©2011 The Mathematical Society of Japan J. Math. Soc. Japan Vol. 63, No. 3 (2011) pp. 819–836 doi: 10.2969/jmsj/06330819

Invariant means on bounded vector-valued functions

Dedicated to the late Respectable Professor Sen-Yen Shaw

By Yuan-Chuan LI

(Received Sep. 30, 2008) (Revised Mar. 4, 2010)

Abstract. Shioji and Takahashi proved that for every bounded sequence $\{a_n\}_{n=0}^{\infty}$ of real numbers,

$$\begin{split} \left\{ \phi(\{a_n\}_{n=0}^{\infty}) \mid \phi \text{ is a Banach limit} \right\} \\ &= \bigcap_{j=1}^{\infty} \overline{\operatorname{co}} \left\{ (n+1)^{-1} \sum_{k=0}^{n} a_{k+m} \mid n \ge j, m \ge 0 \right\} \end{split}$$

We generalize this result to bounded sequences of vectors and also apply it to bounded measurable functions.

1. Introduction.

Let X be a Banach space over the complex field C and $f:[0,\infty) \to X$ be a locally integrable function. It is well-known that the existence of the Cesáro limit $y := \lim_{t\to\infty} t^{-1} \int_0^t f(s) ds$ implies that the Abel limit $\lim_{\lambda\downarrow 0} \lambda \int_0^\infty e^{-\lambda t} f(t) dt$ also exists and equals y. In general, the existence of the Abel limit does not guarantee the existence of the Cesáro limit (cf. [4, p. 8] and [10]). The discrete case has similar result, too. We ask what will happen if one of these two limits does not exsist.

We denote the dual space of X by X^* , the algebra of all bounded (linear) operators on X by B(X), and $x^*(x)$ by $\langle x, x^* \rangle$ for $x \in X$ and $x^* \in X^*$. For a normed algebra **A** with the identity **1**, we denote by $D(\mathbf{1}, \mathbf{A})$ the state which is the set:

$$D(\mathbf{1}, \mathbf{A}) := \{ F \in \mathbf{A}^* \mid ||F|| = F(\mathbf{1}) = 1 \}.$$

The (algebra) numerical range [1], [2] of an element $a \in \mathbf{A}$ is defined as the

²⁰⁰⁰ Mathematics Subject Classification. Primary 40G05, 47A35; Secondary 40E05.

Key Words and Phrases. Cesáro limit, Abel limit, mean, Banach limit, σ -limit, weakly almost convergent, strongly almost convergent, ergodic net, semi-ergodic net.

This research is supported in part by the National Science Council of Taiwan.

nonempty compact convex set

$$V(a) := \{ \phi(a) \mid \phi \in D(\mathbf{1}, \mathbf{A}) \}.$$

If L is a closed linear operator in A with $L\mathbf{1} = \mathbf{1}$, we define $\pi_L := \{\phi \in D(\mathbf{1}, \mathbf{A}) \mid L^*\phi = \phi\}$ [7] and

$$\pi_L(a) := \{ \phi(a) \mid \phi \in \pi_L \} \quad \text{for } a \in \mathbf{A}.$$

An element ϕ of $D(\mathbf{1}, \mathbf{A})$ is said to be a *mean* (cf. [6]) and $\phi \in \pi_L$ is said to be an *invariant mean* under L^* . If $\sigma : \ell^{\infty} \to \ell^{\infty}$ is the operator $\sigma(\{a_n\}_{n=0}^{\infty}) := \{a_{n+1}\}_{n=0}^{\infty}$, then π_{σ} = the set of all Banach limits. Here ℓ^{∞} is the space of all bounded sequences in C.

In 1948, Lorentz [13] first studied Banach limits and defined the so-called σ -limits for bounded sequences in ℓ^{∞} as following:

$$\sigma\text{-}\lim a_n := a$$

if for $\{a_n\}_{n=0}^{\infty} \in \ell^{\infty}$, $\phi(\{a_n\}_{n=0}^{\infty}) = a$ for all Banach limits ϕ . Lorentz also showed that σ -lim $a_n := a$ if and only if $\{a_n\}_{n=0}^{\infty}$ is almost convergence, i.e.,

$$\lim_{n \to \infty} \frac{1}{n+1} \sum_{k=0}^{n} a_{k+m} = a \quad \text{uniformly on } m \ge 0.$$

For related results of almost convergence, we refer to [3], [5], [12], [14], [15], [16], [17], [18], [19], [20].

Recently, Naoki Shioji and Wataru Takahashi [23] proved that for every bounded sequence $\{a_n\}_{n=0}^{\infty}$ of real numbers and a real number α , $\phi(\{a_n\}_{n=0}^{\infty}) \leq \alpha$ for all Banach limits ϕ if and only if for every $\varepsilon > 0$ there is an integer $n_0 \geq 1$ such that

$$(n+1)^{-1}\sum_{k=0}^{n}a_{k+m} \leq \alpha + \varepsilon$$
 for all $n \geq n_0$ and $m \geq 0$.

In fact, their result implies that for any bounded sequence $\{a_n\}_{n=0}^{\infty}$ of real numbers,

$$\pi_{\sigma}(\{a_n\}_{n=0}^{\infty}) = \bigcap_{j=1}^{\infty} \overline{\operatorname{co}} \left\{ (n+1)^{-1} \sum_{k=0}^{n} a_{k+m} \mid n \ge j, m \ge 0 \right\}.$$

We ask what will happen if the sequence is an arbitrary bounded sequence of vectors in a Banach space X.

In Section 2, we shall give some necessary results. For example, we prove a result (Corollary 2.5) that for a mapping f from a set Ω to a Banach space X, the range of f is relatively weak compact if and only if for any $\phi \in \mathbf{A}^*$ there is a $z \in X$ such that

$$\phi(\langle f(\cdot), x^* \rangle) = \langle z, x^* \rangle \quad \text{for all } x^* \in X^*.$$

In Section 3, we show two general theorems. One of them is a result (Theorem 3.2) that under some conditions, if the range of $f \in \mathbf{A}(X)$ is relatively weak compact, then

$$\Phi_f(\pi_L) = \bigcap_{\alpha} \overline{\operatorname{co}}(S_{\alpha}f)(\Omega) = \bigcap_{\alpha} \overline{\operatorname{co}}\bigg[\bigcup_{\beta \ge \alpha} (S_{\beta}f)(\Omega)\bigg].$$

