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Abstract. A positive definite Hermitian lattice is called regular if it
represents all integers which can be represented locally by the lattice. We
investigate binary regular Hermitian lattices over imaginary quadratic fields
Q(+/—m) and provide a complete list of the normal binary regular Hermitian
lattices.

1. Introduction.

Dickson first called a positive definite quadratic form f regular if f = n has
an integral solution for each n such that f = n (mod m) has solutions for all
positive integers m. He found all regular forms 2 + ay? + bz2, as a generalization
of the famous unsolved problem, Euler’s idoneal numbers a admitting 2 + ay? to
be regular [4].

The outstanding result about regular quadratic forms was achieved by Wat-
son. He showed that there are finitely many equivalence classes of primitive pos-
itive definite regular ternary quadratic forms [20], [21]. The complete list of 913
regular ternary forms including 22 candidates was given by Jagy, Kaplansky and
Schiemann [11]. Recently, eight of the candidates were proved to be regular [16].
On the contrary, Earnest found an infinite family of regular quaternary forms [5]
and the first author classified all regular diagonal quaternary forms [12].

The regularity of integral quadratic forms is naturally generalized to that
of lattices over totally real number fields. Recently the analogue of Watson’s
finiteness result for regular positive definite ternary quadratic lattices over the
ring 0 of Q(v/5) was proved [2].

The regular Hermitian lattices over imaginary quadratic fields are defined in
a similar way. If a Hermitian lattice represents all positive integers, it is trivially
regular. We call such Hermitian lattices universal. The universal Hermitian lat-
tices were concentrative subjects studied by many mathematicians including the
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authors in the last couple of decades [6], [9], [13], [15].

The finiteness of similar isometry classes of binary normal regular Hermitian
lattices was proved by Earnest and Khosravani [7]. Besides, binary regular diag-
onal Hermitian lattices including a candidate (1, 14) over Q(v/—7) were listed by
Rokicki [19]. But her inventory was limited to diagonal lattices @ v; L ahvs with
two ideals @7, 2/5 C € and two vectors v, vs.

The obstruction against studying Hermitian lattices was that the matrix pre-
sentation was unprovided. The authors, however, developed the formal matrix
presentation and were able to delve into universality and regularity of Hermitian
lattices. Using this method, we can find all binary regular Hermitian lattices
including non-diagonal ones. In addition, we prove the regularity of all these Her-
mitian lattices including (1, 14) over Q(v/—7). To do this, we developed a method
to calculate numbers represented by a quaternary quadratic form which have no
ternary sublattice of class number one.

THEOREM. There are 68 positive definite binary normal regular Hermitian
lattices, including 9 non-diagonal ones, up to similar isometry over Q(y/—m) with
positive square-free integers m. The symbol T indicates universal lattices.
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REMARK. The binary subnormal regular Hermitian lattices will be inves-
tigated in our next articles. Binary subnormal regular Hermitian lattices over
Q(v/—m) with norm ideal 2 occur only when

m=1,2,5,6,10,13,14,17, 22,29, 34,37 and 38.

Also, we found that a binary primitive subnormal regular Hermitian lattice of
norm ideal m& exists over Q(v/—m). For example, (_jjg \/3_73) over Q(v/—3)
is a binary subnormal regular Hermitian lattice with norm ideal 3&4. It is an

impossible phenomenon for quadratic lattices over Z.

2. Preliminaries.

In this section, we give some notations and terminologies, which are adopted
from [17]. Let € be the ring of integers of the imaginary quadratic field Q(v/—m),
where m is a positive square-free integer. We have that ¢ = Z[w] with w :=
wm =+v—mif m# 3 (mod 4) and w := wy,, = (1 ++/—m)/2 if m =3 (mod 4).
A Hermitian space V is a vector space over Q(y/—m) with a Hermitian map
H:V xV — Q(v/—m) satisfying the following conditions:

(1) Hv,w) = H(w,v) for v,w eV,
(2) H(v1 4 va,w) = H(v1,w) + H(ve,w) for vy, vy, w € V,
(3) H(av,w) = aH(v,w) for a € Q(v/—m) and v,w € V.

For brevity, we write H(v) = H(v,v). A Hermitian lattice L is defined as a finitely
generated ¢-module in the Hermitian space V. We will assume that all Hermitian
lattices are integral in the sense that H(vi,ve) € & for all vi,vs € L. From
condition (1), we know that
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Hence H(v) € Z for v € L. If a = H(v) for some v € L, we say that a is
represented by L and denote it by a — L. If a cannot be represented by L, we
denote it by a 4 L. Through this article, we assume that L is positive definite,
i.e., H(v) > 0 for nonzero vectors v € L.

The localization of a Hermitian lattice L at a prime p is defined by L, =
Op @6 L where 0, = Z, Rz 0. If n — L, for all primes p including oo, then
we write n — gen L. The regularity of a Hermitian lattice L can be rephrased as
follows: if n — gen L, then n — L. Thus if the class number of L is one, then L
is trivially regular.

If a regular Hermitian lattice L is locally universal over &, for all primes p,
then L is universal. Since all universal Hermitian lattices are already classified [6],
[9], [15], we only consider nonuniversal regular lattices through this article.

A lattice can be written as

L = ahv + ehva + - + dpo,

with ideals o C & and vectors v; € V. If these vectors are linearly independent
over Q(v/—m), then we say that L is an n-ary lattice and rank L = n.

The norm ideal nL of L is an O-ideal generated by the set {H(v)|v € L}.
The scale ideal sL of L is an €-ideal generated by the set {H (v, w)|v,w € L}. Tt
is clear that nL. C sL. If nL = sL, then we call L normal. Otherwise, we call L
subnormal. We investigate normal lattices in this article. The volume ideal of L
is defined as

0L = (h ) (osd 3) - - - (s ) det(H (vi, v5))1<i,j<n-

Note that the volume ideals of sublattices of L are contained in vL.

