Invariant means on bounded vector-valued functions

Dedicated to the late Respectable Professor Sen-Yen Shaw

By Yuan-Chuan Li

(Received Sep. 30, 2008)
(Revised Mar. 4, 2010)

$$
\begin{aligned}
& \text { Abstract. Shioji and Takahashi proved that for every bounded sequence } \\
& \left\{a_{n}\right\}_{n=0}^{\infty} \text { of real numbers, } \\
& \qquad \begin{aligned}
\{\phi & \left.\left(\left\{a_{n}\right\}_{n=0}^{\infty}\right) \mid \phi \text { is a Banach limit }\right\} \\
& =\bigcap_{j=1}^{\infty} \overline{\operatorname{co}}\left\{(n+1)^{-1} \sum_{k=0}^{n} a_{k+m} \mid n \geq j, m \geq 0\right\} .
\end{aligned}
\end{aligned}
$$

We generalize this result to bounded sequences of vectors and also apply it to bounded measurable functions.

1. Introduction.

Let X be a Banach space over the complex field \boldsymbol{C} and $f:[0, \infty) \rightarrow X$ be a locally integrable function. It is well-known that the existence of the Cesáro limit $y:=\lim _{t \rightarrow \infty} t^{-1} \int_{0}^{t} f(s) d s$ implies that the Abel limit $\lim _{\lambda \downarrow 0} \lambda \int_{0}^{\infty} e^{-\lambda t} f(t) d t$ also exists and equals y. In general, the existence of the Abel limit does not guarantee the existence of the Cesáro limit (cf. [4, p. 8] and [10]). The discrete case has similar result, too. We ask what will happen if one of these two limits does not exsist.

We denote the dual space of X by X^{*}, the algebra of all bounded (linear) operators on X by $B(X)$, and $x^{*}(x)$ by $\left\langle x, x^{*}\right\rangle$ for $x \in X$ and $x^{*} \in X^{*}$. For a normed algebra \mathbf{A} with the identity 1, we denote by $D(\mathbf{1}, \mathbf{A})$ the state which is the set:

$$
D(\mathbf{1}, \mathbf{A}):=\left\{F \in \mathbf{A}^{*} \mid\|F\|=F(\mathbf{1})=1\right\} .
$$

The (algebra) numerical range $[\mathbf{1}],[\mathbf{2}]$ of an element $a \in \mathbf{A}$ is defined as the

[^0]nonempty compact convex set
$$
V(a):=\{\phi(a) \mid \phi \in D(\mathbf{1}, \mathbf{A})\} .
$$

If L is a closed linear operator in \mathbf{A} with $L \mathbf{1}=\mathbf{1}$, we define $\pi_{L}:=\{\phi \in D(\mathbf{1}, \mathbf{A}) \mid$ $\left.L^{*} \phi=\phi\right\}[\mathbf{7}]$ and

$$
\pi_{L}(a):=\left\{\phi(a) \mid \phi \in \pi_{L}\right\} \quad \text { for } a \in \mathbf{A} .
$$

An element ϕ of $D(\mathbf{1}, \mathbf{A})$ is said to be a mean (cf. [6]) and $\phi \in \pi_{L}$ is said to be an invariant mean under L^{*}. If $\sigma: \ell^{\infty} \rightarrow \ell^{\infty}$ is the operator $\sigma\left(\left\{a_{n}\right\}_{n=0}^{\infty}\right):=$ $\left\{a_{n+1}\right\}_{n=0}^{\infty}$, then $\pi_{\sigma}=$ the set of all Banach limits. Here ℓ^{∞} is the space of all bounded sequences in \boldsymbol{C}.