In section 4, we show a result (Theorem 4.1) that if $f \in L^{\infty}([0,\infty), X)$ satisfies that $f[0,\infty)$ is relatively weak compact, then

$$\begin{split} &\bigcap_{t>0} \overline{\operatorname{co}} \left\{ s^{-1} \int_0^s f(r+u) dr \mid s \ge t, u \ge 0 \right\} \\ &= \bigcap_{t>0} \overline{\operatorname{co}} \left\{ t^{-1} \int_0^t f(r+u) dr \mid u \ge 0 \right\} \\ &= \bigcap_{\lambda>0} \overline{\operatorname{co}} \left\{ \lambda \int_0^\infty e^{-\lambda t} f(t+s) dt \mid s \ge 0 \right\} \\ &= \bigcap_{\lambda>0} \overline{\operatorname{co}} \left\{ \mu \int_0^\infty e^{-\mu t} f(t+s) dt \mid 0 < \mu < \lambda, s \ge 0 \right\}. \end{split}$$

In Section 5, we prove that if $\{x_n\}_{n=0}^{\infty}$ is a bounded sequence in a Banach space X such that the trace $\{x_n \mid n \ge 0\}$ is relatively weak compact, then

$$\bigcap_{n\geq 1} \overline{\operatorname{co}} \left\{ \frac{1}{j+1} \sum_{k=0}^{j} x_{k+m} \mid j \geq n, m \geq 0 \right\}$$
$$= \bigcap_{n\geq 1} \overline{\operatorname{co}} \left\{ \frac{1}{n+1} \sum_{k=0}^{n} x_{k+m} \mid m \geq 0 \right\}$$

$$= \bigcap_{r>0} \overline{co} \left\{ (1 - e^{-r}) \sum_{k=0}^{\infty} e^{-kr} x_{k+m} \mid m \ge 0 \right\}$$
$$= \bigcap_{r>0} \overline{co} \left\{ (1 - e^{-s}) \sum_{k=0}^{\infty} e^{-ks} x_{k+m} \mid 0 < s < r, m \ge 0 \right\}.$$

2. Preliminaries.

To do our work, we need the following definitions and some basic results.

DEFINITION 2.1. Let A be a closed linear operator in X. A net $\{A_{\alpha}\}$ of bounded operators on X is called an A-semi-ergodic net if it satisfies the following conditions:

- (Ea) There is an M > 0 such that $||A_{\alpha}|| \leq M$ for all α ;
- (Eb) $N(A) \subset N(A_{\alpha} I)$ and $R(A_{\alpha} I) \subset R(A)$ for all α , where N(A) is the null space of A and R(A) the range of A;
- (Ec) $R(A_{\alpha}) \subset D(A)$ for all α and $s-\lim_{\alpha} A_{\alpha}Ax = 0$ for all $x \in D(A)$.

 $\{A_{\alpha}\}$ is called an *A*-ergodic net [7], [21], [22] if it is an *A*-semi-ergodic net and satisfies

$$w - \lim_{\alpha} AA_{\alpha}x = 0$$
 for all $x \in X$.

The A-ergodic net $\{A_{\alpha}\}$ is said to be *contractive* if M = 1.

EXAMPLE 1. Let $S: [0, \infty) \to B(Y)$ be an integrated semigroup (cf. [8]) with generator A, where Y is a Banach space. Suppose $||S(t+h) - S(t)|| \le h$ for all $t, h \ge 0$. Thus $||S(t)|| \le t$ for all $t \ge 0$. Let $A_t := t^{-1}S(t), t > 0$ and let the resolvent operators of $S(\cdot)$ defined by $R(\lambda)f := \lambda^2 \int_0^\infty e^{-\lambda t}S(t)fdt$ for $f \in Y$ and $\lambda > 0$. (For instance, if $Y = L^\infty([0,\infty), X)$, we can take [S(t)f](s) := $\int_0^t [T(r)f](s)dr$ for all $t, s \ge 0$ and $f \in L^\infty([0,\infty), Y)$, where $T(\cdot)$ is the translation semigroup on $L^\infty([0,\infty), Y)$.) Then we have [8], [9]

$$S(t)f - tf = A \int_0^t S(r)f dr \text{ for all } t \ge 0 \text{ and } f \in Y$$
$$= \int_0^t S(r)Af dr \text{ for all } t \ge 0 \text{ and } f \in D(A).$$

It follows from the assumption on $S(\cdot)$ that we have $||A_t|| \leq 1$ for all t > 0and $||R(\lambda)|| \leq 1$ for all $\lambda > 0$. Therefore both $\{A_t\}_{t>0}$ and $\{R(\lambda)\}_{\lambda>0}$ satisfy

(Ea). And for every $f \in D(A)$, $||S'(t)f|| \le ||f||_{\infty}$ and S'(t)f - f = S(t)Af. This implies

$$||A_t|| \leq 1$$
 for all $t > 0$

and

$$||A_t A f|| = ||t^{-1} S(t) A f|| = t^{-1} ||S'(t) f - f|| \le t^{-1} ||f|| \to 0 \text{ as } t \to \infty.$$

So, $\{A_t\}_{t>0}(t \to \infty)$ satisfies (Ec). Next, integrating by parts, we have that for every $f \in D(A)$ and $\lambda > 0$,

$$R(\lambda)Af = \lambda^3 \int_0^\infty e^{-\lambda t} \left[\int_0^t S(r)Afdr \right] dt$$
$$= \lambda^3 \int_0^\infty e^{-\lambda t} [S(t)f - tf] dt$$
$$= \lambda R(\lambda)f - \lambda f \to 0 \text{ as } \lambda \downarrow 0.$$

So, the $R(\lambda)(\lambda \downarrow 0)$ satisfies (Ec).

Finally, if $f \in N(A)$, the null space of A, then $0 = \int_0^t S(r)Afdr = S(t)f - tf$. So, we have $A_t f = f$ for all t > 0 and

$$R(\lambda)f = \lambda^2 \int_0^\infty e^{-\lambda t} S(t) f dt = \lambda^2 \int_0^\infty e^{-\lambda t} t f dt = f.$$

On the other hand, we have that for every $f \in Y$, $A_t f - f = t^{-1} A \int_0^t S(r) f dr \in R(A)$ and the closedness of A implies

$$\begin{split} R(\lambda)f - f &= \lambda^2 \int_0^\infty e^{-\lambda t} [S(t)f - tf] dt \\ &= \lambda^2 \int_0^\infty e^{-\lambda t} A \bigg[\int_0^t S(r) f dr \bigg] dt \\ &= \lambda^2 A \int_0^\infty e^{-\lambda t} \bigg[\int_0^t S(r) f dr \bigg] dt \in D(A). \end{split}$$

Therefore both $\{A_t\}_{t>0}(t \to \infty)$ and $\{R(\lambda)\}_{\lambda>0}(\lambda \downarrow 0)$ satisfy (Eb) and then they are all A-semi-ergodic nets on Y.