If a Hermitian lattice L is a free &-module, then we can write L = Ovy+-- -+
Ovy,. The matrix presentation My, = (H(v;,v;))1<i,j<n is called the Gram matrix
of L. If the matrix is diagonal, we denote it by (H(v1), H(vz2),..., H(v,)). But, if
a Hermitian lattice L is not a free #-module, then L = vy + - -+ Ov,—1 + L v,
for some ideal &/ C €@ [17, 81:5]. Since any ideal in & is generated by at most two
elements, we can write L = Ovy + -+ 4+ Ov,—1 + (o, 8)Ov, for some o, € 0.
Therefore, we can regard the following (n + 1) X (n + 1)-matrix as a formal Gram
matrix for L:

H(vi,v1) ... H(vi,vp-1) H (v, avy) H(vy, foy)

My = H(vn;hm) H(vn%vnq) H(Unf.havn) H(vn;hﬁvn)
H(awvp,v1) ... H(awp,vnp—1) H(av,,ov,) H(av,, o)
H(ﬁvm 'Ul) . H(ﬁvna Un—l) H(ﬂ?)n, Own) H(ﬁvm ﬂvn)
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Note that this matrix is positive semi-definite, but this represents an n-ary positive
definite Hermitian lattice. We identify a lattice L and the Gram matrix My of
L. A scaled lattice L* is obtained from the Hermitian map Hyp. = aH with
0 <ae Z. If M is a matrix presentation of a lattice L, we write aM for the
matrix presentation of a scaled lattice L®.

We can regard a Hermitian space (V, H) over Q(v/—m) as a 2n-dimensional
quadratic space (V,By) such that By(z,y) = (1/2)[H(z,y) + H(y,z)] =
(1/2) Trgq(H (x,y)) [10]. Through this consideration, we can obtain an associ-
ated quadratic form in (V, By) from a Hermitian lattice in (V, H). To distinguish
the associated quadratic form from the Hermitian lattice, we use the subscript
Z. For instance, the quadratic form (1,1,1,1)z is associated with the Hermitian

lattice (1,1) over Q(v/—1).

3. Some definitions and lemmata.

In this section, we determine all the imaginary quadratic fields Q(y/—m) that
admit binary normal regular Hermitian lattices L. Also we describe the volume
condition of L to find all candidates for L.

For a positive integer ¢ and a Hermitian lattice L over & or 0y, let

A(L)y={veL|Hw+w)=H(w) (mod t) for all w € L}.
The Watson transformation A\ (L) of L is defined by
A(L) = Ae(L)e,

where a is the maximal positive integer which divides H (v, w) for all v,w € Ay (L).
It is well-known that if L is regular, then \;(L) is also regular [22], [3].

LEmMMA 1. Let L be a primitive normal binary Hermitian lattice over
Q(v—m) and p is an odd prime. Then Ayn(L,) represents all elements of Z,
for some nonnegative integer n.

PROOF. Since L is primitive and normal, L, = (e, €’ p¥) for some nonnega-
tive integer k and units €, ¢ of Z,. We may assume that any unary &,-lattice is
not isotropic. Otherwise L, represents all elements of Z,,.

If pf m and p is inert in &, then A,2¢(Ly,) = (¢,€'p”) where k = 2¢ + r for
some £ € Z and 7 = 0,1. The quadratic form (e, em, €'p", ¢'mp”) z, associated
with (e, €'p") represents all elements of Z,,.

If p { m and p splits in &, then A,i-1(L,) = (¢,€¢'p). The quadratic form
(€,em, €'p, €'mp) z, associated with (e, €'p) represents all elements of Z,,.
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If p | m, then A\pk(Lp) = (¢,€'). The quadratic form (e, em, €', e'm) z, associ-
ated with (e, €’) represents all elements of Z,,. O

LEMMA 2. Let L be a primitive normal binary Hermitian lattice over
Q(v/—m). Then Aan(L2) represents all elements of Zs for some nonnegative in-
teger n.

PROOF. Since L is primitive and normal, Ly = (¢, ¢'2¥) for some nonnega-
tive integer k and units €, € in Zs.
If m =7 (mod 8), then the unary Hermitian lattice (¢) over &5 provides the

€ €/2 ~ 0 1/2
€/2 (m+1)6/4)Z2 = (1/2 0
all elements of Z5 and so does Ls.

If m = 3 (mod 8), let k = 2¢ + r for some ¢ € Z and r = 0,1. Then
Age(La) = (e, €'27). Since the Hermitian lattice (e, €/2") over 05 provides the asso-

€ 6/2 27‘6/ El27\71 . . . .
/2 (m+1)6/4)Z2 uE (€,2T_1 (mt1)2m—2¢! >22 which is isometric

associated quadratic form ( ) z, Over Z5. It represents

ciated quadratic form (

to (1}2 1{2)22 L (1}2 1{2)22 or (1}2 1{2)22 1 (2 %)ZQ over Za, A\y¢ (L) represents

all elements of Zs.

If m =1 (mod4), let £k = 20+ r for some ¢ € Z and r = 0,1. Then
Age(La) =2 (e,€'27). Since the Hermitian lattice (e, €'2") over Oy provides the
associated quadratic form (e,em,2"€¢,2"¢'m)z, over Zs, Age(Lso) represents all
elements of Zs.

If m =2 (mod 4), then \yx(L2) = (e,€'). If m = 2m/, the Hermitian lattice
(e,€') over Oy provides the associated quadratic form (e, em,€’,e'm)z, over Zs.
Since quadratic form (e,em, €', e'm)z, = (e,€',2m’e,2m’e’) z,, Aor (L2) represents
all elements of Zs. O

Suppose L is a primitive binary normal regular Hermitian lattice over
Q(v/—m). From Lemmas 1 and 2, we know that there are primes pi,ps, ...,k
and positive integers s1, So, . . ., g such that L= Apil O)\pgg o-- -o)\p;k (L) is locally
universal, which means L represents all elements of Z,, for all primes p. Since Lis
regular [22], [3], L is universal. From the works [6], [9], [15] on binary universal
Hermitian lattices, Q(y/—m) admits binary normal regular Hermitian lattices only
when

m=1,2,3,5,6,7,10,11, 15,19, 23 or 31.

Suppose that L, does not represent some element of Z,, for some odd prime
po with po f m. Let p1,p2,...,px be all primes different from py such that L,,
does not represent some element of Z,,. Then, for suitable positive integers
515,82y« Sk,
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L= o0Xmo00Xu(L)

represents all elements of Z,, for all primes p except p = py. Since L is primitive
and normal, Epo = (e, €'pl) for some nonnegative integer £ and units €, ¢ in Z,,.
Since pg 1 m, L represents all units of Z, . So L represents 1 and 2 locally. Since
Lis regular, L represents 1 and 2 globally, so L (1) L M for some unary lattice
M. If m # 1,2,7, then (1) does not represent 2. So M represents 1 or 2. Thus
L contains (1,1) or (1,2). Therefore L represents all elements of Z,,. This is a
contradiction. If m =1 or 7, then (1) cannot represent 3. Since Lis regular, 3 is
not a unit of Z,,. So po = 3. Similarly, if m = 2, then py = 5. We conclude that
if L, does not represent some element of Z,, then we have following cases:

(1) p=2,
(2) an odd prime p divides m,
B)p=3ifm=1Tp=5if m=2.

