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Abstract. We establish an inequality between the dimensions of the
endomorphism and extension spaces of the indecomposable modules in gen-
eralized standard almost cyclic coherent components of the Auslander-Reiten
quivers of finite dimensional algebras over an arbitrary base field. As an appli-
cation we provide a homological characterization, involving the Euler quadratic
form, of the tame algebras with separating families of almost cyclic coherent
Auslander-Reiten components.

1. Introduction and the main results.

Throughout the paper, K will denote a fixed field. By an algebra we mean
a finite dimensional K-algebra with an identity, which we shall assume (without
loss of generality) to be basic. For an algebra A, we denote by modA the cate-
gory of finite dimensional right A-modules, by rad(modA) the Jacobson radical
of modA, and by rad∞(mod A) the intersection of all powers radi(mod A), i ≥ 1,
of rad(modA). We shall denote by ΓA the Auslander-Reiten quiver of A, and by
τA and τ−A the Auslander-Reiten translations DTr and TrD, respectively. We will
not distinguish between an indecomposable module in modA and the vertex of
ΓA corresponding to it. Following [30], a component C of ΓA is called generalized
standard if rad∞(X, Y ) = 0 for all modules X and Y in C . It has been proved in
[30] that every generalized standard component C of ΓA is quasi-periodic, that is,
all but finitely many τA-orbits in C are periodic.

The Auslander-Reiten quiver is an important combinatorial and homological
invariant of the module category modA of an algebra A. Frequently, we may
recover A and the category modA from the behaviour of distinguished components
of ΓA in modA. For example, the important classes of tilted algebras, double tilted
algebras, generalized double tilted algebras are the algebras whose Auslander-
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Reiten quiver admits a faithful generalized standard component with a section,
double section, multisection, respectively (see [15], [22], [23], [29]).

In the representation theory of algebras a prominent role is played by the
algebras whose Auslander-Reiten quiver admits a separating family of almost cyclic
coherent components. Recall that a family C = (Ci)i∈I of components of ΓA is
called separating in modA if the components in ΓA split into three disjoint classes
PA, CA = C and QA such that:

(S1) CA is a sincere family of pairwise orthogonal generalized standard compo-
nents;

(S2) HomA(QA,PA) = 0, HomA(QA,CA) = 0, HomA(CA,PA) = 0;
(S3) any morphism from PA to QA factors through add(CA).

We then say that CA separates PA from QA and write ΓA=PA ∨ CA ∨QA. We
also note that then PA and QA are uniquely determined by CA (see [4, (2.1)]).
Further, a component Γ of ΓA is called almost cyclic if all but finitely many modules
of Γ lie on oriented cycles contained entirely in Γ. Further, a component Γ of ΓA

is called coherent if the following two conditions are satisfied:

(C1) For each projective module P in Γ there is an infinite sectional path
P = X1 → X2 → · · · → Xi → Xi+1 → Xi+2 → · · · ;

(C2) For each injective module I in Γ there is an infinite sectional path
· · · → Yj+2 → Yj+1 → Yj → · · · → Y2 → Y1 = I.

The authors proved in [18, Theorem A] that the Auslander-Reiten quiver ΓA

of an algebra A admits a separating family of almost cyclic coherent components if
and only if A is a generalized multicoil enlargement of a finite family of concealed
canonical algebras. Moreover, for such an algebra A, we have gl dimA ≤ 3, and
pdAX ≤ 2 or idAX ≤ 2 for any indecomposable module X in modA (see [18,
Corollary B and Theorem E]). We note that an algebra C is concealed canonical
[11] if and only if ΓC admits a separating family of stable tubes (see [12]). More
generally, it has been proved in [13] that the quasitilted algebras of canonical type
are exactly the algebras for which the Auslander-Reiten quiver admits a separating
family of semiregular tubes (ray and coray tubes). Further, by [8] the class of
algebras A with gl dimA ≤ 2 and pdAX ≤ 1 or idAX ≤ 1 for any indecomposable
module X in modA is the class of quasitilted algebras, that is, the endomorphism
algebras EndH (T ) of tilting objects T in hereditary abelian categories H . It
has been proved in [7] that the class of quasitilted algebras consists of the tilted
algebras and the quasi-tilted algebras of canonical type.

The general structure of the module category modA as well as the Auslander-
Reiten quiver ΓA of an algebra A with a separating family of almost cyclic coherent
components have been described in [18, Theorem C and Corollary D]. In particu-



Indecomposable modules in Auslander-Reiten components 1123

lar, the genus g(A) of such an algebra A was defined in [18], and it was shown that
A is not wild if and only if g(A) ≤ 1. For K algebraically closed, this is equivalent
to the tameness of A, or to the weak nonnegativity of the Tits quadratic form qA of
A (see [18, Theorem F]). Moreover, geometric and homological characterizations
of tame algebras with separating families of almost cyclic coherent components
over an algebraically closed field K have been established in [19, Theorem B],
where algebraic geometry arguments were essentially applied.

One of the aims of the paper is to establish a homological characterization of
the tame algebras with separating families of almost cyclic coherent components
over an arbitrary field.

Recall that the Euler form of an algebra A of finite global dimension is the
quadratic form χA : K0(A) → Z on the Grothendieck group K0(A) of A such that

χA([M ]) =
∞∑

i=0

(−1)i dimK Exti
A(M, M),

where [M ] is the class of a module M from modA in K0(A) (see [24], [25]).

The following theorem is the first main result of the paper.

Theorem 1.1. Let A be a finite dimensional K-algebra over a field K with
a separating family of almost cyclic coherent components in ΓA. The following
statements are equivalent :

( i ) g(A) ≤ 1.
( ii ) χA([M ]) ≥ 0 for any indecomposable module M in mod A.
(iii) dimK Ext1A(M, M) ≤ dimK EndA(M) and Extr

A(M, M) = 0 for any r ≥ 2
and any indecomposable module M in mod A.

In the course of our proof of the above theorem, we establish also the following
fact.

Corollary 1.2. Let A be a finite dimensional K-algebra over a field K with
a separating family of almost cyclic coherent components in ΓA and g(A) ≤ 1,
and M be an indecomposable module in mod A. The following statements are
equivalent :

( i ) χA([M ]) = 0.
( ii ) There is a tame concealed canonical factor algebra C of A such that M lies

in a stable tube T of ΓC and the quasi-length of M in T is divisible by the
rank of T .

We note that for a separating family C of almost cyclic coherent components
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in the Auslander-Reiten quiver ΓA of an algebra A we may have indecomposable
modules M in C with arbitrarily large χA([M ]) (see [21, (5.3)]). Moreover, the
nonnegativity of the values of the Euler form on the classes of indecomposable
modules is not the property of all tame algebras of finite global dimension. We
refer to [21, (5.6)] for an example of a tame algebra A of global dimension 3 over
an algebraically closed field which admits an infinite family Xn, n ≥ 1, of finite
dimensional indecomposable modules with χA([Xn]) = 1− 3n.

The proof of Theorem 1.1 is based on the following general result, which is
the second main result of the paper.

Theorem 1.3. Let A be a finite dimensional K-algebra over a field K, C
be a generalized standard almost cyclic coherent component of ΓA and M be an
indecomposable module in C . Then the following statements hold :

( i ) dimK Ext1A(M, M) ≤ dimK EndA(M).
( ii ) dimK Ext1A(M, M) = dimK EndA(M) if and only if there is a factor algebra

C and a generalized standard stable tube T of ΓC such that M lies in T
and the quasi-length of M in T is divisible by the rank of T .

We mention that by [34, Theorem 1] the additive category add(C ) of an ar-
bitrary generalized standard component C of an Auslander-Reiten quiver ΓA is
closed under extensions. We also note that the class of algebras whose Auslander-
Reiten quiver admits generalized standard almost cyclic coherent components is
wide and contains algebras of arbitrary nonzero, finite or infinite, global dimension.
In particular, all multicoil enlargements (see Section 2) of concealed canonical alge-
bras [26], generalized canonical algebras [33], and concealed generalized canonical
algebras [20] have this property.

For basic background on the representation theory of algebras we refer to [1],
[5], [25], [27], [28].

The main results of the paper were presented by the first-named author during
the International Conference on Representations of Algebras, ICRA XIV held at
Tokyo in August 2010.

2. Generalized standard stable tubes.

The aim of this section is to recall some facts on generalized standard stable
tubes, applied in the proof of Theorem 1.3.

Recall that if A∞ is the quiver 0 → 1 → 2 → · · · (with trivial valuations
(1,1)), then ZA∞ is the translation quiver of the form:
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(i−1,0) (i,0) (i+1,0) (i+2,0)
↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘

. .
.

(i−1,1) (i,1) (i+1,1)
. . .

↗ ↘ ↗ ↘ ↗ ↘
. .

.
(i−1,2) (i,2)

. . .
↗ ↘ ↗ ↘

. .
. . . . . .

. . . .

with τ(i, j) = (i − 1, j) for i ∈ Z, j ∈ N . For r ≥ 1, denote by ZA∞/(τ r) the
translation quiver Γ obtained from ZA∞ by identifying each vertex (i, j) of ZA∞
with the vertex τ r(i, j) and each arrow x → y in ZA∞ with the arrow τ rx → τ ry.
The translation quiver of the form ZA∞/(τ r) is called stable tube of rank r. A
stable tube of rank 1 is said to be homogeneous. The τ -orbit of a stable tube
Γ formed by all vertices having exactly one immediate predecessor (equivalently,
successor) is said to be the mouth of Γ.

