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Abstract. Let p be a prime not equal to 2 or 3. We determine the
group of all modular units on the modular curve X1(2p), and its full cuspidal
class number. We mention a fact concerning the non-existence of torsion
points of order 5 or 7 of elliptic curves over Q of square-free conductor n as
an application of a result by Agashe and the cuspidal class number formula
for X0(n). We also state the formula for the order of the subgroup of the
Q-rational torsion subgroup of J1(2p) generated by the Q-rational cuspidal
divisors of degree 0.

1. Introduction.

Let X be a modular curve. Let S be a subset of the set Sc of all cusps on X,
and let CS be the subgroup of the divisor class group of X consisting of the classes
of divisors of degree 0 which are supported on S. (The group CSc is called the
cuspidal divisor class group of X.) Kubert and Lang [7] considered the problem
to determine if CSc

is finite, and when it is finite to compute its order. (The order
of CSc

is called the cuspidal class number of X.) Manin [8] and Drinfeld [4] had
already proved the finiteness of CSc , but their method gave no information about
the order. Kubert and Lang [7] found an altogether different proof of the Manin-
Drinfeld theorem in which the whole point was to exhibit the group of modular
units on the modular curve X. (A function on X is called a modular unit on X

if its divisor is supported on Sc.) In the case X = X(n) where n is a power of a
prime p 6= 2, 3, Kubert and Lang [7] could determine the cuspidal class number
of X(n). Kubert and Lang [7] also considered the case where n has more prime
factors than one, but there was an essential difficulty. In the case where n is a
power of a prime, the group of the modular units is generated by special functions
called Siegel units. But when n has more prime factors than one, the group of
the modular units contains square roots of Siegel units, and because of this fact
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the cuspidal class number was not determined. (For this fact, see Kubert [6] and
Stevens [12]).

When X is a modular curve of other type, several authors have considered its
cuspidal class number.

Let X = X0(n). Ogg [10] determined the case where n is a prime, and Takagi
[16] determined the case where n is square-free. Also, Takagi [19] computed the
cuspidal class number of a curve which is a quotient of X0(n) with n square-free
by Atkin-Lehner involutions.

Let X = X1(n). In this case, firstly Klimek [5] considered the subgroup CS

of CSc
where S is the set S0 of 0-cusps under the assumption that n is a prime,

and computed its order. (A cusp on X1(n) is called a 0-cusp if it lies over the cusp
0 of the curve X0(n).) Kubert and Lang [7] also considered the subgroup CS0 in
the case where n is a power of a prime p 6= 2, 3. Lastly, Yu [21] computed the
order of the subgroup CS0 in the case where n is an arbitrary integer. (Note that
there is a misprint in the formula of [21], which is corrected in Yang [20].)

As to the full cuspidal class number of X1(n), Takagi [13] determined the
case where n is a prime, and Takagi [14], [15], [17] determined the case where n

is a power of a prime with the exception of the case where n is an even power of
2.

The purpose of the present paper is to consider the modular curve X1(n) in
the case where n has more prime factors than one. In fact, we consider the case
n = 2p with p a prime as a first step. In view of the case of X(n) with n having
more prime factors than one, it seems possible that the group of the modular units
contains square roots of Siegel units. But, fortunately, our study reveals that it is
not the case at least in the case n = 2p, therefore, we can compute the cuspidal
class number of X1(2p).

One of our main results is the determination of the group of the modular units
on X1(2p), which is given in Theorem 4.2. The other main result is the description
of the cuspidal class number of X1(2p) (Theorem 5.2), which is given as follows.

Main Theorem. Let p be a prime 6= 2, 3. Let h be the cuspidal class number
of the modular curve X1(2p). Then we have

h =
p2 − 1

24
· p2 ·

∏

ψ

{
(4− ψ(2))2

(
1
4
B2,ψ

)4}
,

where ψ runs through all even, primitive Dirichlet characters modulo p.

In the theorem above, the symbol B2,ψ denotes the generalized Bernoulli
number relative to ψ defined by
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B2,ψ = p

p−1∑
a=1

ψ(a)B2

(
a

p

)

with B2(X) = X2 −X + 1/6 (the second Bernoulli polynomial).
The study of the cuspidal divisor class group plays an important role in the

area of the arithmetic of the Jacobian variety of a modular curve. Let X be a
modular curve. Let i∞ : P 7→ [(P ) − (∞)] be the cuspidal embedding of X into
its Jacobian JX sending a point P to the divisor class of (P )− (∞). When P is a
cusp on X, the point i∞(P ) is a torsion point on JX .

Let X = X0(n). Then X has a Q-rational model, which is defined by the
property that its function field is the field of modular functions for Γ0(n) whose
Fourier coefficients belong to Q. The cusp ∞ is a Q-rational point of X0(n).
In particular, when n is square-free, all cusps on X0(n) are Q-rational points of
X0(n). Therefore, the cuspidal divisor class group is a Q-rational torsion subgroup
of J0(n) (= J(X0(n))). When n is a prime p, Ogg [11] conjectured and Mazur [9]
proved that the full Q-rational torsion subgroup of J0(p) is the cuspidal divisor
class group.

Let n be square-free. Let A be an elliptic curve over Q of conductor n. Let r

be a prime that does not divide 6n. Agashe [1] proved that if r divides the order
of the Q-rational torsion subgroup A(Q)tor of A(Q), then r divides the order of
the cuspidal divisor class group of X0(n). By [9], the only primes that can divide
the order of A(Q)tor are 2, 3, 5 and 7. Therefore, the possible value of r is 5 or
7 with r - n. On the other hand, by the formula for the cuspidal class number of
X0(n) in [16, Theorem 5.1], we can see that r divides the cuspidal class number
of X0(n) if and only if at least one prime factor p of n satisfies p ≡ ±1 (mod r).

Combining the result by Agashe [1] with that by [16, Theorem 5.1], we obtain
immediately the following theorem.

Theorem. Let n be a square-free integer. Let A be an elliptic curve over
Q of conductor n.

(1) Assume that every prime factor p of n satisfies p 6≡ 0,±1 (mod 5). Then A

has no Q-rational point of order 5.
(2) Assume that every prime factor p of n satisfies p 6≡ 0,±1 (mod 7). Then A

has no Q-rational point of order 7.

Let X = X1(n). Then X has a Q-rational model, which is defined by the
property that its function field is the field of modular functions for Γ1(n) whose
Fourier coefficients belong to Q. The ∞-cusps are Q-rational points of X1(n). (A
cusp on X1(n) is called an ∞-cusp if it lies over the cusp ∞ of the curve X0(n).)
Therefore, the group CS where S is the set S∞ of ∞-cusps is a Q-rational torsion
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subgroup of J1(n) (= J(X1(n))). The order of the group CS∞ is equal to that of
the group CS0 which is known by [5], [7] and [21]. In the case where n is a prime
p 6= 2, 3, Conrad, Edixhoven and Stein [3, Conjecture 6.2.2.] conjectured that the
full Q-rational torsion subgroup of J1(p) is the group CS∞, and verified it for a
few cases of p.

In order to study the Q-rational points in the cuspidal divisor class group, it
is necessary to consider the Q-rational cuspidal divisors of degree 0. In the case
where n is a prime p 6= 2, 3, Chen [2] proved that the subgroup of J1(p) generated
by the classes of Q-rational cuspidal divisors of degree 0 coincides with CS∞. In
some cases where n is not a prime, there occur Q-rational cusps which are not
∞-cusps.

Let n = 2p with p a prime 6= 2, 3. In this case there exist Q-rational cusps
which are not ∞-cusps. If a cusp P of X1(2p) is represented by a/c (∈ Q ∪ {∞})
with (a, c) = 1 and (c, 2p) = 2p/r, we say that P is of type r. The ∞-cusps are
the cusps of type 1. The cusps of type 2 are also Q-rational. The cusps of type
p or 2p are not Q-rational, therefore the subgroup C(1,2) = CS of CSc

with S the
set of cusps of type 1 or 2 coincides with the subgroup of J1(2p) generated by all
i∞(P ) with P a Q-rational cusp. In addition to the Q-rational cusps, there exist
Q-rational cuspidal divisors of degree 0. Put D(2p) =

∑
x∈A1

{(1/x) − (∞)} and
D(p) =

∑
x∈A2

{(1/2x)− (∞)}, where A1 (respectively A2) denotes a complete set
of representatives of (Z/2pZ)×/{±1} (respectively (Z/pZ)×/{±1}). These are
Q-rational divisors of degree 0. Put CQ = C(1,2) + Z[D(2p) ] + Z[D(p)]. Then
CQ coincides with the subgroup of J1(2p) generated by the classes of Q-rational
divisors of degree 0. Continuing the arguments in the present paper, we can prove
the following statement, and also determine the p-primary part of CQ. However,
those results and proofs will be given in other papers.

Statement. Let p be a prime 6= 2, 3. Let C(1,2) and CQ be the subgroups
of J1(2p) defined above.

(1) CQ = C(1,2).
(2) Let hQ be the order of CQ. Then we have

hQ =
p2 − 1

24
· p ·

∏

ψ

{
(4− ψ(2))

(
1
4
B2,ψ

)2}
,

where ψ runs through all even, primitive Dirichlet characters modulo p.

In the following we describe the contents of each section. In Section 2 we
consider the modular curve X1(M) with M square-free. Here we parametrize the
set of cusps by an abelian group called a Cartan group, and identify the cuspidal
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divisor group with the group ring of the Cartan group. In particular some relations
between the divisors of Siegel functions are proved. In Section 3 we confine the
study to the case M = 2p. The purpose of this section is to prove that the group
of modular units is generated by Siegel functions. In Section 4 we determine the
group of modular units. In Section 5 we compute the cuspidal class number.

In the present paper we denote by N , Z, Q, R, C, 12 the set of natural
numbers, the ring of rational integers, the field of rational numbers, the field
of real numbers, the field of complex numbers, the two-by-two identity matrix,
respectively.

2. Modified Siegel functions on the curves X1(M).

In this section we consider modular curves X1(M) with M square-free, and
construct modular units on X1(M) by the use of modified Siegel functions. We
parametrize the cusps of X1(M) by an abelian group (called a Cartan group),
and identify the cuspidal divisor group with its group ring. In order to do it, we
consider a conjugate of the group Γ1(M) which is a principal congruence subgroup
of G(

√
M). In general, the cusps of the curve determined by a principal congruence

subgroup of G(
√

M) can be parametrized by an abelian group. This fact was used
in our previous papers [13]–[15] and [17], and proved in [18] for arbitrary principal
congruence subgroups of G(

√
M).

2.1. Modular curves X1(M) and XI .
Let Γ be a Fuchsian group of the first kind. We denote by XΓ the complete

nonsingular curve associated with the quotient space Γ\H, where the symbol H

denotes the upper half plane.
Let M be a square-free integer fixed throughout this section with M 6= 1.

We denote by Γ1(M) the subgroup of SL2(Z) consisting of all matrices
(

a b
c d

)
(∈ SL2(Z)) with a− 1 ≡ d − 1 ≡ c ≡ 0 (mod M). When Γ = Γ1(M), we denote
the curve XΓ by X1(M).

Let T be the set of all positive divisors of M , and regard it as a group with
the product defined by r ◦ s = rs/(r, s)2 where (r, s) denotes the greatest common
divisor of r and s (r, s ∈ T ). Let O be the order defined by O =

∑
r∈T Z

√
r. We

denote by G(
√

M) the subgroup of SL2(O) consisting of all elements α of the
form

α =

(
a
√

r b
√

r∗

c
√

r∗ d
√

r

)
, (2.1)

where a, b, c, d ∈ Z, r ∈ T and r∗ = M/r. We call r the type of α, and denote it
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by t(α). Let I be the ideal of O defined by I =
√

MO. We denote by Γ(I) the
subgroup of G(

√
M) consisting of all elements α satisfying

α ≡ 12 (mod I), (2.2)

and call it a principal congruence subgroup of G(
√

M). When Γ = Γ(I), we denote
the curve XΓ by XI .

We have

Γ(I) =
(

1 0
0
√

M

)−1

Γ1(M)
(

1 0
0
√

M

)
. (2.3)

Hence the curve X1(M) is isomorphic to the curve XI .

2.2. The function field of the curve XI .
We denote by FI the field of all automorphic functions with respect to the

group Γ(I) such that their Fourier coefficients belong to the cyclotomic field kM =
Q(e2πi/M ), and by F1 the field of all automorphic functions with respect to the
group G(

√
M) such that their Fourier coefficients belong to the field Q. It is

known that the field kM is algebraically closed in FI , and the field CFI is the field
of all automorphic functions with respect to Γ(I) (cf. [13, Proposition 1.6]).

Let f(τ) (τ ∈ H) be an automorphic function with respect to Γ(I). If it has
no zeros and poles on H, we call f a modular unit with respect to Γ(I) and also
a modular unit on the curve XI . Later (in Subsection 2.4) we construct modular
units contained in the field FI .

We denote by GI the subgroup of GL2(O/I) consisting of all elements α which
can be represented by a matrix A (∈ M2(O)) of the form

A =

(
a
√

r b
√

r∗

c
√

r∗ d
√

r

)
, (2.4)

where a, b, c, d ∈ Z, r ∈ T and r∗ = M/r. Then it is known that the field FI is a
Galois extension of F1, and its Galois group is isomorphic to the group GI/{±12}
([13, Section 1 (1.15)]). We denote by GI(±) the group GI/{±12}. Then we have

Gal
(
FI/F1

) ∼= GI(±). (2.5)

Let α be an element of GI or GI(±). We denote by σ(α) the element of the Galois
group Gal(FI/F1) corresponding to α by (2.5). Let α be represented by the matrix
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A in (2.4). Then the element r of T is determined only by α. We call r the type
of α, and denote it by t(α).

2.3. A summary of properties of Siegel functions.
Here we summarize some properties of Siegel functions, and in the next sub-

section construct modular units on XI .
For any element a = (a1, a2) of the set Q2 − Z2, the Siegel function ga(τ)

(τ ∈ H) is defined in [7]. It has the following q-product

ga(τ) = −q(1/2)B2(a1)
τ e2πia2(a1−1)/2(1− qz)

∞∏

k=1

(1− qk
τ qz)

(
1− qk

τ

qz

)
, (2.6)

where qτ = e2πiτ , qz = e2πiz, z = a1τ + a2, and B2(X) = X2 − X + 1/6 (the
second Bernoulli polynomial). If b = (b1, b2) ∈ Z2, then we have

ga+b(τ) = ε(a, b)ga(τ), (2.7)

where ε(a, b) is a root of unity defined by

ε(a, b) = exp
[
πi(b1b2 + b1 + b2 + a1b2 − a2b1)

]
. (2.8)

If α ∈ SL2(Z), then we have

ga(α(τ)) = ψ(α)gaα(τ), (2.9)

where ψ denotes the character of SL2(Z) appearing in the transformation formula
of the square of the Dedekind η-function. Explicitly the value of ψ(α) at α =

(
a b
c d

)
is given by

ψ(α) =





(−1)(d−1)/2 exp
[
2πi

12
{(b− c)d + ac(1− d2)}

]
if d is odd,

−i(−1)(c−1)/2 exp
[
2πi

12
{(a + d)c + bd(1− c2)}

]
if c is odd.

(2.10)

In particular, we note that ψ(−12) = −1. (It is known that the kernel of ψ is a
congruence subgroup of level 12 with index 12, and coincides with the commutator
subgroup of SL2(Z).)
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2.4. Modified Siegel functions relative to the ideal I.
Let I =

√
MO as above. Here we define the modified Siegel functions relative

to the ideal I which are suitable for Γ(I). In [18], for an arbitrary non-zero ideal
I (6= O), the modified Siegel functions relative to the ideal I are defined, and their
basic properties are studied. Also in [16, Section 1] the case where the ideal I is
of the form I = n

√
mO is stated.

Let r be an element of T and r∗ = M/r. Let A
′(r)
I be the set of all row vectors

u of the form

u =
(

x

r

√
r,

y

r∗
√

r∗
)

, (2.11)

where x and y are rational integers satisfying u /∈ Z
√

r × Z
√

r∗ = Z(r). We call
the element r of T above the type of u and denote it by t(u). Put A′I =

⋃
r∈T A

′(r)
I

(disjoint). If u is an element of A′I of type r, and α an element of G(
√

M) of type
s (r, s ∈ T ), then the product uα is an element of A′I of type r ◦ s.

Let u = (a1
√

r, a2

√
r∗) be an element of Q

√
r × Q

√
r∗ − Z(r) (a1, a2 ∈ Q,

r ∈ T ), and put u◦ = (a1, a2) (∈ Q2−Z2). We define the modified Siegel function
gu(τ) (τ ∈ H) by

gu(τ) = gu◦

(√
r

r∗
× τ

)
. (2.12)

In particular, if u ∈ A′I , we say that gu(τ) is a modified Siegel function relative to
the ideal I.