The following Lemma 3 explains the condition on vL and gives an efficiency
for finding candidates for L.

LEMMA 3. Let L be a binary Hermitian lattice over Q(v/—m).

(1) Let p be an odd prime. If L, represents a unit in Z, and does not represent
pFe for some nonnegative integer k and for some unit € in Z, over O,, then

oL C pFtio.

(2) If Ly represents a unit in Zo and does not represent 2¥e for some nonnegative
integer k for some unit € in Zy over Oy, then

oL C 220  if m=1 (mod 4),
oL C 2830 if m=2 (mod 4),
oL C 210  if m=3 (mod8).

ProOOF.

(1) Since L, represents a unit in Z,, L, = (a,bp’) for some units a,b € Z,
and for some nonnegative integer ¢. If (a) is isotropic, then p*e — (a) and hence
pFe — L,. This is a contradiction. Therefore (a) is anisotropic.

Assume that p { m. Then the quadratic form associated with L, is isometric
to {(a,a’, bp*, b’pe>zp for some units a’, b’ € Z,. If £ < k, then p¥e — L,,.

Now assume that p | m. Then the associated quadratic form is
(a,d'p,bp®,b'p*™)z . If £ < k, then p¢ — L,. Thus £ > k+ 1 and vL, =
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abp*0, C p"*t10,.

(2) Since Lo represents a unit in Zy, Lo = (a,2°b) for some units a,b € Zj
and for some integer £. If m = 7 (mod 8), then (a) is isotropic and thus 2¥¢ — (a).

Suppose m = 1 (mod 4). If £ = 0, 1, then Ly = (a, 2°b) represents all elements
of Z3. Hence we have ¢ > 2. Then, 2¥=“1e — M\po1(Ly) = (a,2b) if £ < k+ 1.
Hence (28=+1€)2¢~1 = €2 — Ly, which is a contradiction. So £ > k 4 2 and
vlo = abZKﬁQ C 2k+2@72.

Suppose m = 2 (mod 4). If £ = 0,1,2, then Ly = (a,2b) represents all
elements of Zy. Hence we have £ > 3. Then, 2"=*2¢ — Xy 2(Ly) = (a, 4b) if
¢ < k+2. Hence (2’“”26)24*2 = €2k — Lo, which is a contradiction. So ¢ > k+3
and 0Ly = ab2t0y C 2830,

Suppose m = 3 (mod 8). If £ = 0, 1, then Ly = (a, 2°b) represents all elements
of Zy. Hence we have ¢ > 2. Then, 28=%¢ — X\y¢(Ly) if £ < k. Hence (2¥7%)2¢ =
€2* — Lo, which is a contradiction. So ¢ > k + 1 and vL, = ab2¢0, C 2¥t10,. O

4. Candidates for binary normal regular Hermitian lattices.

In this section, we will find all candidates for binary normal regular Hermitian
lattices over imaginary quadratic fields Q(y/—m) with the information of L, and
the volume ideal vL by the following strategy. We assume that L is regular but
not universal.

(1) Find the minimal number a such that a — gen L.

(2) Find the minimal number b such that b — gen L but b /4 (a).
(3) Find a lattice £ = (& %) satisfying the volume condition.

(4) If vl reaches the volume bound in Lemma 3, then we stop.
(5) If v¢ C the volume bound, append a suitable vector to £.

(6)

6) Repeat the above steps.

We call these two numbers a and b essential numbers (abbr. Ess.#). When
a binary Hermitian lattice L is not regular, we will give an integer n such that
n — genL but n 4 L. This number is called the exceptional number (abbr.
Exc.#). We check the exceptional numbers in the range of 21°.

We give Example 1 to explain this strategy. Some notations are needed for
convenience. For an odd prime p, 1,, and A, denote a square unit and a non-square
unit in Z,, respectively. 1a, 32, 52, 72 denote the four types of units in Zs.

EXAMPLE 1. Suppose that a regular lattice L over Q(1/—5) satisfies
lp = Loy, 32— Lo, 15— L5, A5 Ls.

Then Lo represents all elements in Zs and the volume condition for L is vL C 50.
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Steps (1) and (2): The essential numbers are 1 and 11.
Step (3): We can find two binary free lattices

10

10 .
b = (O 5) with vy =560 and /{9 = (O 10

) with vly =100

satisfying the volume condition.

Step (4): Since vf; = 5&, we need not to expand ;.

Step (5): Since 15 — genfy but 15 4 £, 5 is not a candidate. We consider
the following formal Gram matrix for a binary lattice

(1) L (163 5‘2) with 508 — o@ = 0.

Thus a = —5 + 5w and B = 3. This produces a nonfree binary lattice

10 -9+ dw
(DL <—5 + bw 15 )
as a candidate. Since its volume ideal is 5&, we stop here.

Through iterative and long process, we find all the candidates. But, instead
of giving a detailed proof of finding candidate, we give abridged tables which
describe these whole process for each field Q(v/—m). Here, we give Example 2
which explains how to understand the Table 9 and shows the whole process of
finding candidates for Q(v/—15). The other tables are understandable by similar

way. For simplicity, we write
a «
b] := .
wantli= (2 5)

EXAMPLE 2. Let m = 15 and refer Table 9. Note that

12—>L2<:>32—>L2<:>52—>L2<:>72—>L2
— 2'12,2'32,2'52,2-72 — Lo.

Since a primitive binary normal regular lattice L over Q(yv/—15) should represent
a unit in Zs, Lo represents all elements in Zs. So we consider the local conditions
on Lz and Ls.

For the case (1), since 13, A3 — L3 and 15 — Lj, As / Ls, the essential
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numbers are 1, 11 and vL C 5. So L contains

1 « . _
(a 11) with 5 | (11 — e@) and « € 0.

So we have L = (1,5) or L contains (1,10). Since v(1,5) = 5¢, we need not to
expand it. Since 5 — gen(1,10) and 5 4 (1,10), (1,10) is not a candidate as 5 is
an exceptional number of (1,10). Note that (1, 10) infects the given local condition
(1). So 5 can be an exceptional number of (1,10) obeying the new local condition.
We consider the formal Gram matrix for a binary lattice

1) L <1ﬁ0 5%) with 50y — 33 =0 and 3,7 € 0.

Thus § = 5w, v = 2 and this produces L = (1) L 5(%“2’) Since vL = 50, we need
not to expand it. However, since 5 is an exceptional number, it is not regular.
Similarly, we get results for the cases (3) and (4-2).