The following characterization of generalized standard stable tubes of an
Auslander-Reiten quiver has been established in [30, Corollary 5.3] (see also [31,
Lemma 3.1]).

Proposition 2.1. Let A be an algebra and T a stable tube of ΓA. The
following statements are equivalent :

( i ) T is generalized standard.
( ii ) The mouth of T consists of pairwise orthogonal bricks.
(iii) rad∞(X, X) = 0 for any module X in T .

An indecomposable module X is called a brick if its endomorphism algebra
EndA(X) is a division algebra. We also note that the division algebras of all
modules X lying on the mouth of a generalized standard stable tube of ΓA are
isomorphic.

Let A be an algebra and T be a stable tube of ΓA. For every indecomposable
module M in T there exists a unique sectional path X1 → X2 → · · · → Xm = M

(possibly m = 1) with X1 lying on the mouth of T , and m is called the quasi-
length of M in T which we shall denote by ql(M). For an indecomposable module
M in mod A, we abbreviate FM = EndA(M)/ radEndA(M). Since EndA(M) is a
local algebra, then FM is a division algebra (over the base field K of A).

The following facts have been established in [31, Proposition 3.5].

Proposition 2.2. Let A be an algebra over a field K, T a generalized
standard stable tube of rank r in ΓA, and M be an indecomposable module in T .
The following statements hold :

( i ) dimK EndA(M) = (p+1) dimK FM , where p ≥ 0 is such that pr < ql(M) ≤
(p + 1)r.



1126 P. Malicki and A. Skowroński

( ii ) dimK Ext1A(M, M) = p dimK FM , where p ≥ 0 is such that pr ≤ ql(M) <

(p + 1)r.

As an immediate consequence we obtain the following facts (see [31, Corollary
3.6]).

Corollary 2.3. Let A be an algebra over a field K, T a generalized stan-
dard stable tube of rank r in ΓA, and M be an indecomposable module in T . Then
the following statements hold :

( i ) dimK Ext1A(M, M) ≤ dimK EndA(M).
( ii ) dimK Ext1A(M, M) = dimK EndA(M) if and only if r divides ql(M).

We end this section with the following result.

Proposition 2.4. Let A be an algebra, T be a faithful generalized standard
stable tube in ΓA, and M be an indecomposable module in T . Then Extn

A(M, M) =
0 for any n ≥ 2.

Proof. It follows from [30, Lemma 5.9] that pdAM ≤ 1 and idAM ≤ 1,
and consequently Extn

A(M, M) = 0 for any n ≥ 2. ¤

Recall that a component C of an Auslander-Reiten quiver ΓA is called faithful
if its annihilator annA(C ) (the intersection of the annihilators annA(X) of all
modules X in C ) is zero.

In the proofs of our results we need also facts on the compositions of irreducible
morphisms. The following theorem has been proved in [9, Theorem 13.3].

Theorem 2.5. Let A be an algebra. If X0
f1−→ X1 → · · · → Xn−1

fn−→ Xn

is a sectional path of irreducible morphisms between indecomposable modules in
mod A, then the composed morphism f1f2 . . . fn lies in radn(X0, Xn) but not in
radn+1(X0, Xn). In particular, f1f2 . . . fn is nonzero.

Let A be an algebra and f : X → Y be an irreducible morphism in modA.
Following [14], we say that the right degree of f is the smallest positive integer
m such that there exists a morphism g ∈ radm(Y, Z) \ radm+1(Y, Z), for some
Z ∈ mod A, such that fg ∈ radm+2(X, Z). If no such an integer m exists, then
right degree of f is infinite. We define the left degree of f in a dual manner. The
following result from [14, Proposition 1.14] will be applied.

Proposition 2.6. Let A be an algebra and let

X0 → X1 → · · · → Xn → · · ·
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be an infinite sectional path in ΓA. If all Xi are right stable, then all irreducible
morphisms τ j

AXi → τ j
AXi+1 and τ j

AXi+1 → τ j−1
A Xi with j ≤ 0 and i ≥ 0 have

infinite right degree.

3. Generalized multicoil enlargements of algebras.

The aim of this section is to recall generalized multicoil enlargements of alge-
bras from [18, Section 3], playing the fundamental role in our proof of Theorem 1.3.
It has been proved in [17, Theorem A] that a component Γ of an Auslander-Reiten
quiver is almost cyclic and coherent if and only if Γ is a generalized multicoil, that
is, can be obtained, as a translation quiver, from a finite family of stable tubes
by a sequence of admissible operations. We start with the concepts of one-point
extensions and one-point coextensions of algebras. Let A be an algebra, let F

be a division algebra over K, and let M = F MA be an F -A-bimodule such that
MA ∈ mod A and K acts centrally on F MA. Then the one-point extension of A

by M is the matrix K-algebra of the form

A[M ] =
[

A 0
F MA F

]
=

{[
a 0
m f

]
; f ∈ F, a ∈ A, m ∈ M

}

with the usual addition and multiplication. Then the valued quiver QA[M ] of
A[M ] contains the valued quiver QA of A as a convex subquiver, and there is
an additional (extension) vertex which is a source. We may identify the category
mod A[M ] with the category whose objects are triples (V, X,ϕ), where X ∈ mod A,
V ∈ mod F , and ϕ : VF → HomA(M, X)F is an F -linear map. A morphism
h : (V, X,ϕ) → (W,Y, ψ) is given by a pair (f, g), where f : V → W is F -
linear, g : X → Y is a morphism in modA and ψf = HomA(M, g)ϕ. Then the
new indecomposable projective A[M ]-module P is given by the triple (F, M, •),
where • : FF → HomA(M, M)F assigns to the identity element of F the identity
morphism of M . An important class of such one-point extensions occurs in the
following situation. Let Λ be a basic K-algebra, P an indecomposable projec-
tive Λ-module, ΛΛ = P ⊕ Q, and assume that HomΛ(P, Q ⊕ radP ) = 0. Since
P is indecomposable projective, S = P/ radP is a simple Λ-module and hence
EndΛ(S) is a division K-algebra. Moreover, the canonical homomorphism of al-
gebras EndΛ(P ) → EndΛ(S) is an isomorphism. Then we obtain isomorphisms of
algebras

Λ ∼= EndΛ(ΛΛ) ∼=
[

A 0
F MA F

]
= A[M ],

where F = EndΛ(P ), A = EndΛ(Q), and M = F MA = HomΛ(Q,P ) ∼= radP .



1128 P. Malicki and A. Skowroński

Clearly K acts centrally on F MA. We note that if the valued quiver of an algebra
Λ has no oriented cycles then Λ can be obtained from a semisimple algebra by a
sequence of one-point extensions of the above form. Dually, one defines also the
one-point coextension of A by F MA as the matrix algebra

[M ]A =
[

F 0
D(F MA) A

]
.

For each bimodule F MA considered in the paper we assume that A is an algebra,
MA ∈ mod A, F is a division algebra, and K acts centrally on F MA.

For a division algebra F and r ≥ 1, we denote by Tr(F ) the r × r-lower
triangular matrix algebra




F 0 0 · · · 0 0
F F 0 · · · 0 0
F F F · · · 0 0
...

...
...

. . .
...

...
F F F · · · F 0
F F F · · · F F




.

Given a generalized standard component Γ of ΓA, and an indecomposable
module X in Γ, the support S (X) of the functor HomA(X,−) |Γ is the K-linear
category defined as follows. Let HX denote the full subcategory of modA con-
sisting of the indecomposable modules M in Γ such that HomA(X, M) 6= 0, and
IX denote the ideal of HX consisting of the morphisms f : M → N (with M, N

in HX) such that HomA(X, f) = 0. We define S (X) to be the quotient cate-
gory HX/IX . Following the above convention, we usually identify the K-linear
category S (X) with its quiver.

From now on, let A be an algebra and Γ be a family of generalized standard
infinite components of ΓA. For an indecomposable brick X in Γ, called the pivot,
one defines five admissible operations (ad 1)–(ad 5) and their dual (ad 1∗)–(ad 5∗)
modifying the translation quiver Γ = (Γ, τ) to a new translation quiver (Γ′, τ ′) and
the algebra A to a new algebra A′, depending on the shape of the support S (X)
(see [17, Section 2] for the figures illustrating the modified translation quivers Γ′).
Let F = FX = EndA(X) be the division algebra associated to X.

(ad 1) Assume S (X) consists of an infinite sectional path starting at X:

X = X0 → X1 → X2 → · · ·
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In this case, we let t ≥ 1 be a positive integer, D = Tt(F ) and Y1, Y2, . . ., Yt denote
the indecomposable injective D-modules with Y = Y1 the unique indecomposable
projective-injective D-module. We define the modified algebra A′ of A to be the
one-point extension

A′ = (A×D)[X ⊕ Y ]

and the modified translation quiver Γ′ of Γ to be obtained by inserting in Γ the
rectangle consisting of the modules Zij =

(
F, Xi ⊕ Yj ,

[
1
1

])
for i ≥ 0, 1 ≤ j ≤ t,

and X ′
i = (F, Xi, 1) for i ≥ 0 as follows:

The translation τ ′ of Γ′ is defined as follows: τ ′Zij = Zi−1,j−1 if i ≥ 1, j ≥ 2,
τ ′Zi1 = Xi−1 if i ≥ 1, τ ′Z0j = Yj−1 if j ≥ 2, Z01 is projective, τ ′X ′

0 = Yt,
τ ′X ′

i = Zi−1,t if i ≥ 1, τ ′(τ−1Xi) = X ′
i provided Xi is not an injective A-module,

otherwise X ′
i is injective in Γ′. For the remaining vertices of Γ′, τ ′ coincides with

the translation of Γ, or ΓD, respectively.
If t = 0, we define the modified algebra A′ to be the one-point extension

A′ = A[X] and the modified translation quiver Γ′ to be the translation quiver
obtained from Γ by inserting only the sectional path consisting of the vertices X ′

i,
i ≥ 0.