Let u ∈ A′I be written as (2.11). Then we have the explicit product

gu(τ) = (−1) exp
[
2πi

2
· y

r∗

(
x

r
− 1

)]
× t(r/2)B2(x/r)

× (
1− ζry

M tx
) ∞∏

k=1

(
1− ζry

M tx+rk
)(

1− ζ−ry
M t−x+rk

)
(2.13)

with ζM = exp[2πi/M ] and t = exp[2πiτ/
√

M ].
For an element v = (b1

√
r, b2

√
r∗) of Z(r) (b1, b2 ∈ Z), write v◦ = (b1, b2)

(∈ Z2). For elements u ∈ A
′(r)
I and v ∈ Z(r), we put

ε(u, v) = ε(u◦, v◦). (2.14)
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Let

α =

(
a
√

s b
√

s∗

c
√

s∗ d
√

s

)
(2.15)

be an element of G(
√

M) of type s (a, b, c, d ∈ Z, s ∈ T ). For an element r of T ,
we put

α(r) =

(
a(r, s) b(r, s∗)

c(r∗, s∗) d(r∗, s)

)
. (2.16)

Then the matrix α(r) belongs to SL2(Z).
Now we have the following transformation formulae ([16, Proposition 1.1],

[18, Proposition 3.5]).

Proposition 2.1. Let u be an element of A′I of type r.

(1) Let v ∈ Z(r). Then gu+v(τ) = ε(u, v)gu(τ).
(2) Let α ∈ G(

√
M). Then gu(α(τ)) = ψr(α)guα(τ), where ψr(α) = ψ(α(r)).

(3) Let α ∈ Γ(I). Then gu(α(τ)) = εu(α)ψr(α)gu(τ), where εu(α) = ε(u, v) with
v = uα− u (∈ Z(r)).

As an immediate consequence, we have the following proposition, which states
that the modified Siegel functions generate modular units on the curve XI . (For
the proof, see the arguments after [16, Proposition 1.1] or the proof of [18, Theo-
rem 3.1].)

Proposition 2.2. Let u be an element of A′I of type r. Let [2M, 12] be the
least common multiple of 2M and 12. Then the function g

[2M,12]
u depends only on

the residue class of u modulo Z(r), and is invariant under the exchange u → −u.
Moreover, the function g

[2M,12]
u is an automorphic function with respect to Γ(I),

has no zeros and poles on H, and its Fourier coefficients belong to the cyclotomic
field kM = Q(e2πi/M ). Hence it is a modular unit contained in the field FI .

2.5. The Galois action on the function g
[2M,12]
u .

By Proposition 2.2 the function g
[2M,12]
u (u ∈ A′I) is an element of the function

field FI . Here we consider the action of the Galois group Gal(FI/F1) on g
[2M,12]
u .

For each r ∈ T , put
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A
′(r)
I =

(
A
′(r)
I /Z(r)

)
/{±1} (2.17)

and

A ′
I =

⋃

r∈T

A
′(r)
I (disjoint). (2.18)

Let u be an element of A′I . We denote by [u] the class of u in A ′
I . By

Proposition 2.2 the function g
[2M,12]
u depends only on the class [u] of u. Therefore,

for any element υ of A ′
I , we can denote by g

[2M,12]
υ the function g

[2M,12]
u with

υ = [u]. If υ ∈ A
′(r)
I , we call r the type of υ and denote it by t(υ).

Let υ be an element of A ′
I with υ = [u] (u ∈ A′I). Let α be an element of GI

or GI(±), and represented by a matrix A of the form (2.4). Then the product uA

belongs to A′I . We denote by υα the element of A ′
I which is represented by uA.

The class υα does not depend on the choice of u and A. This defines the action of
GI on the set A ′

I , and also of GI(±). If υ is of type r and α is of type s, then υα

is of type r ◦ s. Concerning the Galois action on g
[2M,12]
υ we have the following.

(For the proof, see [13, (2.5)] or the proof of [18, Theorem 3.2].)

Proposition 2.3. Let υ∈A ′
I and α ∈ GI . Then we have

(
g
[2M,12]
υ

)σ(α) =
g
[2M,12]
υα .

2.6. The Cartan group and the cuspidal prime divisors.
Let CI be the subgroup of GI consisting of all elements α which can be rep-

resented by a matrix A (∈ M2(O)) of the form

A =

(
a
√

r b
√

r∗

b
√

r∗ a
√

r

)
(2.19)

with a, b ∈ Z, r ∈ T and (ar, br∗,M) = 1. It is an abelian subgroup of GI , and
called a Cartan group.

Let HI be the subgroup of GI consisting of all elements α which can be
represented by a matrix B (∈ M2(O)) of the form

B =
(

1 0
0 d

)
(2.20)

with d ∈ Z and (d,M) = 1.
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We have the following

GI = HICI and HI ∩ CI = 1. (2.21)

Let P∞ denote the prime divisor of FI defined by the q-expansion. Let P be a
prime divisor of FI , and νP the valuation of P . For any element σ of Gal(FI/F1),
we define the prime divisor Pσ by νP σ (hσ) = νP (h) (h ∈ FI), which defines a right
action of the group Gal(FI/F1). We can prove the following (i), (ii), (iii) and (iv)
(cf. [13, Section 2.1], [18, Proposition 4.1]).

( i ) The conjugates Pσ
∞ are of degree one, hence the prime divisors Pσ

∞ can be
regarded as prime divisors of the function field CFI and identified with
points on the curve XI .

( ii ) If α ∈ GI is an element represented by a matrix A ∈ G(
√

M), then the
prime divisor P

σ(α)
∞ corresponds to the cusp on XI represented by A−1(∞).

(iii) The set of all elements α ∈ GI satisfying P
σ(α)
∞ = P∞ coincides with the

group ±HI .
(iv) Let Gu(I) be the subgroup of GI consisting of all elements which can be rep-

resented by the matrices A of the form (2.4) satisfying det(A) ≡ 1 (mod I).
Then we have GI = Gu(I)HI , and for any element α ∈ Gu(I) there exists an
element A ∈ G(

√
M) such that α = A (mod I) ([13, Proposition 1.1]).

By (2.21) and (iii), every conjugate Pσ
∞ can be written as P

σ(α)
∞ with a unique

element α of CI(±) = CI/{±12}. By (i), (ii) and (iv) any conjugate Pσ
∞ can be

identified with a cusp on XI . Conversely it is known that any cusp on XI can be
represented by a point A−1(∞) with A ∈ G(

√
M). Thus the group CI(±) and the

set of cusps on the curve XI correspond bijectively by the mapping α 7→ P
σ(α)
∞ .

We call the conjugates Pσ
∞ the cuspidal prime divisors.

2.7. The divisor of the function g
[2M,12]
υ .

By Proposition 2.2 the function g
[2M,12]
υ (υ ∈ A ′

I ) is an element of the function
field FI . Here we determine the divisor of g

[2M,12]
υ as an element of FI .

For any x ∈ R we denote by 〈x〉 the real number defined by 0 5 〈x〉 < 1
and 〈x〉 ≡ x (mod Z). Let υ = [u] with u = (a1

√
r, a2

√
r∗) ∈ A

′(r)
I (a1, a2 ∈ Q).

Then the number B2(〈a1〉) depends only on v but not on the choice of u because
of the equation B2(〈−x〉) = B2(〈x〉). Therefore we can denote it by B2(〈υ◦1〉). The
following proposition can be proved in the same way as [13, Proposition 2.3] or
[14, Theorem 2.1], and is proved in the case where I is an arbitrary ideal in [18,
Theorem 4.2]. But for completeness we give the proof.

Proposition 2.4. Let υ be an element of A ′
I with t(υ) = r. Then the
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divisor of g
[2M,12]
υ as an element of FI is given by

div
(
g[2M,12]

υ

)
=

[2M, 12]
2

∑

α∈CI(±)

(r ◦ t(α))B2

(〈(υα)◦1〉
)
Pσ(α−1)
∞ .

Proof. Let υ = [u] with u = (a1
√

r, a2

√
r∗) ∈ A

′(r)
I (a1, a2 ∈ Q). We can

choose the representative u so as to satisfy 0 5 a1 < 1. Let us write a1 = x/r with
x ∈ Z. Then, in the product (2.13), x + rk and −x + rk are non-negative integers
for all k ∈ Z with k = 1. Since the number νP∞

(
g
[2M,12]
υ

)
is equal to the order of

g
[2M,12]
υ with respect to t = exp[2πiτ/

√
M ], by (2.13), we have

νP∞
(
g[2M,12]

υ

)
=

[2M, 12]
2

rB2(a1) =
[2M, 12]

2
rB2(〈υ◦1〉). (2.22)

Let α be an element of CI(±). Then ν
P

σ(α−1)
∞

(
g
[2M,12]
υ

)
= νP∞

((
g
[2M,12]
υ

)σ(α)) =

νP∞
(
g
[2M,12]
υα

)
(Proposition 2.3). Combining this equation with (2.22) above, we

have the desired formula, which completes the proof. ¤

Let D be the free abelian group generated by the cuspidal prime divisors of FI ,
and D0 the subgroup of D consisting of all elements of degree 0. Let R = Z[CI(±)]
be the group ring of CI(±), and R0 the additive subgroup of R consisting of all
elements of degree 0. Let

ϕ : D ∼= R (2.23)

be the isomorphism defined by the mapping P
σ(α)
∞ 7→ α. Then we have ϕ(D0) =

R0. Concerning the product in R we have the following.

Proposition 2.5. Let υ ∈ A ′
I and α ∈ CI(±). Then we have

αϕ
(
div

(
g[2M,12]

υ

))
= ϕ

(
div

(
g[2M,12]

υα

))
.

Proof. Put ϕ
(
div

(
g
[2M,12]
υ

))
=

∑
β∈CI(±) fυ(β)β with fυ(β) ∈ Z. Then

fυ(β) = ν
P

σ(β)
∞

(
g
[2M,12]
υ

)
. Multiplying ϕ

(
div

(
g
[2M,12]
υ

))
by α we have

αϕ
(
div

(
g[2M,12]

υ

))
=

∑

β∈CI(±)

fυ(β)αβ =
∑

γ∈CI(±)

fυ(α−1γ)γ.
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The coefficient fυ(α−1γ) is equal to ν
P

σ(α−1γ)
∞

(
g
[2M,12]
υ

)
= ν

P
σ(γ)
∞

((
g
[2M,12]
υ

)σ(α)).
By Proposition 2.3, we have

ν
P

σ(γ)
∞

((
g[2M,12]

υ

)σ(α)) = ν
P

σ(γ)
∞

(
g[2M,12]

υα

)
.

Thus we have fυ(α−1γ) = fυα(γ), which implies αϕ
(
div

(
g
[2M,12]
υ

))
=

ϕ
(
div

(
g
[2M,12]
υα

))
. Thus the proof is completed. ¤

2.8. Representatives of A ′
I .

Let u be an element of A′I of type r. It is obvious that Mu ∈ Z(r) (see (2.11)).
Let l be the least natural number such that lu ∈ Z(r). Then we say that u is of
order l. Since any element u′ of [u] is also of order l, we call l the order of the
class [u]. Let A ′

I (l) (respectively A
′(r)
I (l)) be the subset of A ′

I (respectively A
′(r)
I )

consisting of all elements of order l. Then we have the following decomposition

A ′
I =

⋃

l 6=1,∈T

A ′
I (l) (disjoint). (2.24)

For each l, we define the element wl ∈ A
′(M)
I by

wl =
(

1
l

√
M, 0

)
. (2.25)

Concerning the group action of CI(±) on A ′
I we have the following.

Proposition 2.6. Let l 6= 1, ∈ T . Then the set A ′
I (l) is an orbit of CI(±),

and A ′
I (l) = [wl]CI(±).

Proof. Elementary. ¤

Let R
(r)
I (r ∈ T ) be the subset of A

′(r)
I consisting of all elements u of the form

(2.11) satisfying one of the following conditions:

( i ) x = 0, and 0 < y/r∗ 5 1/2,
( ii ) 0 < x/r 5 1/2, and 0 5 y/r∗ < 1.

Put RI =
⋃

r∈T R
(r)
I . We call the elements of RI reduced. For each l (l 6=

1,∈ T ), let R
(r)
I (l) be the subset of R

(r)
I consisting of all elements of order l, and

put RI(l) =
⋃

r∈T R
(r)
I (l). Then the sets RI , R

(r)
I , RI(l) and R

(r)
I (l) are the

complete sets of representatives of A ′
I , A

′(r)
I , A ′

I (l) and A
′(r)
I (l) respectively.
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2.9. Square roots of gu with u of order 2.
Let l = 2 (when M is even). Then the set R

(r)
I (2) contains only one element

which is (0, (1/2)
√

r∗) or ((1/2)
√

r, 0) according as 2 - r or 2 | r. It is known that
if u is of order 2 the function gu(τ) is a square of a product of (modified) Siegel
functions up to a constant. For definiteness, for u ∈ R

(r)
I (2), we denote by

√
gu(τ)

one of the two square roots of gu(τ) as follows:

√
g(0,(1/2)

√
r∗)(τ) =

√
2 exp

[
2πi

8

]
· tr/24

∞∏

k=1

(1 + trk), (2.26)

√
g((1/2)

√
r,0)(τ) = exp

[
− 2πi

4

]
· t−r/48

∞∏

k=1

(1− trk−r/2), (2.27)

where t = exp[2πi(τ/
√

M)]. (These are the same as [16, (2.5), (2.6)].) Then, for
example, these functions can be written as follows:

√
g(0,(1/2)

√
r∗)(τ) = c× g(0,(1/4)

√
r∗)(τ)× g((1/2)

√
r,(1/4)

√
r∗)(τ), (2.28)

√
g((1/2)

√
r,0)(τ) = (−c)× g((1/4)

√
r,0)(τ)× g((1/4)

√
r,(1/2)

√
r∗)(τ), (2.29)

where c = exp[2πi · 7/16].

2.10. Relations between the modified Siegel functions (1).
We define the notation ĝu(τ) as follows.

ĝu(τ) =

{
gu(τ) if the order of u is not 2,
√

gu(τ) if u ∈ RI(2).
(2.30)

Here, we do not define the notation ĝu(τ) for u which is of order 2 but /∈ RI(2).
Put

f (p)
r (τ) =

∏

u∈R
(r)
I (p)

ĝu(τ). (2.31)

Then the function f
(p)
r (τ) can be expressed using the Dedekind η-function η(τ).

In fact, Put

H(τ) = η

(
τ√
M

)
= t1/24

∞∏

k=1

(1− tk) (2.32)
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with t = exp[2πi(τ/
√

M)]. Then we have

f (p)
r (τ) = c(p, r)× H((p ◦ r)τ)

H(rτ)
, (2.33)

where

c(p, r) =





√
p exp

[
2πi · p− 1

8

]
if p - r,

exp
[
− 2πi · p− 1

4

]
if p | r

(2.34)

([16, Proposition 2.2]). The following proposition gives relations between the
functions ĝu(τ) with u reduced and of prime orders.

Proposition 2.7. Let r be an element of T .

(1) Let p be a prime factor of M . Then, we have

f (p)
r (τ)× f

(p)
p◦r(τ) =

√
p exp

[
− 2πi · p− 1

8

]
.

(2) Let p and q be two different prime factors of M . Then we have

f
(p)
r (τ)

f
(p)
q◦r(τ)

=
f

(q)
r (τ)

f
(q)
p◦r(τ)

.

Proof.

(1) By (2.33) we have

f (p)
r (τ) · f (p)

p◦r(τ) =
c(p, r) ·H((p ◦ r)τ)

H(rτ)
· c(p, p ◦ r) ·H(rτ)

H((p ◦ r)τ)
= c(p, r) · c(p, p ◦ r),

which is equal to
√

p exp[−2πi · (p− 1)/8] by (2.34).
(2) Since c(p, r) = c(p, q ◦ r) by (2.34), we have, by (2.33),

f
(p)
r (τ)

f
(p)
q◦r(τ)

=
H((p ◦ r)τ) ·H((q ◦ r)τ)
H(rτ) ·H((p ◦ q ◦ r)τ)

,



38 T. Takagi

which is symmetrical about p and q. Hence p and q can be exchanged with
each other. ¤

2.11. Relations between the modified Siegel functions (2).
Here we give another type of relations between the functions ĝu(τ).

Proposition 2.8. Let k and l be two elements of T with (k, l) = 1 and
l 6= 1. Then we have

ĝ((1/l)
√

l,0)(τ) = (−1)N(k,l)

N(k,l)∏
x=0

ĝ((1/(kl)+x/k)
√

kl,0)(τ),

where N(k, l) = k − 1 or (1/2)(k − 1) according as l 6= 2 or l = 2.

Remark 2.1. Note that if a notation ĝu(τ) with u of order 2 appears in the
equation of the proposition, then u is reduced, hence it is well-defined.

