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Abstract. The main purpose of this paper is to show the nonexistence
of tight Euclidean 9-designs on 2 concentric spheres in R™ if n > 3. This in
turn implies the nonexistence of minimum cubature formulas of degree 9 (in
the sense of Cools and Schmid) for any spherically symmetric integrals in R™
if n > 3.

1. Introduction.

The concept of Euclidean t-designs (X, w), a pair of finite set X in R™ and
a positive weight function w on X, is due to Neumaier-Seidel [19], though similar
concepts have been existed in statistics as rotatable designs [11] and in numerical
analysis as cubature formulas for spherically symmetric integrals in R ([12], [11],
etc.). There exist natural Fisher type lower bounds (Méller’s bound) for the size of
Euclidean t-designs. Those which attain one of such lower bounds are called tight
Euclidean t-designs. These lower bounds are basically obtained as functions of ¢, n
and the number p of spheres (whose centers are at the origin) which meet the finite
set X. We have been working on the classification of tight Euclidean t¢-designs, in
particular those with p = 2 (or p being small). In [9] and [5], we gave the complete
classification of tight FEuclidean 5- and 7-designs on 2 concentric spheres in R"™.
(Exactly speaking modulo the existence of tight spherical 4-designs for ¢ = 5.)
The main purpose of this paper is to show the nonexistence of tight Euclidean
9-designs on 2 concentric spheres in R™ if n > 3.

The theory of Euclidean t-designs has strong connections with the theory of
cubature formulas for so called spherically symmetric integrals on R™. Here, we
consider a pair (Q,dp(x)) such that Q is a spherically symmetric (or sometimes
called radially symmetric) subset of R™ and a spherically symmetric (or radially
symmetric) measure dp(z) on 2. (Here, a subset & C R™ is called spherically
symmetric if € 2, then any elements having the same distance from the origin
as x are also in 2, and dp(x) is spherically symmetric if it is invariant under the
action of orthogonal transformations.) A cubature formula (X, w) of degree ¢ for
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(Q,dp(x)) is defined as follows.

X is a subset in ) containing a finite number of points, w is a positive weight
function of X, i.e., a map from X to R-o, and (X,w) satisfies the following
condition:

/Q f@)dp(z) = 3 w(a) ()

zeX

for any polynomials f(x) of degree at most ¢.

Natural lower bounds of the size | X| of a cubature formula (X, w) of degree t
for spherically symmetric (2, dp(x)) are known as Moller’s lower bounds as follows
([17], [18]). (It seems that the result for even ¢ was essentially known much older.)

1. If t = 2¢, then
1X| > dim(2,(2)).
2. If t =2e+1, then

2dim(Z(Q)) —1 ifeiseven and 0 € X,
2dim(Z7:(Q)) otherwise.

In above Z.(R"™) is the vector space of polynomials of degree at most e and
P.() ={fla | f € P(R™)}, and £5(R"™) is the vector space of polynomials
whose terms are all of degrees with the same parity as e and at most e. Also
PHQ) = {fla | f € ZLRM).

It is called a minimal cubature formula of degree ¢, if it satisfies a Moller’s
lower bound. Finding and classifying minimal cubature formulas have been inter-
ested by many researchers in numerical analysis, and have been studied consider-
ably (see [12], [15], [16], [21], etc.). As it was pointed out by Cools-Schmid [12],
the problem has a special feature when ¢ = 4k + 1. In this case, we can conclude
that (1) 0 € X, (2) X is on k + 1 concentric spheres, including S; = {0}.