The nonnegative integer t is such that the number of infinite sectional paths
parallel to X0 → X1 → X2 → · · · in the inserted rectangle equals t + 1. We call t
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the parameter of the operation.
In case Γ is a stable tube, it is clear that any module on the mouth of Γ

satisfies the condition for being a pivot for the above operation. Actually, the
above operation is, in this case, the tube insertion as considered in [6].

(ad 2) Suppose that S (X) admits two sectional paths starting at X, one
infinite and the other finite with at least one arrow:

Yt ← · · · ← Y2 ← Y1 ← X = X0 → X1 → X2 → · · ·

where t ≥ 1. In particular, X is necessarily injective. We define the modified
algebra A′ of A to be the one-point extension A′ = A[X] and the modified trans-
lation quiver Γ′ of Γ to be obtained by inserting in Γ the rectangle consisting of
the modules Zij =

(
F, Xi ⊕ Yj ,

[
1
1

])
for i ≥ 1, 1 ≤ j ≤ t, and X ′

i = (F, Xi, 1) for
i ≥ 1 as follows:

The translation τ ′ of Γ′ is defined as follows: X ′
0 is projective-injective, τ ′Zij =

Zi−1,j−1 if i ≥ 2, j ≥ 2, τ ′Zi1 = Xi−1 if i ≥ 1, τ ′Z1j = Yj−1 if j ≥ 2, τ ′X ′
i = Zi−1,t

if i ≥ 2, τ ′X ′
1 = Yt, τ ′(τ−1Xi) = X ′

i provided Xi is not an injective A-module,
otherwise X ′

i is injective in Γ′. For the remaining vertices of Γ′, τ ′ coincides with
the translation τ of Γ.

The integer t ≥ 1 is such that the number of infinite sectional paths parallel
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to X0 → X1 → X2 → · · · in the inserted rectangle equals t + 1. We call t the
parameter of the operation.

(ad 3) Assume S (X) is the mesh-category of two parallel sectional paths:

Y1
// Y2

// · · · // Yt

X = X0
//

OO

X1
//

OO

· · · // Xt−1
//

OO

Xt
// · · ·

where t ≥ 2. In particular, Xt−1 is necessarily injective. Moreover, we consider
the translation subquiver Γ of Γ obtained by deleting the arrows Yi → τ−1

A Yi−1.
We assume that the union Γ̂ of connected components of Γ containing the vertices
τ−1
A Yi−1, 2 ≤ i ≤ t, is a finite translation quiver. Then Γ is a disjoint union

of Γ̂ and a cofinite full translation subquiver Γ∗, containing the pivot X. We
define the modified algebra A′ of A to be the one-point extension A′ = A[X] and
the modified translation quiver Γ′ of Γ to be obtained from Γ∗ by inserting the
rectangle consisting of the modules Zij =

(
F, Xi ⊕ Yj ,

[
1
1

])
for i ≥ 1, 1 ≤ j ≤ t,

and X ′
i = (F, Xi, 1) for i ≥ 1 as follows:

if t is odd, while
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if t is even. The translation τ ′ of Γ′ is defined as follows: X ′
0 is projective, τ ′Zij =

Zi−1,j−1 if i ≥ 2, 2 ≤ j ≤ t, τ ′Zi1 = Xi−1 if i ≥ 1, τ ′X ′
i = Yi if 1 ≤ i ≤ t,

τ ′X ′
i = Zi−1,t if i ≥ t + 1, τ ′Yj = X ′

j−2 if 2 ≤ j ≤ t, τ ′(τ−1Xi) = X ′
i, if

i ≥ t provided Xi is not injective in Γ, otherwise X ′
i is injective in Γ′. For the

remaining vertices of Γ′, τ ′ coincides with the translation τ of Γ∗. We note that
X ′

t−1 is injective.
The integer t ≥ 2 is such that the number of infinite sectional paths parallel

to X0 → X1 → X2 → · · · in the inserted rectangle equals t + 1. We call t the
parameter of the operation.

(ad 4) Suppose that S (X) consists of an infinite sectional path, starting at
X

X = X0 → X1 → X2 → · · ·

and

Y = Y1 → Y2 → · · · → Yt

with t ≥ 1, is a finite sectional path in Γ such that FY = F = FX . Let r be a
positive integer. Moreover, we consider the translation subquiver Γ of Γ obtained
by deleting the arrows Yi → τ−1

A Yi−1. We assume that the union Γ̂ of connected
components of Γ containing the vertices τ−1

A Yi−1, 2 ≤ i ≤ t, is a finite translation
quiver. Then Γ is a disjoint union of Γ̂ and a cofinite full translation subquiver
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Γ∗, containing the pivot X. For r = 0 we define the modified algebra A′ of A to
be the one-point extension A′ = A[X ⊕ Y ] and the modified translation quiver Γ′

of Γ to be obtained from Γ∗ by inserting the rectangle consisting of the modules
Zij =

(
F, Xi ⊕ Yj ,

[
1
1

])
for i ≥ 0, 1 ≤ j ≤ t, and X ′

i = (F, Xi, 1) for i ≥ 1 as
follows:

The translation τ ′ of Γ′ is defined as follows: τ ′Zij = Zi−1,j−1 if i ≥ 1, j ≥ 2,
τ ′Zi1 = Xi−1 if i ≥ 1, τ ′Z0j = Yj−1 if j ≥ 2, Z01 is projective, τ ′X ′

0 = Yt, τ ′X ′
i =

Zi−1,t if i ≥ 1, τ ′(τ−1Xi) = X ′
i provided Xi is not injective in Γ, otherwise X ′

i is
injective in Γ′. For the remaining vertices of Γ′, τ ′ coincides with the translation
of Γ∗.

For r ≥ 1, let G = Tr(F ), and let U1,t+1, U2,t+1, . . . , Ur,t+1 denote the inde-
composable projective G-modules, Ur,t+1, Ur,t+2, . . . , Ur,t+r denote the indecom-
posable injective G-modules, with Ur,t+1 the unique indecomposable projective-
injective G-module. We define the modified algebra A′ of A to be the triangular
matrix algebra of the form:
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A′ =




A 0 0 · · · 0 0
Y F 0 · · · 0 0
Y F F · · · 0 0
...

...
...

. . .
...

...
Y F F · · · F 0

X ⊕ Y F F · · · F F




with r + 2 columns and rows and the modified translation quiver Γ′ of Γ to be
obtained from Γ∗ by inserting the rectangles consisting of the modules Ukl =
Yl ⊕ Uk,t+1 for 1 ≤ k ≤ r, 1 ≤ l ≤ t, and Zij =

(
F, Xi ⊕ Urj ,

[
1
1

])
for i ≥ 0,

1 ≤ j ≤ t + r, and X ′
i = (F, Xi, 1) for i ≥ 0 as follows:

The translation τ ′ of Γ′ is defined as follows: τ ′Zij = Zi−1,j−1 if i ≥ 1, j ≥ 2,
τ ′Zi1 = Xi−1 if i ≥ 1, τ ′Z0j = Ur,j−1 if 2 ≤ j ≤ t + r, Z01, Uk1, 1 ≤ k ≤ r

are projective, τ ′Ukl = Uk−1,l−1 if 2 ≤ k ≤ r, 2 ≤ l ≤ t + r, τ ′U1l = Yl−1 if
2 ≤ l ≤ t + 1, τ ′X ′

0 = Ur,t+r, τ ′X ′
i = Zi−1,t+r if i ≥ 1, τ ′(τ−1Xi) = X ′

i provided
Xi is not injective in Γ, otherwise X ′

i is injective in Γ′. For the remaining vertices
of Γ′, τ ′ coincides with the translation of Γ∗, or ΓG, respectively.
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We note that the quiver QA′ of A′ is obtained from the quiver of the double
one-point extension A[X][Y ] by adding a path of length r + 1 with source at the
extension vertex of A[X] and sink at the extension vertex of A[Y ].

The integers t ≥ 1 and r ≥ 0 are such that the number of infinite sectional
paths parallel to X0 → X1 → X2 → · · · in the inserted rectangles equals t+ r +1.
We call t + r the parameter of the operation.

To the definition of the next admissible operation we need also the finite
versions of the admissible operations (ad 1), (ad 2), (ad 3), (ad 4), which we
denote by (fad 1), (fad 2), (fad 3) and (fad 4), respectively. In order to obtain these
operations we replace all infinite sectional paths of the form X0 → X1 → X2 → · · ·
(in the definitions of (ad 1), (ad 2), (ad 3), (ad 4)) by the finite sectional paths
of the form X0 → X1 → X2 → · · · → Xs. For the operation (fad 1) s ≥ 0, for
(fad 2) and (fad 4) s ≥ 1, and for (fad 3) s ≥ t− 1. In all above operations Xs is
injective (see [17] or [18] for the details).