In 1948, Lorentz [13] first studied Banach limits and defined the so-called σ-limits for bounded sequences in ℓ^{∞} as following:

$$
\sigma-\lim a_{n}:=a
$$

if for $\left\{a_{n}\right\}_{n=0}^{\infty} \in \ell^{\infty}, \phi\left(\left\{a_{n}\right\}_{n=0}^{\infty}\right)=a$ for all Banach limits ϕ. Lorentz also showed that σ - $\lim a_{n}:=a$ if and only if $\left\{a_{n}\right\}_{n=0}^{\infty}$ is almost convergence, i.e.,

$$
\lim _{n \rightarrow \infty} \frac{1}{n+1} \sum_{k=0}^{n} a_{k+m}=a \quad \text { uniformly on } m \geq 0
$$

For related results of almost convergence, we refer to $[\mathbf{3}],[\mathbf{5}],[\mathbf{1 2}],[\mathbf{1 4}],[\mathbf{1 5}],[\mathbf{1 6}]$, [17], [18], [19], [20].

Recently, Naoki Shioji and Wataru Takahashi [23] proved that for every bounded sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ of real numbers and a real number $\alpha, \phi\left(\left\{a_{n}\right\}_{n=0}^{\infty}\right) \leq \alpha$ for all Banach limits ϕ if and only if for every $\varepsilon>0$ there is an integer $n_{0} \geq 1$ such that

$$
(n+1)^{-1} \sum_{k=0}^{n} a_{k+m} \leq \alpha+\varepsilon \text { for all } n \geq n_{0} \text { and } m \geq 0
$$

In fact, their result implies that for any bounded sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ of real numbers,

$$
\pi_{\sigma}\left(\left\{a_{n}\right\}_{n=0}^{\infty}\right)=\bigcap_{j=1}^{\infty} \overline{\operatorname{co}}\left\{(n+1)^{-1} \sum_{k=0}^{n} a_{k+m} \mid n \geq j, m \geq 0\right\} .
$$

We ask what will happen if the sequence is an arbitrary bounded sequence of vectors in a Banach space X.

In Section 2, we shall give some necessary results. For example, we prove a result (Corollary 2.5) that for a mapping f from a set Ω to a Banach space X, the range of f is relatively weak compact if and only if for any $\phi \in \mathbf{A}^{*}$ there is a $z \in X$ such that

$$
\phi\left(\left\langle f(\cdot), x^{*}\right\rangle\right)=\left\langle z, x^{*}\right\rangle \quad \text { for all } x^{*} \in X^{*} .
$$

In Section 3, we show two general theorems. One of them is a result (Theorem 3.2) that under some conditions, if the range of $f \in \mathbf{A}(X)$ is relatively weak compact, then

$$
\Phi_{f}\left(\pi_{L}\right)=\bigcap_{\alpha} \overline{\operatorname{co}}\left(S_{\alpha} f\right)(\Omega)=\bigcap_{\alpha} \overline{\mathrm{co}}\left[\bigcup_{\beta \geq \alpha}\left(S_{\beta} f\right)(\Omega)\right] .
$$

In section 4 , we show a result (Theorem 4.1) that if $f \in L^{\infty}([0, \infty), X)$ satisfies that $f[0, \infty)$ is relatively weak compact, then

$$
\begin{aligned}
& \bigcap_{t>0} \overline{\mathrm{co}}\left\{s^{-1} \int_{0}^{s} f(r+u) d r \mid s \geq t, u \geq 0\right\} \\
&=\bigcap_{t>0} \overline{\operatorname{co}}\left\{t^{-1} \int_{0}^{t} f(r+u) d r \mid u \geq 0\right\} \\
&=\bigcap_{\lambda>0} \overline{\overline{c o}}\left\{\lambda \int_{0}^{\infty} e^{-\lambda t} f(t+s) d t \mid s \geq 0\right\} \\
&=\bigcap_{\lambda>0} \overline{\operatorname{co}}\left\{\mu \int_{0}^{\infty} e^{-\mu t} f(t+s) d t \mid 0<\mu<\lambda, s \geq 0\right\} .
\end{aligned}
$$