Proof. Put t = exp[2πi(τ/
√

M)] and u = ((1/(kl) + x/k)
√

kl, 0). First,
we consider the case l = 2. By (2.27), we have

ĝ((1/l)
√

l,0)(τ) =
√

g((1/2)
√

2,0)(τ) = exp
[
− 2πi

4

]
· t−1/24

∞∏

h=1

(1− t2h−1). (2.35)

If 0 5 x 5 (1/2)(k−1)−1, then the order of u is not 2, and if x = (1/2)(k−1),
then u = ((1/2)

√
2k, 0). Hence, if 0 5 x 5 (1/2)(k − 1)− 1, we have

ĝ((1/(kl)+x/k)
√

kl,0)(τ)

= g((1/(kl)+x/k)
√

kl,0)(τ)

= −tkB2(1/(2k)+x/k)
(
1− t1+2x

) ∞∏

h=1

(
1− t2kh+1+2x

)(
1− t2kh−1−2x

)
, (2.36)

and if x = (1/2)(k − 1), by (2.27), we have

ĝ((1/(kl)+x/k)
√

kl,0)(τ) =
√

g((1/2)
√

2k,0)(τ)

= exp
[
− 2πi

4

]
· t−k/24

∞∏

h=1

(
1− t2kh−k

)
. (2.37)

By (2.35), (2.36) and (2.37), we can prove the equation of the proposition easily.
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Next, we consider the case l 6= 2. Then we have

ĝ((1/l)
√

l,0)(τ) = g((1/l)
√

l,0)(τ)

= −t(1/2)lB2(1/l)
∞∏

h=0

(
1− t1+lh

)(
1− tl−1+lh

)
. (2.38)

Since for all x the order of u is not 2, we have

ĝ((1/(kl)+x/k)
√

kl,0)(τ)

= g((1/(kl)+x/k)
√

kl,0)(τ)

= −t(1/2)klB2(1/(kl)+x/k)
∞∏

h=0

(
1− t1+lx+klh

)(
1− tl−1+(k−1−x)l+klh

)
. (2.39)

By (2.38) and (2.39), we can prove the equation of the proposition easily. ¤

Remark 2.2. Proposition 2.8 is a special case of a general relation con-
cerning the modified Siegel functions, which is a generalization of the distribution
relation of the ordinary Siegel functions.

2.12. Relations between the elements θl.
Let ϕ : D ∼= R be the isomorphism (2.23). Put DQ = D⊗Q and RQ = R⊗Q.

Then we have the isomorphism DQ
∼= RQ extending ϕ, which we also denote by

ϕ.
Let f(τ) be a function such that {f(τ)}e is a modular unit in the function

field FI for some integer e ∈ N . Then we define the element div(f) of DQ by

div(f) =
1
e

div(fe). (2.40)

In particular, let υ be any element of A ′
I (l) (l 6= 1,∈ T ), and υ = [u] with

u ∈ RI(l). We denote by div(ĝυ) the element div(ĝu).
Let υ ∈ A ′

I and α ∈ CI(±). Then, by Proposition 2.5, we have

αϕ(div(ĝυ)) = ϕ(div(ĝυα)). (2.41)

Let wl (l 6= 1,∈ T ) be the element (2.25). We denote by θl the element of RQ

defined by

θl = ϕ
(
div(ĝ[wl])

)
. (2.42)
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Let St([wl]) be the stabilizer of [wl]:

St([wl]) = {α ∈ CI(±) | [wl]α = [wl]}. (2.43)

If α ∈ St([wl]), then, by (2.41), we have

αθl = θl. (2.44)

We denote by C
(r)
I (respectively C

(r)
I (±)) the subset of CI (respectively

CI(±)) consisting of all elements of type r.
About the group St([wl]) we have the following.

Proposition 2.9. Let l be an element of T with l 6= 1.

(1) The stabilizer St([wl]) of [wl] is the subgroup of C
(1)
I (±) consisting of all ele-

ments α which can be represented by matrices of the form
(

a 0
0 a

)
with a ∈ Z

satisfying a ≡ 1(mod l) and (a,M) = 1.
(2) If l 6= 2, then St([wl]) ∼= (Z/l∗Z)×.
(3) If l = 2, then St([wl]) = C

(1)
I (±) ∼= (Z/MZ)×/± 1.

Proof.

(1) and (3) can be proved easily.
(2) Let α ∈ St([wl]) be represented by a matrix

(
a 0
0 a

)
with a ≡ 1(mod l) and

(a,M) = 1. Since l 6= 2, the class of a in (Z/MZ)× depends only on α, hence the
class of a in (Z/l∗Z)× is determined by α, which we denote by ψ(α). Then it is
easy to see that ψ gives an isomorphism St([wl]) ∼= (Z/l∗Z)×. ¤

Let us denote by [r] (r ∈ T ) the element of CI(±) which is represented by the
matrix

(√
r
√

r∗√
r∗

√
r

)
. (2.45)

The following theorem is a restatement of Proposition 2.7 in the language of divi-
sors, and gives relations between the elements θl with l primes.

Theorem 2.1. In the group ring RQ, we have the following relations.

(1) Let p be a prime factor of M . Then we have
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( ∑

α∈C
(1)
I (±)

α

)
(1 + [p])θp = 0.

(2) Let p and q be two different prime factors of M . Then we have

1
|St([wp])|

( ∑

α∈C
(1)
I (±)

α

)
(1 + [pq])θp =

1
|St([wq])|

( ∑

α∈C
(1)
I (±)

α

)
(1 + [pq])θq.

Proof. Let p be a prime factor of M . For each r (∈ T ), let
R

(
C

(r)
I (±)/St([wp])

)
be a complete set of representatives

( ⊂ C
(r)
I (±)

)
of the

quotient set C
(r)
I (±)/St([wp]). By Proposition 2.6, the set A

′(r)
I (p) consists of

all elements [wp]α with α ∈ R
(
C

(r∗)
I (±)/St([wp])

)
. Note that if α1 6= α2

(
αi ∈

R
(
C

(r∗)
I (±)/St([wp])

)
, i = 1, 2

)
, then [wp]α1 6= [wp]α2. By (2.31) and (2.41), we

have

ϕ
(
div(f (p)

r )
)

=
∑

υ∈A
′(r)
I (p)

ϕ(div(ĝυ)) =
∑
α

ϕ
(
div(ĝ[wp]α)

)

=
( ∑

α

α

)
θp, (2.46)

where α runs through R
(
C

(r∗)
I (±)/St([wp])

)
. Let s be any element of T . Since,

if α runs through R
(
C

(r∗)
I (±)/St([wp])

)
, then α[s] runs through a complete set of

representatives of C
((s◦r)∗)
I (±)/St([wp]), we have by (2.46)

ϕ
(
div

(
f

(p)
s◦r

))
=

( ∑
α

α

)
[s]θp. (2.47)

(1) By (2.46), (2.47) and (1) of Proposition 2.7, with r = M , we have

0 = ϕ
(
div

(
f

(p)
M · f (p)

p◦M
))

=
( ∑

α

α

)
(1 + [p])θp, (2.48)

where α runs through R
(
C

(1)
I (±)/St([wp])

)
. Since the right-hand side of (2.48) is

equal to
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1
|St([wp])|

( ∑

α∈C
(1)
I (±)

α

)
(1 + [p])θp, (2.49)

(1) is proved.
(2) By (1) of Proposition 2.7, (2.46) and (2.47), with r = M , we have

ϕ

(
div

(
f

(p)
M

f
(p)
q◦M

))
= ϕ

(
div

(
f

(p)
M · f (p)

p◦q◦M
))

=
( ∑

α

α

)
(1 + [pq])θp, (2.50)

where α runs through R
(
C

(1)
I (±)/St([wp])

)
. The term (2.50) is equal to

1
|St([wp])|

( ∑

α∈C
(1)
I (±)

α

)
(1 + [pq])θp. (2.51)

By (2) of Proposition 2.7, we can exchange p and q in (2.50), whence the relation
of (2) follows. ¤

Let a be an integer which is prime to M . We denote by δ[a] the element of
C

(1)
I (±) represented by the matrix

(
a 0
0 a

)
.

The following theorem is a restatement of Proposition 2.8 in the language of
divisors.

Theorem 2.2. Let k and l be two elements of T with (k, l) = 1 and l 6= 1.

(1) In the group ring RQ, we have the following relation

[l∗]−1[(kl)∗]θl =
∑

t

{
1

|St([wt∗ ]) ∩ St([wlt])|
( ∑

α∈St([wt∗ ])

α

)
[s]−2

}
θlt,

where t runs through all positive divisors of k with s = k/t.
(2) Let t be a positive divisor of k. Let a be an integer satisfying a ≡ −1 (mod t)

and a ≡ 1 (mod t∗), and put δt = δ[a]. Then we have

St([wt∗ ]) ∩ St([wlt]) =

{
1 if l 6= 2,

{1, δt} if l = 2.
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In particular, if t = 1 or t∗ = 2, the intersection is the trivial group.
(3) Let t be a positive divisor of k, and put s = k/t. If s ≡ ±1 (mod l), then we

have

( ∑

α∈St([wt∗ ])

α

)
[s]−2θlt =

( ∑

α∈St([wt∗ ])

α

)
θlt.

In particular, if l = 2 or 3, then the equation above holds for any t.

Proof. (1) Since the following equations hold in the set A ′
I

[(
1
l

√
l, 0

)]
[l∗] =

[(
1
l

√
M, 0

)]
,

[(
1 + lx

kl

√
kl, 0

)]
[(kl)∗] =

[(
1 + lx

kl

√
M, 0

)]
,

we have, by Proposition 2.8,

[l∗]−1[(kl)∗]θl =
N(k,l)∑
x=0

ϕ
(
div(ĝυ)

)
, (2.52)

where υ = [(((1 + lx)/kl)
√

M, 0)].
Let A be the set of all integers 1 + lx with 0 5 x 5 N(k, l). Then A is a

complete set of representatives of Z/kZ or (Z/kZ)/ ± 1 according as l 6= 2 or
l = 2. Let t be any positive divisor of k, and put s = k/t. Let A(t) be the subset
of A consisting of all integers a (∈ A) with (a, k) = s. Then we have the disjoint
union

A =
⋃
t

A(t). (2.53)

Let B(t) be the set of integers a/s with a ∈ A(t). Then it is easy to see that
B(t) is a complete set of representatives of (Z/tZ)× or (Z/tZ)×/ ± 1 according
as l 6= 2 or l = 2. By (2.52) and (2.53) we have

[l∗]−1[(kl)∗]θl =
∑

t

∑

b∈B(t)

ϕ
(
div(ĝυ)

)
, (2.54)

where υ = [((b/lt)
√

M, 0)].
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Let b ∈ B(t). Since [s]2 = δ[s+s∗], we have

[(
b

lt

√
M, 0

)]
[s]2 =

[(
b(s + s∗)

lt

√
M, 0

)]
. (2.55)

Since (b, t) = 1 and (s+ s∗,M) = 1, we have (b(s+ s∗), t) = 1. Let a be an integer
with (a,M) = 1 satisfying

a ≡ b(s + s∗) (mod t), (2.56)

a ≡ 1 (mod t∗). (2.57)

We have a ≡ 1 (mod l) by (2.57) because l | t∗. Also we have b(s + s∗) ≡ 1 (mod l)
because s∗ ≡ 0 (mod l) and bs ≡ 1 (mod l) since bs ∈ A. Hence we have

a ≡ b(s + s∗) (mod l). (2.58)

By (2.56) and (2.58) we have

a ≡ b(s + s∗) (mod lt). (2.59)

By (2.55) and (2.59) we have

[(
b

lt

√
M, 0

)]
[s]2 =

[(
a

lt

√
M, 0

)]
= [wlt]δ[a]. (2.60)

By (2.57), the element δ[a] belongs to St([wt∗ ]). Thus we have shown that for each
b ∈ B(t) there exists an element α ∈ St([wt∗ ]) such that

[(
b

lt

√
M, 0

)]
[s]2 = [wlt]α. (2.61)

Let α and β be elements of St([wt∗ ]). It is easy to see that [wlt]α = [wlt]β if
and only if αβ−1 ∈ St([wlt]). For any b ∈ B(t), let φ(b) be the class of α in the
factor group of St([wt∗ ]) by St([wt∗ ])∩St([wlt]) where α is an element of St([wt∗ ])
satisfying the relation (2.61). Then it is easy to see that φ is a bijection between
the sets B(t) and St([wt∗ ])/(St([wt∗ ]) ∩ St([wlt])).

Let b ∈ B(t) and υ = [((b/lt)
√

M, 0)]. Let α ∈ St([wt∗ ]) be an element which
satisfies the relation (2.61). Then we have
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ϕ
(
div(ĝυ)

)
= α[s]−2θlt, (2.62)

whence

∑

b∈B(t)

ϕ
(
div(ĝυ)

)
=

( ∑
α

α

)
[s]−2θlt, (2.63)

where α runs through a complete set of representatives of St([wt∗ ])/(St([wt∗ ]) ∩
St([wlt])). Since the term on the right-hand side of (2.63) is equal to

1
|St([wt∗ ]) ∩ St([wlt])|

( ∑

α∈St([wt∗ ])

α

)
[s]−2θlt, (2.64)

(1) is proved.
(2) Let α ∈ St([wt∗ ]) ∩ St([wlt]). Then there exist two integers a and b such

that α = δ[a] = δ[b] with (a,M) = (b,M) = 1, a ≡ 1 (mod t∗), and b ≡ 1 (mod lt).
Since δ[a] = δ[b], we have a ≡ ±b (mod M). Assume that a ≡ b (mod M). Since
a ≡ 1 (mod t∗) and a ≡ b ≡ 1 (mod t), we have a ≡ 1 (mod M), which gives
α = 1. Next, assume that a ≡ −b (mod M). Since l | t∗, we have 1 ≡ a ≡
−b ≡ −1 (mod l), whence 2 ≡ 0 (mod l), which implies l = 2. Thus, if l 6= 2, the
intersection contains only the unity. If l = 2, we have a ≡ −b ≡ −1 (mod t) and
a ≡ 1 (mod t∗), hence the unique possible element is α = δt. In fact, if l = 2, it is
easy to see that the element δt is contained in both St([wt∗ ]) and St([wlt]). This
proves the equation of (2). If t = 1 or t∗ = 2, then δt = 1, which proves (2).

(3) If s ≡ ±1 (mod l), then we have s + s∗ ≡ ±1 (mod l) because l | s∗. If
s ≡ 1 (mod l) (respectively s ≡ −1 (mod l)), let a be an integer with (a,M) = 1,
a ≡ 1 (mod t∗) and a ≡ s+s∗ (mod t) (respectively a ≡ −(s+s∗) (mod t)), and b be
an integer with (b,M) = 1, b ≡ 1 (mod lt) and b ≡ s+ s∗ (mod(t∗/l)) (respectively
b ≡ −(s + s∗) (mod(t∗/l))). Then δ[a] ∈ St([wt∗ ]) and δ[b] ∈ St([wlt]). It is easy
to see that ab ≡ s + s∗ (mod M) or −(s + s∗) (mod M) according as s ≡ 1 (mod l)
or −1 (mod l) respectively. Since [s]2 = δ[s+s∗], we have [s]2 = δ[ab] = δ[a]δ[b] ∈
St([wt∗ ])St([wlt]). This proves (3). ¤

Corollary 2.1. Assume that M is even with M 6= 2 and l is an odd factor
of M with l 6= 1. Then we have

θ2l =
(
[l∗]−1[(2l)∗]− [2]−2

)
θl.

Proof. In the theorem, put k = 2. ¤
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Corollary 2.2. Assume that M = p1p2 with p1 and p2 different primes.

(1) We have the following relation

( ∑

α∈St([wp1 ])

α

)
θM =

(
[p2]−1 − [p2]−2

)
θp1 .

(2) In particular, if p1 = 2, then we have

( ∑

α∈C(1)(±)

α

)
θM =

(
[p2]−1 − 1

)
θ2.

(3) In particular, if p2 = 2, then we have

θM =
(
[2]−1 − [2]−2

)
θp1 .

Proof. In the theorem, put l = p1 and k = p2. ¤

Remark 2.3. Let S be the group of all Siegel units in the field FI , where
we say that a modular unit in FI is a Siegel unit if it can be expressed as a
product of the modified Siegel functions ĝu(τ) with u ∈ RI up to a constant. Let
div(S ) denote the group of principal divisors of all Siegel units in the field FI .
Let ϕ be the isomorphism (2.23). Then ϕ(div(S )) is an ideal of the group ring
R, and generated by the elements θl with l 6= 1,∈ T . If M is a prime, then the
ideal ϕ(div(S )) is generated by only one element θM . But, if M is composite,
except the case where M = 2p with p a prime 6= 2, the ideal ϕ(div(S )) has the
generator set {θl} consisting of more than two elements, and the relations between
the elements θl are complicated. On the contrary, in the case where M = 2p with
p a prime 6= 2, the ideal ϕ(div(S )) is generated by two elements θ2 and θp by the
relation (3) of Corollary 2.2. This is the reason why we confine our study to the
case M = 2p in the later sections.

3. The fullness of the Siegel units.

Henceforth we consider the modular curve X1(2p). We use the notation and
the results in the previous section under the assumption that

M = 2p, (3.1)

where p is a prime with p 6= 2.
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In this section, we prove that the group F of the modular units in FI has
the maximal possible rank 2p − 3, and that any function in F can be expressed
as a product of the modified Siegel functions up to a constant. In later sections
we shall assume that p 6= 3.