For the case (2), since 13,A3 — L3 and 15 4 Ls, As — Ls, the essential
numbers are 2, 3 and v C 5&. So L contains

<2 a) with 5 | (6 — a@) and a € 0.
a 3

So we have L = (21) or L contains a unimodular lattice (2% ). Since vb(21) =
50, we need not expand it. Since 5 is an exceptional number of (% %), it is
regular. Suppose L contains a lattice (%“5) Since 7 — L and 7 4~ (%‘5), we
have a candidate (% “2’) 1 (5) by comparing volume of L. Similarly, we can get
results for the cases (6-2), (8-1-1) and (8-2).

For the case (4-1), since 15,3 - 13 — L3, Ag 4 Ls and 15 — L5, A5 # Ls,
the essential numbers are 1, 21 and v C 3- 5. So L contains

1 « . _
(a 21) with 5 | (21 — a@) and « € 0.

Thus we have a candidate (1,15). Since 45 is an exceptional number, it is not
regular. Similarly, we get results for the cases (5-1-1), (5-2-1) and (7-2-1).

For the case (5-1-2), since 13,3 - 13 — L3, A3 # L3 and 15,56A5 + Ls,
As — Ly, the essential numbers are 3, 7 and vL C 3-52¢. Thus L contains
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3 «
_ with 75 | (21 — a@).
(2 21— aw)

So aa = 21. But there is no such a and we have no candidate. Similarly, we can
get results for the cases (5-2-2), (7-1-2) and (7-2-2).

For the case (6-1), 13 4 L3, A3,3A3 — L3 and 15, A5 — L5, the essential
numbers are 2, 6 and v C 30. So L contains

(Z 2‘) with 3 | (12 — a@).

Soaa =0,6,9,ie. a=0,14w,3. If a =0, from the condition 3 — L, L
contains a lattice

with 3| (6 —8B), 3| (18 —7)

I E=J\
QA oo
w2 ™

and its determinant 36 — 633 — 29§ = 0. So L contains a lattice (liw 145“’) 1
(6) = (2%) L (6). Since 15 — L and 15 4 (24%) L (6), we have a candidate
L=~ (2%)L3(2Y), via similar way. Note that L is isometric to the binary free
lattice (_13_45 “144). If a = 14w or 3, then we know that there is no candidate
via similar way.

For the case (7-1-1), 13 / L3, A3,3A3 — Lg and 15,5 15 — L5, A5 4 Ls,
the essential numbers are 5, 6 and v C 3-50. Thus L contains

5 « . _
(a 6) with 15 | (30 — a@).

So aw = 0,15, i.e. a = 0, —1 + 2w. We have L contains (5,6) or L =
5 —1+2w : : . 5 —142w) sy s
(71+w 6 ) Since 9 is an exceptional number of (71+w 6 ), it is not
regular. Suppose L contains (5,6). Since 9 — gen(5,6) and 9 4 (5,6), L =
(5) L 3( 1_EU 12”) by the volume condition. Since 21 is an exceptional number, it
is not regular.
For the case (8-1-2), 13 / L3, A3,3A3 — Ls and 15,505 4 Ls, Ay — Ls,

the essential numbers are 2, 3 andvL C 3-50. So L contains

(2 a) with 15 | (6 — a@) and a € 0.
a 3
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Hence L contains unimodular lattice (2% ) which splits L. Since 33 — L and
334 (24), weget L= (2%) L (15) or L contains (2¢%) L (30) by appending
a suitable vector to L. Since 15 — gen(2%) L (30) but 15 /4 (24) L (30),
we have L = (%‘5) L (15) after adding suitable vector and comparing volume
condition.

This is the end of whole process of finding candidates for binary normal regular

Hermitian lattices over Q(+v/—15).

CaSgE 1. [m =1] Note that

p=2: 1o — Ly <=5y — Ly = 2-15,2-55 — Lo;
39 = Lo <— Ty — Ly — 2~32,2-72 — LQ;

p=3: 13 = L3 <= A3 — Ls.

We obtain 6 candidates (see Table 1).

Local condition Volume Ess. # Lattice Exc.#
1) 12,33 — Lo oL C 320 1,7 | N/A
3-13 / L3
(2) 1o — Lo, 33 # Lo oL C 2°0 1,21 | (1,4)vola none
3-13 — L3 (1, 8)vol:8 none
(1,12)vor:12 6
(1,16)vol:16 none
(1, 20)vo1:20 6
(3) 1o — Lo, 32 # Lo oL C 22.320 | 1,77 | (1,36)vo1:36 14
3-13 / L3 (1, 72)vor:72 28
(4-1) 1o 4 Lo, 32,2-15 — Lo oL C 220 2,3 | [2, =1+ w,3lvola none
3-13 — L3
(4-2) 12,2-15 4 Lo, 35 — Lo oL C 220 3,7 [3, =1 + w, 6)vol.16 none
3-13 — L3 [3,1,3]vor:s none
(5-1) 1s 4 La, 212,35 — Lo oL C 22.320 | 2,7 | N/A
3-13 / L3
(5-2) 12,2:12 4 Lo, 32 — Lo oL C 25320 | 7,11 | [7, =2 + w, 11]yor.72 4
3-13 /» L3

Table 1. Candidates for m =1 (Lyol.c means vL = a0).
CAsE 2. [m =2] Note that

p:22 12—>L<:>32—>L:>2'12,2'32—>L2;
52—>L<:>72—>L:>2-52,2~72—7L2;