Cools-Schmid [12] (cf. also [20]) gave a complete determination of minimal
cubature formulas for n = 2 when ¢t = 4k+ 1. The case of t = 5 for arbitrary n was
solved by Hirao-Sawa [15] completely, in the effect that the existence of minimal
cubature formula (for any spherically symmetric (€2, dp(x)) in R" is equivalent to
the existence of tight spherical 4-design in R™. More recently, Hirao-Sawa [15]
discusses the case of t = 9 for many specific classical (2, dp(x)). As a corollary
of our main theorem: nonexistence of tight Euclidean 9-designs on 2 concentric
spheres in R™ if n > 3, we obtain the nonexistence of minimum cubature formulas
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of degree 9 (in the sense of Cools and Schmid) for any spherically symmetric
integrals in R™ if n > 3. So, we think that this means a usefulness of the concept
of Euclidean t-design as a master class for all spherically symmetric cubature
formulas. At the end, we add our hope to study the classification problems of
tight Euclidean ¢-designs (for larger t) on 2 concentric spheres (or p concentric
spheres with small p), and to study minimal cubature formulas with ¢ = 4k + 1
for t > 13, extending the method used in the present paper.

For more information on spherical designs, Euclidean designs, please refer [1],
[6], etc. Explicit examples of tight 4-, 5-, 7- designs on 2 concentric spheres are
given in [10], [9], [5], etc.

The following is the main theorem of this paper.

THEOREM 1. Let (X, w) be a tight 9-design on 2 concentric spheres in R"
of positive radii. Let X = X7 U X5. Then the following hold.

1. X is antipodal.

2. Let x € X1, y € Xo. Then x-y/rire is a zero of the Gegenbauer polyno-
mial Q4,n—1(x) of degree 4. More explicitly, Q4 n—1(x) = (n(n+6)/24)((n+4)
(n + 2)z* — 6(n + 2)2% + 3) (Here Gegenbauer polynomial Q;,—1(x) of de-
gree | is normalized so that () ,—1(1) is the dimension of the vector space of
homogeneous harmonic polynomials of degree 1.).

3. n=2 and (X, w) must be similar to the following.
Y =Y1UYs, Y1 and Y are regular 8-gons given by

Y, = {rl(cosek,siHQk) 0, = %TW, 0<k< 7},
1
Y, = {rg(cosek,siHHk) 0, = w, 0<k< 7}7

where r1 and o are any positive real number satisfying r1 # ro. The weight
function is defined by w(y) = wy on Yy and w(y) = (r$/r5)w; on Ys.

It is known that tight Euclidean (2e + 1)-designs of R™ containing the origin
exist only when e is an even integer and p = e¢/2 + 1 (see Proposition 2.4.5 in [8]).
Hence Theorem 1 implies the followings.

COROLLARY 1. Let (X,w) be a tight 9-design of R"™ containing the origin.
Then n =2 and X is supported by 3 concentric spheres and (X\{0}, w) is similar
to the 9-design (Y, w) given in Theorem 1.

COROLLARY 2. If n > 3, then there is no cubature formula of degree 9
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for spherically symmetric subset and measure (2,dp(x)) in R™. (For minimal
cubature formulas for n = 2 see [16].)

2. Definition and basic facts on the Euclidean t-designs.

We use the following notation.

Let &(R™) be the vector space over real number field R consists of all
the polynomials in n variables x1, xs, ..., 2, with real valued coefficients. For
f e Z(R"), deg(f) denotes the degree of the polynomial f. Let Harm(R™) the
subspace of Z(R") consists of all the harmonic polynomials. For each nonnega-
tive integer [, let Hom;(R™) = (f € Z(R"™) | deg(f) = 1). We use the following

notation:
Harm,;(R") := Harm(R") N Hom;(R"), Z.(R"):= &;_ Hom;(R"),
PE(R") = ) Home o (R"),
Pop-1)(R") = (|| [0 <i <p—1) C Pyp1)(R")

For asubset Y C R", Z(Y) = {fly | f € Z(R™)}. #(Y), Homy(Y), Harm,(Y),
..., etc., are defined in the same way.

Let (X, w) be a weighted finite set in R"™ whose weight satisfies w(x) > 0 for
x € X. Let {r1,rs,..., 7} be the set {||z| | © € X} of the length of the vectors
in X. Where for = (21,22,...,2,), Yy = (y1,¥Y2, .-, Yn) ER", -y =D 1 | T;y;
and ||z|| = V& - x. Let S;, 1 <14 < p, be the sphere of radius r; centered at the
origin. We say that X is supported by p concentric spheres, or the union of p
concentric spheres § = S U Sy U---USp.