3.1. The cuspidal divisor class group.
It is easy to see that the number of the elements of CI(±) is equal to 2(p−1).

Hence the number of the cusps on the curve XI (or X1(2p)) is also equal to 2(p−1).
Let D and D0 be as before. Let F or FC be the group of all modular units

in FI or CFI respectively. Later (in Corollary 3.1) we shall see that FC = C×F
and the divisor group div(F ) can be identified with the divisor group div(FC).
Therefore we call the factor group

C = D0/div(F ) (3.2)

the cuspidal divisor class group on the curve XI and the order of C the cuspidal
class number of XI or of X1(2p).

3.2. Divisors of modified Siegel functions.
The following proposition gives the explicit representations of θl.

Proposition 3.1. For each l = 2, p, 2p, the element θl is given as follows.
In each summation, the element α runs through the group CI(±) with the described
type.

(1) Let l = 2. Then we have

θ2 =
1
24

{
−

∑

t(α)=1

p · α−1 +
∑

t(α)=2

p · α−1 −
∑

t(α)=p

α−1 +
∑

t(α)=2p

α−1

}
.

(2) Let l = p. If t(α) = 1 or 2, we assume that α is represented by a matrix
(

a 0
0 a

)

or
(

a
√

2
√

p√
p a

√
2

)
(a ∈ Z) respectively. Then we have

θp =
∑

t(α)=1

pB2

(〈
a

p

〉)
· α−1 +

∑

t(α)=2

p

2
B2

(〈
2a

p

〉)
· α−1

+
1
6

∑

t(α)=p

α−1 +
1
12

∑

t(α)=2p

α−1.

(3) Let l = 2p. If t(α) = 1 or 2, we assume that α is represented by a matrix
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(
a 0
0 a

)
or

(
a
√

2
√

p√
p a

√
2

)
(a ∈ Z) respectively. Then we have

θ2p =
∑

t(α)=1

pB2

(〈
a

2p

〉)
· α−1 +

∑

t(α)=2

p

2
B2

(〈
a

p

〉)
· α−1

− 1
12

∑

t(α)=p

α−1 +
1
12

∑

t(α)=2p

α−1.

Proof. These follow from Proposition 2.4. ¤

The following proposition gives relations concerning the elements θ2 and θp.

Proposition 3.2. Concerning the elements θ2 and θp, we have the following
relations. In the relations in (2) and (3), the element α runs through the group
CI(±) with the described type.

(1) For θ2 we have

(1 + β2)θ2 = 0,

where β2 denotes any element of CI(±) of type 2.
(2) For θp we have

( ∑

t(α)=1

α +
∑

t(α)=p

α

)
θp = 0.

(3) For θ2 and θp we have

( ∑

t(α)=1

α +
∑

t(α)=2p

α

)
θp = (1 + β2p)θ2,

where β2p denotes any element of CI(±) of type 2p.

Proof.

(1) By (1) of Theorem 2.1 we have
( ∑

α∈C
(1)
I (±)

α
)
(1+ [2])θ2 = 0. Since αθ2 = θ2

for any α ∈ C
(1)
I (±) by (3) of Proposition 2.9, we have

( ∑
α∈C

(1)
I (±)

α
)
θ2 =

∣∣C(1)
I (±)

∣∣θ2 and
( ∑

α∈C
(1)
I (±)

α
)
[2]θ2 =

∣∣C(1)
I (±)

∣∣β2θ2 with β2 any element of

C
(2)
I (±). Hence we have

∣∣C(1)
I (±)

∣∣(1 + β2)θ2 = 0. This proves (1).
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(2) By (1) of Theorem 2.1 we have
( ∑

α∈C
(1)
I (±)

α
)
(1 + [p])θp = 0. Since( ∑

α∈C
(1)
I (±)

α
)
[p] =

∑
α∈C

(p)
I (±)

α, we have the relation of (2).
(3) By (2) of Theorem 2.1 we have

1
|St([wp])|

( ∑

α∈C
(1)
I (±)

α

)
(1 + [2p])θp =

1
|St([w2])|

( ∑

α∈C
(1)
I (±)

α

)
(1 + [2p])θ2.

Since |St([wp])| = 1 by (2) of Proposition 2.9, the left-hand side of the equation
above is equal to

( ∑
t(α)=1 α +

∑
t(α)=2p α

)
θp. Also since St

(
[w2]

)
= C

(1)
I (±)

by (3) of Proposition 2.9, the right-hand side of the equation above is equal
to (1 + β2p)θ2. This proves (3). ¤

The following proposition gives relations between θ2p and θl with l = 2, p.

Proposition 3.3. Concerning the elements θ2p and θl with l = 2, p, we
have the following relations.

(1) For θ2 we have

( ∑

t(α)=1

α

)
θ2p =

(
[p]−1 − 1

)
θ2,

where α runs through the group CI(±) with t(α) = 1.
(2) For θp we have

θ2p =
(
[2]−1 − [2]−2

)
θp.

Proof. These are the same as (2) and (3) of Corollary 2.2. ¤

3.3. Relations between the modified Siegel functions.
The following proposition gives relations between the functions ĝu(τ) with

u ∈ RI .

Proposition 3.4.

(1) Let u be any element of RI(2p). Then the function ĝu(τ) can be expressed as
a product of the functions ĝu′(τ) with u′ ∈ RI(p) up to a constant.

(2) The products
∏

u∈R
(1)
I (p)∪R

(p)
I (p)

ĝu(τ) and
∏

u∈R
(2)
I (p)∪R

(2p)
I (p)

ĝu(τ) are con-
stants.

(3) The products
∏

u∈R
(1)
I (2)∪R

(2)
I (2)

ĝu(τ) and
∏

u∈R
(p)
I (2)∪R

(2p)
I (2)

ĝu(τ) are con-
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stants.
(4) The products

∏
u∈R

(1)
I (2)∪R

(2p)
I (2)

ĝu(τ) and
∏

u∈R
(2)
I (2)∪R

(p)
I (2)

ĝu(τ) can be ex-
pressed as products of the functions ĝu′(τ) with u′ ∈ RI(p) up to constants.

Proof. These statements follow from the relations between the elements
θl, the equation (2.41) and Proposition 2.6.

(1) This follows from (2) of Proposition 3.3.
(2) Multiplying the relation of (2) of Proposition 3.2 by an element of CI(±) of

type 2, we have
( ∑

t(α)=2 α+
∑

t(α)=2p α
)
θp = 0. The statement of (2) follows

from these relations.
(3) Multiplying the relation of (1) of Proposition 3.2 by an element of CI(±) of

type p, we have βpθ2 + β2pθ2 = 0, where βp (respectively β2p) denotes an
element of CI(±) of type p (respectively 2p). The statement of (3) follows
from these relations.

(4) Multiplying the relation of (3) of Proposition 3.2 by an element of CI(±) of
type 2, we have

( ∑
t(α)=2 α +

∑
t(α)=p α

)
θp = β2θ2 + βpθ2, where β2 (re-

spectively βp) denotes an element of CI(±) of type 2 (respectively p). The
statement of (4) follows from these relations. ¤

3.4. A generating set of Siegel units.
Let S be the group of all Siegel units in the field FI , where we say that

a modular unit in FI is a Siegel unit if it can be expressed as a product of the
modified Siegel functions ĝu(τ) with u ∈ RI up to a constant.

We define the subsets R◦
I (p) and R◦

I of RI by

R◦
I (p) =

( ⋃

i=1,p

R
(i)
I (p)− {u(1)}

)
∪

( ⋃

i=2,2p

R
(i)
I (p)− {u(2)}

)
(3.3)

R◦
I = R◦

I (p) ∪ {w2} (3.4)

where u(1) (respectively u(2)) is an arbitrarily chosen element of
⋃

i=1,p R
(i)
I (p)

(respectively
⋃

i=2,2p R
(i)
I (p)), and w2 is the element defined by (2.25). We note

that R
(2p)
I (2) = {w2}.

Proposition 3.5. Any function g in S can be written as g = c ·
(iĝw2)

m(w2)
∏

u∈R◦
I (p)(gu)m(u) with c ∈ k×M and m(u) ∈ Z (u ∈ R◦

I ).

Proof. Let g be any function in S . Then g is a product of the functions
ĝu with u ∈ RI up to a constant. We can remove the functions ĝu with u ∈ RI(2p)
from the expression of g by (1) of Proposition 3.4. Also we can remove the functions
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ĝu with u ∈ R
(1)
I (2) ∪R

(p)
I (2) by (3) of Proposition 3.4, and the function ĝu with

u ∈ R
(2)
I (2) by the combination of (3) and (4) of Proposition 3.4. (Note that each

set R
(r)
I (2) (r ∈ T ) contains only one element.) Thus g can be expressed as a

product of ĝu with u ∈ RI(p) ∪R
(2p)
I (2) up to a constant. Let u(1) (respectively

u(2)) be the element of R
(1)
I (p)∪R

(p)
I (p) (respectively R

(2)
I (p)∪R

(2p)
I (p)) in (3.3).

Then we can remove the functions ĝu(1) and ĝu(2) from the expression of g by (2)
of Proposition 3.4. Thus g can be written as a product of the functions ĝu with
u ∈ R◦

I (p)∪R
(2p)
I (2) and a constant. Let u ∈ R◦

I (p). Then, by (2.13), the Fourier
coefficients of ĝu = gu belong to kM . Let u ∈ R

(2p)
I (2). Since R

(2p)
I (2) = {w2},

we have ĝu = ĝw2 . By the definition (2.27) the Fourier coefficients of the product
i · ĝw2 belong to kM . This proves the proposition. ¤

3.5. The fullness of the Siegel units.
Here we prove that the functions ĝu with u ∈ R◦

I are independent, and that
S coincides with the group F of all modular units in FI .

Let F(M) be the function field defined in [13, Section 1.5]. It is the field of
all automorphic functions with respect to the congruence subgroups of G(

√
M)

such that their Fourier coefficients belong to the cyclotomic fields. Then the field
CF(M) coincides with the field of all automorphic functions with respect to the
congruence subgroups of G(

√
M).

Let u be any element of RI . Let α be any element of GI or GI(±). Since the set
RI is a complete set of representatives of A ′

I , there exists a uniquely determined
element u′ ∈ RI such that [u′] = [u]α, which we denote by u ◦ α:

[u ◦ α] = [u]α. (3.5)

It is obvious that if u ∈ R
(r)
I (l) and t(α) = s, then u ◦ α ∈ R

(r◦s)
I (l).

Since each set R
(r)
I (2) (r ∈ T ) contains only one element, we denote the

unique element of R
(r)
I (2) by u(r)(2).

Lemma 3.1. Let l be a prime, and let m : RI(2)∪RI(p) → Z be a mapping.
Assume that there exists a function g ∈ CF(M) such that

∏

u∈RI(2)∪RI(p)

(ĝu)m(u) = gl.

Then we have the following.

(1) Let α be any element of GI , and let u be any element of R
(1)
I (p). Then



52 T. Takagi

−m
(
u(1)(2) ◦ α

)
+ m

(
u(2)(2) ◦ α

)
+ m

((
1
p

√
p, 0

)
◦ α

)

≡ m(u ◦ α) (mod l).

(2) Let u1 and u2 be any elements of R
(r)
I (p) (r ∈ T ). Then m(u1) ≡

m(u2) (mod l).

Proof. The statement (2) follows immediately from (1) if we take as α

any element of type r. We prove (1). The relation of the lemma implies that g

belongs to the field F(M). Let GA+ and U be the groups defined in [13, p. 352], and
σ : GA+ → Aut(F(M)) be the homomorphism defined in [13, p. 355]. Let β = α−1,
and β1 an element of U such that β ≡ β1 (mod I) (cf. [13, Proposition 1.4]).
Then we have ĝ

σ(β1)
u = (a constant)ĝu◦β by Proposition 2.3. Applying the element

σ(β1) to the equation of the lemma, we have
∏

u∈RI(2)∪RI(p)(ĝu◦β)m(u) = gl
1 where

g1 = (a constant)gσ(β1). Let m1 be the mapping from RI(2)∪RI(p) to Z defined
by m1(u) = m(u◦α). If u runs through RI(2)∪RI(p), then so does u◦β. We have,
therefore,

∏
u∈RI(2)∪RI(p)(ĝu)m1(u) = gl

1. Let f be a non-zero element of CF(M)

with
∑

k akqk
N its Fourier expansion where qN = exp[2πi(τ/(N

√
M))] (N ∈ N).

Let ahqh
N be the lowest term. Then the power series f∗ = f/(ahqh

N ) is called the
reduced form of f (cf. [7, p. 88]). Let ĝ∗u and g∗1 be the reduced forms of ĝu and g1

respectively. Then we have

∏

u∈RI(2)∪RI(p)

(
ĝ∗u

)m1(u) =
(
g∗1

)l
. (3.6)

By the q-products (2.13), (2.26) and (2.27), we see that each ĝ∗u is a power series
1+a1t+· · · in t = exp[2πi(τ/

√
M)] with coefficients in the ring oM of the algebraic

integers in the field kM . By (3.6), g∗1 is also a power series 1 + b1t + · · · in t with
coefficients in the field kM . By a consequence of a theorem of Shimura [7, Lemma
3.1 in Chapter 4], the coefficients of g∗1 have bounded denominators. Thus, by
(3.6) and the Gauss lemma for power series with bounded denominators, we see
that the power series g∗1 also has coefficients in the integer ring oM . Let a1 be the
coefficient of t in the power series ĝ∗u. If u ∈ R

(r)
I (2), then we have

a1 =





1 if r = 1, i.e. u = u(1)(2) = (0, (1/2)
√

2p),

−1 if r = 2, i.e. u = u(2)(2) = ((1/2)
√

2, 0),

0 if r = p or 2p,

(3.7)
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by (2.26) and (2.27). If u ∈ R
(r)
I (p), then we have

a1 =





−(
ζb
p + ζ−b

p

)
if r = 1 and u = (0, (b/p)

√
2p) (1 5 b 5 (p− 1)/2),

−1 if r = p and u = ((1/p)
√

p, 0),

0 otherwise,

(3.8)

by (2.13), where ζp = exp[2πi/p]. Let c1 be the coefficient of t in the power series
expansion of the left-hand side of (3.6). Then we have, by (3.7) and (3.8),

c1 = m1

(
u(1)(2)

)−m1

(
u(2)(2)

)−m1

((
1
p

√
p, 0

))

−
(p−1)/2∑

b=1

(
ζb
p + ζ−b

p

)
m1

((
0,

b

p

√
2p

))
. (3.9)

Since c1 is also the coefficient of t in the power series expansion of (g∗1)l, and the
coefficients of the power series g∗1 are integers, it must be congruent to 0 modulo
l. This implies that, by [7, Lemma 2.3 in Chapter 4], the following congruences
hold

m1

(
u(1)(2)

)−m1

(
u(2)(2)

)−m1

((
1
p

√
p, 0

))

≡ −m1

((
0,

b

p

√
2p

))
(mod l) (3.10)

for all b (1 5 b 5 (p − 1)/2). Since any element of R
(1)
I (p) can be written as

(0, (b/p)
√

2p), this completes the proof. ¤

Lemma 3.2. Let l be a prime, and let m : R◦
I → Z be a mapping. Assume

that there exists a function g ∈ CF(M) such that

∏

u∈R◦
I

(
ĝu

)m(u) = gl.

Then m(u) ≡ 0 (mod l) for all u ∈ R◦
I .

Proof. We extend the domain of the mapping m from R◦
I to RI(2) ∪

RI(p) by setting m(u) = 0 for any u ∈ RI(2) ∪RI(p) −R◦
I . Since m(u(1)(2)) =
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m(u(2)(2)) = 0, we have m(((1/p)
√

p, 0)) ≡ m(u) (mod l) for all u ∈ R
(1)
I (p) by

(1) of Lemma 3.1 with α = 1. By this and (2) of Lemma 3.1, we have m(u1) ≡
m(u2) (mod l) for any u1, u2 ∈ R

(1)
I (p) ∪ R

(p)
I (p). By the definition (3.3) of R◦

I ,
there exists an element u(1) of R

(1)
I (p) ∪ R

(p)
I (p) which is not contained in R◦

I .
Then m(u(1)) = 0, hence we have

m(u) ≡ 0 (mod l) for all u ∈ R
(1)
I (p) ∪R

(p)
I (p). (3.11)

Next, in (1) of Lemma 3.1, we assume that α is an element of type 2. Then
u(1)(2) ◦α = u(2)(2) and u(2)(2) ◦α = u(1)(2). Since m(u(1)(2)) = m(u(2)(2)) = 0,
we have m(((1/p)

√
p, 0)◦α) ≡ m(u) (mod l) for all u ∈ R

(2)
I (p). By this and (2) of

Lemma 3.1, we have m(u1) ≡ m(u2) (mod l) for any u1, u2 ∈ R
(2)
I (p) ∪R

(2p)
I (p).

Again by the definition (3.3) of R◦
I , there exists an element u(2) of R

(2)
I (p) ∪

R
(2p)
I (p) which does not contained in R◦

I . Since m(u(2)) = 0, we have

m(u) ≡ 0 (mod l) for all u ∈ R
(2)
I (p) ∪R

(2p)
I (p). (3.12)

Last, in (1) of Lemma 3.1, we assume that α is an element of type p. Then
u(1)(2) ◦ α = u(p)(2) and u(2)(2) ◦ α = u(2p)(2). Since m(u(p)(2)) = 0, we have
m(u(2p)(2)) + m(((1/p)

√
p, 0) ◦ α) ≡ m(u) (mod l) for all u ∈ R

(p)
I (p). This and

(3.11) imply that

m(u(2p)(2)) ≡ 0 (mod l). (3.13)

By the congruences (3.11), (3.12) and (3.13) we have the proof. ¤

The following theorem shows the fullness of the Siegel units in FI .