p=>5: ].5—>L<:>A5—>L5‘

We obtain 4 candidates (see Table 2).
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Local condition Volume Ess.# Lattice Exc.#
(1) 12,50 — Lo oL C 50 1,7 | N/A
5-15 # Ls
(2) 1z — L3, 52 4 L2 oL C 22.5%20 | 1,91 | N/A
5-15 / Ls
(3-1) 12,2-59 — La, 52 # Lo oL C 250 1,10 | (1, 8)vols none
5:15 — Ls
(3-2) 1o — Lg, 52,250 4 Ly | oL C 2%€ 1,35 | (1,16)vol16 none
5-15 — Ls (1,32)vo1:32 none
(4) 1y 4 La, 55 — Lo oL C 2°0 5,7 (5, =1 4 w, T]vol:32 8
5-15 — L5 [5, =2 4+ w, 6]vol:24 2
[5, —1 + 2w, 5lyol:16 4
[4, —2 + 2w, 5]vol:s 2
[2, w, 5lvol:s none
(5) 1y 4 La, 52 — Lo oL C 2%.5%2¢0 | 7,13 | N/A
5-15 4 Lsg
Table 2. Candidates for m = 2 (Lyol.c means vL = a0).
CASE 3. [m =3] Note that
p=2: 1o — Ly <= 39 — Ly <= 5y — Lo <= 79 — Lo;
p=3:13—>L3:>3-13—>L3; A3—>L3:>3A3—>L3.
We obtain 11 candidates (see Table 3).
Local condition Volume Ess.# Lattice Exc.#
(1) 2-10 — Lo vl C 30 1,10 | (1,3)vor:3 none
13 — L3, A3 /4 L3 (1,6)vol:6 none
(1,9)vol:9 none
(2-1) 2:1p — Lo vL C 30 2,3 (2, 3)vol:6 none
13 4 L3, A3,3-13 — L3 [2,1,2]vo1:3 none
(2-2) 2.1 — Lo oL C 3°0 2,5 12,1, 5]vol:0 none
15,315 # L3, Ng — Lg
3) 2.1y 4 Loy vl C 220 1,10 | {1,4)vola none
13,3 — L3
(4) 2:15 # Lo oL C 22.30 | 1,55 | (1,12)v0112 none
13 — L3, A3 4 L3 (1, 24)vol1:24 15
(1,36)vo1:36 none
(1,48)vol:48 15
(5-1) 215 4 Lo oL C 22360 |3,5 |[3,14 w,5]vor12 none
13 / L3, A3,3-13 — L3
(5-2) 2.1y 4 Lo oL C 22:320 | 5,11 | [5,2, 8]vol:36 none

13,313 # L3, A3 — Lg

Table 3.

Candidates for m = 3 (Lyol.q means vL = a0).



1014

CASE 4. [m = 5]
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Note that

1o = Lo <= 55 — [y — 2'32,2-72 — LQ;

39 > Lo <= 79 — Ly — 2'12,2-52 — LQ;
A5 — Ly = 5&5 — Ls.

p=29:

15 — L5 = 5-15 — L5;

We obtain 7 candidates (see Table 4).

Local condition Volume Ess.# Lattice Exc.#

(1) 12,32 — Lo vL C 50 1,11 | (1,5)vons 15
15 — L5, A5 4 Ls (1,10)vo1:10 none

(1) L 5[2, -1+ w, 3]vol:5 none

(2-1) 15,32 — Lo vL C 50 2,3 | [2,1,3]vol5 11
15 7L>L5, A5,5*15 HL5 [27714‘1’&),3] L <5>vol:5 none

(2-2) 12,32 — Lo vL C 520 2,3 | N/A
15,515 / Ls, A5 — Ls

(3-1) 12,2-13 — Lo, 32 # Lo oL C 2°0 1,2 | N/A
15, A5 — Lg

(3-2) 1o — Lo, 32,2-12 /& Lo vl C 230 1,13 | (1,8)vors none
15, A5 — Ls

(4-1) 12,219 — La, 32 #+ Lo N/A
15 — Ls, A5 4 Ls (A;k (L) cannot be regular by (3-1))

(4-2-1) 12 — Lo, 32,2-12 4 Lo oL C 23560 | 1,65 | (1,40)vo1.40 none
15,505 — L5, As /+ Ls

(4-2-2) 12 — Lo, 32,2-12 # Lo oL C 23.5%20 | 1,209] (1,200)vo01:200 44

(5-1) 12,219 — La, 32 #+ Lo N/A
15 / Ls, N5 — Ls (A;k (L) cannot be regular by (3-1))

(5-2-1) 12 — Lo, 32,2-12 4 Lo oL C 2°.50 | 5,13 | (5,8)ve1:40 12
15 / L5, A5,5-15 — Ls

(5-2-2) 12 — Lo, 32,2-12 /4 Lo oL C 23.5%20 | 13,17| [13,4 + w, 17]vo1:200 8
15,5-15 /> L5, A5 — L3

(6-1) 1o 4 Lo, 32,2:35 — Lo oL C 220 2,3 2, =1+ w,3] L (4)yo1:4 none
15,5 — L5

(6-2)  15,2:35 /A Ly, 3, —> Ly | bL C 236 2,3 |[[2,-1+w,3] L (8)vors 8
15, A5 — Lg

(7-1) 1z 4 L2, 32,2:32 > Lo | bL C22:50 |4,6 (7212‘3 —2pe 2 )vom 10
15 — Ls, A5 4 Ls -2 1+w 11

(7-2) 12,2:32 /> L2, 32 — L2 N/A
15 — Ls, A5 / Ls (A;k (L) cannot be regular by (6-2))

(8—1) 12 7L> Lz, 32, 2*32 — L2 oL C 22-50 2,3 [2, —1 er, 3] 1 <20>v01:20 none
15 / Ls, As — Ls

(8-2) 12,2:32 / L2, 32 — L2 N/A

15 /+ Ly, A5 — Ls

(Agk (L) cannot be regular by (6-2))

Table 4.

Candidates for m = 5 (Lyol:q means vL = a0).
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CASE 5. [m = 6] Note that
p=2: 1o = Lo <= 79 — Lo :>2'32,2'52 —>L2;
39 = Ly <=5y — Ly = 2:19,2:79 — LQ;
p:3113—>L3:>3A3—>L3; A3—>L3:>3'13—>L3.
We obtain 2 candidates (see Table 5).

Local condition Volume Ess.# Lattice Exc.#

(1-1) 12,32 — Lo vL C 30 1,3 | (1,3)vons none
13,3-13 — L3, Ag /> L3

(1-2) 12,32 — Lo oL C 3°0 1,13 | {1,9)vol0 27
13 — L3, A3,3-13 /~ Ls

(2-1) 12,32 — Lo oL C 3260 2,3 [ [2,w,3] L (9voro 26
13,3403 # Ls, Ag — Ls

(2-2) 12,32 — Lo vL C 30 2,3 [2,0, 3]vol:6 6
13 /+ L3, A3,3A3 — L3 [2,w,3] L (3)vors 9

[2,w,3] L 3[2,w, 3] none
2 [9, 4w, 11]vo1:3

(3-1) 12,2-13 — Lo, 32 # Lo L C 2°0 1,2 N/A
13,3 — L3

(3-2) 1y — L2, 2:12,32 /~ L2 oL C 2%0 1,17 | {1, 16)vor.16 7
13, A3 — L3

(4) 1o — L2, 32 > L2 N/A
13 — L3, A3 # L3 (Agk (L) cannot be regular by (3-1), (3-2), (6))

(5) 1z — L2, 32 / L2 N/A
13 4 L3, A3 — L3 (Azk (L) cannot be regular by (3-1), (3-2), (6))

(6) 1y # Ls, 32 — La oL C 2°0 2,3 | [2,w,3] L (8)vors 6
13, A3 — L3

(7) 1z #» L2, 32 — L2 N/A
13 — L3, A3 / L3 (Agk (L) cannot be regular by (3-1), (3-2), (6))

13 / L3, Az — L3

(Agk (L) cannot be regular by (3-1), (3-2), (6))

CASE 6. [m =T]

Table 5.