LEMMA 2.2. Let \mathbf{A} be a complex unital normed algebra and let L be a closed linear operator on \mathbf{A} with $L\mathbf{1} = \mathbf{1}$. Suppose that $\{A_{\alpha}\}$ is a contractive (L - I)semi-ergodic net on \mathbf{A} .

- (i) If $\phi_{\alpha} \in D(\mathbf{1}, \mathbf{A})$ for all α and ψ is a weakly^{*} limiting point of $\{A_{\alpha}^* \phi_{\alpha}\}$, then $\psi \in \pi_L$.
- (ii) If $\phi \in \pi_L$, then $A^*_{\alpha}\phi = \phi$ for all α .

PROOF. Since $L\mathbf{1} = \mathbf{1}$, it is immediate that (ii) follows from the second part of (Eb). We show (i). The assumption $||A_{\alpha}|| \leq 1$ and Alaoglu's theorem imply that there is a weakly* convergent subnet $\{A_{\beta}^*\phi\}$ of $\{A_{\alpha}^*\phi\}$ such that $\psi = w^*$ - $\lim_{\beta} A_{\beta}^*\phi$ and $||\psi|| \leq 1$ for some $\psi \in \mathbf{A}^*$. Since $(L-I)\mathbf{1} = 0$, the first part of (Eb) implies $A_{\alpha}\mathbf{1} = \mathbf{1}$ for all α . Therefore, we have

$$egin{aligned} \psi(\mathbf{1}) - 1 &| = \lim_eta \left| A^*_eta \phi_eta(\mathbf{1}) - \phi_eta(\mathbf{1})
ight| \ &= \lim_eta \left| \phi(A_eta \mathbf{1} - \mathbf{1})
ight| = 0 \end{aligned}$$

and hence $\psi \in D(\mathbf{1}, \mathbf{A})$. Since $\{A_{\alpha}\}$ is an (L - I)-semi-ergodic net, by (Ec) we have $\lim_{\alpha} A_{\alpha}(L - I)a = 0$ for all $a \in D(L)$. It follows that

$$\begin{aligned} |\psi(La-a)| &= \lim_{\beta} \left| A_{\beta}^* \phi(La-a) \right| = \lim_{\beta} \left| \phi_{\beta}(A_{\beta}(La-a)) \right| \\ &\leq \limsup_{\beta} \left\| A_{\beta}(La-a) \right\| = 0 \end{aligned}$$

for all $a \in D(L)$. This means $\psi \in \pi_L$ and then (i) holds. The proof is complete.

Lemma 2.2(i) shows that π_L can not be empty. Since $D(\mathbf{1}, \mathbf{A})$ is weakly^{*} compact and convex, it is easy to see from the definition of π_L that π_L is also weakly^{*} compact and convex.

LEMMA 2.3. Let $T: X \to Y$ be a bounded linear operator, where X and Y are two Banach spaces.

- (a) If F is a nonempty subset of X, then $T(\overline{co}F) \subset \overline{T(coF)}$. If, in addition, $\overline{co}F$ is weakly compact, then $T(\overline{co}F) = \overline{T(coF)}$.
- (b) If $\{F_{\alpha}\}$ is a decreasing net of nonempty weakly compact sets in X and $F := \bigcap_{\alpha} F_{\alpha}$, then $TF = \bigcap_{\alpha} TF_{\alpha}$.
- (c) If $\{F_{\alpha}\}$ is a decreasing net of nonempty compact sets in X and $F = \bigcap_{\alpha} F_{\alpha}$, then

$$\lim_{\alpha} \sup_{x \in F_{\alpha}} \operatorname{dist}(F, x) = 0,$$

where $dist(K, x) = \inf\{||y - x|| \mid y \in K\}$ for $\emptyset \neq K \subset X$. In particular, if $F = \{x\}$, then $\lim_{\alpha} dist(F_{\alpha}, x) = 0$

PROOF. (a) Since T is continuous, $T(\overline{co}F) \subset T(coF)$ is immediate. Now, suppose that $\overline{co}F$ is weakly compact. Since T is a bounded linear operator, T is weakly continuous. This implies that $T(\overline{co}F)$ is weakly compact and so $T(\overline{co}F)$ is closed. Since

$$T(\mathrm{co}F) \subset T(\overline{\mathrm{co}}F) \subset \overline{T(\mathrm{co}F)},$$

we must have that $T(\overline{\operatorname{co}}F) = \overline{T(\operatorname{co}F)}$. This proves (a).

(b) Since $\{F_{\alpha}\}$ is a decreasing net of weakly compact sets in $X, F \subset F_{\alpha}$ for all α . So, we have $TF \subset \bigcap_{\alpha} TF_{\alpha}$. Conversely, put a $y \in \bigcap_{\alpha} TF_{\alpha}$ and fix an arbitrary α_0 . Then for every α there is an $x_{\alpha} \in F_{\alpha}$ such that $y = Tx_{\alpha}$. Since $x_{\alpha} \in F_{\alpha_0}$ for all $\alpha \geq \alpha_0$ and F_{α_0} is weakly compact, $\{x_{\alpha}\}$ has a weakly convergent subnet $\{x_{\beta}\}$ which is independent of the choice of α_0 , say $x := w - \lim_{\beta} x_{\beta}$. Since for every $\alpha \geq \alpha_0, F_{\alpha}$ is weakly compact and $x_{\beta} \in F_{\alpha_0}$ for all $\beta \geq \alpha_0$, we must have $x \in F_{\alpha_0}$. Since the choice of α_0 is arbitrary, we must have $x \in F$. Since T is weakly continuous, this also implies

$$y = \lim_{\beta} Tx_{\beta} = Tw \cdot \lim_{\beta} x_{\beta} = Tx \in TF.$$

Therefore $\bigcap_{\alpha} TF_{\alpha} \subset TF$ and hence the equality holds. This proves (b).

(c) Clearly, the $\sup_{x \in F_{\alpha}} \operatorname{dist}(F, x)$ decrease. Fix an arbitrary α_0 . Suppose that there is a positive number $\varepsilon > 0$ such that

$$\lim_{\alpha} \sup_{x \in F_{\alpha}} \operatorname{dist}(F, x) > \varepsilon.$$

Then for every $\alpha \geq \alpha_0$ there is an $x_{\alpha} \in F_{\alpha}$ such that $\operatorname{dist}(F, x_{\alpha}) > \varepsilon$. Since F_{α_0} is compact and F_{α} decrease, $\{x_{\alpha}\}$ has a convergent subnet $\{x_{\beta}\}$ in F_{α_0} . Say $y = \lim_{\beta} x_{\beta}$. Thus we have $y \in F_{\alpha_0}$. Since α_0 is arbitrary, this implies

$$y \in \bigcap_{\alpha} F_{\alpha} = F.$$

Therefore

$$0 = \operatorname{dist}(F, y) = \lim_{\beta} \operatorname{dist}(F, x_{\beta}) \ge \varepsilon.$$

This is impossible and the proof is complete.