In Section 5, we prove that if $\left\{x_{n}\right\}_{n=0}^{\infty}$ is a bounded sequence in a Banach space X such that the trace $\left\{x_{n} \mid n \geq 0\right\}$ is relatively weak compact, then

$$
\begin{aligned}
& \bigcap_{n \geq 1} \overline{\operatorname{co}}\left\{\left.\frac{1}{j+1} \sum_{k=0}^{j} x_{k+m} \right\rvert\, j \geq n, m \geq 0\right\} \\
& \quad=\bigcap_{n \geq 1} \overline{\operatorname{co}}\left\{\left.\frac{1}{n+1} \sum_{k=0}^{n} x_{k+m} \right\rvert\, m \geq 0\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\bigcap_{r>0} \overline{\overline{\mathrm{Co}}}\left\{\left(1-e^{-r}\right) \sum_{k=0}^{\infty} e^{-k r} x_{k+m} \mid m \geq 0\right\} \\
& =\bigcap_{r>0} \overline{\mathrm{Co}}\left\{\left(1-e^{-s}\right) \sum_{k=0}^{\infty} e^{-k s} x_{k+m} \mid 0<s<r, m \geq 0\right\}
\end{aligned}
$$

2. Preliminaries.

To do our work, we need the following definitions and some basic results.
Definition 2.1. Let A be a closed linear operator in X. A net $\left\{A_{\alpha}\right\}$ of bounded operators on X is called an A-semi-ergodic net if it satisfies the following conditions:
(Ea) There is an $M>0$ such that $\left\|A_{\alpha}\right\| \leq M$ for all α;
(Eb) $N(A) \subset N\left(A_{\alpha}-I\right)$ and $R\left(A_{\alpha}-I\right) \subset \overline{R(A)}$ for all α, where $N(A)$ is the null space of A and $R(A)$ the range of A;
(Ec) $R\left(A_{\alpha}\right) \subset D(A)$ for all α and $s-\lim _{\alpha} A_{\alpha} A x=0$ for all $x \in D(A)$.
$\left\{A_{\alpha}\right\}$ is called an A-ergodic net $[\mathbf{7}],[\mathbf{2 1}],[\mathbf{2 2}]$ if it is an A-semi-ergodic net and satisfies

$$
w-\lim _{\alpha} A A_{\alpha} x=0 \text { for all } x \in X
$$

The A-ergodic net $\left\{A_{\alpha}\right\}$ is said to be contractive if $M=1$.
Example 1. Let $S:[0, \infty) \rightarrow B(Y)$ be an integrated semigroup (cf. [8]) with generator A, where Y is a Banach space. Suppose $\|S(t+h)-S(t)\| \leq h$ for all $t, h \geq 0$. Thus $\|S(t)\| \leq t$ for all $t \geq 0$. Let $A_{t}:=t^{-1} S(t), t>0$ and let the resolvent operators of $S(\cdot)$ defined by $R(\lambda) f:=\lambda^{2} \int_{0}^{\infty} e^{-\lambda t} S(t) f d t$ for $f \in Y$ and $\lambda>0$. (For instance, if $Y=L^{\infty}([0, \infty), X)$, we can take $[S(t) f](s):=$ $\int_{0}^{t}[T(r) f](s) d r$ for all $t, s \geq 0$ and $f \in L^{\infty}([0, \infty), Y)$, where $T(\cdot)$ is the translation semigroup on $L^{\infty}([0, \infty), Y)$.) Then we have [8], [9]

$$
\begin{aligned}
S(t) f-t f & =A \int_{0}^{t} S(r) f d r \text { for all } t \geq 0 \text { and } f \in Y \\
& =\int_{0}^{t} S(r) A f d r \text { for all } t \geq 0 \text { and } f \in D(A)
\end{aligned}
$$