Note that

Candidates for m = 6 (Lvol.q means vL = a0).

p:2: lg — Lo <= 39 — Lo <= 59 — Ly <= 79 — Lo

— 2'12,2'32,2'52,2'72 — LQ;
p=3: 13 = L3 < A3 — Lg;

p:7: 17—>L7:>7-17—>L7;

We obtain 3 candidates (see Table 6).

Ny — Ly — TA7 — L.
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Local condition Volume Ess.# Lattice Exc.#
(1) 17 — L7, N7 4 L7 wL C 70 1,15 <1, 7>v01:7 none
3-13 — L3 (1,14)vo1:14 none
(2) 17 #/ L7, A7 — Ly vL C70 3,5 [3, 1, 5]vol:1a 7
3-13 — L3 [3, w, 3lvol:7 none
(3) 17 — L7, A7 4 Ly WL C 7-320 | 1,65 | (1,63)vo163 35
3-13 / L3
(4) 17 /» L7, A7 — Ly oL C 7-320 | 5,13 | [5,w, 13]vol:63 7
3-13 # L3
Table 6. Candidates for m =7 (Lvol:a means vL = a0).
CASE 7. [m =10] Note that
p:2 : 12 —>L2 <:>32 —>L2 — 2'52,2-72 —>L2;
59 — Lo <= Ty — Lo = 2-15,2-39 — Lo;
p=5: 1y —» Ly = 55 — Ls; /A5 — Ly =515 — Ls.
We obtain only 1 candidate (see Table 7).
Local condition Volume Ess. # Lattice Exc.#
(1) 12,50 — Lo vl C 50 1,6 (1,5)vol:5 none
1s — Ls, A5 #+ Ls
(2) 12,52 — Lo oL C 50 2,3 | [2,1,3]vors 5
1s /» Ls, A5 — Ls
(3) 1y — La, 52 / Lo oL C 2°0 1,3 | N/A
15,5 — L5
(4) 1z — L2, 52 /> L2 N/A
15 — Ls, A5 # Ls (Ask (L) cannot be regular by (3), (6))
(5) 12 d LQ, 52 7L> L2 N/A
15 4 Ls, A5 — Ly (A5 (L) cannot be regular by (3), (6))
(6) 1z # L2, 52 — Lo oL C 230 2,5 | N/A
15,5 — L5
(7) 12 # L2, 52 — Lo N/A
15 — Ls, A5 4~ Ls (A;k (L) cannot be regular by (3), (6))
(8) 12 7L> LQ, 52 — L2 N/A

15 # L5, A5 — Ls

(A;k (L) cannot be regular by (3), (6))

Table 7.

Candidates for m = 10 (Lvol.c means vL = a0).
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CASE 8. [m =11] Note that

p:21 12—>L2<:>32—>L2<:>52—>L2<:>72—>L2;

p= 11: 111 — L11 = 11-11; — Lll; All — L11 — 11&11 — L11.

We obtain 3 candidates (see Table 8).

Local condition Volume Ess.# Lattice Exc.#

(1) 2-13 — Lo oL C 110 1,14 | (1,11)vo1:11 none
111 — Li1, &11 4 L

(2) 2:-19 — Lo oL C 110 2,7 [2,(4},7]\,01:11 11
111 / Li1, A1 — L

(3) 215 4 Lo oL C 20 1,7 | {1, 4)vora none
111,11 — Lag

(4) 2.1y 4 Lo oL C 22110 | 1,91 | (1,44) o144 none
111 — Li1, &11 /4 Laa (1, 88)vol:s8 7

(5) 215 /> Lo oL C 2110 | 7,13 | [7,w, 13]voL88 8
111 / Li1, A1 — L [7, 2w, 8]vol:44 11

Table 8. Candidates for m = 11 (Lyol. means vL = a0).
CASE 9. [m = 15] Note that

p=2:12—>L2<:>32—>L2<:>52—>L2<:>72—>L2
— 2'12,2'32,2'52,2'72 —>L2;

p:3213—>L2:>3A3—>L3; A3—>L2:>3'13—>L3;

p:5215—>L5:>5A5—>L5; A5 — Ly = 5-15 — Ls.

