3 p] if g =3,
o
exp m-xﬂ if ¢ = p,
L P
o
exp IZ} if g =2,
- [ 2mi
Pulfa) exp | — ;Z] if ¢ =3,
1 if ¢ =p,

Bu(z) = ulrs) = 1, Du(rh) = —1.

PROPOSITION 4.4. Let u € %’}p) (p) and write u = ((x/p)y/p,0) (xz € Z).
Then the values of the character ®,, at the elements ag, By, Vq, Vo are given as
follows:

S
exp —m-p} if ¢ =2,
4
[ 274 )
P, (ag) =  exp 34 ifq=3,
(i 1
exp b xQ} if ¢ = p,
L D 2
-1 ifq=2,
[ 274 )
D, (8y) = { exp 5 ifq=3,
1 if ¢ = p,

Qyu(72) = Puly3) =1, (I)u(/yé) = -1

PROPOSITION 4.5. Let u € %?)(p) and write u = (0, (y/p)\/p) (y € Z).
Then the values of the character ®,, at the elements oy, By, Vg, V5 are given as
follows:
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271 .
O, (aq) = qexp| — 5 ifq=3,
1 if ¢ = p,
ot
exp | =2 p if g =2,
L 4 o
[ 2mi )
D,(By) = Jexp | — = ‘P} if =3,
2w, p+1 )
exp | — — - yQ] if g =p,
L P 2
(I)U(')?) = @u(’}@,) =4 (bu(’yé) =-1

PROPOSITION 4.6. Let u € %}”(p) and write u = (0, (y/p)v/2p) (y € Z).
Then the values of the character ®,, at the elements g, By, Vq, V5 are given as
follows:

-

exp[—zlm} ifq=2,

= 2

Pulag) exp [ ;rz} if g =3,

1 if ¢ =p,

-1 ifq=2,

211

ex . if g =3,

Bu(B,) = p[ 3 p} f q
211 .
exp [—p-yQ] if ¢ =p,

Dy(12) = Puly3) =1, Pyu(vh) = —1.

4.5. Determination of the unit group.
Let g(7) be a function of the form (4.4). The following theorem gives the
condition that ¢g(7) is an automorphic function with respect to I'(T).

THEOREM 4.1. Let g be a function given by g = (Gu,) ™2
-Hue%(p)(gu)m(“) with m(wz) and m(u) integers. Then it is an automorphic
function with respect to T'(I) if and only if the integers m(wz) and m(u) satisfy
the following conditions (1)—(v):
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i) m(wsy) is an even integer, which we express as m(wq) = 2k,

(1)
(ii) kJFZue@I(p)( (u))*m(u) = 0 (mod 12),

(i) 2, e2Cm (pyuzt® () MW F P20 (ot ) (1) =0

(i) 32 emiem g m(u) + (P +1)/2) 2 c 0 (y #°m(w) = 0 (mod p),
(%) St g 92m() + (54 1)/2) T, gt 97m(u) = O

In the condition (iv) (respectively (v)) above, it is assumed that u =

((z/p)y/7,0) for v = 2p,p with x an integer (respectively u = (0, (y/p)v/r*) for
r=1,2 with y an integer).

ii

ProOF. The condition that g(7) is an automorphic function with respect
to I'(I) is equivalent to that the equation (4.5) holds for the elements o, 54, 74,
~4 by Corollary 4.1 and the fact that those elements generate the factor group
I'(I)/T(48p0’). We prove that the relations obtained by the substitutions of the
elements oy, B4, V4, V5 in (4.5) are equivalent to the conditions (i)—(v) in the state-
ment. In our proof Propositions 4.2—4.6 will be used freely without any reference.

The substitution of «3 gives no relation about the integers m(w2) and m(u)
because Py, (7v3) = 1 and P, (v3) = 1 for all u € Zr(p). The relation by the
substitution of 9 is equivalent to (i) because ®,,(72) = —1 and ®,(y3) = 1 for
all u € Z1(p).

The relation by the substitution of 35 is equivalent to the following:

5 1 1
gm(wg) + 1 Z m(u) + 3 Z m(u)

t(u)=2p t(u)=p

iy m<u)+% S m(u) = 0 (mod 2). (4.17)

t(u)=2 t(u)=1

We use (i) and multiply (4.17) by 4. Then, since 5k = k(mod4) and 2 =
2p (mod 4), we have

k+ Y mu)+2 ) m p Yy, m +2pz

t(u)=2p t(u)=p t(u)=2 t(u)=

= 0(mod4) (4.18)

which is the condition (ii) with the modulo 12 part replaced by modulo 4. The
relation by the substitution of s is equivalent to
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gpm(wQ) + % Z m(u) — b Z m(u)
t(u)=2p t(u)=p
+ % Z m(u) — i Z m(u) = 0 (mod Z). (4.19)

t(u)=2 t(u)=1

Using (i) and multiplying (4.19) by 4, we have

5pk + 2 Z Z u) + 2 Z Z m(u)

t(u)=2p t(u)= t(u)=2 t(u)=1

= 0(mod4). (4.20)

Multiplying (4.20) by p and using the congruences 5p? = 1 (mod 4), 2p = 2 (mod 4),
—p? = 3 (mod4), —p = 3p (mod4), we have

k42 Y m +3Z (w+2p > m +3pz
t(u)=2p

t(u)=p t(u)=2 t(u)=1

= 0(mod4). (4.21)