It follows from the assumption on $S(\cdot)$ that we have $\left\|A_{t}\right\| \leq 1$ for all $t>0$ and $\|R(\lambda)\| \leq 1$ for all $\lambda>0$. Therefore both $\left\{A_{t}\right\}_{t>0}$ and $\{R(\lambda)\}_{\lambda>0}$ satisfy
(Ea). And for every $f \in D(A),\left\|S^{\prime}(t) f\right\| \leq\|f\|_{\infty}$ and $S^{\prime}(t) f-f=S(t) A f$. This implies

$$
\left\|A_{t}\right\| \leq 1 \text { for all } t>0
$$

and

$$
\left\|A_{t} A f\right\|=\left\|t^{-1} S(t) A f\right\|=t^{-1}\left\|S^{\prime}(t) f-f\right\| \leq t^{-1}\|f\| \rightarrow 0 \text { as } t \rightarrow \infty .
$$

So, $\left\{A_{t}\right\}_{t>0}(t \rightarrow \infty)$ satisfies (Ec). Next, integrating by parts, we have that for every $f \in D(A)$ and $\lambda>0$,

$$
\begin{aligned}
R(\lambda) A f & =\lambda^{3} \int_{0}^{\infty} e^{-\lambda t}\left[\int_{0}^{t} S(r) A f d r\right] d t \\
& =\lambda^{3} \int_{0}^{\infty} e^{-\lambda t}[S(t) f-t f] d t \\
& =\lambda R(\lambda) f-\lambda f \rightarrow 0 \text { as } \lambda \downarrow 0 .
\end{aligned}
$$

So, the $R(\lambda)(\lambda \downarrow 0)$ satisfies (Ec).
Finally, if $f \in N(A)$, the null space of A, then $0=\int_{0}^{t} S(r) A f d r=S(t) f-t f$. So, we have $A_{t} f=f$ for all $t>0$ and

$$
R(\lambda) f=\lambda^{2} \int_{0}^{\infty} e^{-\lambda t} S(t) f d t=\lambda^{2} \int_{0}^{\infty} e^{-\lambda t} t f d t=f .
$$

On the other hand, we have that for every $f \in Y, A_{t} f-f=t^{-1} A \int_{0}^{t} S(r) f d r \in$ $R(A)$ and the closedness of A implies

$$
\begin{aligned}
R(\lambda) f-f & =\lambda^{2} \int_{0}^{\infty} e^{-\lambda t}[S(t) f-t f] d t \\
& =\lambda^{2} \int_{0}^{\infty} e^{-\lambda t} A\left[\int_{0}^{t} S(r) f d r\right] d t \\
& =\lambda^{2} A \int_{0}^{\infty} e^{-\lambda t}\left[\int_{0}^{t} S(r) f d r\right] d t \in D(A) .
\end{aligned}
$$

Therefore both $\left\{A_{t}\right\}_{t>0}(t \rightarrow \infty)$ and $\{R(\lambda)\}_{\lambda>0}(\lambda \downarrow 0)$ satisfy (Eb) and then they are all A-semi-ergodic nets on Y.

Lemma 2.2. Let A be a complex unital normed algebra and let L be a closed linear operator on \mathbf{A} with $L \mathbf{1}=1$. Suppose that $\left\{A_{\alpha}\right\}$ is a contractive $(L-I)$ -semi-ergodic net on \mathbf{A}.
(i) If $\phi_{\alpha} \in D(\mathbf{1}, \mathbf{A})$ for all α and ψ is a weakly* limiting point of $\left\{A_{\alpha}^{*} \phi_{\alpha}\right\}$, then $\psi \in \pi_{L}$.
(ii) If $\phi \in \pi_{L}$, then $A_{\alpha}^{*} \phi=\phi$ for all α.