Now, we consider a unital normed algebra **A** consisting of bounded functions from a nonempty set Ω to **C** equipped with the sup-norm $\|\cdot\|_{\infty}$. Define

$$\mathbf{A}(X) := \{ f : \Omega \to X \mid \langle f(\cdot), x^* \rangle \in \mathbf{A} \text{ for all } x^* \in X^* \},\$$

where X^* is the dual space of X. Let $f \in \mathbf{A}(X)$. Then for any $\phi \in D(\mathbf{1}, \mathbf{A})$, there is an $x^{**} \in X^{**} = (X^*)^*$ such that

$$\phi(\langle f(\cdot), x^* \rangle) = \langle x^*, x^{**} \rangle \ \text{ for all } x^* \in X^*.$$

In general, such x^{**} may not be in X, where X is considered as the canonical subspace of X^{**} .

LEMMA 2.4. Let $f \in \mathbf{A}(X)$.

(a) If $\phi \in \mathbf{A}^*$ and the range $f(\Omega)$ of f is relatively weak compact in X, then there is a vector $z \in X$ such that

$$\phi(\langle f(\cdot), x^* \rangle) = \langle z, x^* \rangle \text{ for all } x^* \in X^*.$$

In particular, $||z|| \leq ||\phi|| \cdot ||f||_{\infty}$, where $||f||_{\infty} := \sup_{w \in \Omega} ||f(w)||$. Such z is unique and will be denoted by $\Phi_f(\phi)$.

(b) Suppose that for every $\phi \in \mathbf{A}^*$, there is an $\Phi_f(\phi) \in X$ such that

$$\phi(\langle f(\cdot), x^* \rangle) = \langle \Phi_f(\phi), x^* \rangle \quad \text{for all } x^* \in X^* \tag{1}$$

Then $\Phi_f(D(\mathbf{1}, \mathbf{A})) = \overline{\operatorname{co}} f(\Omega).$

PROOF. (a) Let the range $f(\Omega)$ of $f \in \mathbf{A}(X)$ be relatively weak compact in X. By Theorem 31.1 of [2], we have $\mathbf{A}^* =$ the linear span of $D(\mathbf{1}, \mathbf{A})$. Such mean case was shown by Kido and Takahashi [6] for another situation. We show the mean case by applying Kido and Takahashi's method as following. Assume ϕ is a mean on \mathbf{A} . Then there is some $h \in X^{**}$ such that

$$\phi(\langle f(\cdot), x^* \rangle) = \langle x^*, h \rangle$$
 for all $x^* \in X^*$.

Since $f(\Omega)$ is relatively weak compact, $\overline{co}f(\Omega)$ is a weakly compact subset of X, and so the strong and weak closed subset $\overline{co}f(\Omega)$ is also a weakly compact subset of X. This subset of X can also be written as $\sigma(X^{**}, X^*)$ -cloo $f(\Omega)$ when it is

considered as a subset of X^{**} . We show that $h \in \sigma(X^{**}, X^*)$ -clco $f(\Omega)$. If it is not, then by the Hahn-Banach separation theorem and the property of a mean, there would exist an $x^* \in X^*$ such that

$$\begin{aligned} \operatorname{Re}h(x^*) &< \inf \operatorname{Re}\left\{ \langle x^*, x^{**} \rangle \mid x^{**} \in \sigma(X^{**}, X^*) \text{-}\operatorname{clco}f(\Omega) \right\} \\ &= \inf \operatorname{Re}\left\{ \langle f(s), x^* \rangle; s \in \Omega \right\} \\ &\leq \operatorname{Re}\phi(\langle f(\cdot), x^* \rangle) = \operatorname{Re}h(x^*). \end{aligned}$$

This is a contradiction. Therefore $h \in \overline{\operatorname{co}} f(\Omega)$ and this proves the existence of z. Since $z \in X$ satisfies that

$$\phi(\langle f(\cdot), x^* \rangle) = \langle z, x^* \rangle$$
 for all $x^* \in X^*$,

it is clear that such z is unique by the Hahn-Banach separation theorem and

$$\begin{aligned} \|z\| &= \sup \left\{ |\phi(\langle f(\cdot), x^* \rangle)| \mid x^* \in X^*, \|x^*\| \le 1 \right\} \\ &= \|\phi\| \cdot \sup \left\{ |\langle f(w), x^* \rangle| \mid w \in \Omega, x^* \in X^*, \|x^*\| \le 1 \right\} \\ &\le \|\phi\| \cdot \|f\|_{\infty}. \end{aligned}$$

This proves (a).

(b) Clearly, Φ_f is linear. Since $D(\mathbf{1}, \mathbf{A})$ is weakly^{*} compact and convex in \mathbf{A}^* , $\Phi_f(D(\mathbf{1}, \mathbf{A}))$ is closed and convex. If for $w \in \Omega$, $\delta_w \in \mathbf{A}^*$ is defined by

$$\delta_w(h) := h(w)$$
 for all $h \in \mathbf{A}$,

then $\delta_w \in D(\mathbf{1}, \mathbf{A})$ and

$$\langle \Phi_f(\delta_w), x^* \rangle = \delta_w(\langle f(\cdot), x^* \rangle) = \langle f(w), x^* \rangle$$

for all $x^* \in X^*$. Therefore $f(w) = \Phi_f(\delta_w)$ and so $\overline{\operatorname{co}} f(\Omega) \subset \Phi_f(D(\mathbf{1}, \mathbf{A}))$.

Conversely, suppose $\phi \in D(\mathbf{1}, \mathbf{A})$ and $\Phi_f(\phi) \notin \overline{\operatorname{co}} f(\Omega)$. By the Hahn-Banach separation theorem, there is an $x^* \in X^*$ such that

$$\begin{split} \sup_{w \in \Omega} \operatorname{Re} \langle f(w), x^* \rangle &< \operatorname{Re} \langle \Phi_f(\phi), x^* \rangle \\ &= \operatorname{Re} \phi(\langle f(\cdot), x^* \rangle) \\ &\leq \sup_{w \in \Omega} \operatorname{Re} \langle f(w), x^* \rangle \end{split}$$

This is a contradiction and so $\Phi_f(\phi) = \overline{\operatorname{co}} f(\Omega)$.

From Lemma 2.4, we see that if $f \in \mathbf{A}(X)$ satisfies (1), then $\Phi_f : \mathbf{A}^* \to X$ is a bounded linear operator and $\|\Phi_f\| \leq \|f\|_{\infty}$.