Subtracting (4.18) from (4.21) term by term gives

Z m(u) + Z m(u) +p Z m(u) +p Z m(u) =0(mod4), (4.22)

t(u)=2p t(u)=p t(u)=2 t(u)=1

which is the condition (iii). The relation by the substitution of 74 is equivalent to

Z m(u) = 0 (mod 2),

u€Z1(p)
which follows from (4.22). The relation by the substitution of 33 is equivalent to

1 1 1
gm(wg) ~3 Z m(u) + 3 Z m(u)

t(u)=2p tu)=p

_ g m(u) + b Z m(u) =0 (mod Z). (4.23)
t(u)=2 t(u)=1

We use (i) and multiply (4.23) by —3. Then, by —2k = k (mod 3), —1 = 2 (mod 3)
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and —p = 2p (mod 3), we have

k+ Z m(u) + 2 Z m(u) +p Z m(u) + 2p Z m(u

t(u)=2p t(u)=p t(u)=2 t(u)=1

= 0 (mod 3), (4.24)

which is the condition (ii) with the modulo 12 part replaced by modulo 3. The
relation by the substitution of a3 is equivalent to

p p p
gm(wg) ~3 Z m(u) + 3 Z m(u)

t(u)=2p t(u)=p

21 m(u) + % Z m(u) = 0(mod Z). (4.25)

Using (i) and multiplying (4.25) by 3, we have

2pk —p Z u)+p Z m(u) — Z m(u) + Z m(u)

t(u)=2p t(u)=p t(u)=2 t(u)=1

= 0 (mod 3). (4.26)

Multiplying (4.26) by —p and using the congruences —2p* = 1 (mod 3), (—p)? =
1 (mod 3), —p? = 2 (mod 3) and —p = 2p (mod 3), we have the congruence (4.24).
Summing up the arguments above, we see that the relations obtained by the
substitutions of the elements as, as, B2, B3, Y2, 74 and 3 are equivalent to the
conditions (i)—(iii).

The relation by the substitution of «, is equivalent to

LS 2o+ 2L ST 22m(u) = 0(mod 2). (4.27)

Multiplying (4.27) by p, we obtain the congruence in the condition (iv). The
relation by the substitution of 3, is equivalent to

_ptl Z - = Z y*m(u) = 0 (mod Z). (4.28)

2p t(u)= t(u)=1

Multiplying (4.28) by —p, we obtain the congruence in the condition (v). This
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completes the proof. O

Now we can determine the group .# of the modular units in the function field
$1. The following is the main theorem in this section.

THEOREM 4.2. The group F of the modular units in the function field §1
consists of all functions g of the form

g="clgw)® [[ (9™,

uER1(p)

where ¢ € ky;, and k and m(u) are integers satisfying the relations (ii)—(v) of
Theorem 4.1.

Let uy (respectively ug) be any element of Z1(p) with t(uy) = 1 or p
(respectively t(ug) = 2 or 2p). Then in the expression of g we can make m(uy)
and m(ug) equal to 0, and in that case the integers k and m(u) (u € Z;(p)) are
uniquely determined by g.

Proor. This follows immediately from Theorems 3.2 and 4.1. O

REMARK 4.2.  Since Gy, = féi) by (2.31), the function g, = (§u,)? can be

expressed by the Dedekind n-function 1(7): gu,(r) = —H?(pT)H 2(2p7), where
H(r) = n(7/v/2p)-

5. Computation of the cuspidal class number.

In this section we determine the cuspidal class number of the modular curve
X1(2p).

5.1. The image Ip of the principal divisors in the group ring.

Let ¢ : 2 = R be the isomorphism (2.23). In this subsection we determine
the image p(div(.%)), which we denote by Ip, of the principal divisors div(.%) of
the modular units in §;. Let Ry be the subgroup of R of all elements of degree 0.
Then Ip = ¢(div(.#)) is an additive subgroup of Ry.

By Theorem 4.2 any function ¢ in .% is a product of the functions g,,, and g,
with u € Z;(p) up to a constant. The set Z;(p) is a complete set of representatives
of </(p). By Proposition 2.6 the set <7/(p) is an orbit of Cj(£) with <7/ (p) =
[wp]Cr(£), and by (2) of Proposition 2.9 the stabilizer St([wp]) of [w,] is trivial
because p* = 2 and (Z/2Z)* = 1. Hence the sets Cy(+) and %Z;(p) correspond
bijectively by the mapping oo — wpo«. (For the definition of the product w, o v,
see (3.5).)

Let « be any element of Cr(=£) of type r. Let a(a) and b(«) be integers such
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that o can be represented by the matrix

(a(a)ﬁ b(a)\/F> .

b afa)yF >

Although such integers a(a) and b(a) are not unique, the residue classes
a(a) (mod r*) and b(«) (modr) are uniquely determined up to the multiplication
by 41. In particular, the element o determines the residue class a(a)?(mod p)
(respectively b(a)?(mod p)) uniquely when r = 1,2 (respectively r = p, 2p).