Proof. Since $L \mathbf{1}=\mathbf{1}$, it is immediate that (ii) follows from the second part of (Eb). We show (i). The assumption $\left\|A_{\alpha}\right\| \leq 1$ and Alaoglu's theorem imply that there is a weakly* convergent subnet $\left\{A_{\beta}^{*} \phi\right\}$ of $\left\{A_{\alpha}^{*} \phi\right\}$ such that $\psi=w^{*}$ $\lim _{\beta} A_{\beta}^{*} \phi$ and $\|\psi\| \leq 1$ for some $\psi \in \mathbf{A}^{*}$. Since $(L-I) \mathbf{1}=0$, the first part of (Eb) implies $A_{\alpha} \mathbf{1}=\mathbf{1}$ for all α. Therefore, we have

$$
\begin{aligned}
|\psi(\mathbf{1})-1| & =\lim _{\beta}\left|A_{\beta}^{*} \phi_{\beta}(\mathbf{1})-\phi_{\beta}(\mathbf{1})\right| \\
& =\lim _{\beta}\left|\phi\left(A_{\beta} \mathbf{1}-\mathbf{1}\right)\right|=0
\end{aligned}
$$

and hence $\psi \in D(\mathbf{1}, \mathbf{A})$. Since $\left\{A_{\alpha}\right\}$ is an $(L-I)$-semi-ergodic net, by (Ec) we have $\lim _{\alpha} A_{\alpha}(L-I) a=0$ for all $a \in D(L)$. It follows that

$$
\begin{aligned}
|\psi(L a-a)| & =\lim _{\beta}\left|A_{\beta}^{*} \phi(L a-a)\right|=\lim _{\beta}\left|\phi_{\beta}\left(A_{\beta}(L a-a)\right)\right| \\
& \leq \limsup _{\beta}\left\|A_{\beta}(L a-a)\right\|=0
\end{aligned}
$$

for all $a \in D(L)$. This means $\psi \in \pi_{L}$ and then (i) holds. The proof is complete.
Lemma 2.2(i) shows that π_{L} can not be empty. Since $D(\mathbf{1}, \mathbf{A})$ is weakly* compact and convex, it is easy to see from the definition of π_{L} that π_{L} is also weakly* compact and convex.

Lemma 2.3. Let $T: X \rightarrow Y$ be a bounded linear operator, where X and Y are two Banach spaces.
(a) If F is a nonempty subset of X, then $T(\overline{\mathrm{co}} F) \subset \overline{T(\operatorname{co} F)}$. If, in addition, $\overline{\mathrm{co}} F$ is weakly compact, then $T(\overline{\operatorname{co} F)}=\overline{T(\operatorname{co} F)}$.
(b) If $\left\{F_{\alpha}\right\}$ is a decreasing net of nonempty weakly compact sets in X and $F:=$ $\bigcap_{\alpha} F_{\alpha}$, then $T F=\bigcap_{\alpha} T F_{\alpha}$.
(c) If $\left\{F_{\alpha}\right\}$ is a decreasing net of nonempty compact sets in X and $F=\bigcap_{\alpha} F_{\alpha}$, then

$$
\lim _{\alpha} \sup _{x \in F_{\alpha}} \operatorname{dist}(F, x)=0,
$$

where $\operatorname{dist}(K, x)=\inf \{\|y-x\| \mid y \in K\}$ for $\emptyset \neq K \subset X$. In particular, if $F=\{x\}$, then $\lim _{\alpha} \operatorname{dist}\left(F_{\alpha}, x\right)=0$

Proof. (a) Since T is continuous, $T(\overline{\mathrm{co}} F) \subset \overline{T(\operatorname{co} F)}$ is immediate. Now, suppose that $\overline{c o} F$ is weakly compact. Since T is a bounded linear operator, T is weakly continuous. This implies that $T(\overline{\mathrm{co}} F)$ is weakly compact and so $T(\overline{\mathrm{co}} F)$ is closed. Since

$$
T(\operatorname{co} F) \subset T(\overline{\mathrm{co}} F) \subset \overline{T(\mathrm{co} F)}
$$