COROLLARY 2.5. Let $f \in \mathbf{A}(X)$. Then f satisfies (1) if and only if $f(\Omega)$ is relatively weak compact.

PROOF. "If" part. follows from Lemma 2.4(a).

We prove "Only if" part. Suppose f satisfies (1). By Lemma 2.4, it suffices to show that $\Phi_f(D(\mathbf{1}, \mathbf{A}))$ is weakly compact. Let $\{z_\alpha\}$ be an arbitrary net in $\Phi_f(D(\mathbf{1}, \mathbf{A}))$. Then we have that for every α , there is an $\phi_\alpha \in D(\mathbf{1}, \mathbf{A})$ such that

$$\phi_{\alpha}(\langle f(\cdot), x^* \rangle) = \langle z_{\alpha}, x^* \rangle$$
 for all $x^* \in X^*$.

Since $D(\mathbf{1}, \mathbf{A})$ is weakly^{*} compact, $\{\phi_{\alpha}\}$ has a weakly^{*} convergent subnet $\{\phi_{\beta}\}$. Say, $\{\phi_{\beta}\}$ converges to ψ weakly^{*}. Then we have $\psi \in D(\mathbf{1}, \mathbf{A})$ and there is a unique $z \in \Phi_f(D(\mathbf{1}, \mathbf{A}))$ by the assumption of (1) such that

$$\psi(\langle f(\cdot), x^* \rangle) = \langle z, x^* \rangle$$
 for all $x^* \in X^*$.

Therefore we have for every $x^* \in X^*$,

$$egin{aligned} &\langle z,x^*
angle &=\psi(\langle f(\cdot),x^*
angle) \ &=\lim_eta\phi_eta(\langle f(\cdot),x^*
angle) \ &=\lim_eta\langle z_eta,x^*
angle. \end{aligned}$$

This proves that the subnet $\{z_{\beta}\}$ of $\{z_{\alpha}\}$ converges weakly to z and so $\Phi_f(D(\mathbf{1}, \mathbf{A}))$ is weakly compact.

DEFINITION 2.6. Let T and S be two bounded linear operators in \mathbf{A} and $\mathbf{A}(X)$, respectively. Then (T, S) is said to be a *corresponding pair* in $(\mathbf{A}, \mathbf{A}(X))$ if for every $f \in \mathbf{A}(X)$ and for all $x^* \in X^*$,

$$T\langle f(\cdot), x^* \rangle = \langle (Sf)(\cdot), x^* \rangle$$
 for all $x^* \in X^*$.

The following lemma is immediately from Definition 2.6 and (1).

LEMMA 2.7. Let $f \in \mathbf{A}(X)$ satisfy (1).

- (a) If S is a bounded linear operator on $\mathbf{A}(X)$, then Sf also satisfy (1).
- (b) Let T and S be two bounded linear operators on A and A(X), respectively. If (T, S) is a corresponding pair, then

$$\Phi_f(T^*\phi) = \Phi_{Sf}(\phi) \text{ for all } \phi \in \mathbf{A}^*.$$

3. General results.

We show the following main theorems.

THEOREM 3.1. Let \mathbf{A} be a complex normed algebra with identity $\mathbf{1}$ and let L be a closed linear operator on \mathbf{A} with $L\mathbf{1} = \mathbf{1}$. Suppose that $\{A_{\alpha}\}$ is a contractive (L-I)-semi-ergodic net on \mathbf{A} . If $a \in \mathbf{A}$, then

$$\pi_L(a) = \bigcap_{\alpha} V(A_{\alpha}a) = \bigcap_{\alpha} \overline{\operatorname{co}}\bigg(\bigcup_{\beta \ge \alpha} V(A_{\beta}a)\bigg).$$

PROOF. Since $||A_{\alpha}a|| \leq ||a||$ for all α , it follows from the definition of numerical range that $V(A_{\alpha}a) \subset \{x \in \mathbb{C} \mid |z| \leq ||a||\}$ for all α . If $\phi \in \pi_L$, then by Lemma 2.2(ii) we have that for every α ,

$$\phi(a) = (A_{\alpha}^*\phi)(a) = \phi(A_{\alpha}a) \in V(A_{\alpha}a).$$

So, we have

$$\pi_L(a) \subset V(A_\alpha a)$$
 for all α ,

that is, $\pi_L(a) \subset \bigcap_{\alpha} V(A_{\alpha}a)$. We show

$$\bigcap_{\alpha} \bigcup_{\beta \ge \alpha} V(A_{\beta}a) \subset \pi_L(a).$$

Let $F := \bigcap_{\alpha} \overline{\bigcup_{\beta \geq \alpha} V(A_{\beta}a)}$. We have shown $\pi_L(a) \subset F$. Let $\varepsilon > 0$ be arbitrary. Suppose $F \setminus \overline{N(\pi_L(a);\varepsilon)} \neq \emptyset$, where $N(\pi_L(a);\varepsilon) = \{z \in \mathbb{C} \mid \operatorname{dist}(\pi_L(a),z) < \varepsilon\}$. Then for every α , there is a

$$\lambda_{\alpha} \in \bigcup_{\beta \ge \alpha} V(A_{\beta}a) \setminus \overline{N(\pi_L(a);\varepsilon)}.$$

Thus $\lambda_{\alpha} = \phi_{\alpha}(A_{r_{\alpha}}a)$ for some $\phi_{\alpha} \in D(\mathbf{1}, \mathbf{A})$ and for some $r_{\alpha} \geq \alpha$. By Alaoglu's

theorem, $\{A_{r_{\alpha}}^*\phi_{\alpha}\}$ has a convergent subnet $\{A_{r_{\beta}}^*\phi_{\beta}\}$. Say, $A_{r_{\beta}}^*\phi_{\beta} \to \psi$ weakly^{*}. Therefore $\psi \in \pi_L$ by Lemma 2.2(i) and

$$\psi(a) = \lim_{\beta} \left(A_{r_{\beta}}^* \phi_{\beta} \right)(a) = \lim_{\beta} \phi_{\beta}(A_{r_{\beta}}a) \notin N(\pi_L(a); \varepsilon).$$

This is impossible because $\psi(a) \in \pi_L(a)$. We have shown $F \subset \overline{N(\pi_L(a);\varepsilon)}$ for any $\varepsilon > 0$. Since $\pi_L(a)$ is a compact set in C, this implies

$$\bigcap_{\alpha} \bigcup_{\beta \ge \alpha} V(A_{\beta}a) \supset \pi_L(a) = \bigcap_{\varepsilon > 0} \overline{N(\pi_L(a);\varepsilon)} \supset F \supset \pi_L(a).$$

Therefore these sets are all equal. By Lemma 2.3(c), we have that for every $\varepsilon > 0$,

$$\bigcup_{\beta \ge \alpha} V(A_{\beta}a) \subset \overline{N(\pi_L(a);\varepsilon)} \text{ for sufficiently large } \alpha.$$

Since $\overline{N(\pi_L(a);\varepsilon)}$ is also compact and convex, this implies

$$\overline{\operatorname{co}} \bigcup_{\beta \ge \alpha} V(A_{\beta}a) \subset \overline{N(\pi_L(a);\varepsilon)}$$

and hence

$$\pi_L(a) = \bigcap_{\alpha} \overline{\operatorname{co}} \bigcup_{\beta \ge \alpha} V(A_\beta a).$$

The proof is complete.