Theorem 3.1. The functions ĝu (u ∈ R◦
I ) are independent, and the group

S /k×I has the maximal possible rank 2p− 3.

Proof. Assume that
∏

u∈R◦
I
(ĝu)m(u) = 1 with m(u) ∈ Z. Since 1 = 1l for

any prime l, we have m(u) ≡ 0 (mod l) for all u ∈ R◦
I by Lemma 3.2. Since l can

be any prime, we have m(u) = 0 for all u ∈ R◦
I . This proves the independence of

the functions ĝu (u ∈ R◦
I ). Since the functions (ĝu)24p (u ∈ R◦

I ) are contained in
S (Proposition 2.2), the independence and Proposition 3.5 show that the rank of
the group S /k×I is equal to |R◦

I | = 2p− 3. On the other hand, since the number
of the cusps on the curve XI is 2(p − 1), it is the maximal possible value. This
proves the theorem. ¤
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The following theorem shows that the unit group F coincides with the group
S . It is the main theorem of this section.

Theorem 3.2. Concerning the group F we have the following.

(1) The unit group F coincides with the group S .
(2) The group F/k×M has the maximal possible rank 2p− 3.
(3) Any function g in F can be written as g = c · (iĝw2)

m(w2)
∏

u∈R◦
I (p)(gu)m(u)

with c ∈ k×M and m(u) ∈ Z (u ∈ R◦
I ), and this expression is unique.

Proof. Since F contains S , (2) follows immediately from Theorem 3.1.
We prove (1). Let g be any function in F . Then, by Theorem 3.1, some power
of g can be expressed as a product of the functions ĝu (u ∈ R◦

I ) up to a constant.
By the repeated use of Lemma 3.2, we obtain that g itself can be expressed as a
product of the functions ĝu (u ∈ R◦

I ) up to a constant, whence g ∈ S . This proves
(1). (3) follows from (1), Proposition 3.5 and the independence of ĝu (u ∈ R◦

I )
(Theorem 3.1). Note that ĝu = gu for u ∈ R◦

I (p). ¤

Remark 3.1. In the next section (in Theorem 4.1) we shall prove that the
integer m(w2) must be even.

Corollary 3.1. FC = C×F .

Proof. Let g be any function in FC . Then, by (2) of Theorem 3.2, some
power of g belongs to C×F . This implies that there exists a non-zero constant c

such that the Fourier coefficients of cg belong to kM . Hence, we have g ∈ C×F .
This completes the proof. ¤

4. Determination of the unit group on X1(2p).

In this section we determine the group F of the modular units in the function
field FI . Henceforth we assume that p 6= 3, therefore

p 6= 2, 3. (4.1)

The reason why we exclude the case p = 3 is that it is exceptional and that
the modular curve X1(6) coincides with the modular curve X0(6). The group of
the modular units and the cuspidal class number of the curve X0(6) are already
determined in [16].

Remark 4.1. In [16], the group of modular units of X0(6) is described by
the functions h[r](τ) (r ∈ T ). We give the relations of these functions and our
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functions ĝu (u ∈ R◦
I ) in the following. Assume that p = 3. Since the set R

(r)
I (3)

(r ∈ T ) contains only one element, we denote it by u(r)(3). Then we have

ĝw2(τ) = c1 · h[3](τ)
{
h[6](τ)

}−1
,

gu(r)(3)(τ) = c2 · h[3◦r](τ)
{
h[r](τ)

}−1
(4.2)

(r ∈ T ), where c1 and c2 are non-zero constants.

4.1. Definition of the characters Φu.
Let u be any element of RI . Since (ĝu)24p is an automorphic function with

respect to the group Γ(I) (Proposition 2.2), we can define the character Φu of Γ(I)
by

ĝu(α(τ)) = Φu(α)ĝu(τ). (4.3)

Let g(τ) be a function of the form

g(τ) =
(
ĝw2(τ)

)m(w2)
∏

u∈RI(p)

(gu(τ))m(u) (4.4)

where m(w2) and m(u) are integers. Then the function g(τ) is an automorphic
function with respect to Γ(I) if and only if the following equation holds for every
α ∈ Γ(I):

{
Φw2(α)

}m(w2)
∏

u∈RI(p)

{Φu(α)}m(u) = 1. (4.5)

4.2. Generators of the factor group Γ(I)/Γ(48pO).
In addition to the fact that the power (ĝu)24p of any function ĝu (u ∈ RI) is

automorphic, the function ĝu itself is an automorphic function. In fact we have
the following.

Proposition 4.1.

(1) Let u be an element of RI(2). Then the function ĝu is an automorphic function
with respect to the principal congruence subgroup Γ(48O).

(2) Let u be an element of RI(p). Then the function ĝu (= gu) is an automorphic
function with respect to the principal congruence subgroup Γ(12pO).

(3) Let u be an element of RI(2)∪RI(p). Then the function ĝu is an automorphic
function with respect to the principal congruence subgroup Γ(48pO).
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Proof. (3) follows immediately from (1) and (2). We prove (1). By (2.31)
the function ĝu coincides with the function f

(2)
r with r = t(u), and it coincides

with the function f
(2)
[r] defined in [16, (2.9) in Section 2] under the condition that

M = 2p and T0 = 1. Since the function f
(2)
[r] is an automorphic function with

respect to Γ(48O) by [16, Lemma 4.1], (1) is proved. Next, we prove (2). Since
our u belongs to the set A′J in the notation of [16, Section 1.3] with J =

√
pO, the

function gu is an automorphic function with respect to the group Γ([2L2
J , 12]O)

by [16, Proposition 1.3] where LJ = p. Since [2L2
J , 12] = 12p, (2) is proved. ¤

Corollary 4.1. Let u be an element of RI(2)∪RI(p). Then the character
Φu is trivial on the subgroup Γ(48pO) of Γ(I).

By Corollary 4.1, in order to determine the character Φu, it is sufficient to
determine its values at some elements of Γ(I) which generate the factor group
Γ(I)/Γ(48pO).

For each prime factor q of 48p, let αq and βq be arbitrarily chosen elements
of G(

√
M) of type 1 so as to satisfy the following congruences:

αq ≡
(

1
√

M
0 1

) (
mod qfO

)
, ≡ 12

(
mod q−f48pO

)
, (4.6)

βq ≡
(

1 0√
M 1

) (
mod qfO

)
, ≡ 12

(
mod q−f48pO

)
, (4.7)

where f = 4 or 1 according as q = 2 or 6= 2.
For q = 2 or 3, let γq be an arbitrarily chosen element of G(

√
M) of type 1

so as to satisfy the following congruences:

γq ≡
(

d−1 0
0 d

) (
mod qfO

)
, ≡ 12

(
mod q−f48pO

)
, (4.8)

where f = 4 or 1 according as q = 2 or 3, and d = 5 or −1 according as q = 2 or
3.

Let γ′2 be an arbitrarily chosen element of G(
√

M) of type 1 so as to satisfy
the following congruences:

γ′2 ≡
(−1 0

0 −1

) (
mod 16O

)
, ≡ 12 (mod 3pO). (4.9)

Then it is easy to see that the set of the elements αq, βq, γq, γ′2 defined above
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is contained in Γ(I) and generates the factor group Γ(I)/Γ(48pO).

4.3. The values of Φw2 .
Here we give the values of the character Φw2 at the elements αq, βq, γq, γ′2.

Proposition 4.2. The values of the character Φw2 at the elements αq, βq,
γq, γ′2 are given as follows:

Φw2(αq) =





exp
[
2πi

8
· 5p

]
if q = 2,

exp
[
2πi

3
· p

]
if q = 3,

1 if q = p,

Φw2(βq) =





exp
[
2πi

8
· 5

]
if q = 2,

exp
[
2πi

3

]
if q = 3,

1 if q = p,

Φw2(γ2) = −1, Φw2(γ
′
2) = Φw2(γ3) = 1.

Proof. The character Φw2 is already determined in [16]. In fact, as was
seen in the proof of (1) of Proposition 4.1, the function ĝw2(τ) coincides with the
function f

(2)
[2p](τ) defined in [16, Section 2, (2.9)] under the condition that M = 2p

and T0 = 1, whence the character Φw2 coincides with the character Φ(2)
[2p] defined

in [16, Section 4.1]. In fact, the domain of the character Φ(2)
[2p] is the subgroup ΓT0

with T0 = 1 which is the subgroup of G(
√

M) consisting of all elements of type 1,
and our character Φw2 is the restriction of Φ(2)

[2p] to the group Γ(I).

The value Φw2(αq) is given in [16, Proposition 4.1] as Φ(p)
ρ (αq) with ρ = [2p]

and p = 2. For example, let q = 2. Then Φw2(α2) = Φ(2)
[2p](α2) = − exp[(−2πi/8)

· (p − 2p)]. Since − exp[(−2πi/8)(p − 2p)] = exp[(2πi/8) · 4p] · exp[(2πi/8) · p] =
exp[(2πi/8) ·5p], we have the desired value. The values Φw2(αq) for other q can be
obtained similarly. The value Φw2(βq) is given in [16, Proposition 4.1] as Φ(p)

ρ (βq)
with ρ = [2p] and p = 2. Let q = 2 as an example. Then Φw2(β2) = Φ(2)

[2p](β2) =
− exp[(2πi/8)(2−1)], which is equal to exp[(2πi/8) ·5] and gives the desired value.
The values Φw2(βq) for other q can also be obtained similarly. The value Φw2(γq)
(q = 2, 3) is given in [16, Proposition 4.1] as Φ(p)

ρ (γq) with ρ = [2p] and p = 2,
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which gives the desired value. We prove that Φw2(γ
′
2) = 1. Let γp be the element

of G(
√

M) defined in [16, p. 195]. It is an element of type 1 chosen so as to satisfy
the following congruences:

γp ≡
(

d−1 0
0 d

)
(mod pO), ≡ 12 (mod 48O),

where d is a primitive root modulo p. (Though the element γp depends on the
choice of d, we did not indicate its dependence in its notation because as is seen
in [16, Proposition 4.2] the values of Φ(p)

ρ do not depend on d.) Then we have
γ′2 × γ3 × γ

(p−1)/2
p ≡ −12 (mod 48pO). Since Φ(2)

[2p](−12) = 1 by definition and

Φ(2)
[2p](γ3) = Φ(2)

[2p](γp) = 1 by [16, Proposition 4.1], we have Φ(2)
[2p](γ

′
2) = 1, which

gives Φw2(γ
′
2) = 1. This completes the proof. ¤

4.4. The values of Φu with u ∈ RI(p).
Let u ∈ R

(r)
I (p). Then ĝu = gu. The value of the character Φu at α (∈ Γ(I))

is given by

Φu(α) = εu(α)ψr(α) (4.10)

by Proposition 2.1.
Let α be an element of Γ(I) written as

α =
(

a b
√

2p
c
√

2p d

)
(4.11)

where a, b, c, d ∈ Z. Then, by (2.10), (2.16) and the definition of ψr(α), we have

ψr(α) = (−1)(d−1)/2 exp
[
2πi

12
{
(br − cr∗)d + acr∗(1− d2)

}]
. (4.12)

Lemma 4.1. The values of ψr at the elements αq, βq, γq, γ′2 are given as
follows.

(1) For α = γ2, γ
′
2, γ3, αp, βp, we have

ψr(α) =

{
1 if α = γ2, γ3, αp, βp,

−1 if α = γ′2.
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(2) For α = α2, α3, we have

ψr(α) =





exp
[
− 2πi

4
· r

]
if α = α2,

exp
[
2πi

3
· r

]
if α = α3.

(3) For α = β2, β3, we have

ψr(α) =





exp
[
2πi

4
· r∗

]
if α = β2,

exp
[
− 2πi

3
· r∗

]
if α = β3.

Proof. In the following we assume that the element α is written as in
(4.11).

(1) In this case we have b ≡ c ≡ 0 (mod 12), whence ψr(α) = (−1)(d−1)/2 by
(4.12). Since d ≡ 1 or 3 (mod 4) according as α = γ2, γ3, αp, βp or α = γ′2, we
have the desired value.

(2) In this case we have c ≡ d−1 ≡ 0 (mod 12), whence ψr(α) = exp[(2πi/12) · br]
by (4.12). If α = α2, we have b = 3b1 with some b1 ∈ Z. Since b ≡ 1 (mod 4),
we have b1 ≡ −1 (mod 4). These imply ψr(α2) = exp[(−2πi/4) · r]. If α = α3,
we have b = 4b1 with some b1 ∈ Z. Since b ≡ 1 (mod 3), we have b1 ≡ 1
(mod 3). These imply ψr(α3) = exp[(2πi/3) · r].

(3) In this case we have b ≡ d − 1 ≡ 0 (mod 12), whence ψr(α) = exp[(2πi/12) ·
(−cr∗)] by (4.12). If α = β2, we have c = 3c1 with some c1 ∈ Z. Since c ≡
1 (mod 4), we have c1 ≡ −1 (mod 4). These imply ψr(β2) = exp[(2πi/4) · r∗].
If α = β3, we have c = 4c1 with some c1 ∈ Z. Since c ≡ 1 (mod 3), we have
c1 ≡ 1 (mod 3). These imply ψr(β3) = exp[(−2πi/3) · r∗]. ¤

The value εu(α) (α ∈ Γ(I)) is given by

εu(α) = ε(u, v) (4.13)

with

v = u(α− 12), (4.14)

where ε(u, v) is defined by (2.14) and (2.8).
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Lemma 4.2. Let u ∈ R
(r)
I (p) be of the form u = ((x/p)

√
r, 0) (x ∈ Z) with

r = 2p, p. Then the values of εu at the elements αq, βq, γq, γ′2 are given as
follows.

(1) For α = α2, β2, γ2, γ
′
2, α3, β3, γ3, βp, we have εu(α) = 1.

(2) For α = αp, we have

εu(αp) =





exp
[
2πi

p
· x2

]
if r = 2p,

exp
[
2πi

p
· 1 + p

2
x2

]
if r = p.

Proof. Let α be written as in (4.11). Then the element v in (4.14) is given
by

v =
(

(a− 1)x
p

√
r,

brx

p

√
r∗

)
,

whence we have εu(α) = exp[πiξ], where ξ is an element of Q satisfying

ξ ≡ bx · r

p
+

x

p
· bx · r

p
≡ b

p
· x (p + x) · r

p
(mod 2Z). (4.15)

We note that r/p ∈ Z.
(1) For α = α2, β2, γ2, γ

′
2, α3, β3, γ3, βp, we have b ≡ 0 (mod p), whence the last

term in (4.15) is an integer. Since x(p + x) ≡ 0 (mod 2), we have ξ ≡ 0 (mod 2Z).
Thus we have εu(α) = 1.

(2) For α = αp, we have b ≡ 0 (mod 2), which implies ξ ≡ (x/p) · bx · (r/p)
(mod 2Z) by the second term in (4.15). Since we also have b ≡ 1 (mod p), put b =
1+b1p with an integer b1. Then we have ξ ≡ (x2/p) ·(r/p)+b1x

2 ·(r/p) (mod 2Z).
If r = 2p, then we have ξ ≡ 2x2/p (mod 2Z), which gives the desired value of
εu(αp) for the case r = 2p. If r = p, then we have ξ ≡ x2/p + b1x

2 (mod 2Z).
Since b = 1 + b1p ≡ 0 (mod 2), we have b1 ≡ 1 (mod 2), whence we have ξ ≡
x2/p + x2 ≡ (x2/p)(1 + p) (mod 2Z). This gives the desired value of εu(αp) for
the case r = p. ¤

Lemma 4.3. Let u ∈ R
(r)
I (p) be of the form u = (0, (y/p)

√
r∗) (y ∈ Z) with

r = 1, 2. Then the values of εu at the elements αq, βq, γq, γ′2 are given as follows.

(1) For α = α2, β2, γ2, γ
′
2, α3, β3, γ3, αp, we have εu(α) = 1.

(2) For α = βp, we have
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εu(βp) =





exp
[
− 2πi

p
· y2

]
if r = 1,

exp
[
− 2πi

p
· 1 + p

2
y2

]
if r = 2.

Proof. Let α be written as in (4.11). Then the element v in (4.14) is given
by

v =
(

cr∗y
p

√
r,

(d− 1)y
p

√
r∗

)
,

whence we have εu(α) = exp[πiξ], where ξ is an element of Q satisfying

ξ ≡ cy · r∗

p
− y

p
· cy · r∗

p
≡ c

p
· y(p− y) · r∗

p
(mod 2Z). (4.16)

We note that r∗/p ∈ Z.
(1) For α = α2, β2, γ2, γ

′
2, α3, β3, γ3, αp, we have c ≡ 0 (mod p), whence the last

term in (4.16) is an integer. Since y(p− y) ≡ 0 (mod 2), we have ξ ≡ 0 (mod 2Z).
Thus we have εu(α) = 1.