THEOREM 5.1.  Let ¢ : 9 = R be the isomorphism (2.23). Let div(.%) be
the group of the principal divisors of the modular units in §y. Then the image
Ip = p(div(F)) is the subgroup of Ry consisting of all elements

2k02+{ > m(a)a}ep, (5.2)

aeCr(£)

where k and m(«) are integers such that the following congruences (i)—(iv) hold:

(i) k+ ZaeC;(i) t(a)m(a) = 0 (mod 12),

(i) ZaeC“’ (F)uc® ) M m(c) +pzaec§f’>(i)uc§2p>(i) m(a) =0 (mod4),
(ii) ZaeC(1> () a(a)*m(a) + ZZ%C@&) a(a)?m(a) = 0 (modp),

(iv) Zaec(zm(i) b(e)*m(e) + 2 Zaec§p)(i) b(a)?m(a) = 0 (mod p).

PrROOF. Let g be any function in .%. Then by Theorem 4.2 we have

9= C(ng)k H (gu)m(u),

wEZ1(p)

where k and m(u) are integers satisfying (ii)—(v) of Theorem 4.1. Let u = wp o «
with o € Cy(£). Since the mapping o — w, o a between C7(+) and Z;(p) is
bijective, we can express m(u) as m(«a). By (2.41) and (2.42), we have ¢(div(guw,))
= 205 and ¢(div(g,)) = ab,, hence

taivig) =212+ {3 mlala s,
acCr(+£)

Since (t(u))* = t(a), the relation (ii) (respectively (iii)) of Theorem 4.1 coincides
with the relation (i) (respectively (ii)) in our statement. When ¢(u)(= r) = 2p
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or p, write u = ((x/p)y/r,0) with  an integer. It is easy to see that 2% =
a(a)? (mod p) or 4a(a)? (mod p) according as 7 = 2p or p. When r = p, we have
((p+1)/2)2% = 2(p + 1)a(a)? = 2a(a)? (mod p). These imply that the relation
(iv) of Theorem 4.1 coincides with the relation (iii) in our statement. When
t(u)(=r) =1 or 2, write u = (0, (y/p)V/r*) with y an integer. Then it is easy to
see that 32 = b(a)? (mod p) or 4b(c)? (mod p) according as r = 1 or 2. When r = 2,
we have ((p + 1)/2)y? = 2(p + 1)b()? = 2b()? (mod p). These imply that the
relation (v) of Theorem 4.1 coincides with the relation (iv) in our statement. Thus
p(div(g)) satisfies the conditions (i)—-(iv). Conversely, by the arguments above, it
is obvious that any element (5.2) of R satisfying the conditions (i)-(iv) of our
statement can be expressed as ¢(div(g)) with g € #. This completes the proof.
O

REMARK 5.1. The subgroup Ip of R is an ideal of R. In fact, for any
modular unit f € .# and any element a € Cr(=£), the divisor div(f7(®)) of fo(®)
(€ Fr1) is supported only on the cuspidal prime divisors since any conjugate of a
cuspidal prime divisor is itself a cuspidal prime divisor (cf. Section 2.6). Hence
f7() is also a modular unit. The relation adiv(f) = div(f7(®) follows from the
argument similar to the one in the proof of Proposition 2.5. This proves that Ip
is an ideal of R.

5.2. The subgroup 24Z0; 4 1,20, of Ip.
By Theorem 5.1 the cuspidal divisor class group € (3.2) is isomorphic to the
factor group Ry/Ip:

%gRO/Ip. (53)

We denote by h the cuspidal class number of the modular curve X;(2p). Then we
have

h=[Ro: Ip]. (5.4)

In the group Ip the #s-part and 6,-part affect each other by the relation (i)
of Theorem 5.1. We introduce the subgroup I12 of R in order to separate the
two parts as follows. Let I;o be the subgroup of R consisting of all elements
Yaccr(+)M(@)a of R with m(a) € Z such that the integers m(a) satisfy the
following condition (i*) and the conditions (ii)—(iv) of Theorem 5.1:

i) > tla)m(a) =0(mod12). (5.5)

aeCr(+)
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We shall prove that 24Z605 + 1120, is a subgroup of Ip of index 12, and that it is
a direct sum.

REMARK 5.2. It can be proved that the subgroup I15 is an ideal of R. Since
this fact is not used in this paper, we omit the proof.

Let Rc = R® C be the group ring of C;(£) over C. Let x be any character
of Cr(£), and let e, be the elementary idempotent defined by

1 -1
ey = TeRE]] aeczl(i) x(a)a™". (5.6)

As is well-known these elements e, constitute a basis of R¢ and satisfy the or-
thogonality relation.

We determine the e,-components of 6, and 6,. Let ¢ be the natural homo-
morphism of (Z/pZ)* to (Z/2pZ)*/ + 1 defined by

¢ (Z/pZ)* 2 (Z/2pZ)* — (Z/2pZ)* [ +1. (5.7)

For any character x of C7(£) we define the character v, of (Z/pZ)* by

@ =x( (5 ) ) (53)

It is obvious that 1), (—1) = 1.

Let ¢ be a non-trivial character of (Z/pZ)*. Let By(X) be the second
Bernoulli polynomial (cf. (2.6)). Let By, be the generalized Bernoulli number
associated to v which is defined by

By, = pz_jl $(a)Bs (p) (5.9)

Then the e,-components of 6, are given as follows.

PROPOSITION 5.1.  Let x be a character of Ci(£), and put ¢ = ¢,. We
denote by v the complex conjugate of . Let [2] and [p] be the elements of Cr(%)
defined by (2.45). Then we have
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1
Z<2 + x([2])) By ex if x is non-trivial on C}l)(:lz),
Opex =
p—1

o @ X —x(PD)ex if x is trivial on O} (£).