If a finite positive weighted set (X, w) is supported by p concentric spheres,
then dim(%(p—1)(X)) = p holds. For each [, we define an inner product (—, —);
o1 Zatp1)(X) by (190 = Faex w(@)l@]f(@)g(@). Then (—, —); is positive
definite for each [. For each I, we define polynomials {g;; |0 < j < p—1} C
Kap—1)(R") so that {g;j|x | 0 < j < p—1} is an orthonormal basis of %Z5(,—1)(X)
with respect to (—, —);. We define so that g; j(«) is a polynomial of degree 2j
and a linear combination of {||z||* | 0 <4 < j}. We abuse the notation and we
identify ¢, ;(x) = g1,;(ry) for x € X, (1 <v <p).

DEFINITION 1 ([19]). A weighted finite set (X, w) is a Euclidean t-design if

Y w(Xi) i(x) = w(x) f(x
> s [, s@yie@) = 3 wia)s@)
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holds for any f € Z;(R"). In above, w(X;) =) cx, w(z), fSi f(z)do;(z) is the
usual surface integral of the sphere S; of radius r;, |S;| is the surface area of S;.

THEOREM 2 ([17], [18], [19], [14], [9], [8], etc). Let X C R™ be a Euclidean
t-design supported by a union S of p concentric spheres. Then the following hold.

1. Fort = 2e,
|X| = dim(Z%(5)).

2. Fort=2e+1,

2dim(Z;(S)) —1 fore even and 0 € X
2dim(Z2(S)) otherwise.

DEFINITION 2 (Tightness of designs). If an equality holds in one of the
inequalities given in Theorem 2, then (X, w) is a tight t-design on p concentric
spheres in R". Moreover if &Z.(S) = Z.(R") holds for t = 2¢, or Z;(S) =
Z%(R™) holds for t = 2e + 1, then (X, w) is a tight ¢-design of R™.

Moller [18] proved that a tight (2e 4 1)-design (X, w) on p concentric spheres
is antipodal and the weight function is center symmetric if e is odd or e is even
and 0 € X. For the case e is even and 0 ¢ X, Theorem 2.3.6 in [8] implies if
we assume p < (e/2) + 1, then X is antipodal and the weight function is center
symmetric. Hence Lemma 1.10 in [3] and Lemma 1.7 in [9] implies that weight
function of a tight ¢-design on p concentric spheres is constant on each X; for
t=2et=2e+1and eodd; t =2e+1,eeven and 0 € X; ¢t = 2e+ 1, e even,
0¢ X and p < (¢/2) + 1;

PROPOSITION 1.  Let (X, w) be a positive weighted finite subset in R™. As-
sume 0 ¢ X and the weight function is constant on each X; (1 < ¢ < p). Then
the following holds.

1
X, |wy,r2t’

p—1
> 9 (r)gui(re) = 6o
j=0

PrROOF. Let M; be the p x p matrix whose (v,j) entry is defined by
VIXolw,rhg j(r,) for 1 <v <p, 0<j<p-—1. Then
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p p
("MM) (1, G2) =Y My g, My, = > Xy word g g, (7)) gugs (1)
v=1 v=1
p
=3 w@))* g5, ()14, ()
v=1lxeX,
= > w@)|@l* g1, ()g1.5, () = 65, 5, (1)
xeX

Hence M; is invertible and M, " = *M;. Hence we have M; ‘M, = I.

p—1
(M "My (v, 1) = rlrl A IX X lwswn Y g1(r) g (ry) = 6 (2)
=0

Hence we must have

p—1 1
91,5 (rv) 915 (Tu) = Ovpi a7
j;) B o ‘Xu|wurgl

3. Proof of Theorem 1 (2).

Now we prove Theorem 1. Let (X,w) be a tight 9-design on 2 concentric
spheres and 0 ¢ X. Let X = X; U X5. By assumption

[ X| = 2dim(2(95)) = 2<i<

=0

n+4—2i—1\\ n(n+1)(n?+5n+ 18)
4—2i 12

Then, as we mentioned in Section 2, X is antipodal and the weight function is
constant on each X;, i =1, 2. Let w; = w(x) for € X;.