(ad 5) We define the modified algebra A′ of A (respectively, modified translation
quiver Γ′ of Γ) in the following three steps: first we are doing on A (respectively,
Γ) one of the operations (fad 1), (fad 2) or (fad 3), next a finite number (possibly
empty) of the operation (fad 4) and finally the operation (ad 4), and in such a
way that the sectional paths starting from all the new projective vertices have a
common cofinite (infinite) sectional subpath.

Finally, together with each of the admissible operations (ad 1)–(ad 5), we
consider its dual, denoted by (ad 1∗)–(ad 5∗). These ten operations are called the
admissible operations. Following [17] a connected translation quiver Γ is said to
be a generalized multicoil if Γ can be obtained from a finite family T1,T2, . . . ,Ts

of stable tubes by an iterated application of admissible operations (ad 1), (ad 1∗),
(ad 2), (ad 2∗), (ad 3), (ad 3∗), (ad 4), (ad 4∗), (ad 5) or (ad 5∗). If s = 1, such a
translation quiver Γ is said to be a generalized coil. The admissible operations of
types (ad 1), (ad 2), (ad 3), (ad 1∗), (ad 2∗) and (ad 3∗) have been introduced in
[2], [3], [4], and the admissible operations (ad 4) and (ad 4∗) for r = 0 in [16].

Finally, let C be a (not necessarily connected) algebra and TC a family of
pairwise orthogonal generalized standard stable tubes of ΓC . We say that an
algebra A is a generalized multicoil enlargement of C using modules from TC if A

is obtained from C by an iteration of admissible operations of types (ad 1)–(ad 5)
and (ad 1∗)–(ad 5∗) performed either on stable tubes of TC , or on generalized
multicoils obtained from stable tubes of TC by means of operations done so far.

The following theorem follows from Proposition 2.1 and the proof of Theorem
A in [18].

Theorem 3.1. Let A be an algebra, C be a component of ΓA, and Λ =
A/ annA C . Then the following statements are equivalent :
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( i ) C is generalized standard and a generalized multicoil.
( ii ) Λ is a generalized multicoil enlargement of an algebra C using modules from

a generalized standard family TC of stable tubes of ΓC and C is the gen-
eralized standard multicoil obtained from TC by the admissible operations
leading from C to Λ.

We need also results from [18, Theorems A, C, E] on the algebras with sepa-
rating families of almost cyclic coherent components.

Theorem 3.2. Let A be an algebra. The following statements are equivalent :

( i ) ΓA admits a separating family of almost cyclic coherent components.
( ii ) A is a generalized multicoil enlargement of a concealed canonical algebra C

using modules of a separating family TC of stable tubes of ΓC .

Theorem 3.3. Let A be an algebra with a separating family CA of almost
cyclic coherent components in ΓA, and ΓA = PA ∨ CA ∨QA the induced decom-
position of ΓA. Then the following statements hold :

( i ) There is a unique factor algebra Al of A which is a quasitilted algebra of
canonical type having a separating family TAl

of coray tubes such that ΓAl
=

PAl
∨TAl

∨QAl
, PAl

= PA, and A is obtained from Al by a sequence of
admissible operations of types (ad 1)–(ad 5) using modules from TAl

.
( ii ) There is a unique factor algebra Ar of A which is a quasitilted algebra of

canonical type having a separating family TAr of ray tubes such that ΓAr =
PAr ∨TAr ∨QAr , QAr = QA, and A is obtained from Ar by a sequence of
admissible operations of types (ad 1∗)–(ad 5∗) using modules from TAr

.
(iii) pdAX ≤ 1 for any module X in PA.
(iv) idAX ≤ 1 for any module X in QA.
( v ) pdAX ≤ 2 and idAX ≤ 2 for any module X in CA.
(vi) gl dimA ≤ 3.

The algebra Al (respectively, Ar) in Theorem 3.3 is called the left (respectively,
right) quasitilted algebra of A.

4. Proof of Theorem 1.3.

In the proof we need the following notion. A proper subtube of an Auslander-
Reiten quiver ΓA is a full translation subquiver T (X, a, b), a, b ≥ 1, obtained from
the translation quiver T (X) of the form
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X00 = X

&&MMM

X10

88qqq

&&MMM X01

##HHH;;vvv
X11

&&MMM

88qqq
88qqq

##HHH

Xi0

;;www

##GGG !!CC
X0j

$$JJJ

Xi+1,0

::ttt

$$JJJ
Xi1

=={{{

!!CCC
X1j

;;ww

##GG X0,j+1

##GGG;;www
Xi+1,1

;;www

##GGG

=={{
X1,j+1

::ttt

%%KKK99ttt

&&MMM

;;vvv

##GGG
Xij

88qqq

&&LLL

Xi+1,j

88rrr

&&LLL
Xi,j+1

##GGG

;;www
;;www

Xi+1,j+1

88rrr

&&MMM88qqq

with the set of vertices Xrs, the set of arrows Xr+1,s → Xrs, Xrs → Xr,s+1,
r, s ≥ 0, and the translation τ defined on Xrs, r ≥ 0, s ≥ 1, by τ(Xrs) = Xr+1,s−1,
by identifying the vertices Xi+a,j with Xi,j+b for all pairs i, j ≥ 0. Observe that
then

{Xij ; i ≥ 0, 0 ≤ j < b} = {Xij ; 0 ≤ i < a, j ≥ 0}

is a complete set of pairwise different vertices of T (X, a, b).
(i) Let C be a generalized standard almost cyclic coherent component of

ΓA. Consider the quotient algebra Λ = A/ annA(C ). Then C is a generalized
standard component of ΓΛ. Further, it follows from [34, Theorem 1] that the ad-
ditive category add(C ) of C is closed under extensions in modA, and hence also
in mod Λ. Then for every indecomposable module M in C we have an isomor-
phism of K-vector spaces Ext1A(M, M) ∼= Ext1Λ(M, M), and clearly the equality
EndA(M) = EndΛ(M), because M is a Λ-module. Therefore, we may assume that
annA(C ) = 0, that is, C is a faithful component of ΓA. Then it follows from The-
orem 3.1 that there is a quotient algebra C of A (not necessarily connected) and
a family T1,T2, . . . ,Ts of pairwise orthogonal generalized standard stable tubes
in ΓC such that A is a generalized multicoil enlargement of C using modules from
T1,T2, . . . ,Ts, and C is the generalized multicoil obtained from the stable tubes
T1,T2, . . . ,Ts by an iterated application of the translation quiver admissible op-
erations corresponding to the algebra admissible operations of types (ad 1)–(ad 5)
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and (ad 1∗)–(ad 5∗) leading from C to A.
For each arrow X

α−→ Y in C we choose an irreducible morphism fα : X → Y .
We may assume that fξfη belongs to rad3(mod A) for any mesh

τAZ

ξ ##HHH
HH

Z

W
η

==zzzz

with Z lying on the mouth of C and fαfβ + fγfδ ∈ rad3(mod A) for any mesh in
C of the form

U
β

!!CC
CC

τAZ

γ ##GGG
GG

α
;;wwwww

Z

V
δ

=={{{{

and fαfβ + fγfδ + fεfσ ∈ rad3(mod A) for any mesh in C of the form

U
β

##HH
HH

H

τAZ

ε ##HHH
HH

α
;;vvvvvγ // W δ // Z

V
σ

;;vvvvv
.

Observe that for any irreducible morphism f : X → Y with X and Y from C ,
there are automorphisms b : X → X and c : Y → Y such that

bfα + rad2(X, Y ) = f + rad2(X, Y ) = fαc + rad2(X, Y ),

where X
α−→ Y is the corresponding arrow in C . This follows from the fact that

dimFX

(
rad(X, Y )
rad2(X, Y )

)
= 1 and dim

(
rad(X, Y )
rad2(X, Y )

)

FY

= 1,

where FX = EndA(X)/ radEndA(X), FY = EndA(Y )/ radEndA(Y ). We shall
prove the required inequality dimK Ext1A(M, M) ≤ dimK EndA(M), for all inde-
composable modules M in C , by induction on the number of admissible operations
leading from C to A, equivalently from T1,T2, . . . ,Ts to C .

In the case when C is a generalized standard stable tube, so s = 1 and C = T1,
the required inequality follows from Corollary 2.3. Therefore, we may assume that
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C is not a stable tube, and hence A 6= C.
Let n be the number of admissible operations of types (ad 1)–(ad 5) and

(ad 1∗)–(ad 5∗) leading from C to A.
Assume n = 1. Then we can only apply an admissible operation of type (ad 1)

or (ad 1∗), and s = 1. By duality we may assume that the admissible operation
is of type (ad 1). Assume that C is obtained from T1 by applying an operation
of type (ad 1). Then A = C[X] or A = (C ×D)[X ⊕ Y ], where X is the pivot of
the operation (ad 1) in the stable tube T1, D = Tt(F ) is the lower t× t triangular
matrix algebra over a division K-algebra F for some t ≥ 1, and Y is the unique
indecomposable projective-injective D-module (see definition of (ad 1)).