ProOF. Let f(a) be the function on Cjr(%) defined by 6, =
Yweci(+) f(@at. Then we have

hex={ 3 fantar e,

aeCr(£)

The values of f(«) are given in (2) of Proposition 3.1.

a((;l) a((jl) )

with a(a) € Z. We have f(a) = pBz({a(a)/p)) and x(a)~! = ¥(a(a)). If a runs

through C’}l)(i), the class of a(a) runs through all elements of (Z/pZ)*/ + 1.

This implies that Zaec“)(i) fla)x(a)™t = (1/2)B, 5 or —(p — 1)/12 according
¢ :

Let t(a) = 1. Then o can be represented by a matrix of the form (

as x is non-trivial or trivial on C’}l)(i) respectively.
Let t(a) = 2. Then a can be represented by a matrix of the form

("(ajf (C{fﬁ) with a(a) € Z, and f(a) = (p/2)Bs({2a(a)/p)). Put =

af2]. Then 3 is represented by the matrix (2‘1(06)+p 2a(£)+p)7 and x(a)™! =
X(3)~x([2) = ¥(2a(a))x([2]). If a runs through C'* (&), the class of 2a(c) runs

through all elements of (Z/pZ)* /+1. This implies that > acC® (4) fla)x(a)™t =
(1/4)By 5x([2]) or —((p — 1)/24)x([2]) according as x is non-trivial or trivial on
C}l)(:lz) respectively.

Let t(a) = p. Then f(a) = 1/6. Put 3 = a[p]. Then x(a)~" = x(8)"'x([p]),
and if « runs through C’}p)(:lz), [ runs through C}l)(:lz). This implies that
ZQEC(p)(i) fla)x(a)™ = 0 or ((p — 1)/12)x([p]) according as y is non-trivial

I
or trivial on Cﬁl)(:lz) respectively.

Let t(a) = 2p. Then f(a) = 1/12. Put 8 = «2][p]. Then y(a)™! =
x(8)"x([2])x([p]), and if & runs through C’}zp)(j:), B runs through C}l)(:lz). This
implies that ZaeC§2p)(i) fla)x(@)"t=0or ((p—1)/24)x([2])x([p]) according as
X is non-trivial or trivial on Cgl)(:i:) respectively.

Summing up the results above, we have

S - %Bm + iBlEX([Z]) = 3(2 +x([2D))B, 5
aeCr(£)
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if x is non-trivial on C}l)(i), and

if x is trivial on C’}l)(:l:). This completes the proof. O
COROLLARY 5.1.  Let x and [p] be as in Proposition 5.1.

(1) If x is non-trivial on C’}l)(:lz), then O,e, # 0.
(2) If x is trivial on C;l)(:i:), then fpe, # 0 or = 0 according as x([p]) # 1 or
= 1 respectively.

PROOF.

(1) In this case the character 1 (also 1) is non-trivial. Since it is well-known that
By % #£ 0 if ¢ is non-trivial, we have the proof by Proposition 5.1.
(2) This follows immediately from Proposition 5.1. O

Let x be anyone of the four characters of C;(+) which are trivial on C’p)(i).
If x satisfies the condition

x([2]) = -1 and x([p]) =1, (5.10)
then we write x = x(2). If x satisfies the condition
x([2)) =1 and x([p]) = -1, (5.11)

then we write x = x(p). Also, we denote the product x(2)X(p) by X(2,p) and the

trivial character of Cr(£) by X (o).
The e,-components of 05 are given as follows.

PROPOSITION 5.2.  Let x be a character of Cr(£). Then

p—1 :
by — 4 24 (P +x(p)ex ¥ X =X@) or X@2p):

0 otherwise.
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PrROOF. By (1) of Proposition 3.1 and the fact that C}r)(i) = [r]C}l)(i)
for r = 2,p and C\*") (£) = [2][p]CV (&), we have

b= or(pol -l +2B) Y e

aeC® (4)

e |1 ) I

acCM (+)

By this equation we have

e =~ 1= x @B X x@len
aeCV (+)

Let x be non-trivial on C;l)(i). Then (o) = 0, therefore Oze, = 0.

ec? () X
Let x be trivial on C}l)(:i:) and x([2]) = 1. Then x = x(0) or X(), and fae, = 0.
Let x = X(2) or X(2,p)- Then x([2]) = —1. Since |C§1)(i)\ =(1/2)(p — 1), we have
Orey, = —((p —1)/24)(p + x([p]))ey. This completes the proof. O

The following proposition suggests that it is easier to consider the subgroup
24705 + 11291) of Ip than Ip itself.

ProrosiTION 5.3.

(1) The group 24Z05 + 1126, is a subgroup of Ip, and
Ip/(24Z05 + 120),) = Z /12Z.

2) We have 24Z05 N I1560,, = 0, therefore 24Z 05 + 1150, is a direct sum.
P P

PROOF.

(1) It is obvious that the group 24Z65 + I;20, is contained in Ip. Let n =
2k02 4 £0, be any element of Ip with k € Z and ¢ € R. By Corollary 5.1 and
Proposition 5.2 we have ney , = 2kbhey, +E&0pex, = 2k{—(1/24)(p? — D}exw-
This implies that the integer k is uniquely determined by 7. Let ¢(n) be the residue
class of k modulo 12. Then we have a homomorphism ¢ : Ip — Z/12Z. Since k
and ¢ satisfy the conditions (i)-(iv) of Theorem 5.1, it is obvious that ¢ =1(0) =
24Z05 + I120,. We prove that ¢ is surjective. Put 71 = 2p?0s + p*(1 — [2])0,. It is
easy to see that 11 € Ip. Since p # 2,3, we have ¢(n;) = p?(mod 12) = 1(mod 12).
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This implies that ¢ is surjective. Thus the proof is completed.