Let A(X;) = {z-y/r? | x # y € X;} for i = 1,2. Let A(X;,X3) =
{z-y/rirs | ¢ € X1, y € Xo}. Then X; and X, are spherical 7-designs and
|A(X1)], |A(X2)| <5 and |A(X7, X2)| < 4. Since X3, X5 are spherical 7-designs,
| X1], [X2| > 1/3(n + 2)(n + 1)n. We may assume |X;| < |X2|. Hence

1 X
F(n+2)(n+1)n < || < |—2| < [Xo| < [ X[ =Xy

1
< ﬁn(n +1)(n® +n + 10)
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holds. If n = 2, then we must have |X;| = |X3| = 8 and X; and X, are spher-
ical tight 7-designs. We can easily check that for any A(X7, Xs) = {cos(kn/8) |
k=1,3,57 = {V2+v2/2,—v2++2/2}. Hence v € A(X;y,X2) is a zero of

Gegenbauer polynomial Q4 1(z) = 162% — 16z + 2.

In the following we assume n > 3, then

X 1)(n? +5n + 18 1
X > B 0t DOEEIMEDD) 20 )t 1y

holds and X5 is not a spherical tight 7-design. Hence X, is a 5-distance set,
ie., |A(X3)] = 5. Let X; be an antipodal half of X* for ¢+ = 1,2. That is,
X, = XFU(=X}), XN (=X?) = 0. Then |[A(X})| < 4 for i = 1,2, and
|A(XT, X5)| <4 hold.

Then equations (3.1) and (3.2) in the proof of Lemma 1.7 in [9] imply the
following equations.

T € X7
1
1"?94,0(7“1) Q41 +T1Q2 2921 1) +ZQOJ 7"1 — wil (3)
e X5
1
AU+ 10 S+ S = @
T #yEX|

rig10(r1)° Q4(( ))+7“1Q2( 2 )Zgzg 1) +Zgo,7 r)>=0 (5

1 1

r#yeX;

r391,0(r2)° Q4<( )) +T2Q2( )ZQQ; (r2) +Zgo,g (r2)?=0  (6)

zecX,yeX;



1366 Ei. BANNAI and Et. BANNAI

717594,0(11)94,0(r2) Q4 <(w,y)> + 722 < > Zggj (r1)g2,5(r2)

r17Tr9

+ 2 90.4(m)g05(r2) =0 (7)

In above g ; are defined for antipodal half X* = X{ U XJ of X. Since X/ is any
antipodal half of X; for ¢ = 1,2, Proposition 1 implies

w .
Q4,n71 ( y) =0
T1T2

holds for any x € X; and y € Xo. O

PROPOSITION 2.  Notation and definition are given as above. |A(X1, X2)| =
4 holds and

A(Xl,Xg):{ \/3n+6+\/ n—|—1

(n+4)(n+

n 3n+6— 6(n+2)(n+1)}
(n+4)(n+ 2)

PrROOF. Theorem 1.4 and Theorem 1.5 in [7] imply that X has the structure
of a coherent configuration. Since X is antipodal and 0 ¢ A(X;, X32), either
|A(X1, X2)| = 2 or |A(X1, X2)| = 4 holds. First assume |A(X7, X2)| = 2. Then
A(X1,X2) = {v,—~} with some v > 0 satisfying Q4 ,—1(y) = 0. Let v7 = ~v
and v2 = —v. Since X, is a 5-distance set let A(X3) = {—1,+02,+064} with
real numbers By > B4 > 0. Let Gy = 1, 6y = —1, B3 = —(2, 5 = —f4. Then
Proposition 3.2 (1) in [7] the following hold for any nonnegative integers [, k, j
satisfying [ + &k +25 <9