THEOREM 3.2. Let A be a closed linear operator in $\mathbf{A}(X)$, let L be a closed linear operator in \mathbf{A} with $L\mathbf{1} = \mathbf{1}$ and let $f \in \mathbf{A}(X)$ satisfy (1). Suppose that $\{(A_{\alpha}, S_{\alpha})\}$ is a net in $B(\mathbf{A}) \times B(\mathbf{A}(X))$ satisfying the following conditions:

(1*) $\{A_{\alpha}\}$ is a contractive (L-I)-semi-ergodic net on **A** such that $L\mathbf{1} = \mathbf{1}$;

(2*) $\{S_{\alpha}\}$ is a contractive (A)-semi-ergodic net on $\mathbf{A}(X)$;

(3*) for every α , the pair (A_{α}, S_{α}) is a corresponding pair in $(\mathbf{A}, \mathbf{A}(X))$. Then

$$\Phi_f(\pi_L) = \bigcap_{\alpha} \overline{\operatorname{co}}(S_{\alpha}f)(\Omega) = \bigcap_{\alpha} \overline{\operatorname{co}}\left[\bigcup_{\beta \ge \alpha} (S_{\beta}f)(\Omega)\right].$$

PROOF. If $\phi \in \pi_L$, then we have that for every α , $\phi = A^*_{\alpha} \phi$ by (1^{*}). By Lemma 2.4(b) and Lemma 2.7(b), we have

$$\Phi_f(\phi) = \Phi_f(A^*_{\alpha}\phi) = \Phi_{S_{\alpha}f}(\phi) \in \overline{\operatorname{co}}(S_{\alpha}f)(\Omega).$$

This means that $\Phi_f(\pi_L) \subset \bigcap_{\alpha} \overline{\operatorname{co}}(S_{\alpha}f)(\Omega)$. It suffices to show $\bigcap_{\alpha} \overline{\operatorname{co}}[\bigcup_{\beta \geq \alpha} (S_{\beta}f)(\Omega)] \subset \Phi_f(\pi_L)$. Since $A^*_{\alpha}D(\mathbf{1}, \mathbf{A}) \subset D(\mathbf{1}, \mathbf{A})$ for every α , we have

$$\overline{\operatorname{co}}(S_{\alpha}f)(\Omega) = \Phi_{S_{\alpha}f}(D(\mathbf{1}, \mathbf{A})) \qquad \text{by Lemma 2.4(b)}$$
$$= \Phi_f(A_{\alpha}^*D(\mathbf{1}, \mathbf{A})) \subset \Phi_f(D(\mathbf{1}, \mathbf{A})) \qquad \text{by Lemma 2.7(b) and (1*)}$$
$$= \overline{\operatorname{co}}f(\Omega) \qquad \text{by Lemma 2.4(b) again.}$$

This proves that $\overline{\operatorname{co}}[\bigcup_{\beta \geq \alpha} (S_{\beta}f)(\Omega)]$ is weakly compact for all α . Let $x^* \in X^*$ be arbitrary. We have

$$\begin{split} \langle \Phi_{f}(\pi_{L}), x^{*} \rangle &= \left\{ \langle \Phi_{f}(\phi), x^{*} \rangle \mid \phi \in \pi_{L} \right\} \\ &= \left\{ \phi(\langle f(\cdot), x^{*} \rangle) \mid \phi \in \pi_{L} \right\} \\ &= \bigcap_{\alpha} \overline{\operatorname{co}} \bigcup_{\beta \geq \alpha} \left\{ \phi(A_{\beta} \langle f(\cdot), x^{*} \rangle) \mid \phi \in D(\mathbf{1}, \mathbf{A}) \right\} \quad \text{by Theorem 3.1} \\ &= \bigcap_{\alpha} \overline{\operatorname{co}} \bigcup_{\beta \geq \alpha} \left\{ \phi(\langle S_{\beta} f(\cdot), x^{*} \rangle) \mid \phi \in D(\mathbf{1}, \mathbf{A}) \right\} \quad \text{by (3*)} \\ &= \bigcap_{\alpha} \overline{\operatorname{co}} \left\langle \bigcup_{\beta \geq \alpha} \Phi_{S_{\beta} f}(D(\mathbf{1}, \mathbf{A})), x^{*} \right\rangle \\ &= \bigcap_{\alpha} \overline{\operatorname{co}} \left\langle \bigcup_{\beta \geq \alpha} (S_{\beta} f)(\Omega), x^{*} \right\rangle \quad \text{by Lemma 2.4(b)} \\ &= \left\langle \bigcap_{\alpha} \overline{\operatorname{co}} \bigcup_{\beta \geq \alpha} (S_{\beta} f)(\Omega), x^{*} \right\rangle \quad \text{by Lemma 2.3(a) and (b).} \end{split}$$

Since $\Phi_f(\pi_L)$ and $\bigcap_{\alpha} \overline{\operatorname{co}}(S_{\alpha}f)(\Omega)$ are closed and convex in X, it follows from the Hahn-Banach separation theorem that

$$\Phi_f(\pi_L) = \bigcap_{\alpha} \overline{\operatorname{co}} \bigcup_{\beta \ge \alpha} (S_{\beta} f)(\Omega).$$

This completes the proof.

4. Continuous case.

The following theorem is deduced from Theorem 3.2.