(2) Let n be any element of 242605 N I126,. Then n = 2kfy = £0, with k € Z
and £ € 1. Since n = 2k03 +0-0, = 2-0- 65 + £0,, we have kK = 0 by the
uniqueness of k proved in (1). Therefore we have = 0. This completes the proof.

O
5.3. Extending I120, to Ry .
By (5.4) and Proposition 5.3 we have
1
h=15 [Ro : (2420, + I126,)]. (5.12)

Since 0, satisfies O,y , = Opey,, = 0 by Corollary 5.1, the group 120, is
contained in the subgroup Ry o of R which consists of all elements £ € R satisfying

Eex) = Eexe = 0. (5.13)

We consider here the extension 24Z0; + Ry o of 24Z05 + I120,.
Let x be any character of Cr(+). Let { =3 0, (1) m(a)a be any element
of Re with m(a) € C. We denote by x(§) the number defined by

X€) =Y ma)x(a). (5.14)

aeCr(+)

Then &e, = x(§)ey. The mapping £ — x(§) defines a C-algebra homomorphism
X : Rc — C. We denote by £€) (r € T) the element of R¢ defined by

£ = Z m(a)a. (5.15)

aeC” (+)

PROPOSITION 5.4. Let Ry be as above. Then we have the following.

(1) 1129p - Ro,o C Ry.

(2) 24Z65 N Ry = 0, therefore the sum 24Z05 + Ry o is a direct sum.
(3) (24Z92 —+ Ro)o)/(24Z92 —+ 1129p) = R070/112€p.

(4) Ro/(24Z05+ Roo) = Z/((1/2)(p*> — 1)) Z.

PROOF.

(1) The inclusion I120, C Rg is obvious by the definition of Ryo. Let & be
any element of Rgo. Then ey, = 0. Since ey, = deg(§)ey,,, we have
deg(&) = 0, whence £ € Ry. This proves (1).
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(2) Let & be any element of 24Z60; N Ryo. Then { = 24k, with k € Z. By
Proposition 5.2 we have e, = 24kfaey,, = —k(p® — 1)y, . On the other
hand, by the definition of Rg o, we have {ey,, = 0. This gives k = 0, hence
& = 0. This proves (2).

(3) This follows immediately from (2) of Proposition 5.3 and (1), (2) above.

(4) Let € be any element of Ro. We have ey, = X(2)(§)ex,), Where

X(2)(§) = deg &) — deg €®) + deg &) — deg ¢, (5.16)
On the other hand, since £ € Ry, we have
degé = degé™ 4 deg €@ + deg ™) + dege®P) = 0. (5.17)
By (5.16) and (5.17) we have
X2 (&) = 2(deg§(1) + degg(”)) c2Z.

Let ¢(&) be the residue class of (1/2)x(2)(£) (€ Z) modulo (1/2)(p*—1). Then
¢ is a homomorphism from Ry to Z/((1/2)(p? — 1))Z. First we prove that ¢ is
surjective. In fact, put & = 1 — [2] (€ Rp). Then we have ¢(&1) = 1 (mod((1/2)
- (p? — 1))), which proves that ¢ is surjective. Next we prove that the kernel of ¢
coincides with 24Z6; + Ry . Let n = 24k, + £ be any element of 24Z6, + Ry o
with k € Z and § € Roo. Then ney, = 24kbzey, + ey, = —k(p? — Dey e,
by Proposition 5.2 and (5.13). This implies that (1/2)x2)(n) = —k((1/2)(p* — 1))
and ¢(n) = 0, hence we have 24Z0; + Ry C ¢~ '(0). Conversely, let n be any
element of =*(0). Then (1/2)x(2)(n) = k((1/2)(p* — 1)) with some k € Z. Put
£ = n+ 24kf;. Then we have ey, = Ney,, + 24kbaey, = k(p® — ey, —
k(p*> — 1)ey,, = 0, which implies that £ € R0 and 1) € 24Z6; + Ry . Thus we
have ¢=1(0) C 24Z6, + Ry, therefore ¢=1(0) = 24Z605 + Ryo. This gives the
isomorphism Rg/(24Z0 + Ro,0) = Z/((1/2)(p* — 1)) Z, which proves (4). O

5.4. The invertible element 6’.
By (5.12) and Proposition 5.4 we have
1
h = B [RO 1 (247205 + Ro,o)] [(24Z6‘2 + RU’()) 1 (247205 + Ilgep)]

L ey [Reo s 106, = R - 1106)] (5.18)
12 2]? 0,0 - L120p 21 0,0 - L120p]- .

The element 6, is not invertible in R¢ because the e, -components for x = x(o)
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and x = x(2) are 0 by Corollary 5.1. We want an element ¢’ which has the same
non-zero e,-components as 6, and is invertible. Since the e,-component of 6, for
any x # X(o0)s X(2) i8 non-zero by Corollary 5.1, it is sufficient to put §' = 6, — s
where s is an element which has only two non-zero ey-components for x = x(o)
and x = X(2)-

We denote by u the element of R defined by

p= > o (5.19)
aeCr(+)

Then we have the following lemma that gives all elements of R such that they have
only two non-zero e,-components for y = X(0) and x = X(2) at most.