Let M be an indecomposable A-module in C . If M is a directing module in
mod A, then by [25, (2.4)(8)] we get Ext1A(M, M) = 0, EndA(M) = FM , and the
required inequality holds. Assume that M is nondirecting. If M is a C-module,
then M lies in the stable tube T1 = ZA∞/(τ r) of ΓC . Then, applying Corollary
2.3, we have dimK Ext1A(M, M) ≤ dimK EndA(M), and we receive the equality if
and only if r divides ql(M). If M is not a C-module, then M lies in the infinite
rectangle S (Z01) of C consisting of the A-modules Zpq, for p ≥ 0, 1 ≤ q ≤ t + 1,
where Z01 is the projective A-module and Zp,t+1 = X ′

p (see definition of (ad 1)).
Let M = Zpq and k be a nonnegative integer with rk ≤ p < r(k + 1). Let W

be the target of the unique maximal sectional path from infinity to the mouth of
C passing through M . Moreover, let W

σ−→ R be the arrow with source W and
R

%−→ τ−A W the arrow with target τ−A W . Put v = f% and u = fσ. Then uv belongs
to rad3(mod A). Observe that any path in C from M to M has length (2r+ t+1)i
for some i ≥ 0. This implies that rad(2r+t+1)i+1(M, M) = rad(2r+t+1)(i+1)(M, M)
for all i ≥ 0. We claim that radm(M, M) = 0 for all m ≥ (2r + t + 1)(k + 1). It is
enough to show that radm(M, M) ⊂ radm+1(M, M) for any m ≥ (2r+t+1)(k+1).
Indeed, then rad(2r+t+1)(k+1)(M, M) = rad∞(M, M) = 0 because C is generalized
standard. Let m ≥ (2r + t + 1)(k + 1) and Φ ∈ radm(M, M). Then we have the
equality Φ + radm+1(M, M) = (

∑
ψiaiuvbi) + radm+1(M, M), where aiuvbi are

the composites of m irreducible morphisms including u and v, and ψi are invertible
elements of EndA(M). Since uv lies in rad3(mod A), we get Φ+radm+1(M, M) =
0+radm+1(M, M) and hence Φ belongs to radm+1(M, M). This proves our claim.
In particular, if p ≤ r − 1, then rad(M, M) = rad2r+t+1(M, M) = 0, and hence
EndA(M) ∼= EndA(M)/ rad(M, M). Assume that p > r − 1. Let

Vs
αs−1−−−→ Vs−1 → · · · → V1

α0−→ V0 = M

be the unique maximal sectional path in C passing through M , formed by arrows
pointing to infinity, and
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M = W0
β0−→ W1 → · · · → Wl−1

βl−1−−−→ Wl = W

be the sectional path in C formed by arrows pointing to the mouth. Note that
we have s = p + t + 1 − q and l = p + (k + 1)(t + 1) − q. Clearly, W = Wl

and Vs lie on the mouth of C . Put gi = fαi
, for 0 ≤ i ≤ s − 1, and hi = fβi

,
for 0 ≤ i ≤ l − 1. Since p > r − 1, the above two sectional paths intersect. Let
f : M → M be the composed morphism h0h1 . . . hr+tgr−1 . . . g1g0. We shall prove
that f j ∈ rad(2r+t+1)j(M, M) \ rad(2r+t+1)j+1(M, M) for all 1 ≤ j ≤ k. First
observe that

f j + rad(2r+t+1)j+1(M, M) = f (j) + rad(2r+t+1)j+1(M, M),

where f (j) = h0h1 . . . h(r+t+1)j−1grj−1 . . . g1g0 for 1 ≤ j ≤ k. Since the morphism
grj−1 . . . g1g0 is not in radrj+1(mod A) by Theorem 2.5 and the hi have infinite
right degree by Proposition 2.6, it follows that f (j) is not in rad(2r+t+1)j+1(M, M).
Hence, for any 1 ≤ j ≤ k, f j does not belong to rad(2r+t+1)j+1(M, M). Therefore,
the K-vector space EndA(M) admits the following chain of subspaces

0 = rad(2r+t+1)(k+1)(M, M) ⊂ rad(2r+t+1)k(M, M) ⊂ · · ·
⊂ rad2r+t+1(M, M) ⊂ EndA(M)

such that rad(2r+t+1)i(M, M)/ rad(2r+t+1)(i+1)(M, M) = rad(2r+t+1)i(M, M)/
rad(2r+t+1)i+1(M, M) is a right FM -module generated by f i +
rad(2r+t+1)i+1(M, M), for each 0 ≤ i ≤ k. Hence, we get dimK EndA(M) =
(k + 1) dimK FM .

We shall now calculate dimK Ext1A(M, M). Note that from the Auslander-
Reiten formula we have an isomorphism Ext1A(M, M) ∼= DHomA(τ−A M, M) of
K-vector spaces. Moreover, Ext1A(Z01, Z01) = 0, because Z01 is the projective
A-module, and hence, we may assume that M 6= Z01. First observe that any
path in C from τ−A M to M has length (2r + t + 1)i − 2 for some i ≥ 1. This
implies that rad(τ−A M, M) = rad2r+t−1(τ−A M, M) and rad(2r+t+1)i−1(τ−A M, M) =
rad(2r+t+1)(i+1)−2(τ−A M, M) for all i ≥ 1. Similarly, as above, we prove that
radm(τ−A M, M) = 0 for all m ≥ 2r + t. In particular, if p ≤ r − 1, then
HomA(τ−A M, M) = rad2r+t−1(τ−A M, M) = 0. Suppose that p > r − 1. Let

τ−A M = U0
γ0−→ U1 → · · · → Ur+t−1

γr+t−1−−−−→ Ur+t = Vr−1

be the sectional path in C of length r + t starting at τ−A M and formed by arrows
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pointing to the mouth. Put h = fγ0 . . . fγr+t−1fαr−2 . . . fα0 : τ−A M → M . Then,
as above, we show that

hf j−1 ∈ rad(2r+t+1)j−2(τ−A M, M) \ rad(2r+t+1)j−1(τ−A M, M)

for all 1 ≤ j ≤ k such that rk ≤ p < r(k + 1). Therefore, the K-vector space
HomA(τ−A M, M) admits the following chain of subspaces

rad(2r+t+1)(k+1)−2(τ−A M, M) ⊂ rad(2r+t+1)k−2(τ−A M, M) ⊂ · · ·
⊂ rad2r+t−1(τ−A M, M) = HomA(τ−A M, M)

such that

rad(2r+t+1)i−2(τ−A M, M)

rad(2r+t+1)(i+1)−2(τ−A M, M)
=

rad(2r+t+1)i−2(τ−A M, M)

rad(2r+t+1)i−1(τ−A M, M)

is a right FM -module generated by hf i−1 + rad(2r+t+1)i−1(τ−A M, M), for each
1 ≤ i ≤ k. Hence, we get

dimK Ext1A(M, M) = dimK DHomA(τ−A M, M) = k dimK FM ,

so the required inequality holds.
Assume n ≥ 2. Then there is a generalized multicoil enlargement B of C

using modules from the stable tubes T1,T2, . . . ,Ts, a finite family Ω1,Ω2, . . . ,Ωl

of generalized standard generalized multicoils in ΓB such that B is obtained from
C by iterated application of n−1 admissible operations of types (ad 1)–(ad 5) and
(ad 1∗)–(ad 5∗), Ω1,Ω2, . . . ,Ωl are obtained from the stable tubes T1,T2, . . . ,Ts

by the corresponding translation quiver admissible operations, A is obtained from
B by one of the admissible operations of types (ad 1)–(ad 5) and (ad 1∗)–(ad 5∗),
and C is obtained from Ω1,Ω2, . . . ,Ωl by the corresponding translation quiver
admissible operation. If the admissible operation leading from B to A is of type
(ad 1), (ad 1∗), (ad 2), (ad 2∗), (ad 3) or (ad 3∗), then l = 1, and hence C is
obtained from Ω1 by the corresponding translation quiver admissible operation.

If the n-th admissible operation is of type (ad 1), then A = B[X] or A =
(B ×D)[X ⊕ Y ], where X is the pivot of the operation (ad 1) in the generalized
multicoil Ω1, D = Tt(F ) is the lower t× t triangular matrix algebra over a division
K-algebra F for some t ≥ 1, and Y is the unique indecomposable projective-
injective D-module (see definition of (ad 1)). Let M be an indecomposable
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A-module in C . Again, if M is a directing module in modA, then, by [25,
(2.4)(8)], we get Ext1A(M, M) = 0, EndA(M) = FM and the required inequal-
ity holds. Assume that M is nondirecting. If M is a B-module, then M lies
in the generalized multicoil Ω1 of ΓB . Then, by our inductive assumption, we
have dimK Ext1A(M, M) ≤ dimK EndA(M). If M is not a B-module, then M lies
in the infinite rectangle S (Z01) of C consisting of the A-modules Zpq, for p ≥ 0,
1 ≤ q ≤ t+1, where Z01 is the projective A-module and Zp,t+1 = X ′

p (see definition
of (ad 1)). Note that from the Auslander-Reiten formula we have an isomorphism
Ext1A(M, M) ∼= DHomA(τ−A M, M) of K-vector spaces. Let M = Zpq. From the
definition of (ad 1) we know that there are at most two immediately successors of
M in C . We have three cases to consider. If M is an injective A-module, then
q = t + 1, Ext1A(M, M) = 0 and the required inequality holds. Assume that M is
a noninjective A-module. If M is the starting vertex of a mesh with exactly one
middle term, then q = t + 1 and we get