we must have that $T(\overline{\operatorname{co} F})=\overline{T(\operatorname{co} F)}$. This proves (a).
(b) Since $\left\{F_{\alpha}\right\}$ is a decreasing net of weakly compact sets in $X, F \subset F_{\alpha}$ for all α. So, we have $T F \subset \bigcap_{\alpha} T F_{\alpha}$. Conversely, put a $y \in \bigcap_{\alpha} T F_{\alpha}$ and fix an arbitrary α_{0}. Then for every α there is an $x_{\alpha} \in F_{\alpha}$ such that $y=T x_{\alpha}$. Since $x_{\alpha} \in F_{\alpha_{0}}$ for all $\alpha \geq \alpha_{0}$ and $F_{\alpha_{0}}$ is weakly compact, $\left\{x_{\alpha}\right\}$ has a weakly convergent subnet $\left\{x_{\beta}\right\}$ which is independent of the choice of α_{0}, say $x:=w-\lim _{\beta} x_{\beta}$. Since for every $\alpha \geq \alpha_{0}, F_{\alpha}$ is weakly compact and $x_{\beta} \in F_{\alpha_{0}}$ for all $\beta \geq \alpha_{0}$, we must have $x \in F_{\alpha_{0}}$. Since the choice of α_{0} is arbitrary, we must have $x \in F$. Since T is weakly continuous, this also implies

$$
y=\lim _{\beta} T x_{\beta}=T w-\lim _{\beta} x_{\beta}=T x \in T F .
$$

Therefore $\bigcap_{\alpha} T F_{\alpha} \subset T F$ and hence the equality holds. This proves (b).
(c) Clearly, the $\sup _{x \in F_{\alpha}} \operatorname{dist}(F, x)$ decrease. Fix an arbitrary α_{0}. Suppose that there is a positive number $\varepsilon>0$ such that

$$
\lim _{\alpha} \sup _{x \in F_{\alpha}} \operatorname{dist}(F, x)>\varepsilon .
$$

Then for every $\alpha \geq \alpha_{0}$ there is an $x_{\alpha} \in F_{\alpha}$ such that $\operatorname{dist}\left(F, x_{\alpha}\right)>\varepsilon$. Since $F_{\alpha_{0}}$ is compact and F_{α} decrease, $\left\{x_{\alpha}\right\}$ has a convergent subnet $\left\{x_{\beta}\right\}$ in $F_{\alpha_{0}}$. Say $y=$ $\lim _{\beta} x_{\beta}$. Thus we have $y \in F_{\alpha_{0}}$. Since α_{0} is arbitrary, this implies

$$
y \in \bigcap_{\alpha} F_{\alpha}=F .
$$

Therefore

$$
0=\operatorname{dist}(F, y)=\lim _{\beta} \operatorname{dist}\left(F, x_{\beta}\right) \geq \varepsilon .
$$

This is impossible and the proof is complete.
Now, we consider a unital normed algebra A consisting of bounded functions from a nonempty set Ω to \boldsymbol{C} equipped with the sup-norm $\|\cdot\|_{\infty}$. Define

$$
\mathbf{A}(X):=\left\{f: \Omega \rightarrow X \mid\left\langle f(\cdot), x^{*}\right\rangle \in \mathbf{A} \text { for all } x^{*} \in X^{*}\right\}
$$

where X^{*} is the dual space of X. Let $f \in \mathbf{A}(X)$. Then for any $\phi \in D(\mathbf{1}, \mathbf{A})$, there is an $x^{* *} \in X^{* *}=\left(X^{*}\right)^{*}$ such that

$$
\phi\left(\left\langle f(\cdot), x^{*}\right\rangle\right)=\left\langle x^{*}, x^{* *}\right\rangle \text { for all } x^{*} \in X^{*} .
$$

In general, such $x^{* *}$ may not be in X, where X is considered as the canonical subspace of $X^{* *}$.