LEMMA 5.1, RN (Cey + Ceygy)) = Z (D + 5@ + Z (u® + 12p),

PROOF. Let § = wey, + yey,, with z,y € C be any element of R N
(CeX(O) + CeX(2)). By the definition of ey, and ey ,, we have

Tty
é'_

_ (1) (p) r—y (2) (2p)
Cr ) ey ),

Cr(£)]

Since ¢ € R, we have (z + y)/|C1(£)|, (z — y)/|Cr(£)| € Z. This implies that
RN (C’ex(o) + Cex(z)) is contained in Z(u™ + uP) + Z(u? + p(?0)). Conversely,
let & be any element of Z(u™ + pu®) + Z(u® + u®P). Since pM + u® =
(p— 1)(6X(0) +€X(2)) and p® 4 p?P) = (p— 1)(eX(O) — eX(2>), we have € Cey, +
Cey,,- This completes the proof. O

We denote by Z the subgroup of R defined by
2 =Z(p + 5P + Z(u® + ). (5.20)
As the element s mentioned above, we take the following one of 2

s = pu 4+ p®), (5.21)
and put

0 =0,—s. (5.22)

Concerning the e,-components of s we have the following:
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s=(p— 1)(6)((0) + eX(Q))' (5.23)

The following proposition says that we can replace the index [R g : [126,] in
(5.18) by [(Roo + Z) : (I120" + Z)).

PROPOSITION 5.5.  Let s, 0/ and Z be as above. Then we have the following.

(1) Rs= 2.
(2) RooNZ =0.
(3) Ilgep C 100+ Z.
(4) Ro)o N (1129/ + f‘ép) = 112(91,.
(5) Ry + 10 + & =Roo+ Z.
(6) (Roo+ 2)/ (120 +Z) = Roo/(I126,).
PROOF.
(1) Let & be any element of R. Then, &s = &u(M) + £u®P) = Y orer deg £ (")
+ Y er deg gtror) (1) = Zrzl,p dege™ . ZT:l.p w4 Zr:2,2p dege™ .

> r=2.2p p") € %, which implies Rs ¢ 2. Conversely, let ¢ = a(u™) + u®) +
b(u® + u®P) with a,b € Z be any element of 2. Since pu® + u(??) = [2]s, we
have £ = as+b[2]s = (a+b[2])s € Rs. This implies 2 CRs. Hence, (1) is proved.

(2) This is obvious from the definition of Ry and Lemma 5.1 because the
ey-component is 0 for every character x of Cr(=£).

(3) Let £ be any element of I15. Then &6, = (6’ +5) = £0'+Es. Since s € &
by (1), this proves (3).

(4) By (1) of Proposition 5.4 and (3) above, we have 126, C Roo N ([1260' +
Z). Conversely, let n be any element of Ry N (I120' + Z). Let us write n =
&0' + as + b[2]s with § € I1o and a,b € Z. Put m = &0, (€ I26,). Then
m =E&0' +E&s = £0 + { Zr:Lp deg ¢ }s—i— { Er:2’2p degg(r)}[Q]s. Hence n—1n; =
{a - drm1p degf(r)}s +{b- D or—22p degf(r)}ms € Z. Since n € Ry by the
assumption and 1y € 1120, C Rg,0, we have n—11 € Rg 9N 2. This implies n = m
by (2) above, whence n € I126,. We have, therefore, Ry o N ([120' + Z) C I120,.
This proves (4).

(5) It is sufficient to prove I126" C Roo + Z. Let £ be any element of Iys.
Then £0" = &6, — &s. Since &6, € 1260, C Roo by (1) of Proposition 5.4 and
&s € Z by (1) above, we have £0" € Ry o + 2. This proves (5).

(6) By (4) and (5) above, we have the following isomorphism

(Roo+ Z) /(126" + Z) = (Roo + 20’ + Z)/ (1120 + Z)
=~ Ro,o/{Ro,0 N (1120' + Z)} = Ro,0/(1126,),

which proves (6). O
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5.5. Extending Rgo + Z to R.
By (5.18) and (6) of Proposition 5.5 we have

p*—1
24
-1

DY

h:

[R070 : Ilgep]
[(Roo+ Z): (20" + Z2)]. (5.24)

Here we consider the extension R of Ry + £, and determine its index [R :
Roo + Z] in two steps. Let R,_1,-1 be the subgroup of R consisting of all
elements ¢ such that the following congruences hold (note that x(o)(§) and x (2 (&)
are integers):

X(0)(€) = x(2)(§) =0 (mod(p —1)). (5.25)

First we determine the index [Rp_1,p-1 : Ro,0 + Z7.
PROPOSITION 5.6.  Let R,_1 -1 be as above. Then we have the following.

(1) R070 + % CRpfl)pfl.
(2) Rp—1p—1/(Roo+ %)= Z/2Z.

Proor.

(1) The inclusion Ry oCR,—1,p—1 is obvious by their definitions. By (5.23) we
have x(0)(s) = x(2)(s) = p — 1. Hence we have x(0)([2]s) = p — 1 and x(9)([2]s) =
—(p—1). Since & = Zs + Z[2]s, this implies 2 C R,_1,—1, which proves (1).