We obtain 6 candidates (see Table 9).
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Local condition Volume Ess.# Lattice Exc.#
(1) 13,3 — L3 vl C 50 1, 11 (1, 5)vol:5 none
15 — Ls, A5 /4 Ls (1,10)vor1:10 5
(1) L 5[2,w, 2]vol:5 5
(2) 13,A3 — L3 oL C 50 2,3 12,1, 3]vol5 5
1s 4 Ls, A5 — Ls [2,w,2] L {(5)vol:5 none
(3) 13 — L3, Az 4 L3 vl C 30 1,7 (1, 3)vol:3 none
15,5 — Ls (1, 6)vol:6 3
(4-1) 13,3-13 — L3, A3 4 L3 | oL C 3-50 1,21 | (1,15)vo115 45
15 — Ls, A5 # Ls
(4-2) 13 — L3, As3,3-13 A Lz | oL C 3%2.560 | 1,91 | (1,45)vol45 17
15 — L5, A5 / Ls (1, 90) vor:90 45
(5-1-1) 13,3-13 — L3, A3 / L3 vL C 3-50 3,7 3,14 w, T]vol:15 15
15 /+ Ly, A5,5A5 — Ls
(5-1-2) 13,3-13 — L3, A3 4 Lz | oL C 3-5%0 |3, 7 N/A
15,545 # L5, A5 — Lg
(5-2-1) 13 — L3, Ag,3-13 4 Ly | oL C 32-50 |7, 11 | [7,2, T]vonas 13
15 # L5, N5,505 — Lg
(5-2-2) 13 — L3, A3,3-13 A Lz | oL C 32.52¢ | 7,13 | N/A
15,5405 # Ls, A5 — Ls
(6-1) 13 4 L3, A3,3A3 — Lz | vL C 30 2,6 [2,w,2] L (6)vol6 15
15, As — L5 [2,w,2] L 3[2,w,2] none
=~ [8, —1 + 4w, 8vol:3
(6-2) 13,343 4 L3, A3 — L3 oL C 320 2,3 [2,w,2] L (9)vol:0 none
15,A5 — L3
(7-1-1) 13 4 L3, A3,3A3 — L3 | oL C 3-50 5,6 [5, =1 + 2w, 6]vol.15 9
15,5-15 — Ls, A5 #~ L3 (5) L 3[2,w,2]vol:5 21
(7-1-2) 13 # L3, A3,303 — Ly | vL C 3-5260 | 6,11 | N/A
15 — L5, A5,5-15 / Ls
(7-2-1) 13,3A3 /» L3, Az — L3 oL C 3%2.50 5, 11 [5,2 4+ w, 11]yol:45 9
15,5-15 — L5, As /+ Ls
(7-2-2) 13,3A3 4 L3, A3 — L3 | oL C 32.520 | 11, 14 | N/A
15 — Ls, A5,5-15 /+ Ls
(8-1-1) 15 4 L3, As,303 — Lg | oL C 3-50 | 2,3 [2,w,2] L (15)vor15 none
15 # Ls, A5,5A5 — Lg
(8-1-2) 13 4 L3, N3,3A3 — Ls | oL C 3:50 2,3 [2,w,2] L (30)vo1:30 15
15,5405 4 Ls, As — Ls [2,w,2] L (15)vol:15 none
(8-2) 13,303 4 L3, Ag — Ly | oL C 3%.50 |2,3 [2,w,2] L (45)vo1.45 35
15 # Ls, A5 — Ls
Table 9. Candidates for m = 15 (Lyol.q means vL = a0).
CaAsE 10. [m =19] Note that
p=2: 1lg — Lo<= 39 — Ly <=5y —» L <= Ty — Lo;
p = 19 : 119 — ng — 19-119 — ng; Alg — ng — 19A19 — ng.

There is no candidate (see Table 10).
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Local condition Volume Ess.# Lattice Exc.#
(1-1) 215 — Ly oL C 190 1,6 |N/A
li9g — Lig, D19 /> Lag
(1-2) 215 4 Lo oL C 22.190 | 1,39 | N/A
119 — Lig, A19 / Lig
(2-1)  2-13 — Ly oL C 196 2,3 | N/A
lig 7 Lig, D19 — Lo
(2-2) 212 4 Lo oL C 2%.190 | 3,13 | N/A
lig 7> Lig, D1g — Lag

Table 10. Candidates for m = 19 (Lvol.c means vL = a0).
CaSE 11. [m = 23] Note that

p:22 lo > Lo <= 35 — Ly <= 59 — Lo <= 79 — Lo
— 2-12,2-32,2~52,2-72 — LQ;

p= 23: log — L23 = 23-15 — L23; A23 — L23 — 23&23 — L23.

There is no candidate (see Table 11).

Local condition Volume Ess.# Lattice Exc.#
(1) loz — Lag, Aoz /> Log vl C 230 1,2 | N/A
(2) 123 7 Loz, Nag — Lag oL C 230 5,7 | 5,2+ w, Tlvol2s 10

Table 11. Candidates for m = 23 (Lyol.a means vL = a0).
CaskE 12. [m = 31] Note that

p:22 lo =5 Lo <= 35 — Lo <= 59 — Lo <= 79 — Lo
- 2'12,2‘32,2'52,2'72 — LQ;

p= 31: ]_31 — L31 - 31'131 — Lgl; Agl — L31 - 31&31 — Lgl.

There is no candidate (see Table 12).

Local condition Volume Ess.# Lattice Exc.#
(1) 11 — Ls1, Asg1 7+ Lay oL C 310 1,2 | N/A
(2) 131 4 L31, AN31 — L3y vl C 310 3,6 N/A

Table 12. Candidates for m = 31 (Lyol.q means vL = a0).
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5. Proofs for binary regular Hermitian lattices.

From the previous section 4, we get the 43 candidates for binary normal
regular Hermitian lattices L over all imaginary quadratic fields Q(v/—m). Among
the candidates, the class numbers of the following 13 Hermitian lattices are one,
so their regularity follows.

Qhﬁ4%<L®,< 2 —1+w07( 3 —1+wﬁyc;j

-14+w 3 -1+w 6 L3
Q000 () 2 () ()

QW) ( ’ “’7)

w7 3

We confirm that all the remaining 30 candidates are actually regular. Since
the regularity of all candidates are proved by a lot of computation, it is too long
to be described here. The proofs for (1,36) over Q(v/—3) and (2%) L 3(2%)
over Q(+/—15) are typical and the proofs for the other candidates are quite sim-
ilar except (1,14) over Q(v/—7). Since all ternary sublattices of the associated
quadratic form of (1,14) have big class numbers, the proof for (1,14) is impreg-
nable against known methods. So we develop a new arithmetic method utilizing
ternary sublattices of class number bigger than one. So we provide three kinds of
proofs as follow.

PRrROOF FOR L = (1,36) OVvER Q(v/—3). Note that
H(genL)={ne€e Z|n=0,1,3 (mod 4) and n=0,1 (mod 3)}.

The lattices (1,9) and (1,12) are regular. In fact, (1,9) represents all positive
integers n = 0,1,3,4,7 (mod 9) and (1,12) represents all positive integers n =
0,1,3,4,7,9 (mod 12). Since L contains sublattices (4, 36) = 4(1,9) and (3,36) =
3(1,12), L represents all positive integers n such that n =0 (mod 4) and n =0, 1
(mod 3), or n = 0 (mod 3) and n = 1 (mod 2). So it suffices to show that L
represents all positive integers n such that n is odd and n = 1 (mod 3). The
quadratic lattice associated with L is

T + 36yy = :ch + 2129 + x% + 36yf + 36y1y2 + 36y§

and it contains a sublattice isometric to (1,3,36,108)z = (1)z L 3(1,12,36)z.
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Since (1,12, 36) z is regular [11], 3(1, 12, 36) z = (3, 36, 108) z represents all positive
integers n = 3,12 (mod 36). If n = 1 (mod 12) and n > 49, then n — a® = 12
(mod 36) for a = 1,5,7 and hence L represents n. If n =7 (mod 12) and n > 64,
then n —a? = 3 (mod 36) for a = 2, 4,8 and hence L represents n. We check that
n— Lforn=1,7,13,19,25,31,37,43,49, 55 by direct computation. Therefore L
is regular. O

PROOF FOR L = (1,14) OVER Q(+/—T7). Note that
H(genL)={n € Ny |n=0,1,2,4 (mod 7)}.