5 5
Z Z w2Tl2+k+2J Ql,n—l (ﬂu)Qk,n—l (ﬂv )pgiwgv
u=2v=2
2 2

I+k+25
Y wrT Q1 (v) Qe ()P,

u=1v=1
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2
= 5l,le,n71 (1) Z Nuwurl2/1+2j
v=1

— wary T (1) £ 1) Qo1 (1)Qpn—1 (1), (8)

N, = |X,| for v = 1,2 and pgo 8, Pgi,% denotes the corresponding intersection
numbers. Since Q4 n—1(7) = Qan—1(—y) =0, pgzﬁv =0, for any 2 < u # v < 5,
and pJ° =0, for any 1 <u # v < 2, pﬁ?m = pggﬁz = |X1|/2, pggﬁs = pg;[b,
p§g755 = pg27645 equations for (l7 k?]) = (0’ 07 0)7 (]" O’ 0)7 (17 ]‘3 0)7 (27 ]" 1) imply

—war3 (n(Na — 2)37 — Na + 2n) — Nywiri( — 1+ nvi)

Bo _
Ps, .6, anng (ﬁ% - BZ)
and
Bo war3 (n(Ny — 2)03 — Ny + 2n) + Nywiri (— 1+ n97)
Ps4,64 271102"’% (ﬂ% - ﬂz) .

Then equation for (I, k,j) = (1,1,1) implies
(rf = 73) (= L+ n9?)rfwi Nin = 0.

Since 7, is a zero of Q4 —1(x), this is a contradiction.

Since n > 3, we have |Xp| > (1/2)|X| = (1/24)n(n + 1)(n? + 5n + 18) >
(1/3)(n 4+ 2)(n + 1)n. We divide the proof of Theorem 1 into two cases I and II.
In Case I, we assume X; is not a tight spherical 7-design, i.e. |X1| > (1/3)(n +
2)(n + 1)n, and in Case II, we assume X is a tight spherical 7-design, i.e. | X;| =
(1/3)(n+2)(n + 1)n.

Case I | X2| > |X1] > (1/3)(n+2)(n+ 1)n
In this case both X; and X5 are antipodal spherical 7-designs and 5-distance sets.

AXy) ={a,a2,a3,04,05}, ag=1, a1 = -1, az = —az, a5 = —oy,
A(X2) = {617ﬂ2aﬂ37ﬂ4aﬂ5}7 60 = 1, 61 = _17 ﬂS = _62, 65 = —ﬁ4,
A<X17X2> = {’Yla’72>’737’}’4}» (9)

where
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; _\/3n+6+\/6(n+2)(n+1)
1= 2) ’

(n+4)(n+ neo
_[3n+6—+/6(n+2)(n+1) B
V3= \/ (n+d)(n+2) y Y4 = T8

We may assume ag > ay > 0, f2 > B4 > 0. Then Proposition 9.1 and Theorem
9.2 in [5] imply the followings (see also [2], [4]).

e X/ (1 <i<2)has the structure of a strongly regular graphs.
o (1-a3)/(a —af) and (1 - 53)/(83 — B7) are integers.
® s, a3, oy, as are the zeros of the following polynomial a(z).
a(z) = (n+4)(n +2)(Ny —n? —n)2z* + (n + 2)(n® + 6n* + 5n — 6N, )2?
+ 3N, —n® —3n% —2n.

e (35, B3, Ba, B5 are the zeros of the following polynomial b(x).

b(x) = (n+4)(n+2)(N2 — n? —n)z* + (n + 2)(n® + 6n* + 5n — 6Nz)z”

+ 3N, —n? —3n% — 2n.

e n >4 and «;, and 3;, i = 2, 3,4, are rational numbers.