(2) Let & be any element of R,_1 ,_1. Write x(0)(§) = a(p—1) and x()(§) =
b(p — 1) with a,b € Z. Let ¢(§) be the residue class of ¢ — b modulo 2. Then ¢
is a homomorphism from R,_1 ,—1 to Z/2Z. First we prove that ¢ is surjective.
Put & = p® + p@. Then x(0)(&) = p— 1 and x(2)(&1) = 0, which implies
that {4 € Rp_1,-1, and that (&) = 1(mod2). This proves the surjectivity
of ¢. Next we prove that the kernel of ¢ coincides with Ry + Z. By the
definition of Ry we have p(Rpo) = 0. By the values of x()(§) and x(2(§)
for &€ = s and [2]s in (1) above, we have ¢(s) = ©([2]s) = 0. These imply
that Roo+ 2 C ¢ '(0). Conversely, let £ be any element of ¢~'(0), and write
X&) = alp —1), x@2(§) = b(p —1) and a — b = 2m with a,b,m € Z. Put
& =& —{(a—m)s +m[2]s}. Then we have

X(o)(fQ) = X(o)(f) —(a— m)X(o)(S) -—m: X(O)([Q]S) =0,
07

X2)(§2) = X(2)(§) — (a —m)x(2)(s) —m - x(2)([2]5) =
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which implies & € Ry . Since (a—m)s+m[2]s € £, we have £ € Ry o+ Z, hence
0 10) C Ro,0 + 2. This gives 0 H0) = R0 + 2, and completes the proof of
(2). O

Next we determine the index [R : Rp—1 p—1].
PROPOSITION 5.7.  We have [R: Ry_1,-1] = (1/2)(p — 1)2.

PROOF. Let & be any element of R. Let ¢(€) be the element of (Z/(p—1)Z)?
defined by

©(€) = (x(0)(§)(mod(p — 1)), x(2)(€) (mod(p — 1))).

Then ¢ is a homomorphism from R to (Z/(p—1)Z)?. For each element o € Cy (%),
we have p(a) = (1,1) or (1, —1) according as t(«) = 1, p or 2, 2p, respectively. This
implies that the image Im ¢ of ¢ is the subgroup of (Z/(p — 1)Z)? generated by
(1,1) and (1,—1). Since (2,0) = (1,1) + (1,—1), (0,2) = (1,1) — (1, 1), and
(1,-1) = (1,1) — (0,2), the group Im ¢ is generated by the three elements (2,0),
(0,2) and (1,1). Let A be the subgroup of (Z/(p —1)Z)? generated by (2,0) and
(0,2). Then, since Imp # A and 2(1,1) € A, we have [Im ¢ : A] = 2. Since (2,0)
and (0,2) are independent and of order (1/2)(p—1), we have |A| = {(1/2)(p—1)}?,
whence [Ime| = 2-{(1/2)(p — 1)}* = (1/2)(p — 1)*. Since ¢ 1(0) = Rp—1p-1,
the proof is completed. O

5.6. The subgroup I,26’ of I,50' + Z.
In the equation (5.24) the group I1260’ + & appears. In this subsection we
consider the subgroup 1260’ of I126'+ %, and determine its index [[120'+ % : I126].

PROPOSITION 5.8.  We have the following.

(1) 5’,‘00[120’ = (p - 1)5{?
(2) (1129/ + g)/[129, = (Z/(p - 1)2)2

PROOF.

(1) By the definition (5.22) of ¢’, the e,-components of ' are all non-zero,
hence ¢’ is invertible in R¢. In particular, since Opexio) = Opex =0 (cf. Corollary
5.1), we have 0'e, = —sey,, and @'ey , = —sey, , hence s(6') ey, = —eyq,
and 5(60') ey, = —€x, - Since s(ey + ey ) = by (5.23), we have s(6/) 7! =
$(0") " (exoy T €xey) = —(exio) + €xisy) = —(1/(p —1))s. Let n = as + b[2]s be
any element of 2 (a,b € Z). Then we have
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n(@) ! = (a+b[2))s(0) = fpi . (a+0b[2))s = 71%77. (5.26)

Now let 1 be any element of Z’NI1260’, and write n = as+b[2]s = £6’ with a,b €
Z and € € I15. Then by (5.26) we have ¢ = n(0')! = —(a/(p—1))s—b/(p—1)[2]s.
Since £ € R, both the numbers a/(p—1) and b/(p—1) are integers. This implies that
a,b € (p—1)Z and that n € (p—1)Z, namely ZNI120" C (p—1)%. Conversely, let
7 be any element of (p—1).2°. Then by (5.26) we have n(¢’)~! € 2. We can verify
by elementary calculations that both the elements s and [2]s satisfy the congruence
(i*) in (5.5) and the congruences (ii)—(iv) of Theorem 5.1. This implies that the
elements s and [2]s are contained in I;9, and hence 2 Clp. Put & = n(¢')~L.
Then we have n = £6’ € I126’, which implies that (p — 1)Z C Z’NI126’. This
proves (1).