Lemma 2.4. Let $f \in \mathbf{A}(X)$.
(a) If $\phi \in \mathbf{A}^{*}$ and the range $f(\Omega)$ of f is relatively weak compact in X, then there is a vector $z \in X$ such that

$$
\phi\left(\left\langle f(\cdot), x^{*}\right\rangle\right)=\left\langle z, x^{*}\right\rangle \text { for all } x^{*} \in X^{*}
$$

In particular, $\|z\| \leq\|\phi\| \cdot\|f\|_{\infty}$, where $\|f\|_{\infty}:=\sup _{w \in \Omega}\|f(w)\|$. Such z is unique and will be denoted by $\Phi_{f}(\phi)$.
(b) Suppose that for every $\phi \in \mathbf{A}^{*}$, there is an $\Phi_{f}(\phi) \in X$ such that

$$
\begin{equation*}
\phi\left(\left\langle f(\cdot), x^{*}\right\rangle\right)=\left\langle\Phi_{f}(\phi), x^{*}\right\rangle \text { for all } x^{*} \in X^{*} \tag{1}
\end{equation*}
$$

Then $\Phi_{f}(D(\mathbf{1}, \mathbf{A}))=\overline{\operatorname{co}} f(\Omega)$.
Proof. (a) Let the range $f(\Omega)$ of $f \in \mathbf{A}(X)$ be relatively weak compact in X. By Theorem 31.1 of $[\mathbf{2}]$, we have $\mathbf{A}^{*}=$ the linear span of $D(\mathbf{1}, \mathbf{A})$. Such mean case was shown by Kido and Takahashi [6] for another situation. We show the mean case by applying Kido and Takahashi's method as following. Assume ϕ is a mean on \mathbf{A}. Then there is some $h \in X^{* *}$ such that

$$
\phi\left(\left\langle f(\cdot), x^{*}\right\rangle\right)=\left\langle x^{*}, h\right\rangle \text { for all } x^{*} \in X^{*} .
$$

Since $f(\Omega)$ is relatively weak compact, $\overline{\operatorname{co}} f(\Omega)$ is a weakly compact subset of X, and so the strong and weak closed subset $\overline{\operatorname{co}} f(\Omega)$ is also a weakly compact subset of X. This subset of X can also be written as $\sigma\left(X^{* *}, X^{*}\right)$-clco $f(\Omega)$ when it is
considered as a subset of $X^{* *}$. We show that $h \in \sigma\left(X^{* *}, X^{*}\right)$-clco $f(\Omega)$. If it is not, then by the Hahn-Banach separation theorem and the property of a mean, there would exist an $x^{*} \in X^{*}$ such that

$$
\begin{aligned}
\operatorname{Reh}\left(x^{*}\right) & <\inf \operatorname{Re}\left\{\left\langle x^{*}, x^{* *}\right\rangle \mid x^{* *} \in \sigma\left(X^{* *}, X^{*}\right)-\operatorname{clco} f(\Omega)\right\} \\
& =\inf \operatorname{Re}\left\{\left\langle f(s), x^{*}\right\rangle ; s \in \Omega\right\} \\
& \leq \operatorname{Re} \phi\left(\left\langle f(\cdot), x^{*}\right\rangle\right)=\operatorname{Reh}\left(x^{*}\right) .
\end{aligned}
$$

This is a contradiction. Therefore $h \in \overline{\operatorname{co}} f(\Omega)$ and this proves the existence of z.
Since $z \in X$ satisfies that

$$
\phi\left(\left\langle f(\cdot), x^{*}\right\rangle\right)=\left\langle z, x^{*}\right\rangle \text { for all } x^{*} \in X^{*}
$$

it is clear that such z is unique by the Hahn-Banach separation theorem and

$$
\begin{aligned}
\|z\| & =\sup \left\{\left|\phi\left(\left\langle f(\cdot), x^{*}\right\rangle\right)\right| \mid x^{*} \in X^{*},\left\|x^{*}\right\| \leq 1\right\} \\
& =\|\phi\| \cdot \sup \left\{\left|\left\langle f(w), x^{*}\right\rangle\right| \mid w \in \Omega, x^{*} \in X^{*},\left\|x^{*}\right\| \leq 1\right\} \\
& \leq\|\phi\| \cdot\|f\|_{\infty} .
\end{aligned}
$$