THEOREM 4.1. Let X be a Banach space and let the range $f[0,\infty)$ of $f \in L^{\infty}([0,\infty), X)$ be relatively weak compact. Then

$$\begin{split} &\bigcap_{t>0} \overline{\operatorname{co}} \bigg\{ s^{-1} \int_0^s f(r+u) dr \mid s \ge t, u \ge 0 \bigg\} \\ &= \bigcap_{t>0} \overline{\operatorname{co}} \bigg\{ t^{-1} \int_0^t f(r+u) dr \mid u \ge 0 \bigg\} \\ &= \bigcap_{\lambda>0} \overline{\operatorname{co}} \bigg\{ \lambda \int_0^\infty e^{-\lambda t} f(t+s) dt \mid s \ge 0 \bigg\} \\ &= \bigcap_{\lambda>0} \overline{\operatorname{co}} \bigg\{ \mu \int_0^\infty e^{-\mu t} f(t+s) dt \mid 0 < \mu < \lambda, s \ge 0 \bigg\} \end{split}$$

PROOF. Consider the integrated semigroup $S(\cdot)$ and its resolvent operators $R(\lambda)$ defined on $L^{\infty}([0,\infty), X)$ as in Example 1. By Example 1, both $\{t^{-1}S(t)\}_{t>0}(t \to \infty)$ and $\{R(\lambda)\}_{\lambda>0}(\lambda \downarrow 0)$ are all A-semi-ergodic nets on $L^{\infty}([0,\infty), X)$, where A is the generator of $S(\cdot)$. Whenever X = C, we denote $S(\cdot)$ and $R(\cdot)$ by $S_0(\cdot)$ and $R_0(\cdot)$, respectively. Let L-I be the generator of $S_0(\cdot)$. Then we have that for every $g \in L^{\infty}([0,\infty), X)$ and $x^* \in X^*$,

$$S_0(t)\langle g(\cdot), x^* \rangle = \langle (S(t)g)(\cdot), x^* \rangle.$$

So, $(S_0(t), S(t))$ is a corresponding pair for all $t \ge 0$. Similarly, $(R_0(\lambda), R(\lambda))$ is also a corresponding pair for all $\lambda > 0$. Now, we assume that the range $f[0, \infty)$ of $f \in L^{\infty}([0, \infty), X)$ is relatively weak compact. By Theorem 3.2, we have

$$\begin{split} &\bigcap_{t>0} \overline{\operatorname{co}} \left\{ s^{-1} \int_0^s f(r+u) dr \mid s \ge t, u \ge 0 \right\} \\ &= \bigcap_{t>0} \overline{\operatorname{co}} \bigcup_{s \ge t} (s^{-1} S(s) f] [0, \infty) \\ &= \bigcap_{t>0} \overline{\operatorname{co}} [t^{-1} S(t) f] [0, \infty) = \bigcap_{t>0} \overline{\operatorname{co}} \left\{ t^{-1} \int_0^t f(r+u) dr \mid u \ge 0 \right\} \end{split}$$

$$= \Phi_f(\pi_L)$$

= $\bigcap_{\lambda>0} \overline{\operatorname{co}}[R(\lambda)f][0,\infty) \equiv \bigcap_{\lambda>0} \overline{\operatorname{co}} \left\{ \lambda \int_0^\infty e^{-\lambda t} f(t+s) dt \mid s \ge 0 \right\}$ by integrating by parts.

$$= \bigcap_{\lambda>0} \overline{\operatorname{co}} \bigcup_{0<\mu<\lambda} [R(\mu)f][0,\infty)$$

$$= \bigcap_{\lambda>0} \overline{\operatorname{co}} \left\{ \mu^2 \int_0^\infty e^{-\mu t} \int_0^t [T(r)f](s) dr dt \mid 0 < \mu < \lambda, s \ge 0 \right\},$$

$$= \bigcap_{\lambda>0} \overline{\operatorname{co}} \left\{ \mu \int_0^\infty e^{-\mu t} f(t+s) dt \mid 0 < \mu < \lambda, s \ge 0 \right\} \text{ by integrating by parts,}$$

where $T(\cdot)$ is the translation semigroup on $L^{\infty}([0,\infty), X)$. This completes the proof.

The following result is an analogue of the proposition in [21].

COROLLARY 4.2. Let X be a Banach space and let the range $f[0,\infty)$ of $f \in L^{\infty}([0,\infty), X)$ is relatively weak compact. If $y \in X$, then

 $\lim_{t\to\infty} t^{-1} \int_0^t f(r+s) dr = y$ weakly uniformly on $s \ge 0$

if and only if

 $\lim_{\lambda \downarrow 0} \lambda \int_0^\infty e^{-\lambda t} f(t+s) dt = y \text{ weakly uniformly on } s \ge 0.$

From Lemma 2.3(c), if $f[0, \infty)$ is relatively compact, the convergence in Corollary 4.2 is strongly.

5. Discrete case.

EXAMPLE 2. Let $\ell^{\infty}(X)$ be the space of all bounded sequences in X with sup-norm $\|\cdot\|_{\infty}$. Let $\hat{\sigma}$ be the bounded operator on $\ell^{\infty}(X)$ defined by $\hat{\sigma}\{x_n\}_{n=0}^{\infty} = \{x_{n+1}\}_{n=0}^{\infty}$. Define $C_m := 1/(m+1)\sum_{k=0}^{m} \hat{\sigma}^k$, $m = 1, 2, \ldots$, and

$$A_r := (1 - e^{-r}) \sum_{k=0}^n e^{-kr} \hat{\sigma}^k$$
 for all $r > 0$.

We show that both the C_m and the A_r are $(\hat{\sigma} - I)$ -ergodic nets on $\ell^{\infty}(X)$. Since $\|\hat{\sigma}\| \leq 1$, we have that $\|C_m\| \leq 1$ for all $m \geq 1$ and $\|A_r\| \leq 1$ for all r > 0. So,

both C_m and A_r satisfy (Ea).

If $\{x_n\}_{n=0}^{\infty} \in N(\hat{\sigma} - I)$, then we have that

$$C_m \{x_n\}_{n=0}^{\infty} = \{x_n\}_{n=0}^{\infty}$$
 and $A_r \{x_n\}_{n=0}^{\infty} = (1 - e^{-r}) \sum_{k=0}^{n} e^{-kr} \{x_n\}_{n=0}^{\infty} = \{x_n\}_{n=0}^{\infty}$.

Since $\hat{\sigma}^k - I = (\hat{\sigma} - I) \sum_{j=0}^{k-1} \hat{\sigma}^j$ for all $k = 1, 2, \dots$, it is easy to see that

$$R(C_m - I) \subset \overline{R(\hat{\sigma} - I)}$$
 for all $m = 1, 2, \dots$

and

$$R(A_r - I) \subset \overline{R(\hat{\sigma} - I)}$$
 for all $r > 0$.

Therefore both C_m and A_r satisfy (Eb).

Finally, we have

$$C_m(\hat{\sigma} - I) = \frac{1}{m+1}(\hat{\sigma}^{m+1} - I) \to 0 \text{ as } m \to \infty$$

and

$$A_r(\hat{\sigma} - I) = (e^r - 1)A_r - e^r(1 - e^{-r}) \to 0 \text{ as } r \downarrow 0.$$

Therefore both C_m and A_r satisfy (Ec) and hence they are all $(\hat{\sigma} - I)$ -ergodic nets.