M

σ ÃÃ@
@@

@@
τ−A M

N

%

<<yyyy

where N = Zp+1,t+1. Let

τ−A M = τ−A Zp,t+1 = Np+1 → Np+2 → · · · → Np+l → · · ·

where l ≥ 1, be the sectional path (finite or infinite) in C formed by arrows
pointing to infinity. Put v = f% and u = fσ. By our assumption, we have uv

belongs to rad3(M, τ−A M). Let s be the length of shortest nontrivial path in C
from M to Nj , for j ≥ p + 1. Then HomA(M, Nj) = rads(M, Nj), j ≥ p + 1.
We shall show that radm(M, Nj) = radm+1(M, Nj) for any m ≥ s. This will
imply that HomA(M, Nj) = rad∞(M, Nj) = 0 for all j ≥ p + 1, because C is
generalized standard. Let m ≥ s and Φ ∈ radm(M, Nj), with j ≥ p+1. Then Φ+
radm+1(M, Nj) = (

∑
ψiaiuvbi)+radm+1(M, Nj), where aiuvbi are the composites

of m irreducible morphisms including u and v, and ψi are invertible elements
of HomA(M, Nj). Since uv lies in rad3(mod A), we get Φ + radm+1(M, Nj) =
0 + radm+1(M, Nj), and hence Φ belongs to radm+1(M, Nj), j ≥ p + 1. This
proves our claim. Hence, using additionally the definition of (ad 1), we infer that
HomA(M, τAM) = 0. Note that from the Auslander-Reiten formula we have an
isomorphism Ext1A(M, M) ∼= DHomA(M, τAM) of K-vector spaces. Therefore,

dimK Ext1A(M, M) = dimK DHomA(M, τAM) ≤ dimK HomA(M, τAM) = 0,
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and the required inequality holds. If M is the starting vertex of a mesh with
exactly two middle terms, then we have the following mesh

L
ψ

""EEE
EE

M

ξ ÃÃ@
@@

@@

ϕ >>~~~~~
τ−A M

N

η

<<yyyy

where L = Zp,q+1, N = Zp+1,q, τ−A M = Zp+1,q+1, p ≥ 0, 1 ≤ q ≤ t or L =
τ−A Zp−1,t+1, N = Zp+1,t+1, τ−A M = τ−A Zp,t+1, p ≥ 0. Let

Σ : Vs
αs−1−−−→ Vs−1 → · · · → V1

α0−−→ V0 = M

be the unique maximal sectional path in C passing through M , formed by arrows
pointing to infinity, and

Θ : τ−A M = U0
γ0−−→ U1 → · · · → Ul−1

γl−1−−−→ Ul

be the maximal sectional path in C starting at τ−A M and formed by arrows point-
ing to the mouth. Note that, in the case of a Möbius strip configuration created
by an operation of type (ad 4) or (ad 4∗), it could happen that we have an in-
finite sectional path in C starting at τ−A M and formed by finite number of ar-
rows pointing to the mouth followed by arrows pointing to the infinity, but then
HomA(τ−A M, M) = 0. Clearly, Vs lies on the mouth of C . From the definition
of a generalized multicoil we know that Ul is an injective A-module which does
not lie on the mouth of C or Ul lies on the mouth of C . In the first case, any
sectional path in C from Ul to Vj , where 0 ≤ j ≤ s, factors through a pro-
jective A-module. Therefore, Ext1A(M, M) = DHomA(τ−A M, M) = 0. So, the
required inequality holds. In the second case, we consider two subcases. In the
first subcase, the intersection of Θ and Σ is empty. The A-module Ul is the start-
ing vertex of a mesh with exactly one middle term or is the middle term of a
mesh with exactly three middle terms, then, similarly as above, we prove that
HomA(τ−A M, M) = 0. So, the required inequality holds. In the second subcase,
the intersection of Θ and Σ contains an A-module Ui = Vj , for some 0 ≤ i ≤ l

and 0 ≤ j ≤ s. Moreover, we know that the above two sectional paths inter-
sect only finitely many times. Let Ul1 , Ul2 , . . . , Ulk be the set of all A-modules
in C such that Uli = Vji , with 1 ≤ i ≤ k, 0 ≤ ji ≤ s. Without loss of gen-
erality we can assume that l1 < l2 < · · · < lk. Then j1 < j2 < · · · < jk.
Since the morphism fαji−1 . . . fα1fα0 is in radji(mod A) \ radji+1(mod A) by The-
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orem 2.5 and the fγj
, 0 ≤ j < li, have infinite right degree by Proposition

2.6, it follows that fi = fγ0 . . . fγli−1fαji−1 . . . fα0 : τ−A M → M belongs to
radli+ji(τ−A M, M) \ radli+ji+1(τ−A M, M) for all 1 ≤ i ≤ k. Note that we have
li + ji = l1 + j1 + (i − 1)(a + b), where 1 ≤ i ≤ k, a is the number of pairwise
disjoint rays and b is the number of pairwise disjoint corays in a maximal proper
subtube T (Zp1, a, b) of C , for some Zp1 ∈ S (Z01). If there is a nonzero path from
τ−A M to M passing through a projective A-module which is the starting vertex
of a mesh with exactly two middle terms, then DHomA(τ−A M, M) = 0 and the
required inequality holds. Therefore, although there may exist nonzero path from
τ−A M to M passing through a projective-injective A-module which is in a mesh
with exactly three middle terms, any generator of HomA(τ−A M, M) is of the form
f

i
, for some 1 ≤ i ≤ k, where f

i
is the class of fi in HomA(τ−A M, M). Note that

any nonzero path in C from τ−A M to M we can lengthen to a nonzero path in C
from M to M . Indeed, we have M → N → τ−A M → U1 → · · · → Ul1 . Moreover,
the path

N
η−−→ τ−A M = U0

γ0−−→ U1 → · · · → Ul1−1

γl1−1−−−→ Ul1

is sectional and fξ has infinite right degree by Proposition 2.6. Then, as above,
we show that the morphism fξfηfγ0 . . . fγli−1fαji−1 . . . fα0 : M → M belongs to
radli+ji+2(M, M) \ radli+ji+3(M, M), for all 1 ≤ i ≤ k. Hence

dimK EndA(M) ≥ dimK HomA(τ−A M, M) ≥ dimK DHomA(τ−A M, M)

= dimK Ext1A(M, M).

If the n-th operation is of type (ad 1∗), then the proof is dual.
If the n-th admissible operation is of type (ad 2), then A = B[X], where

X is the pivot of the operation (ad 2) in the generalized multicoil Ω1. Let M

be an indecomposable A-module in C . If M is a B-module, then M lies in the
generalized multicoil Ω1 of ΓB . Then, by our inductive assumption, we have
dimK Ext1A(M, M) ≤ dimK EndA(M). If M is not a B-module, then M is nondi-
recting and lies in the infinite rectangle S (X ′

0) of C consisting of the A-modules
Zpq, for p ≥ 1, 1 ≤ q ≤ t + 1, and X ′

0, where X ′
0 is the projective-injective

A-module and Zp,t+1 = X ′
p (see definition of (ad 2)). Again, from the Auslander-

Reiten formula we have an isomorphism Ext1A(M, M) ∼= DHomA(τ−A M, M) of
K-vector spaces. Let M = Zpq. From the definition of (ad 2) we know that there
are at most two immediate successors of M in C . We have three cases to consider.
If M is an injective A-module, then q = t + 1, Ext1A(M, M) = 0 and the required
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inequality holds. Assume that M is a noninjective A-module. If M is the starting
vertex of a mesh with exactly one middle term, then q = t + 1 and we get

M

σ ÃÃ@
@@

@@
τ−A M

N

%

<<yyyy

where N = Zp+1,t+1. Let

τ−A M = τ−A Zp,t+1 = Np+1 → Np+2 → · · · → Np+l → · · ·

where l ≥ 1, be the sectional path (finite or infinite) in C formed by arrows
pointing to infinity. Put v = f% and u = fσ. By our assumption, we have uv

belongs to rad3(M, τ−A M). Similarly, as above, we prove that HomA(M, Nj) = 0
for all j ≥ p + 1. Hence, using additionally the definition of (ad 2), we infer that
HomA(M, τAM) = 0. Note that from the Auslander-Reiten formula we have an
isomorphism Ext1A(M, M) ∼= DHomA(M, τAM) of K-vector spaces. Therefore,

dimK Ext1A(M, M) = dimK DHomA(M, τAM) ≤ dimK HomA(M, τAM) = 0,

and the required inequality holds. If M is the starting vertex of a mesh with
exactly two middle terms, then we have the following mesh

L

""EEE
EE

M

ÃÃ@
@@

@@

>>~~~~~
τ−A M

N

<<yyyy

where L = Zp,q+1, N = Zp+1,q, τ−A M = Zp+1,q+1, p ≥ 1, 1 ≤ q ≤ t or L =
τ−A Zp−1,t+1, N = Zp+1,t+1, τ−A M = τ−A Zp,t+1, p ≥ 1. Since we can lengthen
any nonzero path in C from τ−A M to M to a nonzero path in C from M to
M (by a path M → N → τ−A M of length two), the required inequality follows
from the previous considerations. Moreover, Ext1A(X ′

0, X
′
0) = 0, because X ′

0 is the
projective-injective A-module. So, the required inequality holds for M = X ′

0. If
the n-th operation is of type (ad 2∗), then the proof is dual.

If the n-th admissible operation is of type (ad 3), then A = B[X], where
X is the pivot of the operation (ad 3) in the generalized multicoil Ω1. Let M

be an indecomposable A-module in C . If M is a B-module, then M lies in
the generalized multicoil Ω1 of ΓB . Then by our inductive assumption we have
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dimK Ext1A(M, M) ≤ dimK EndA(M). If M is not a B-module, then M is nondi-
recting and lies in the infinite rectangle S (X ′