In above N; = |X;| for i =1,2.
Hence we obtain

g (n+2)(6N; —n(n+1)(n+5)) +/(n+1)(n+2)D; (10)
@27 2(n+ 4)(n + 2)(N; —n2 — n)

(n+2)(6N1 —n(n+1)(n+5)) —/(n+1)(n+2)D;
2(n+4)(n+2)(N; —n? —n)
(n+2)(6N2 —n(n+1)(n+5)) +/(n+1)(n+ 2)Ds
2(n+4)(n+2)(Ny —n? —n)
(n+2)(6N2 —n(n+1)(n+5)) —/(n+1)(n+2)D,

bi = 2(n+ 4)(n + 2)(Ny — n2 —n) (13)

2 _
Qy =

35 =

where D1 = n?(n+1)(n+2)(n +3)? —8n(n+1)(n + 5)Ny + 24NZ, Dy = n?(n +
D(n+2)(n+3)%2=8n(n+1)(n+5)N; +24N3, N; = |X;]| (1 <i<2).
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Next proposition is very important.

PROPOSITION 3. Notation and definition are given as above. Assumen > 3,
then \/6(n + 1)(n + 2) is an integer and v (1 <i < 4) are rational numbers.

PROOF. Theorem 1.4 and Theorem 1.5 in [7] imply that X has the structure
of a coherent configuration. Let z € X; and pS°.,. = {z € Xao |z - z/r1ir2 = 7 }|.
Using the equations given in Proposition 3.2 (1) in [7] the following hold for any
nonnegative integers I, k, j satisfying [ + k +25 <9

5 5

Z Z wlrll+k+2le7n—1 (au)Qk:,n—l (av)pgi,av

u=2v=2

4 4
I+k+2j
+ Z Z w2T2+ 2 Ql,n—l("Yu)Qk,n—l(’Yv)p?;Sﬁv

u=1v=1

2
= 6l,le,nfl(1> Z Nuwurzl+2j
v=1

— (1) 1) Q1 (1) Qpn—1 (1) (14)

Since p&o - =1, Pala, =0 for any 1 < i # j < 5, and P30y, =0 for any

1,001

1 <i# j <4, we have the followings.

(7)) _ (e7)) _ N2(1 B n'Y?%)
Dyiyy T Pyayye = 2n(’y% _ ,y%) ’
a e NQ(n’V% — 1)
Prgs = Pyl = 2(72 — 3) (15)
Then pS0. = (3n®+3n—(n—2)\/6(n+1)(n+2))Na/12n(n+1).  Hence

6(n + 1)(n + 2) is an integer. This completes the proof.

Next, we express (1 —a3)/(a3 —a3) and (1—32)/(8% — 33) in terms of n and
N7, No. We have

1—a3 1

—= =—+ F(n,N 16
al — a2 2 +F(n, N1), (16)
1—/6’5 1

———> = —— + F(n, N. 1
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where
F(n,z)
1 2)(n? 1 2 2
(20— n? — ), | D2+ D+ 20 +3)
—8n(n+1)(n+ 5)z + 242?) 8
B 2(n2(n+1)(n+2)(n+3)2 = 8n(n + 1)(n + 5)z + 242?) (18)
We have
2 1 1
(n+2)(n+ Ln < Ny < —n(n+1)(n® + 5n + 18)
3 24
1
<N < En(” +1)(n? +n+10).
Since
( n? + 3n>
1—
F(n,z) = 2@
’ (716 +9n° + 290 + 3903 + 1802  4n(n? + 6n + 5) n 12)
22 a

6 5 2 4 3 1 2 2
x\/6(n+2)(n+1)(n +9n° + 9271%;3971 +18n°  n(n +32n+5)+1>7

we can observe that for z > (1/24)n(n + 1)(n? + 5n + 18), F(n,z) =~

v/6(n 4+ 2)(n +1)/12. More precisely we have the followings.

OF (n,x) _ (n—1(n+4)(n+2)(n+1)(n+4n? + 3n — 4z)n (19)

Oz (n+2)(n + 1) (n%(n + 2)(n + 1)(n + 3)2
—8n(n+5)(n+ 1)z + 241:2))3

Hence F(n,z) decreases for x > (1/4)n(n + 1)(n + 3).