The proof of the following theorem is similar to Theorem 4.1. So, we ommitted it.

THEOREM 5.1. Let the trace $\{x_n; n \ge 0\}$ of $\{x_n\}_{n=0}^{\infty} \in \ell^{\infty}(X)$ is relatively weak compact. Then

$$\bigcap_{n\geq 1} \overline{\operatorname{co}} \left\{ \frac{1}{j+1} \sum_{k=0}^{j} x_{k+m} \mid j \geq n, m \geq 0 \right\}$$
$$= \bigcap_{n\geq 1} \overline{\operatorname{co}} \left\{ \frac{1}{n+1} \sum_{k=0}^{n} x_{k+m} \mid m \geq 0 \right\}$$

Invariant means on bounded vector-valued functions

$$= \bigcap_{r>0} \overline{\text{co}} \left\{ (1 - e^{-r}) \sum_{k=0}^{\infty} e^{-kr} x_{k+m} \mid m \ge 0 \right\}$$
$$= \bigcap_{r>0} \overline{\text{co}} \left\{ (1 - e^{-s}) \sum_{k=0}^{\infty} e^{-ks} x_{k+m} \mid 0 < s < r, m \ge 0 \right\}.$$

In Theorem 5.1, we see from Lemma 2.3(c) that the convergence is strongly whenever the trace $\{x_n \mid n \geq 0\}$ is compact. If $\{x_n\}_{n=0}^{\infty}$ is a bounded sequence in X, we say that $\{x_n\}_{n=0}^{\infty}$ is *weakly almost convergent* to some x, written as σ -lim_{$n\to\infty$} $x_n = x$ or σ -lim $x_n = x$ (see [8]) if

$$\phi(\{\langle x_n, x^* \rangle\}_{n=0}^{\infty}) = \langle x, x^* \rangle \text{ for all } \phi \in \pi_\sigma \text{ and for all } x^* \in X^*.$$

The following corollary is an analogue of [8, Theorem 3.2(d)].

COROLLARY 5.2. If $\{x_n\}_{n=0}^{\infty}$ is a bounded sequence in X such that the trace $\{x_n \mid n \geq 0\}$ is relatively weak compact and $x \in X$, then σ -lim $x_n = x$ if and only if for every $x^* \in X^*$,

$$\lim_{r \downarrow 0} (1 - e^{-r}) \sum_{k=0}^{\infty} e^{-kr} \langle x_{k+m}, x^* \rangle = \langle x, x^* \rangle \quad uniformly \ on \ m \ge 0.$$

EXAMPLE 3. For every noninteger real number x,

$$\lim_{r \downarrow 0} (1 - e^{-r}) \sum_{k=0}^{\infty} e^{-kr} \cos(2(k+m)\pi x) = 0 \text{ uniformly on } m \ge 0$$

since σ -lim_{$n\to\infty$} cos $(2n\pi x) = 0$ for all noninteger real number x (see [12, Theorem 3.1]).

ACKNOWLEDGEMENTS. The author would like to thank the referee for his valuable suggestions.

References

- F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebra, London Math. Soc. Lecture Note Series No. 2, Cambridge University Press, 1971.
- [2] F. F. Bonsall and J. Duncan, Numerical ranges II, London Math. Soc. Lecture Note Series No. 10, Cambridge University Press, 1973.
- [3] R. E. Bruck, On the almost-convergence of iterates of a nonexpansive mapping in Hilbert

space and the structure of the weak ω -limit set, Israel J. Math., 29 (1978), 1–16.

- [4] R. Emilion, Mean-bounded operators and mean ergodic theorems, J. Funct. Anal., 61 (1985), 1–14.
- [5] J. D. Hill, Almost-convergent double sequences, Tôhoku Math. J., 17 (1995), 105–116.
- [6] K. Kido and W. Takahashi, Mean ergodic theorems for semigroups of linear operators, J. Math. Anal. Appl., 103 (1984), 387–394.
- Y.-C. Li and S.-Y. Shaw, Generalized limits and a mean ergodic theorem, Studia Math., 121 (1996), 207–219.
- [8] Y.-C. Li and S.-Y. Shaw, N-times integrated C-semigroups and the abstract Cauchy problem, Taiwanese J. Math., 1 (1997), 75–101.
- [9] Y.-C. Li and S.-Y. Shaw, On local α-times integrated C-semigroup, Abstract Appl. Anal., 2007, Art. ID 34890, 18 pp.
- [10] Y.-C. Li, R. Sato and S.-Y. Shaw, Convergence theorems and Tauberian theorems for functions and sequences in Banach spaces and Banach lattices, Israel J. Math., 162 (2007), 109–149.
- [11] Y.-C. Li, S. Li and C. Li, On σ-limit and sσ-limit in Banach spaces, Taiwanese J. Math., 9 (2005), 359–371.
- [12] Y.-C. Li, Almost convergence of sequences in Banach spaces in weak, strong, and absolute senses, Taiwanese J. Math., 10 (2006), 209–218.
- [13] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math., 80 (1948), 167–190.
- [14] I. J. Maddox, A new type of convergence, Math. Proc. Cambridge-Philos. Soc., 83 (1978), 61–64.
- [15] F. Móricz and B. E. Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Cambridge Philos. Soc., 104 (1988), 283–294.
- [16] M. Mursaleen, On some new invariant matrix methods of summability, Quart. J. Math. Oxford Ser. (2), 34 (1983), 77–86.
- [17] I. Miyadera, Nonlinear mean ergodic theorems, Taiwanese J. Math., 1 (1997), 433–449.
- [18] R. A. Raimi, Invariant means and invariant matrix methods of summability, Duke Math. J., 30 (1963), 81–94.
- [19] P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc., 36 (1972), 104–110.
- [20] P. Schaefer, Mappings of positive integers and subspaces of m, Port. Math., 38 (1979), 29–38.
- [21] S.-Y. Shaw, Ergodic projections of continuous and discrete semigroups, Proc. Amer. Math. Soc., 78 (1980), 69–76.
- [22] S.-Y. Shaw, Mean ergodic theorems and linear functional equations, J. Funct. Anal., 87 (1989), 428–441.
- [23] N. Shioji and W. Takahashi, Strong convergence of approximated sequences for nonexpansive mapping in Banach spaces, Proc. Amer. Math. Soc., 125 (1997), 3641–3645.

Yuan-Chuan LI

Department of Applied Mathematics National Chung-Hsing University Taichung, 402 Taiwan E-mail: ycli@amath.nchu.edu.tw