0) of C consisting of the A-modules
Zpq, for p ≥ 1, 1 ≤ q ≤ t + 1, and X ′

0, where X ′
0 is the projective A-module and

Zp,t+1 = X ′
p (see definition of (ad 3)). First observe that, for M = Zpq, p > q,

1 ≤ q ≤ t and for M = Ztt, we have the following mesh

L

""EEE
EE

M

ÃÃ@
@@

@@

>>~~~~~
τ−A M

N

<<yyyy

where L = Zp,q+1, N = Zp+1,q, τ−A M = Zp+1,q+1. Moreover, for M = Zqq,
1 ≤ q ≤ t− 1, we have the following mesh

L

""EEE
EE

M

ÃÃ@
@@

@@

>>~~~~~ // R // τ−A M

N

<<yyyy

where L = Zq,t+1, R = Yq+1, N = Zq+1,q, τ−A M = Zq+1,q+1 or L = Yq+1,
R = Zq,t+1, N = Zq+1,q, τ−A M = Zq+1,q+1. Since we can lengthen any nonzero
path in C from τ−A M to M to a nonzero path in C from M to M (by a path
M → N → τ−A M of length two), the required inequality follows from the previous
considerations. Since X ′

0 is a projective A-module and Zt−1,t+1 is an injective
A-module, we get Ext1A(X ′

0, X
′
0) = 0 and Ext1A(Zt−1,t+1, Zt−1,t+1) = 0. So, the

required inequality holds also for M = X ′
0 and M = Zt−1,t+1.

We shall now prove the required inequality for all indecomposable A-modules
M = Zp,t+1, with p ≥ 1, p 6= t − 1. From the definition of (ad 3) we know that
there are at most two immediate successors of Zp,t+1, p ≥ t, in C and there is at
least one mesh in C of the form

Zp,t+1

η &&MMM
MMM

τ−A Zp,t+1

Zp+1,t+1
ξ

77oooooo

starting at Zp,t+1, with p ≥ t. Put w = fη and h = fξ. By our assumption, we have
that wh belongs to rad3(Zp,t+1, τ

−
A Zp,t+1). Let us first examine M for 1 ≤ p ≤ t−2.

Let s be the length of the shortest nontrivial path in C from M to τ−A Zj,t+1, for
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j ≥ t. Then HomA(M, τ−A Zj,t+1) = rads(M, τ−A Zj,t+1), for j ≥ t. We shall show
that radm(M, τ−A Zj,t+1) = radm+1(M, τ−A Zj,t+1) for any m ≥ s. This will imply
that HomA(M, τ−A Zj,t+1) = rad∞(M, τ−A Zj,t+1) = 0, for all j ≥ t, because C is
generalized standard. Let m ≥ s and Φ ∈ radm(M, τ−A Zj,t+1), with j ≥ t. Then
Φ + radm+1(M, τ−A Zj,t+1) = (

∑
ψiaiwhbi) + radm+1(M, τ−A Zj,t+1), where aiwhbi

are the composites of m irreducible morphisms including w and h, and ψi are
invertible elements of HomA(M, τ−A Zj,t+1). Since wh lies in rad3(mod A), we get
Φ + radm+1(M, τ−A Zj,t+1) = 0 + radm+1(M, τ−A Zj,t+1), and hence Φ belongs to
radm+1(M, τ−A Zj,t+1), j ≥ t. This proves our claim. Hence, using additionally the
definition of (ad 3), we infer that HomA(M, τAM) = 0. Therefore,

dimK Ext1A(M, M) = dimK DHomA(M, τAM) ≤ dimK HomA(M, τAM) = 0,

and the required inequality holds. Now, we examine M for some p ≥ t. Since
M has at most two immediate successors in C , we have three cases to consider.
Again, if M is an injective A-module, then Ext1A(M, M) = 0 and the required
inequality holds. Assume that M is a noninjective A-module. If M is the starting
vertex of a mesh with exactly one middle term, then we get

M

σ ÃÃ@
@@

@@
τ−A M

N

%

<<yyyy

where N = Zp+1,t+1. Let

τ−A M = τ−A Zp,t+1 = Np+1 → Np+2 → · · · → Np+l → · · ·

where l ≥ 1 be the sectional path (finite or infinite) in C formed by arrows point-
ing to infinity. Put v = f% and u = fσ. By our assumption, we have uv be-
longs to rad3(M, τ−A M). Similarly, as above, we prove that HomA(M, Nj) = 0 for
all j ≥ p + 1. Hence, using additionally the definition of (ad 3), we infer that
HomA(M, τAM) = 0. Therefore,

dimK Ext1A(M, M) = dimK DHomA(M, τAM) ≤ dimK HomA(M, τAM) = 0,

and the required inequality holds. If M is the starting vertex of a mesh with
exactly two middle terms, then the required inequality follows from the previous
considerations. If the n-th operation is of type (ad 3∗), then the proof is dual.

If the n-th admissible operation is of type (ad 4), then, for r = 0, A =
B[X ⊕ Y ], and for r ≥ 1,
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A =




B 0 0 · · · 0 0
Y F 0 · · · 0 0
Y F F · · · 0 0
...

...
...

. . .
...

...
Y F F · · · F 0

X ⊕ Y F F · · · F F




with r + 2 columns and rows, where X is the pivot of the operation (ad 4) in the
generalized multicoil Ω1, and Y is the starting vertex of a finite sectional path
in the generalized multicoil Ω1 or Ω2 (see definition of (ad 4)). Note that in this
case l = 1 or l = 2, so C is obtained from Ω1 or from the disjoint union of two
generalized multicoils Ω1,Ω2 by the corresponding translation quiver admissible
operation. Let M be an indecomposable A-module in C . If M is a B-module,
then M lies in one of the generalized multicoils Ω1 or Ω2 of ΓB . Then, by our
inductive assumption, we have dimK Ext1A(M, M) ≤ dimK EndA(M). If M is
not a B-module, then, for r = 0, M lies in the infinite rectangle S (Z01) of C
consisting of the A-modules Zpq, for p ≥ 0, 1 ≤ q ≤ t + 1, where Z01 is the
projective A-module and Zp,t+1 = X ′

p. Further, for r ≥ 1, M lies in the infinite
rectangle {Ukl, Zpq}k,l,p,q (trapezoid) of C consisting of the A-modules Ukl, for
1 ≤ k ≤ r, 1 ≤ l ≤ t + k, Zpq, for p ≥ 0, 1 ≤ q ≤ t + r + 1, where Z01, Uk1 are the
projective A-modules, Zp,t+r+1 = X ′

p and t + r is the parameter of the operation
(ad 4) (see definition of (ad 4)). Again, observe that, for M = Ukl, 1 ≤ k ≤ r,
1 ≤ l ≤ t + k − 1, and for M = Zpq, p ≥ 0, 1 ≤ q ≤ t + r, we have the following
mesh

L

""EEE
EE

M

ÃÃ@
@@

@@

>>~~~~~
τ−A M

N

<<yyyy

where L = Uk,l+1, N = Uk+1,l, τ−A M = Uk+1,l+1 for 1 ≤ k ≤ r − 1, L = Ur,l+1,
N = Z0,l, τ−A M = Z0,l+1 for k = r or L = Zp,q+1, N = Zp+1,q, τ−A M = Zp+1,q+1.
Since we can lengthen any nonzero path in C from τ−A M to M to a nonzero path
in C from M to M (by a path M → N → τ−A M of length two), the required
inequality follows from the previous considerations. Additionally, we know that
Z01, Uk1, 1 ≤ k ≤ r, are projective A-modules, and so Ext1A(Z01, Z01) = 0 and
Ext1A(Uk1, Uk1) = 0. From the definition of (ad 4) we know that for any M =
Uk,t+k, 1 ≤ k ≤ r, we have the following mesh in C
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Uk,t+k

η &&NNN
NNN

Uk+1,t+k+1

Uk+1,t+k

ξ

66nnnnnn

starting at Uk,t+k, where Ur+1,t+r = Z0,t+r, Ur+1,t+r+1 = Z0,t+r+1. Put w = fη

and h = fξ. By our assumption, wh belongs to rad3(Uk,t+k, Uk,t+k+1). Moreover,
for any M in {Ukl, Zpq}k,l,p,q, there exists an infinite sectional path Σ in C of the
form

τ−A M = τ−A Uk,t+k = Uk+1,t+k+1 → · · · → Z0,t+k+1 → Z1,t+k+1 → · · ·

Let X be an arbitrary A-module on Σ. Then, from the above remarks, we
have HomA(M, X) = 0. Hence, using the definition of (ad 4), we infer that
HomA(M, τAM) = 0. Therefore,

dimK Ext1A(M, M) = dimK DHomA(M, τAM) ≤ dimK HomA(M, τAM) = 0,

and the required inequality holds. Let M = Zp,t+r+1, for some p ≥ 0. Since M has
at most two immediately successors in C , we have three cases to consider. Again,
if M is an injective A-module, then Ext1A(M, M) = 0, and the required inequality
holds. Assume that M is a noninjective A-module. If M is the starting vertex of
a mesh with exactly one middle term, then we get

M

σ ÃÃ@
@@

@@
τ−A M

N

%

<<yyyy

where N = Zp+1,t+r+1. Let

τ−A M = τ−A Zp,t+r+1 = Np+1 → Np+2 → · · · → Np+l → · · ·

where l ≥ 1, be the sectional path (finite or infinite) in C formed by arrows
pointing to infinity. Put v = f% and u = fσ. By our assumption, we know that uv

belongs to rad3(M, τ−A M). Similarly, as above we prove that HomA(M, Nj) = 0
for all j ≥ p + 1. Hence, using additionally the definition of (ad 4), we infer that
HomA(M, τAM) = 0. Therefore,

dimK Ext1A(M, M) = dimK DHomA(M, τAM) ≤ dimK HomA(M, τAM) = 0,

and the required inequality holds. If M is the starting vertex of a mesh with



1150 P. Malicki and A. Skowroński

exactly two middle terms, then the required inequality follows from the previous
considerations. If the n-th operation is of type (ad 4∗), then the proof is dual.