F(n 1—12n(n +1)(n* +n+ 10)>

_ V6(n?+3n+38) 6(n+1)(n+2)
T hviEonid 2 (20)
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F(n in(n +1)(n? + 5n + 18))

24
2
2
_ 6(n+2)(n*+7n+18) <1+ 6(n+1)(n+2) (21)
12v/n3 + 5n2 + 16n + 36 12
Hence
1 6(n+1)(n+2) 1 1 6(n+1)(n+2)
_5"‘ 12 <—§+F(H,Ng)<§+ 12

holds. Since 1/6(n + 1)(n + 2) is an integer, /6(n + 1)(n+2) = V62k2 = 6k
with an integer k£ > 0. Hence

k-1 1 k+1
<t E Ny < =

If k is an odd integer, then —(1/2) + F(n, N2) cannot be an integer. Hence k& must
be an even integer and we must have

1 _k \/6(n+2)(n+1)
—5 +F(n,N2) = - = 12 . (22)

\V]

It is known n = 23, 2399, 235223 satisfy this condition. Otherwise n > 300000.
The equation (22) implies

N = 3502 47—1671—&— N~ {9("+3)(”+ D(n* +6n +2)
+(n—1)(n+4)(n+2)(n+1)v/6(n+1)(n+2)
+e(n—1)(V6(n® +3n—1) + 3/ (n +2)(n+ 1))
AV F D D45+ ) - Ve T D} (23)
where e =1 or —1. If ¢ = —1, then we have

1
Ny < ool + 1)(n? 4 5n + 18).

This contradicts the assumption. Hence we must have € = 1. Then we must have
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n

N =
17T36(2n% + 6n+ 1)

X {?m(n +1)(2n® + 1302 + 40n + 53)

—(n—1)n+4)(n+2)(n+1)v/6(n+1)(n+2)
—(n—1)(V6(n® +3n—1)+3/(n+2)(n+1))

X VT DT DY +5)m+1) — V6T D +2)}

(24)

Since n = 23, 2399, and 235223 do not give integral value for Ny, we must have

n > 300000. Solve —(1/2) + F(n,z) = (1/6(n + 2)(n + 1)/12) + 2 for z, then we

must have x = K. given below.

n
60(6n2 + 18n — 213)

K. = X {45(n +1)(n® + 9n? — 28n — 234)

+(n—Dn+4)n+2)(n+1)/6(n+2)(n+1)
+e(n —1)(V6(n® + 3n — 73) + 15y/(n + 2)(n + 1))
x \/n2 +6n—67—56(n+2)(n+ 1)}

where ¢ = 1. Now we may assume n > 300000. Then we have

n
60(6n2 + 18n — 213)

Ky(=Ky1) >

x(n—1Mn+4)(n+2)(n+1)v/6(n+2)(n+1)

V6n°(n —1) S n(n+1)(n + 3)
60(6n? + 18n — 213) 4 '
Next compare K and Nj.
n(n —1)

Ni— K, =
P T 180(2n2 4 60+ 1) (202 + 60— 71)

X {15(n +2)(n + 1) (4n* + 2803 — T6n? — 442n — 351)

—6(n+4)(n+2)(n+1)(2n* +6n —59)y/6(n +2)(n + 1)
—(2n® 4+ 6n + 1) (V6(n? + 3n — 73) + 15¢/(n + 2)(n + 1))

(26)
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% /(0 + A)(n + 1)y/n2 + 60 — 67— 5/6(n £ 2)(n + 1)
—5(2n% 4+ 6n — 71)(V6(n* +3n — 1) + 3v/(n + 2)(n + 1))
< /(n+4)(n+ 1)\/n2 F6n+5—6(n+2)nt 1)} (27)

The order of the formula in {--- } in above equals 2(30—111/6)nS. Hence N; > K|
holds for any n sufficiently large, in particular for n > 300000. This means

1 6(n+2)(n+1)
——+ F(n,N 2
B + (’I’L7 1) < 19 +
holds for any n sufficiently large. Since N > Nj;, we must have