(2) By (1) we have (1120/ + g)/[m&’ = g/(fﬂllgﬂ’) = ff/(p — 1)5; Since
s and [2]s is a basis of 2, we have 2 /(p —1)2 = (Z/(p — 1)Z)?. This proves
(2). O

5.7. The cuspidal class number.

By (2) of Proposition 5.6 and Proposition 5.7, we have [R : Roo + Z] =
(p — 1)2. Also, by (2) of Proposition 5.8, we have [I120' + 2 : [120'] = (p — 1)%.
Combining these equalities with (5.24), we have

p*—1
2

2
b= 1 ) 1 . /
=5 oDt [R: I20']. (5.27)

h:

[(RQO + g) : (1120/ + g)]

Let A and B be two lattices of Rg, and let C be a lattice contained in AN B.
Then the quotient [A : C|/[B : C] does not depend on the choice of C. We denote
this number by [A : B]. It satisfies the usual multiplicative property, namely
[A: B]=[A:D|[D: B]. In particular, we have [R : I;20'] = [R: RO'|][RO’ : I,20'].
Since ¢’ is invertible, we have [Rf’ : I120'] = [R : I 2]. By these equalities and
(5.27) we have

p?—1 1
24 (-1

[R:RO[R : Is). (5.28)

We determine the values [R : I12] and [R : Rf'].

PROPOSITION 5.9.  We have [R : I15] = 48p?.
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PrROOF. Let & be any element of R. Let ¢1(€) be the element of Z/12Z
defined by the expression on the left-hand side of (i*) in (5.5). Let (&) be the
element of Z/4Z defined by the expression on the left-hand side of (ii) in Theorem
5.1. Similarly, let ¢3(§) (respectively p4(€)) be the element of Z/pZ defined by
the expression on the left-hand side of (iii) (respectively (iv)) in Theorem 5.1.
Then ¢ = (¢1, 92,93, ©4) is a homomorphism from R to Z/12Z X Z/4Z X
Z/pZ X Z/pZ. The kernel of ¢ is I;o. We prove that ¢ is surjective. Put
&1 = Tpx - 1o — 3px[2], where z is an integer such that pz = 1 (mod 12). Then we
have ¢(&1) = (1,0,0,0). Put & = 6pz - 15 + 3pz[2], where z is the same integer
as in &;. Then (&) = (0,1,0,0). Put {3 = 12y - 15, where y is an integer such
that 12y = 1 (mod p). Then ¢(&3) = (0,0,1,0). Put & = 12y[2p], where y is the
same integer as in £5. Then p(&4) = (0,0,0,1). This proves that ¢ is surjective,
and hence the proof is completed. O

PrROPOSITION 5.10.  We have the following equation

mem = 2 T v (de) )

(s
where Y runs through all even, primitive Dirichlet characters modulo p.

Proor. Let f : Rg — Rg be the linear transformation on the vector
space Rg over Q defined by the multiplication by #’. Let {z;} be a basis of
R over Z. Let M(f) be the matrix of f determined by {z;}. Then we have
[R: RO'] = |det M(f)| by the theory of elementary divisor and the definition of
[R : RO']. Since 0'e,, = x(¢)ey for any character x of Cj(£) and the set {e,}
is a basis of Rc over C, we have det M(f) =[], x(0") where x runs through all
characters of Cyr(£). Let x be a character of C;(£). Then, by the definition (5.22)
of 8, Proposition 5.1 and (5.23), we have

x(#) = 1@+ X(2)B, 5 (5.29)

where 9 = 1, if x is non-trivial on C’;l)(:i:). When y is trivial on C’}l)(:lz), it is
one of x(0), X(2), X(p) OF X(2,p), and we have
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—(p—1) if x = x(0) or X(2),

1 .
x(@) =41 —=1 X =xe), (5.30)

1 .
*E@*D if X = X(2,p)-

Let 9 be a non-trivial, even character of (Z/pZ)*. Then the set of characters
x of Cr(£) with v, = 9 consists of four elements. Let x be anyone of them. Then

the other characters are xx(2), XX(p) and xXx2p)- Put xo = X(0), X1 = X(2)>
X2 = X(p) and x3 = X(2,)- We prove that

3

T2+ Gox)(2D) = (4 - ¥(2))*. (5.31)

=0

In fact, since xo([2]) = x2([2]) = 1 and x1([2]) = x3([2]) = —1, the left-hand side
of (5.31) is equal to

2

{4 x([2)*} = {4—x(12H)}". (5.32)

By the definition of [2] (cf. (2.45)), the element [2]? is an element of C}l)(i)
represented by the matrix (2 + p)12. Hence we have x([2]?) = %(2), which proves
(5.31). Now, by (5.31) and (5.29), we have

3 1 4
TTov®) = - v (15,5) (5.33)
1=0

On the other hand, for four characters which are trivial on C}l) (£), we have

3
[T = -1 (5.34)
=0

by (5.30).
Since the product of (5.33) with ¢ ranging over all even, primitive Dirichlet
characters modulo p coincides with the product Hx x(0") with x non-trivial on

C;l)(j:), we have, by this and (5.34),
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[Tx = 2 T -ver(bn) )

X P

- e D {a-ver (iBw>} (5.35)

¥

where y runs through all characters of Cy(+). Since the value of the right-hand
side of (5.35) is a positive real number, combining the equality (5.35) with the
relation [R: RO'] = [det M(f)| =[], x(0")], we have the proof. O

By (5.28) and Propositions 5.9-5.10, we have the following formula for the
cuspidal class number.

THEOREM 5.2.  Let p be a prime # 2,3. Let h be the cuspidal class number
of the modular curve X1(2p). Then we have

pr—1 1 4
_ 2 2
n=ort e T v (35 b
P
where ¥ runs through all even, primitive Dirichlet characters modulo p.
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