If the n-th admissible operation is of type (ad 5) then C is obtained from the
disjoint union of the finite family of generalized multicoils Ω1,Ω2, . . . ,Ωl, 1 ≤ l ≤ s,
which are generalized standard. Since in the definition of admissible operation
(ad 5) we use the finite versions (fad 1), (fad 2), (fad 3), (fad 4) of the admissible
operations (ad 1), (ad 2), (ad 3), (ad 4) and the admissible operation (ad 4), the
required inequality follows from the above considerations. If the n-th operation is
of type (ad 5∗), then the proof is dual.

(ii) Since idM does not belong to rad(M, M), it follows from the proof of (i)
that dimK Ext1A(M, M) = dimK EndA(M) if and only if M belongs to one of the
stable tubes Ti, 1 ≤ i ≤ s, and ql(M) is divisible by the rank of Ti (see Corollary
2.3).

5. Proof of Theorem 1.1.

Let A be a finite dimensional K-algebra over a field K with a separating
family CA of almost cyclic coherent components in ΓA, and ΓA = PA∨CA∨QA be
the induced decomposition of ΓA. Then it follows from Theorem 3.2 that there
exists s concealed canonical factor algebra C (not necessarily connected) of A such
that A is a generalized multicoil enlargement of C using modules of a separating
family TC of stable tubes of ΓC . Moreover, applying Theorem 3.3, we infer that
there exists a unique factor algebra Al of A which is a quasitilted algebra of
canonical type with a separating family TAl

of coray tubes such that ΓAl
= PAl

∨
TAl

∨ QAl
and PAl

= PA, and a unique factor algebra Ar of A which is a
quasitilted algebra of canonical type with a separating family TAr of ray tubes
such that ΓAr

= PAr
∨ TAr

∨QAr
and QAr

= QA. In fact, it follows from the
proof of [18, Theorem C] that Al is a branch coextension of C and Ar is a branch
extension of C, the both using modules from TC .

Let M be an indecomposable module in modA. We claim that Extr
A(M, M) =

0 for any r ≥ 2. Since, by Theorem 3.3, pdAM ≤ 2 and idAM ≤ 2, we obtain
Extr

A(M, M) = 0 for any r ≥ 3. Further, if M belongs to PA, then pdAM ≤ 1, and
consequently Ext2A(M, M) = 0. Similarly, if M belongs to QA, then idAM ≤ 1,
and so Ext2A(M, M) = 0. Assume M belongs to CA. Consider the projective cover
π : P (M) → M of M in modA and Ω(M) = Ker π. Then we have an exact
sequence

0 → Ω(M) → P (M) → M → 0

in mod A, and consequently Ext2A(M, M) ∼= Ext1A(Ω(M),M). Moreover, we
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showed in the proof of [18, Theorem E] that Ω(M) = M1 ⊕ M2, where M1 is
a projective A-module and M2 is a module from add(PA). Since CA separates
PA from QA, we have HomA(CA,PA) = 0. Applying the Auslander-Reiten for-
mula, we obtain K-linear isomorphisms

Ext1A(Ω(M),M) ∼= DHomA(M, τAΩ(M)) ∼= DHomA(M, τAM2) = 0,

because M belongs to CA and τAM2 belongs to add(PA). Therefore, we obtain
Ext2A(M, M) = 0.

This shows that the statements (ii) and (iii) are equivalent.
Observe also that the separating family CA consists of pairwise orthogonal

generalized standard almost cyclic coherent components of ΓA. Therefore, it fol-
lows from Theorem 1.3 that dimK Ext1A(M, M) ≤ dimK EndA(M) for any inde-
composable module M in CA.

Assume now that g(A) ≤ 1. Then the quasitilted algebras Al and Ar are
products of tilted algebras of Euclidean type or tubular algebras (see [13] and
[32]). In particular, every component of the family PA = PAl

is either a prepro-
jective component of Euclidean type or a generalized standard ray tube. Similarly,
every component of the family QA = QAr

is either a preinjective component of
Euclidean type or a generalized standard coray tube. It is well known that every in-
decomposable module M in a preprojective component or preinjective component
of ΓA is directing, and then Ext1A(M, M) = 0 (see [25, (2.4)(8)] or [1, Proposition
IX. 1.4]). Moreover, every ray tube of PA and every coray tube of QA is a gen-
eralized standard almost cyclic coherent component of ΓA. Therefore, applying
Theorem 1.3, we conclude that

χA([M ]) = dimK EndA(M)− dimK Ext1A(M, M) ≥ 0

for any indecomposable module M in modA. This shows that (i) implies (ii).
Assume now that g(A) > 1. Then, by [18, Theorem F], one of the qua-

sitilted algebras Al and Ar is wild. Applying then results on the structure of
module categories of quasitilted algebras of wild canonical type proved in [11],
[12], [13], we conclude ΓA admits a component Γ which is preprojective or prein-
jective and the factor algebra B = A/ annA(Γ) is a wild tilted algebra. Then it
follows from [10, Theorem 6.2] that there is an indecomposable B-module M such
that dimK Ext1B(M, M) > dimK EndB(M). Observe that EndB(M) = EndA(M)
and dimK Ext1A(M, M) ≥ dimK Ext1B(M, M). Therefore, we obtain the inequality

χA([M ]) = dimK EndA(M)− dimK Ext1A(M, M) < 0,
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because Extr
A(M, M) = 0 for r ≥ 2, as we proved in the first part of our proof.

This shows that (ii) implies (i).

6. Proof of Corollary 1.2.

Let A be a tame finite dimensional K-algebra with a separating family CA of
almost cyclic coherent components in ΓA, and ΓA = PA∨CA∨QA be the induced
decomposition of ΓA. Then by Theorem 3.2 and [18, Theorem F], A is a tame
generalized multicoil enlargement of a product C of tame concealed algebras (con-
cealed canonical algebras of Euclidean type). Moreover, the left quasitilted algebra
Al and the right quasitilted algebra Ar of A are products of tilted algebras of Eu-
clidean type or tubular algebras. We also note that the tubular algebras are tame
concealed canonical algebras with infinitely many families of sincere generalized
standard stable tubes.

Let M be an indecomposable module in modA. It follows from Theorem 1.1
that χA([M ]) ≥ 0.

Assume M belongs to CA. Then it follows from Theorem 1.3 that χA([M ]) = 0
if and only if M is a module lying in a generalized standard stable tube T of ΓC

and the quasi-length ql(M) of M in T is divisible by the rank of T .
Assume M belongs to PA. If M belongs to a preprojective component of PA,

then M is a directing module, and hence χA([M ]) = dimK EndA(M) > 0. Suppose
M does not belong to a preprojective component of PA. Then M belongs to a
generalized standard ray tube T of a tubular factor algebra B of Al. By general
theory, B is a tubular (branch) extension of a tame concealed algebra Λ, which is
clearly a factor algebra of B, and hence of A. In case T is a sincere stable tube of
ΓB , then χA([M ]) = χB([M ]) = 0 if and only if the quasi-length ql(M) of M in T
is divisible by the rank of T (see Corollary 2.3). In case T is not a sincere stable
tube of ΓB , then T is either a ray tube containing at least one projective module
or a sincere stable tube of ΓΛ. Then it follows from Theorem 1.3 that χA([M ]) = 0
if and only if M is a module of a stable tube Γ of ΓΛ and the quasi-length ql(M)
of M in Γ is divisible by the rank of Γ.

Assume M belongs to QA. If M belongs to a preinjective component of
QA then M is a directing module, and hence χA([M ]) = dimK EndA(M) > 0.
Suppose M does not belong to a preinjective component of QA. Then M belongs
to a generalized standard coray tube T ∗ of a tubular factor algebra B∗ of Ar. By
general theory, B∗ is a tubular (branch) coextension of a tame concealed algebra
Λ∗, which is obviously a factor algebra of B∗, and hence of A. In case T ∗ is a
sincere stable tube of ΓB∗ , then, by Corollary 2.3, χA([M ]) = χB∗([M ]) = 0 if and
only if the quasi-length ql(M) of M in T ∗ is divisible by the rank of T ∗. In case
T ∗ is not a sincere stable tube of ΓB∗ , then T ∗ is either a coray tube containing
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at least one injective module or a sincere stable tube of ΓΛ∗ . Then it follows from
Theorem 1.3 that χA([M ]) = 0 if and only if M is a module in a stable tube Γ∗

of ΓΛ∗ and the quasi-length ql(M) of M in Γ∗ is divisible by the rank of Γ∗.
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[21] J. A. de la Peña and A. Skowroński, The Tits and Euler forms of a tame algebra, Math.

Ann., 315 (1999), 37–59.
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