V6(n+2)(n+1)/12 = —(1/2) + F(n, N2) < —(1/2) + F(n, N1). Hence we must
have —(1/2) + F(n,N;) = /6(n+2)(n+1)/12 + 1. Next solve for F(n,z) =
/6(n+2)(n+1)/12 + 1 then we have x = G given below.

n
Go=—
° 6n2+18n—69

+(n=1Dn+4)(n+2)(n+1)y/6(n+2)(n+1)
+e(n—1)(V6(n® +3n —25) + 9/ (n + 2)(n + 1))
x \/(n-|-4)(n+1)(n2+6n—19—3\/6(n+2)(n+1))} (28)

where ¢ = £1. Compare Ny and G4 (= G41).

X {27(n +1)(n® +9n? + 4n — 74)

B n(n—1)
~108(2n2 + 6n + 1)(2n2 + 6n — 23)

G, — Ny

x { —9(n +2)(n + 1)(4n* + 28n° + 20n% — 1060 — 111)
+4(n+4)(n+2)(n+1)(2n* + 6n — 17)1/6(n + 2)(n + 1)
+ (202 4+ 6n + 1) (V6(n® + 3n — 25) + 9/(n + 2)(n + 1))

% /(0 +4)(n + 1) (n2 + 61— 19 — 3,/6(n + 2)(n + 1))
+3(2n% + 6n — 23)(V6(n® +3n — 1) + 3/ (n + 2)(n + 1))

% 1/ (n+4)(n+1)(n? + 6n + 5 — 6nr2)(n+1)} (20
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The order of the formula in {- - - } given above equals 4(4v/6—9)n%. Hence G > N;
holds for any n sufficiently large, in particular n > 300000. Since F'(n,z) decreases
for x > (n 4+ 3)(n + 1)n/4, we have

3 1
N2>G+>N1>K+>w.

Hence we must have

6(n+2)(n+1)
12

1 1
=-3 + F(n,N3) < —3 + F(n,Gy)

Vb6(n+2)(n+1) 1
= 12 +1<_§+F(H,N1)
6(n+2)(n+1)
12

+2. (30)

Hence, —(1/2) + F(n,N1) cannot be an integer for any sufficiently large n, in
particular for n > 300000.

Case II: | X5| > | X1| = (1/3)(n + 2)(n+ 1)n

In this case we must have |X3| = (1/12)n(n + 1)(n? + n + 10). Since X; is a
tight spherical 7-design, X; is a 4-distance set. On the other hand X5 is a 5-
distance set. It is known that A(X;) = {0,—1,£/3/(n+4)}, \/(n+4)/3 is an

integer. Let a1 = —1, ap =0, ag = /3/(n+4), as = —/3/(n+4) and o = 1.
By Proposition 2, we have v; = \/Sn + 6+ \/G(n +2)(n+ 1)/\/(n +4)(n+2),
Y3 = \/Sn +6—+/6(n+2)(n+1)/y/(n+4)(n+2). Proposition 9.1 and Theo-
rem 9.2 in [5] imply that (12) and (13) also hold in this case. Since Ny = |Xo| =
(1/12)n(n+1)(n*+n+10), we obtain 3, = \/(n +4)(n+2)(3n + v6n% — 6n + 24)
/(n+4)(n+2)and By = \/(n +4)(n+2)Bn—V6n2 —6n+24)/(n+4)(n + 2).
Hence we have (1 — 32)/(683 — 83) = —(1/2) + (n® + 3n + 8)/2V/6n2 — 6n + 24.

Therefore

1 n®+3n+38

Jr
2 2v6n? —6n+24

is an integer. Then 24((n?+3n+8)/2v/6n% — 6n + 24)? must be an integer. Since
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2 2 2 2 4 1
24< n®+3n+8 ) :(n +3n+8) 24 Tn 428 4 8(n—1)
2v/6n2 — 6n + 24 n2—n+4 n2—n+4

there is no integer n satisfying the condition. This implies that for n > 3, there is

no tight 9-design on two concentric spheres satisfying Ny = (n + 2)(n + 1)n/3.
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