(2) For α = βp, we have c ≡ 0 (mod 2), which implies ξ ≡ (−y/p) · cy ·
(r∗/p) (mod 2Z) by the second term in (4.15). Since we also have c ≡ 1 (mod p),
put c = 1 + c1p with an integer b1. Then we have ξ ≡ (−y2/p) · (r∗/p) − c1y

2 ·
(r∗/p) (mod 2Z). If r = 1, then r∗ = 2p, whence we have ξ ≡ −2y2/p (mod 2Z),
which gives the desired value of εu(βp) for the case r = 1. If r = 2, then r∗ = p,
whence we have ξ ≡ −y2/p − c1y

2 (mod 2Z). Since c = 1 + c1p ≡ 0 (mod 2), we
have c1 ≡ 1 (mod 2), whence we have ξ ≡ −y2/p− y2 ≡ (−y2/p)(1 + p) (mod 2Z).
This gives the desired value of εu(βp) for the case r = 2. ¤

By Lemmas 4.1, 4.2 and 4.3, we have the values of the character Φu with
u ∈ RI(p) as follows.

Proposition 4.3. Let u ∈ R
(2p)
I (p) and write u = ((x/p)

√
2p, 0) (x ∈ Z).

Then the values of the character Φu at the elements αq, βq, γq, γ′2 are given as
follows:
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Φu(αq) =





−1 if q = 2,

exp
[
− 2πi

3
· p

]
if q = 3,

exp
[
2πi

p
· x2

]
if q = p,

Φu(βq) =





exp
[
2πi

4

]
if q = 2,

exp
[
− 2πi

3

]
if q = 3,

1 if q = p,

Φu(γ2) = Φu(γ3) = 1, Φu

(
γ′2

)
= −1.

Proposition 4.4. Let u ∈ R
(p)
I (p) and write u = ((x/p)

√
p, 0) (x ∈ Z).

Then the values of the character Φu at the elements αq, βq, γq, γ′2 are given as
follows:

Φu(αq) =





exp
[
− 2πi

4
· p

]
if q = 2,

exp
[
2πi

3
· p

]
if q = 3,

exp
[
2πi

p
· p + 1

2
x2

]
if q = p,

Φu(βq) =





−1 if q = 2,

exp
[
2πi

3

]
if q = 3,

1 if q = p,

Φu(γ2) = Φu(γ3) = 1, Φu(γ′2) = −1.

Proposition 4.5. Let u ∈ R
(2)
I (p) and write u = (0, (y/p)

√
p) (y ∈ Z).

Then the values of the character Φu at the elements αq, βq, γq, γ′2 are given as
follows:
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Φu(αq) =





−1 if q = 2,

exp
[
− 2πi

3

]
if q = 3,

1 if q = p,

Φu(βq) =





exp
[
2πi

4
· p

]
if q = 2,

exp
[
− 2πi

3
· p

]
if q = 3,

exp
[
− 2πi

p
· p + 1

2
y2

]
if q = p,

Φu(γ2) = Φu(γ3) = 1, Φu(γ′2) = −1.

Proposition 4.6. Let u ∈ R
(1)
I (p) and write u = (0, (y/p)

√
2p) (y ∈ Z).

Then the values of the character Φu at the elements αq, βq, γq, γ′2 are given as
follows:

Φu(αq) =





exp
[
− 2πi

4

]
if q = 2,

exp
[
2πi

3

]
if q = 3,

1 if q = p,

Φu(βq) =





−1 if q = 2,

exp
[
2πi

3
· p

]
if q = 3,

exp
[
− 2πi

p
· y2

]
if q = p,

Φu(γ2) = Φu(γ3) = 1, Φu(γ′2) = −1.

4.5. Determination of the unit group.
Let g(τ) be a function of the form (4.4). The following theorem gives the

condition that g(τ) is an automorphic function with respect to Γ(I).

Theorem 4.1. Let g be a function given by g = (ĝw2)
m(w2)

·∏u∈RI(p)(gu)m(u) with m(w2) and m(u) integers. Then it is an automorphic
function with respect to Γ(I) if and only if the integers m(w2) and m(u) satisfy
the following conditions (i)–(v):
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( i ) m(w2) is an even integer, which we express as m(w2) = 2k,
( ii ) k +

∑
u∈RI(p)(t(u))∗m(u) ≡ 0 (mod 12),

(iii)
∑

u∈R
(2p)
I (p)∪R

(p)
I (p)

m(u) + p
∑

u∈R
(1)
I (p)∪R

(2)
I (p)

m(u) ≡ 0 (mod 4),

(iv)
∑

u∈R
(2p)
I (p)

x2m(u) + ((p + 1)/2)
∑

u∈R
(p)
I (p)

x2m(u) ≡ 0 (mod p),

( v )
∑

u∈R
(1)
I (p)

y2m(u) + ((p + 1)/2)
∑

u∈R
(2)
I (p)

y2m(u) ≡ 0 (mod p).

In the condition (iv) (respectively (v)) above, it is assumed that u =
((x/p)

√
r, 0) for r = 2p, p with x an integer (respectively u = (0, (y/p)

√
r∗) for

r = 1, 2 with y an integer).

Proof. The condition that g(τ) is an automorphic function with respect
to Γ(I) is equivalent to that the equation (4.5) holds for the elements αq, βq, γq,
γ′2 by Corollary 4.1 and the fact that those elements generate the factor group
Γ(I)/Γ(48pO). We prove that the relations obtained by the substitutions of the
elements αq, βq, γq, γ′2 in (4.5) are equivalent to the conditions (i)–(v) in the state-
ment. In our proof Propositions 4.2–4.6 will be used freely without any reference.

The substitution of γ3 gives no relation about the integers m(w2) and m(u)
because Φw2(γ3) = 1 and Φu(γ3) = 1 for all u ∈ RI(p). The relation by the
substitution of γ2 is equivalent to (i) because Φw2(γ2) = −1 and Φu(γ3) = 1 for
all u ∈ RI(p).

The relation by the substitution of β2 is equivalent to the following:

5
8
m(w2) +

1
4

∑

t(u)=2p

m(u) +
1
2

∑

t(u)=p

m(u)

+
p

4

∑

t(u)=2

m(u) +
1
2

∑

t(u)=1

m(u) ≡ 0 (mod Z). (4.17)

We use (i) and multiply (4.17) by 4. Then, since 5k ≡ k (mod 4) and 2 ≡
2p (mod 4), we have

k +
∑

t(u)=2p

m(u) + 2
∑

t(u)=p

m(u) + p
∑

t(u)=2

m(u) + 2p
∑

t(u)=1

m(u)

≡ 0 (mod 4) (4.18)

which is the condition (ii) with the modulo 12 part replaced by modulo 4. The
relation by the substitution of α2 is equivalent to
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5
8
pm(w2) +

1
2

∑

t(u)=2p

m(u)− p

4

∑

t(u)=p

m(u)

+
1
2

∑

t(u)=2

m(u)− 1
4

∑

t(u)=1

m(u) ≡ 0 (mod Z). (4.19)

Using (i) and multiplying (4.19) by 4, we have

5pk + 2
∑

t(u)=2p

m(u)− p
∑

t(u)=p

m(u) + 2
∑

t(u)=2

m(u)−
∑

t(u)=1

m(u)

≡ 0 (mod 4). (4.20)

Multiplying (4.20) by p and using the congruences 5p2 ≡ 1 (mod 4), 2p ≡ 2 (mod 4),
−p2 ≡ 3 (mod 4), −p ≡ 3p (mod 4), we have

k + 2
∑

t(u)=2p

m(u) + 3
∑

t(u)=p

m(u) + 2p
∑

t(u)=2

m(u) + 3p
∑

t(u)=1

m(u)

≡ 0 (mod 4). (4.21)

Subtracting (4.18) from (4.21) term by term gives

∑

t(u)=2p

m(u) +
∑

t(u)=p

m(u) + p
∑

t(u)=2

m(u) + p
∑

t(u)=1

m(u) ≡ 0 (mod 4), (4.22)

which is the condition (iii). The relation by the substitution of γ′2 is equivalent to

∑

u∈RI(p)

m(u) ≡ 0 (mod 2),

which follows from (4.22). The relation by the substitution of β3 is equivalent to

1
3
m(w2)− 1

3

∑

t(u)=2p

m(u) +
1
3

∑

t(u)=p

m(u)

− p

3

∑

t(u)=2

m(u) +
p

3

∑

t(u)=1

m(u) ≡ 0 (mod Z). (4.23)

We use (i) and multiply (4.23) by −3. Then, by −2k ≡ k (mod 3), −1 ≡ 2 (mod 3)
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and −p ≡ 2p (mod 3), we have

k +
∑

t(u)=2p

m(u) + 2
∑

t(u)=p

m(u) + p
∑

t(u)=2

m(u) + 2p
∑

t(u)=1

m(u)

≡ 0 (mod 3), (4.24)

which is the condition (ii) with the modulo 12 part replaced by modulo 3. The
relation by the substitution of α3 is equivalent to

p

3
m(w2)− p

3

∑

t(u)=2p

m(u) +
p

3

∑

t(u)=p

m(u)

− 1
3

∑

t(u)=2

m(u) +
1
3

∑

t(u)=1

m(u) ≡ 0 (mod Z). (4.25)

Using (i) and multiplying (4.25) by 3, we have

2pk − p
∑

t(u)=2p

m(u) + p
∑

t(u)=p

m(u)−
∑

t(u)=2

m(u) +
∑

t(u)=1

m(u)

≡ 0 (mod 3). (4.26)

Multiplying (4.26) by −p and using the congruences −2p2 ≡ 1 (mod 3), (−p)2 ≡
1 (mod 3), −p2 ≡ 2 (mod 3) and −p ≡ 2p (mod 3), we have the congruence (4.24).
Summing up the arguments above, we see that the relations obtained by the
substitutions of the elements α2, α3, β2, β3, γ2, γ′2 and γ3 are equivalent to the
conditions (i)–(iii).

The relation by the substitution of αp is equivalent to

1
p

∑

t(u)=2p

x2m(u) +
p + 1
2p

∑

t(u)=p

x2m(u) ≡ 0 (mod Z). (4.27)

Multiplying (4.27) by p, we obtain the congruence in the condition (iv). The
relation by the substitution of βp is equivalent to

−p + 1
2p

∑

t(u)=2

y2m(u)− 1
p

∑

t(u)=1

y2m(u) ≡ 0 (mod Z). (4.28)

Multiplying (4.28) by −p, we obtain the congruence in the condition (v). This
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completes the proof. ¤

Now we can determine the group F of the modular units in the function field
FI . The following is the main theorem in this section.

Theorem 4.2. The group F of the modular units in the function field FI

consists of all functions g of the form

g = c(gw2)
k

∏

u∈RI(p)

(gu)m(u),

where c ∈ k×M , and k and m(u) are integers satisfying the relations (ii)–(v) of
Theorem 4.1.

Let u1 (respectively u2) be any element of RI(p) with t(u1) = 1 or p

(respectively t(u2) = 2 or 2p). Then in the expression of g we can make m(u1)
and m(u2) equal to 0, and in that case the integers k and m(u) (u ∈ RI(p)) are
uniquely determined by g.

Proof. This follows immediately from Theorems 3.2 and 4.1. ¤

Remark 4.2. Since ĝw2 = f
(2)
2p by (2.31), the function gw2 = (ĝw2)

2 can be
expressed by the Dedekind η-function η(τ): gw2(τ) = −H2(pτ)H−2(2pτ), where
H(τ) = η(τ/

√
2p).

5. Computation of the cuspidal class number.

In this section we determine the cuspidal class number of the modular curve
X1(2p).

5.1. The image IP of the principal divisors in the group ring.
Let ϕ : D ∼= R be the isomorphism (2.23). In this subsection we determine

the image ϕ(div(F )), which we denote by IP , of the principal divisors div(F ) of
the modular units in FI . Let R0 be the subgroup of R of all elements of degree 0.
Then IP = ϕ(div(F )) is an additive subgroup of R0.

By Theorem 4.2 any function g in F is a product of the functions gw2 and gu

with u ∈ RI(p) up to a constant. The set RI(p) is a complete set of representatives
of A ′

I (p). By Proposition 2.6 the set A ′
I (p) is an orbit of CI(±) with A ′

I (p) =
[wp]CI(±), and by (2) of Proposition 2.9 the stabilizer St([wp]) of [wp] is trivial
because p∗ = 2 and (Z/2Z)× = 1. Hence the sets CI(±) and RI(p) correspond
bijectively by the mapping α 7−→ wp ◦α. (For the definition of the product wp ◦α,
see (3.5).)

Let α be any element of CI(±) of type r. Let a(α) and b(α) be integers such
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that α can be represented by the matrix

(
a(α)

√
r b(α)

√
r∗

b(α)
√

r∗ a(α)
√

r

)
. (5.1)

Although such integers a(α) and b(α) are not unique, the residue classes
a(α) (mod r∗) and b(α) (mod r) are uniquely determined up to the multiplication
by ±1. In particular, the element α determines the residue class a(α)2(mod p)
(respectively b(α)2(mod p)) uniquely when r = 1, 2 (respectively r = p, 2p).

Theorem 5.1. Let ϕ : D ∼= R be the isomorphism (2.23). Let div(F ) be
the group of the principal divisors of the modular units in FI . Then the image
IP = ϕ(div(F )) is the subgroup of R0 consisting of all elements

2kθ2 +
{ ∑

α∈CI(±)

m(α)α
}

θp, (5.2)

where k and m(α) are integers such that the following congruences (i)–(iv) hold :

( i ) k +
∑

α∈CI(±) t(α)m(α) ≡ 0 (mod 12),
( ii )

∑
α∈C

(1)
I (±)∪C

(2)
I (±)

m(α) + p
∑

α∈C
(p)
I (±)∪C

(2p)
I (±)

m(α) ≡ 0 (mod 4),

(iii)
∑

α∈C
(1)
I (±)

a(α)2m(α) + 2
∑

α∈C
(2)
I (±)

a(α)2m(α) ≡ 0 (mod p),

(iv)
∑

α∈C
(2p)
I (±)

b(α)2m(α) + 2
∑

α∈C
(p)
I (±)

b(α)2m(α) ≡ 0 (mod p).

Proof. Let g be any function in F . Then by Theorem 4.2 we have

g = c(gw2)
k

∏

u∈RI(p)

(gu)m(u),

where k and m(u) are integers satisfying (ii)–(v) of Theorem 4.1. Let u = wp ◦ α

with α ∈ CI(±). Since the mapping α 7−→ wp ◦ α between CI(±) and RI(p) is
bijective, we can express m(u) as m(α). By (2.41) and (2.42), we have ϕ(div(gw2))
= 2θ2 and ϕ(div(gu)) = αθp, hence

ϕ(div(g)) = 2kθ2 +
{ ∑

α∈CI(±)

m(α)α
}

θp.

Since (t(u))∗ = t(α), the relation (ii) (respectively (iii)) of Theorem 4.1 coincides
with the relation (i) (respectively (ii)) in our statement. When t(u)(= r) = 2p
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or p, write u = ((x/p)
√

r, 0) with x an integer. It is easy to see that x2 ≡
a(α)2 (mod p) or 4a(α)2 (mod p) according as r = 2p or p. When r = p, we have
((p + 1)/2)x2 ≡ 2(p + 1)a(α)2 ≡ 2a(α)2 (mod p). These imply that the relation
(iv) of Theorem 4.1 coincides with the relation (iii) in our statement. When
t(u)(= r) = 1 or 2, write u = (0, (y/p)

√
r∗) with y an integer. Then it is easy to

see that y2 ≡ b(α)2 (mod p) or 4b(α)2 (mod p) according as r = 1 or 2. When r = 2,
we have ((p + 1)/2)y2 ≡ 2(p + 1)b(α)2 ≡ 2b(α)2 (mod p). These imply that the
relation (v) of Theorem 4.1 coincides with the relation (iv) in our statement. Thus
ϕ(div(g)) satisfies the conditions (i)–(iv). Conversely, by the arguments above, it
is obvious that any element (5.2) of R satisfying the conditions (i)–(iv) of our
statement can be expressed as ϕ(div(g)) with g ∈ F . This completes the proof.

¤

Remark 5.1. The subgroup IP of R is an ideal of R. In fact, for any
modular unit f ∈ F and any element α ∈ CI(±), the divisor div(fσ(α)) of fσ(α)

(∈ FI) is supported only on the cuspidal prime divisors since any conjugate of a
cuspidal prime divisor is itself a cuspidal prime divisor (cf. Section 2.6). Hence
fσ(α) is also a modular unit. The relation α div(f) = div(fσ(α)) follows from the
argument similar to the one in the proof of Proposition 2.5. This proves that IP

is an ideal of R.