Since 7(1,2) = (7,14) is a sublattice of L and (1,2) is universal [6], n — L for all
positive integers n =0 (mod 7). So we may assume n = 1,2,4 (mod 7).
The quadratic lattice L associated with L is

1 1/2 14 7

2 2 2 2

T+ 129 + 225 + 14y7 + 14 + 28y, = 1 .
1 122 2 Y1 Y1Yy2 Ys (1/2 9 )Z <7 28)2

Note that (1,7)z and (2,14) z are sublattices of (1}2 1é2 ) -
(i) n =0 (mod 2): Consider a ternary quadratic lattice K = (2)z L (}}), whose

class number is one [1]. Then, k — K if 71 k. Note that L has a sublattice

(2,14) 7 L (174 278>z =(2)z J_7<<2>Z 1 (i DZ> =(2)z LK".

Suppose n > 72. Then n — (2)z L K7 from the following identities.

2.22 472k if 71k
n=1 (mod7)=n=14k+8=

2-52+7-2(k—-3) ifT7|k

2-124+7-2k if 71k
n=2 (mod7)=n=114k+2=

2:62+7-2(k—5) ifT7|k

2.3247.20k—1) iTt(k—1)
n=4 (mod7)=n=14k+4=

2.4247.2(—2) i#7|(k—1)

(i) n =1 (mod 4): Consider a ternary quadratic lattice N = (1)z L (3 }),. The
class number of N is two [1] and k — gen N if 71 k. Since N3 is isotropic over Zs,
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4k — N if 71k [8]. Note that L has a sublattice

1zt (3 278)2 ~wz 17(wz L (2 i)z) 1)z L NT.

Suppose n > 169. Then n — (1)z L N7 from the following identities.

12+ 74k if 74k
n=1 (mod7)=n=28k+1=

132+7-4k—6) if7|k

32+ 74k if 74k
n=2 (mod7)=n=28k+9=

112+7-4k—4) if7|k
52 + 7 -4k if 71k

n=4 (mod7)=n=28k+25=
92 +7-4(k—-2) if7|k

(iii) n = 3 (mod 8): Consider a ternary quadratic lattice M = (11)z L (3]) .
The class number of M is five [1] and k — gen M if 7 k. Since M5 is isotropic
over Zy, 4*k — M if 71k [8]. Note that L has a sublattice

(11,77 7z L (174 278> =(11)z L 7<<ll)z 1 (i D Z> =(11)z L M".

zZ

There are a € {1,3,5} and 0 < b < 43 — 1 such that n = 11a® (mod 7) and
n = 11(a + 14b)? (mod 4*). Put

n—11(a + 14b)>

k= -1 and
—11(a + 14b — 7-27)?
=" (a+7 = )k 11(a+ 14b) 4+ 11-7-25,

Then k and ¢ are positive integers if n > 11(7 - 27)2 = 8,830,976. Note that not
both k and ¢ are divisible by 7. Thus n — (11)z L M7, since

11(a + 14b)2 + 7 - 4%k if 71k,
n =
11(a+14b—7-27)2+7-4% if 7| k.

(iv) n = 7 (mod 8): Consider a ternary quadratic lattice R = (3}), L (23)z.
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Then L contains (23,161)7 L (% J%s) 5z = (23)z L R". The class number of R is
nine and k — gen R if 71 k. The genus of R consists of nine lattices [1]

2 1 41
R1=R=< ) L (23)s, Re=(1,7,23)7, 33:( ) L (7).
1 4/ ¢ 16/,
5 1 - 31 1
R4=( )i<7>z, Rs=( )l<7>z, Re=|14 0],
112/, 18),
1015
11 2 di 14 7
R7=<1>zL( ) : Rs=114 0] , R9=<1>ZL< ) .
2 1572 10 11 715z

Let fr, be the quadratic form corresponding to R;. Then

fr(z,y, 2) = 22 4 2xy + 4y + 2322

From the following identities 4"k — R if 71 k:

frR(dy, —x —y,22) = 4fR, (2,9, 2),

fr(8z, —4x —y — 22,2y) = 4> fr, (2,9, 2),

fr(16y, —2x — 8y — 4z,4x) = 43 fr, (z,y, 2),

fr(16y, 52 — 4y — 62,22 + 42) = 43 fp_(2,y, 2),

fr(16y 4 322,10z + Ty — 20z, 42 — 2y + 82) = 4* f, (2, v, 2),

fr(
(
(

fr(48z — 64y — 322, —4Tx — 28y + 662, 182 + 8y + 362) = 4° fr. (2,9, 2),

162 — 16y + 64z, Tz + 33y — 402, —2x + 18y + 162) = 4° fg, (2,9, 2),

fr(48x — 240y — 304z, —4Tx + 123y — 652,18z + 70y + 142) = 47 fr, (2, ¥, 2).

There are a € {1,3,5} and 0 < b < 45 — 1 = 4095 such that n = 23a% (mod 7)
and n = 23(a + 14b)? (mod 47). Put

n — 23(a + 14b)?
747
n—23(a + 14b — 7. 47)?
747

k:

and

E:

=k—23-2(a+ 14b) +23-7-4".
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Then k and ¢ are positive integers if n > 23(7 - 214)2 = 302,526, 758,912. Note
that not both k and ¢ are divisible by 7. Thus n — (23)z L R", since

23(a+14b)%2 +7-47k if 71k
n =
23(a+14b—7-41)2 +7-470 if 7| k.

We check that n — L for all n < 302,526,758,912 such that n = 1,2,4
(mod 7) by direct computation. Therefore L is regular. O

PROOF FOR L = (2%) L 3(2%) ovEr Q(v/—15). Note that
H(genL) ={n € Ny |n=0,2 (mod 3)}.

Since 3 — (2%),3((1) L (2¢)) is a sublattice of L. Since the lattice (1) L (2%)
is universal [9], L represents all positive integers n = 0 (mod 3). Suppose n = 2
(mod 3). If n = ny + ny such that ny — (1) and ng — (2%), then we have
ny = 0,1 (mod 3) and ny = 0,2 (mod 3). Since n =2 (mod 3), ny =0 (mod 3).
Then ny = (z1 + zow)(z1 + zow) has an integral solution with z7 = 2o (mod 3).
Since ny = 6aa@+3waB+3waB+688 with a = (z1—y1)/3 and 3 = — (1 +272)/3,
ny — 3(2%) and L is regular. O
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