5.2. The subgroup 24Zθ2 + I12θp of IP .
By Theorem 5.1 the cuspidal divisor class group C (3.2) is isomorphic to the

factor group R0/IP :

C ∼= R0/IP . (5.3)

We denote by h the cuspidal class number of the modular curve X1(2p). Then we
have

h = [R0 : IP ]. (5.4)

In the group IP the θ2-part and θp-part affect each other by the relation (i)
of Theorem 5.1. We introduce the subgroup I12 of R in order to separate the
two parts as follows. Let I12 be the subgroup of R consisting of all elements∑

α∈CI(±) m(α)α of R with m(α) ∈ Z such that the integers m(α) satisfy the
following condition (i*) and the conditions (ii)–(iv) of Theorem 5.1:

(i*)
∑

α∈CI(±)

t(α)m(α) ≡ 0 (mod 12). (5.5)



Cuspidal class number formula 71

We shall prove that 24Zθ2 + I12θp is a subgroup of IP of index 12, and that it is
a direct sum.

Remark 5.2. It can be proved that the subgroup I12 is an ideal of R. Since
this fact is not used in this paper, we omit the proof.

Let RC = R⊗C be the group ring of CI(±) over C. Let χ be any character
of CI(±), and let eχ be the elementary idempotent defined by

eχ =
1

|CI(±)|
∑

α∈CI(±)

χ(α)α−1. (5.6)

As is well-known these elements eχ constitute a basis of RC and satisfy the or-
thogonality relation.

We determine the eχ-components of θ2 and θp. Let φ be the natural homo-
morphism of (Z/pZ)× to (Z/2pZ)×/± 1 defined by

φ : (Z/pZ)× ∼= (Z/2pZ)× → (Z/2pZ)×/±1. (5.7)

For any character χ of CI(±) we define the character ψχ of (Z/pZ)× by

ψχ(a) = χ

((
φ(a) 0

0 φ(a)

))
. (5.8)

It is obvious that ψχ(−1) = 1.
Let ψ be a non-trivial character of (Z/pZ)×. Let B2(X) be the second

Bernoulli polynomial (cf. (2.6)). Let B2,ψ be the generalized Bernoulli number
associated to ψ which is defined by

B2,ψ = p

p−1∑
a=1

ψ(a)B2

(
a

p

)
. (5.9)

Then the eχ-components of θp are given as follows.

Proposition 5.1. Let χ be a character of CI(±), and put ψ = ψχ. We
denote by ψ the complex conjugate of ψ. Let [2] and [p] be the elements of CI(±)
defined by (2.45). Then we have
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θpeχ =





1
4
(2 + χ([2]))B2,ψeχ if χ is non-trivial on C

(1)
I (±),

−p− 1
24

(2 + χ([2]))(1− χ([p]))eχ if χ is trivial on C
(1)
I (±).

Proof. Let f(α) be the function on CI(±) defined by θp =∑
α∈CI(±) f(α)α−1. Then we have

θpeχ =
{ ∑

α∈CI(±)

f(α)χ(α)−1

}
eχ.

The values of f(α) are given in (2) of Proposition 3.1.
Let t(α) = 1. Then α can be represented by a matrix of the form

( a(α) 0
0 a(α)

)

with a(α) ∈ Z. We have f(α) = pB2(〈a(α)/p〉) and χ(α)−1 = ψ(a(α)). If α runs
through C

(1)
I (±), the class of a(α) runs through all elements of (Z/pZ)×/ ± 1.

This implies that
∑

α∈C
(1)
I (±)

f(α)χ(α)−1 = (1/2)B2,ψ or −(p − 1)/12 according

as χ is non-trivial or trivial on C
(1)
I (±) respectively.

Let t(α) = 2. Then α can be represented by a matrix of the form(
a(α)

√
2

√
p√

p a(α)
√

2

)
with a(α) ∈ Z, and f(α) = (p/2)B2(〈2a(α)/p〉). Put β =

α[2]. Then β is represented by the matrix
( 2a(α)+p 0

0 2a(α)+p

)
, and χ(α)−1 =

χ(β)−1χ([2]) = ψ(2a(α))χ([2]). If α runs through C
(2)
I (±), the class of 2a(α) runs

through all elements of (Z/pZ)×/±1. This implies that
∑

α∈C
(2)
I (±)

f(α)χ(α)−1 =
(1/4)B2,ψχ([2]) or −((p − 1)/24)χ([2]) according as χ is non-trivial or trivial on

C
(1)
I (±) respectively.

Let t(α) = p. Then f(α) = 1/6. Put β = α[p]. Then χ(α)−1 = χ(β)−1χ([p]),
and if α runs through C

(p)
I (±), β runs through C

(1)
I (±). This implies that∑

α∈C
(p)
I (±)

f(α)χ(α)−1 = 0 or ((p − 1)/12)χ([p]) according as χ is non-trivial

or trivial on C
(1)
I (±) respectively.

Let t(α) = 2p. Then f(α) = 1/12. Put β = α[2][p]. Then χ(α)−1 =
χ(β)−1χ([2])χ([p]), and if α runs through C

(2p)
I (±), β runs through C

(1)
I (±). This

implies that
∑

α∈C
(2p)
I (±)

f(α)χ(α)−1 = 0 or ((p− 1)/24)χ([2])χ([p]) according as

χ is non-trivial or trivial on C
(1)
I (±) respectively.

Summing up the results above, we have

∑

α∈CI(±)

f(α)χ(α)−1 =
1
2
B2,ψ +

1
4
B2,ψχ([2]) =

1
4
(2 + χ([2]))B2,ψ
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if χ is non-trivial on C
(1)
I (±), and

∑

α∈CI(±)

f(α)χ(α)−1

= −p− 1
12

− p− 1
24

χ([2]) +
p− 1
12

χ([p]) +
p− 1
24

χ([2])χ([p])

= −p− 1
24

(2 + χ([2]))(1− χ([p]))

if χ is trivial on C
(1)
I (±). This completes the proof. ¤

Corollary 5.1. Let χ and [p] be as in Proposition 5.1.

(1) If χ is non-trivial on C
(1)
I (±), then θpeχ 6= 0.

(2) If χ is trivial on C
(1)
I (±), then θpeχ 6= 0 or = 0 according as χ([p]) 6= 1 or

= 1 respectively.

Proof.

(1) In this case the character ψ (also ψ) is non-trivial. Since it is well-known that
B2,ψ 6= 0 if ψ is non-trivial, we have the proof by Proposition 5.1.

(2) This follows immediately from Proposition 5.1. ¤

Let χ be anyone of the four characters of CI(±) which are trivial on C
(1)
I (±).

If χ satisfies the condition

χ([2]) = −1 and χ([p]) = 1, (5.10)

then we write χ = χ(2). If χ satisfies the condition

χ([2]) = 1 and χ([p]) = −1, (5.11)

then we write χ = χ(p). Also, we denote the product χ(2)χ(p) by χ(2,p) and the
trivial character of CI(±) by χ(0).

The eχ-components of θ2 are given as follows.

Proposition 5.2. Let χ be a character of CI(±). Then

θ2eχ =




−p− 1

24
(p + χ([p]))eχ if χ = χ(2) or χ(2,p),

0 otherwise.
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Proof. By (1) of Proposition 3.1 and the fact that C
(r)
I (±) = [r]C(1)

I (±)
for r = 2, p and C

(2p)
I (±) = [2][p]C(1)

I (±), we have

θ2 =
1
24

(−p + p[2]− [p] + [2][p])
∑

α∈C
(1)
I (±)

α

= − 1
24

(1− [2])(p + [p])
∑

α∈C
(1)
I (±)

α.

By this equation we have

θ2eχ = − 1
24

(1− χ([2]))(p + χ([p]))
{ ∑

α∈C
(1)
I (±)

χ(α)
}

eχ.

Let χ be non-trivial on C
(1)
I (±). Then

∑
α∈C

(1)
I (±)

χ(α) = 0, therefore θ2eχ = 0.

Let χ be trivial on C
(1)
I (±) and χ([2]) = 1. Then χ = χ(0) or χ(p), and θ2eχ = 0.

Let χ = χ(2) or χ(2,p). Then χ([2]) = −1. Since |C(1)
I (±)| = (1/2)(p− 1), we have

θ2eχ = −((p− 1)/24)(p + χ([p]))eχ. This completes the proof. ¤

The following proposition suggests that it is easier to consider the subgroup
24Zθ2 + I12θp of IP than IP itself.

Proposition 5.3.

(1) The group 24Zθ2 + I12θp is a subgroup of IP , and

IP /(24Zθ2 + I12θp) ∼= Z/12Z.

(2) We have 24Zθ2 ∩ I12θp = 0, therefore 24Zθ2 + I12θp is a direct sum.

Proof.

(1) It is obvious that the group 24Zθ2 + I12θp is contained in IP . Let η =
2kθ2 + ξθp be any element of IP with k ∈ Z and ξ ∈ R. By Corollary 5.1 and
Proposition 5.2 we have ηeχ(2) = 2kθ2eχ(2) + ξθpeχ(2) = 2k{−(1/24)(p2 − 1)}eχ(2) .
This implies that the integer k is uniquely determined by η. Let ϕ(η) be the residue
class of k modulo 12. Then we have a homomorphism ϕ : IP → Z/12Z. Since k

and ξ satisfy the conditions (i)–(iv) of Theorem 5.1, it is obvious that ϕ−1(0) =
24Zθ2 + I12θp. We prove that ϕ is surjective. Put η1 = 2p2θ2 + p2(1− [2])θp. It is
easy to see that η1 ∈ IP . Since p 6= 2, 3, we have ϕ(η1) = p2(mod 12) = 1(mod 12).
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This implies that ϕ is surjective. Thus the proof is completed.
(2) Let η be any element of 24Zθ2 ∩ I12θp. Then η = 2kθ2 = ξθp with k ∈ Z

and ξ ∈ I12. Since η = 2kθ2 + 0 · θp = 2 · 0 · θ2 + ξθp, we have k = 0 by the
uniqueness of k proved in (1). Therefore we have η = 0. This completes the proof.

¤

5.3. Extending I12θp to R0,0.
By (5.4) and Proposition 5.3 we have

h =
1
12

[
R0 : (24Zθ2 + I12θp)

]
. (5.12)

Since θp satisfies θpeχ(0) = θpeχ(2) = 0 by Corollary 5.1, the group I12θp is
contained in the subgroup R0,0 of R which consists of all elements ξ ∈ R satisfying

ξeχ(0) = ξeχ(2) = 0. (5.13)

We consider here the extension 24Zθ2 + R0,0 of 24Zθ2 + I12θp.
Let χ be any character of CI(±). Let ξ =

∑
α∈CI(±) m(α)α be any element

of RC with m(α) ∈ C. We denote by χ(ξ) the number defined by

χ(ξ) =
∑

α∈CI(±)

m(α)χ(α). (5.14)

Then ξeχ = χ(ξ)eχ. The mapping ξ 7−→ χ(ξ) defines a C-algebra homomorphism
χ : RC → C. We denote by ξ(r) (r ∈ T ) the element of RC defined by

ξ(r) =
∑

α∈C
(r)
I (±)

m(α)α. (5.15)

Proposition 5.4. Let R0,0 be as above. Then we have the following.

(1) I12θp ⊂ R0,0 ⊂ R0.
(2) 24Zθ2 ∩R0,0 = 0, therefore the sum 24Zθ2 + R0,0 is a direct sum.
(3) (24Zθ2 + R0,0)/(24Zθ2 + I12θp) ∼= R0,0/I12θp.

(4) R0/(24Zθ2 + R0,0) ∼= Z/((1/2)(p2 − 1))Z.

Proof.

(1) The inclusion I12θp ⊂ R0,0 is obvious by the definition of R0,0. Let ξ be
any element of R0,0. Then ξeχ(0) = 0. Since ξeχ(0) = deg(ξ)eχ(0) , we have
deg(ξ) = 0, whence ξ ∈ R0. This proves (1).
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(2) Let ξ be any element of 24Zθ2 ∩ R0,0. Then ξ = 24kθ2 with k ∈ Z. By
Proposition 5.2 we have ξeχ(2) = 24kθ2eχ(2) = −k(p2 − 1)eχ(2) . On the other
hand, by the definition of R0,0, we have ξeχ(2) = 0. This gives k = 0, hence
ξ = 0. This proves (2).

(3) This follows immediately from (2) of Proposition 5.3 and (1), (2) above.
(4) Let ξ be any element of R0. We have ξeχ(2) = χ(2)(ξ)eχ(2) , where

χ(2)(ξ) = deg ξ(1) − deg ξ(2) + deg ξ(p) − deg ξ(2p). (5.16)

On the other hand, since ξ ∈ R0, we have

deg ξ = deg ξ(1) + deg ξ(2) + deg ξ(p) + deg ξ(2p) = 0. (5.17)

By (5.16) and (5.17) we have

χ(2)(ξ) = 2
(
deg ξ(1) + deg ξ(p)

) ∈ 2Z.

Let ϕ(ξ) be the residue class of (1/2)χ(2)(ξ) (∈ Z) modulo (1/2)(p2−1). Then
ϕ is a homomorphism from R0 to Z/((1/2)(p2 − 1))Z. First we prove that ϕ is
surjective. In fact, put ξ1 = 1 − [2] (∈ R0). Then we have ϕ(ξ1) = 1 (mod((1/2)
· (p2 − 1))), which proves that ϕ is surjective. Next we prove that the kernel of ϕ

coincides with 24Zθ2 + R0,0. Let η = 24kθ2 + ξ be any element of 24Zθ2 + R0,0

with k ∈ Z and ξ ∈ R0,0. Then ηeχ(2) = 24kθ2eχ(2) + ξeχ(2) = −k(p2 − 1)eχ(2)

by Proposition 5.2 and (5.13). This implies that (1/2)χ(2)(η) = −k((1/2)(p2− 1))
and ϕ(η) = 0, hence we have 24Zθ2 + R0,0 ⊂ ϕ−1(0). Conversely, let η be any
element of ϕ−1(0). Then (1/2)χ(2)(η) = k((1/2)(p2 − 1)) with some k ∈ Z. Put
ξ = η + 24kθ2. Then we have ξeχ(2) = ηeχ(2) + 24kθ2eχ(2) = k(p2 − 1)eχ(2) −
k(p2 − 1)eχ(2) = 0, which implies that ξ ∈ R0,0 and η ∈ 24Zθ2 + R0,0. Thus we
have ϕ−1(0) ⊂ 24Zθ2 + R0,0, therefore ϕ−1(0) = 24Zθ2 + R0,0. This gives the
isomorphism R0/(24Zθ2 + R0,0) ∼= Z/((1/2)(p2 − 1))Z, which proves (4). ¤

5.4. The invertible element θ′.
By (5.12) and Proposition 5.4 we have

h =
1
12

[
R0 : (24Zθ2 + R0,0)

][
(24Zθ2 + R0,0) : (24Zθ2 + I12θp)

]

=
1
12
· 1
2
(p2 − 1) · [R0,0 : I12θp

]
=

p2 − 1
24

[
R0,0 : I12θp

]
. (5.18)

The element θp is not invertible in RC because the eχ-components for χ = χ(0)
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and χ = χ(2) are 0 by Corollary 5.1. We want an element θ′ which has the same
non-zero eχ-components as θp and is invertible. Since the eχ-component of θp for
any χ 6= χ(0), χ(2) is non-zero by Corollary 5.1, it is sufficient to put θ′ = θp − s

where s is an element which has only two non-zero eχ-components for χ = χ(0)

and χ = χ(2).
We denote by µ the element of R defined by

µ =
∑

α∈CI(±)

α. (5.19)

Then we have the following lemma that gives all elements of R such that they have
only two non-zero eχ-components for χ = χ(0) and χ = χ(2) at most.

Lemma 5.1. R ∩ (
Ceχ(0) + Ceχ(2)

)
= Z

(
µ(1) + µ(p)

)
+ Z

(
µ(2) + µ(2p)

)
.

Proof. Let ξ = xeχ(0) + yeχ(2) with x, y ∈ C be any element of R ∩(
Ceχ(0) + Ceχ(2)

)
. By the definition of eχ(0) and eχ(2) we have

ξ =
x + y

|CI(±)|
(
µ(1) + µ(p)

)
+

x− y

|CI(±)|
(
µ(2) + µ(2p)

)
.

Since ξ ∈ R, we have (x + y)/|CI(±)|, (x − y)/|CI(±)| ∈ Z. This implies that
R∩ (

Ceχ(0) +Ceχ(2)

)
is contained in Z(µ(1) +µ(p))+Z(µ(2) +µ(2p)). Conversely,

let ξ be any element of Z(µ(1) + µ(p)) + Z(µ(2) + µ(2p)). Since µ(1) + µ(p) =
(p−1)

(
eχ(0) + eχ(2)

)
and µ(2) +µ(2p) = (p−1)

(
eχ(0) − eχ(2)

)
, we have ξ ∈ Ceχ(0) +

Ceχ(2) . This completes the proof. ¤

We denote by Z the subgroup of R defined by

Z = Z
(
µ(1) + µ(p)

)
+ Z

(
µ(2) + µ(2p)

)
. (5.20)

As the element s mentioned above, we take the following one of Z

s = µ(1) + µ(p), (5.21)

and put

θ′ = θp − s. (5.22)

Concerning the eχ-components of s we have the following:
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s = (p− 1)
(
eχ(0) + eχ(2)

)
. (5.23)

The following proposition says that we can replace the index [R0,0 : I12θp] in
(5.18) by [(R0,0 + Z ) : (I12θ

′ + Z )].

Proposition 5.5. Let s, θ′ and Z be as above. Then we have the following.

(1) Rs = Z .
(2) R0,0 ∩Z =0.
(3) I12θp ⊂ I12θ

′ + Z .
(4) R0,0 ∩

(
I12θ

′ + Z
)

= I12θp.
(5) R0,0 + I12θ

′ + Z =R0,0 + Z .
(6)

(
R0,0 + Z )/

(
I12θ

′ + Z
) ∼= R0,0/(I12θp).

Proof.

(1) Let ξ be any element of R. Then, ξs = ξµ(1) + ξµ(p) =
∑

r∈T deg ξ(r)µ(r)

+
∑

r∈T deg ξ(r◦p)µ(r) =
∑

r=1,p deg ξ(r) · ∑
r=1,p µ(r) +

∑
r=2,2p deg ξ(r) ·∑

r=2,2p µ(r) ∈ Z , which implies Rs ⊂ Z . Conversely, let ξ = a(µ(1) + µ(p)) +
b(µ(2) + µ(2p)) with a, b ∈ Z be any element of Z . Since µ(2) + µ(2p) = [2]s, we
have ξ = as+ b[2]s = (a+ b[2])s ∈ Rs. This implies Z ⊂Rs. Hence, (1) is proved.

(2) This is obvious from the definition of R0,0 and Lemma 5.1 because the
eχ-component is 0 for every character χ of CI(±).

(3) Let ξ be any element of I12. Then ξθp = ξ(θ′+s) = ξθ′+ξs. Since ξs ∈ Z
by (1), this proves (3).

(4) By (1) of Proposition 5.4 and (3) above, we have I12θp ⊂ R0,0 ∩ (I12θ
′ +

Z ). Conversely, let η be any element of R0,0 ∩ (I12θ
′ + Z ). Let us write η =

ξθ′ + as + b[2]s with ξ ∈ I12 and a, b ∈ Z. Put η1 = ξθp (∈ I12θp). Then
η1 = ξθ′+ξs = ξθ′+

{ ∑
r=1,p deg ξ(r)

}
s+

{ ∑
r=2,2p deg ξ(r)

}
[2]s. Hence η−η1 ={

a −∑
r=1,p deg ξ(r)

}
s +

{
b −∑

r=2,2p deg ξ(r)
}
[2]s ∈ Z . Since η ∈ R0,0 by the

assumption and η1 ∈ I12θp ⊂ R0,0, we have η−η1 ∈ R0,0∩Z . This implies η = η1

by (2) above, whence η ∈ I12θp. We have, therefore, R0,0 ∩ (I12θ
′ + Z ) ⊂ I12θp.

This proves (4).
(5) It is sufficient to prove I12θ

′ ⊂ R0,0 + Z . Let ξ be any element of I12.
Then ξθ′ = ξθp − ξs. Since ξθp ∈ I12θp ⊂ R0,0 by (1) of Proposition 5.4 and
ξs ∈ Z by (1) above, we have ξθ′ ∈ R0,0 + Z . This proves (5).

(6) By (4) and (5) above, we have the following isomorphism

(R0,0 + Z )/(I12θ
′ + Z ) = (R0,0 + I12θ

′ + Z )/(I12θ
′ + Z )

∼= R0,0/
{
R0,0 ∩ (I12θ

′ + Z )
}

= R0,0/(I12θp),

which proves (6). ¤
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5.5. Extending R0,0 + Z to R.
By (5.18) and (6) of Proposition 5.5 we have

h =
p2 − 1

24
[R0,0 : I12θp]

=
p2 − 1

24
[
(R0,0 + Z ) : (I12θ

′ + Z )
]
. (5.24)

Here we consider the extension R of R0,0 + Z , and determine its index [R :
R0,0 + Z ] in two steps. Let Rp−1,p−1 be the subgroup of R consisting of all
elements ξ such that the following congruences hold (note that χ(0)(ξ) and χ(2)(ξ)
are integers):

χ(0)(ξ) ≡ χ(2)(ξ) ≡ 0 (mod(p− 1)). (5.25)

First we determine the index [Rp−1,p−1 : R0,0 + Z ].

Proposition 5.6. Let Rp−1,p−1 be as above. Then we have the following.

(1) R0,0 + Z ⊂Rp−1,p−1.
(2) Rp−1,p−1/(R0,0 + Z ) ∼= Z/2Z.

Proof.

(1) The inclusion R0,0⊂Rp−1,p−1 is obvious by their definitions. By (5.23) we
have χ(0)(s) = χ(2)(s) = p− 1. Hence we have χ(0)([2]s) = p− 1 and χ(2)([2]s) =
−(p− 1). Since Z = Zs + Z[2]s, this implies Z ⊂ Rp−1,p−1, which proves (1).

(2) Let ξ be any element of Rp−1,p−1. Write χ(0)(ξ) = a(p− 1) and χ(2)(ξ) =
b(p − 1) with a, b ∈ Z. Let ϕ(ξ) be the residue class of a − b modulo 2. Then ϕ

is a homomorphism from Rp−1,p−1 to Z/2Z. First we prove that ϕ is surjective.
Put ξ1 = µ(1) + µ(2). Then χ(0)(ξ1) = p − 1 and χ(2)(ξ1) = 0, which implies
that ξ1 ∈ Rp−1,p−1, and that ϕ(ξ1) = 1(mod 2). This proves the surjectivity
of ϕ. Next we prove that the kernel of ϕ coincides with R0,0 + Z . By the
definition of R0,0 we have ϕ(R0,0) = 0. By the values of χ(0)(ξ) and χ(2)(ξ)
for ξ = s and [2]s in (1) above, we have ϕ(s) = ϕ([2]s) = 0. These imply
that R0,0 + Z ⊂ ϕ−1(0). Conversely, let ξ be any element of ϕ−1(0), and write
χ(0)(ξ) = a(p − 1), χ(2)(ξ) = b(p − 1) and a − b = 2m with a, b, m ∈ Z. Put
ξ2 = ξ − {(a−m)s + m[2]s}. Then we have

χ(0)(ξ2) = χ(0)(ξ)− (a−m)χ(0)(s)−m · χ(0)([2]s) = 0,

χ(2)(ξ2) = χ(2)(ξ)− (a−m)χ(2)(s)−m · χ(2)([2]s) = 0,
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which implies ξ2 ∈ R0,0. Since (a−m)s+m[2]s ∈ Z , we have ξ ∈ R0,0 +Z , hence
ϕ−1(0) ⊂ R0,0 + Z . This gives ϕ−1(0) = R0,0 + Z , and completes the proof of
(2). ¤

Next we determine the index [R : Rp−1,p−1].

Proposition 5.7. We have [R : Rp−1,p−1] = (1/2)(p− 1)2.

Proof. Let ξ be any element of R. Let ϕ(ξ) be the element of (Z/(p−1)Z)2

defined by

ϕ(ξ) =
(
χ(0)(ξ)(mod(p− 1)), χ(2)(ξ)(mod(p− 1))

)
.

Then ϕ is a homomorphism from R to (Z/(p−1)Z)2. For each element α ∈ CI(±),
we have ϕ(α) = (1, 1) or (1,−1) according as t(α) = 1, p or 2, 2p, respectively. This
implies that the image Im ϕ of ϕ is the subgroup of (Z/(p − 1)Z)2 generated by
(1, 1) and (1,−1). Since (2, 0) = (1, 1) + (1,−1), (0, 2) = (1, 1) − (1,−1), and
(1,−1) = (1, 1)− (0, 2), the group Imϕ is generated by the three elements (2, 0),
(0, 2) and (1, 1). Let A be the subgroup of (Z/(p− 1)Z)2 generated by (2, 0) and
(0, 2). Then, since Im ϕ 6= A and 2(1, 1) ∈ A, we have [Im ϕ : A] = 2. Since (2, 0)
and (0, 2) are independent and of order (1/2)(p−1), we have |A| = {(1/2)(p−1)}2,
whence | Im ϕ| = 2 · {(1/2)(p − 1)}2 = (1/2)(p − 1)2. Since ϕ−1(0) = Rp−1,p−1,
the proof is completed. ¤

5.6. The subgroup I12θ′ of I12θ′ + Z .
In the equation (5.24) the group I12θ

′ + Z appears. In this subsection we
consider the subgroup I12θ

′ of I12θ
′+Z , and determine its index [I12θ

′+Z : I12θ
′].

Proposition 5.8. We have the following.

(1) Z ∩I12θ
′ = (p− 1)Z .

(2) (I12θ
′ + Z )/I12θ

′ ∼= (Z/(p− 1)Z)2.

Proof.

(1) By the definition (5.22) of θ′, the eχ-components of θ′ are all non-zero,
hence θ′ is invertible in RC . In particular, since θpeχ(0) = θpeχ(2) = 0 (cf. Corollary
5.1), we have θ′eχ(0) = −seχ(0) and θ′eχ(2) = −seχ(2) , hence s(θ′)−1eχ(0) = −eχ(0)

and s(θ′)−1eχ(2) = −eχ(2) . Since s
(
eχ(0) + eχ(2)

)
= s by (5.23), we have s(θ′)−1 =

s(θ′)−1
(
eχ(0) + eχ(2)

)
= −(

eχ(0) + eχ(2)

)
= −(1/(p − 1))s. Let η = as + b[2]s be

any element of Z (a, b ∈ Z). Then we have
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η(θ′)−1 = (a + b[2])s(θ′)−1 = − 1
p− 1

(a + b[2])s = − 1
p− 1

η. (5.26)

Now let η be any element of Z ∩I12θ
′, and write η = as+b[2]s = ξθ′ with a, b ∈

Z and ξ ∈ I12. Then by (5.26) we have ξ = η(θ′)−1 = −(a/(p−1))s−b/(p−1)[2]s.
Since ξ ∈ R, both the numbers a/(p−1) and b/(p−1) are integers. This implies that
a, b ∈ (p−1)Z and that η ∈ (p−1)Z , namely Z ∩I12θ

′ ⊂ (p−1)Z . Conversely, let
η be any element of (p−1)Z . Then by (5.26) we have η(θ′)−1 ∈ Z . We can verify
by elementary calculations that both the elements s and [2]s satisfy the congruence
(i*) in (5.5) and the congruences (ii)–(iv) of Theorem 5.1. This implies that the
elements s and [2]s are contained in I12, and hence Z ⊂I12. Put ξ = η(θ′)−1.
Then we have η = ξθ′ ∈ I12θ

′, which implies that (p − 1)Z ⊂ Z ∩I12θ
′. This

proves (1).
(2) By (1) we have (I12θ

′ + Z )/I12θ
′ ∼= Z /(Z ∩I12θ

′) = Z /(p− 1)Z . Since
s and [2]s is a basis of Z , we have Z /(p − 1)Z ∼= (Z/(p − 1)Z)2. This proves
(2). ¤

5.7. The cuspidal class number.
By (2) of Proposition 5.6 and Proposition 5.7, we have [R : R0,0 + Z ] =

(p − 1)2. Also, by (2) of Proposition 5.8, we have [I12θ
′ + Z : I12θ

′] = (p − 1)2.
Combining these equalities with (5.24), we have

h =
p2 − 1

24
[
(R0,0 + Z ) : (I12θ

′ + Z )
]

=
p2 − 1

24
· 1
(p− 1)4

[
R : I12θ

′]. (5.27)

Let A and B be two lattices of RQ, and let C be a lattice contained in A∩B.
Then the quotient [A : C]/[B : C] does not depend on the choice of C. We denote
this number by [A : B]. It satisfies the usual multiplicative property, namely
[A : B] = [A : D][D : B]. In particular, we have [R : I12θ

′] = [R : Rθ′][Rθ′ : I12θ
′].

Since θ′ is invertible, we have [Rθ′ : I12θ
′] = [R : I12]. By these equalities and

(5.27) we have

h =
p2 − 1

24
· 1
(p− 1)4

[R : Rθ′][R : I12]. (5.28)

We determine the values [R : I12] and [R : Rθ′].

Proposition 5.9. We have [R : I12] = 48p2.
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Proof. Let ξ be any element of R. Let ϕ1(ξ) be the element of Z/12Z

defined by the expression on the left-hand side of (i*) in (5.5). Let ϕ2(ξ) be the
element of Z/4Z defined by the expression on the left-hand side of (ii) in Theorem
5.1. Similarly, let ϕ3(ξ) (respectively ϕ4(ξ)) be the element of Z/pZ defined by
the expression on the left-hand side of (iii) (respectively (iv)) in Theorem 5.1.
Then ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) is a homomorphism from R to Z/12Z × Z/4Z ×
Z/pZ × Z/pZ. The kernel of ϕ is I12. We prove that ϕ is surjective. Put
ξ1 = 7px · 12 − 3px[2], where x is an integer such that px ≡ 1 (mod 12). Then we
have ϕ(ξ1) = (1, 0, 0, 0). Put ξ2 = 6px · 12 + 3px[2], where x is the same integer
as in ξ1. Then ϕ(ξ2) = (0, 1, 0, 0). Put ξ3 = 12y · 12, where y is an integer such
that 12y ≡ 1 (mod p). Then ϕ(ξ3) = (0, 0, 1, 0). Put ξ4 = 12y[2p], where y is the
same integer as in ξ3. Then ϕ(ξ4) = (0, 0, 0, 1). This proves that ϕ is surjective,
and hence the proof is completed. ¤

Proposition 5.10. We have the following equation

[R : Rθ′] =
(p− 1)4

48

∏

ψ

{
(4− ψ(2))2

(
1
4
B2,ψ

)4}
,

where ψ runs through all even, primitive Dirichlet characters modulo p.

Proof. Let f : RQ → RQ be the linear transformation on the vector
space RQ over Q defined by the multiplication by θ′. Let {xi} be a basis of
R over Z. Let M(f) be the matrix of f determined by {xi}. Then we have
[R : Rθ′] = |det M(f)| by the theory of elementary divisor and the definition of
[R : Rθ′]. Since θ′eχ = χ(θ′)eχ for any character χ of CI(±) and the set {eχ}
is a basis of RC over C, we have det M(f) =

∏
χ χ(θ′) where χ runs through all

characters of CI(±). Let χ be a character of CI(±). Then, by the definition (5.22)
of θ′, Proposition 5.1 and (5.23), we have

χ(θ′) =
1
4
(2 + χ([2]))B2,ψ, (5.29)

where ψ = ψχ, if χ is non-trivial on C
(1)
I (±). When χ is trivial on C

(1)
I (±), it is

one of χ(0), χ(2), χ(p) or χ(2,p), and we have
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χ(θ′) =





−(p− 1) if χ = χ(0) or χ(2),

−1
4
(p− 1) if χ = χ(p),

− 1
12

(p− 1) if χ = χ(2,p).

(5.30)

Let ψ be a non-trivial, even character of (Z/pZ)×. Then the set of characters
χ of CI(±) with ψχ = ψ consists of four elements. Let χ be anyone of them. Then
the other characters are χχ(2), χχ(p) and χχ(2,p). Put χ0 = χ(0), χ1 = χ(2),
χ2 = χ(p) and χ3 = χ(2,p). We prove that

3∏

i=0

(
2 + (χχi)([2])

)
= (4− ψ(2))2. (5.31)

In fact, since χ0([2]) = χ2([2]) = 1 and χ1([2]) = χ3([2]) = −1, the left-hand side
of (5.31) is equal to

{
4− χ([2])2

}2 =
{
4− χ([2]2)

}2
. (5.32)

By the definition of [2] (cf. (2.45)), the element [2]2 is an element of C
(1)
I (±)

represented by the matrix (2 + p)12. Hence we have χ([2]2) = ψ(2), which proves
(5.31). Now, by (5.31) and (5.29), we have

3∏

i=0

(χχi)(θ′) = (4− ψ(2))2
(

1
4
B2,ψ

)4

. (5.33)

On the other hand, for four characters which are trivial on C
(1)
I (±), we have

3∏

i=0

χi(θ′) =
1
48

(p− 1)4 (5.34)

by (5.30).
Since the product of (5.33) with ψ ranging over all even, primitive Dirichlet

characters modulo p coincides with the product
∏

χ χ(θ′) with χ non-trivial on

C
(1)
I (±), we have, by this and (5.34),
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∏
χ

χ(θ′) =
(p− 1)4

48

∏

ψ

{
(4− ψ(2))2

(
1
4
B2,ψ

)4}

=
(p− 1)4

48

∏

ψ

{
(4− ψ(2))2

(
1
4
B2,ψ

)4}
, (5.35)

where χ runs through all characters of CI(±). Since the value of the right-hand
side of (5.35) is a positive real number, combining the equality (5.35) with the
relation [R : Rθ′] = |det M(f)| = |∏χ χ(θ′)|, we have the proof. ¤

By (5.28) and Propositions 5.9–5.10, we have the following formula for the
cuspidal class number.

Theorem 5.2. Let p be a prime 6= 2, 3. Let h be the cuspidal class number
of the modular curve X1(2p). Then we have

h =
p2 − 1

24
· p2 ·

∏

ψ

{
(4− ψ(2))2

(
1
4
B2,ψ

)4}
,

where ψ runs through all even, primitive Dirichlet characters modulo p.
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