This proves (a).
(b) Clearly, Φ_{f} is linear. Since $D(\mathbf{1}, \mathbf{A})$ is weakly* compact and convex in $\mathbf{A}^{*}, \Phi_{f}(D(\mathbf{1}, \mathbf{A}))$ is closed and convex. If for $w \in \Omega, \delta_{w} \in \mathbf{A}^{*}$ is defined by

$$
\delta_{w}(h):=h(w) \text { for all } h \in \mathbf{A} \text {, }
$$

then $\delta_{w} \in D(\mathbf{1}, \mathbf{A})$ and

$$
\left\langle\Phi_{f}\left(\delta_{w}\right), x^{*}\right\rangle=\delta_{w}\left(\left\langle f(\cdot), x^{*}\right\rangle\right)=\left\langle f(w), x^{*}\right\rangle
$$

for all $x^{*} \in X^{*}$. Therefore $f(w)=\Phi_{f}\left(\delta_{w}\right)$ and so $\overline{\operatorname{co}} f(\Omega) \subset \Phi_{f}(D(\mathbf{1}, \mathbf{A}))$.
Conversely, suppose $\phi \in D(\mathbf{1}, \mathbf{A})$ and $\Phi_{f}(\phi) \notin \overline{\operatorname{co}} f(\Omega)$. By the Hahn-Banach separation theorem, there is an $x^{*} \in X^{*}$ such that

$$
\begin{aligned}
\sup _{w \in \Omega} \operatorname{Re}\left\langle f(w), x^{*}\right\rangle & <\operatorname{Re}\left\langle\Phi_{f}(\phi), x^{*}\right\rangle \\
& =\operatorname{Re} \phi\left(\left\langle f(\cdot), x^{*}\right\rangle\right) \\
& \leq \sup _{w \in \Omega} \operatorname{Re}\left\langle f(w), x^{*}\right\rangle .
\end{aligned}
$$

This is a contradiction and so $\Phi_{f}(\phi)=\overline{\operatorname{co}} f(\Omega)$.
From Lemma 2.4, we see that if $f \in \mathbf{A}(X)$ satisfies (1), then $\Phi_{f}: \mathbf{A}^{*} \rightarrow X$ is a bounded linear operator and $\left\|\Phi_{f}\right\| \leq\|f\|_{\infty}$.

Corollary 2.5. Let $f \in \mathbf{A}(X)$. Then f satisfies (1) if and only if $f(\Omega)$ is relatively weak compact.

Proof. "If" part. follows from Lemma 2.4(a).
We prove "Only if" part. Suppose f satisfies (1). By Lemma 2.4, it suffices to show that $\Phi_{f}(D(\mathbf{1}, \mathbf{A}))$ is weakly compact. Let $\left\{z_{\alpha}\right\}$ be an arbitrary net in $\Phi_{f}(D(\mathbf{1}, \mathbf{A}))$. Then we have that for every α, there is an $\phi_{\alpha} \in D(\mathbf{1}, \mathbf{A})$ such that

$$
\phi_{\alpha}\left(\left\langle f(\cdot), x^{*}\right\rangle\right)=\left\langle z_{\alpha}, x^{*}\right\rangle \text { for all } x^{*} \in X^{*}
$$

Since $D(\mathbf{1}, \mathbf{A})$ is weakly* compact, $\left\{\phi_{\alpha}\right\}$ has a weakly* convergent subnet $\left\{\phi_{\beta}\right\}$. Say, $\left\{\phi_{\beta}\right\}$ converges to ψ weakly*. Then we have $\psi \in D(\mathbf{1}, \mathbf{A})$ and there is a unique $z \in \Phi_{f}(D(\mathbf{1}, \mathbf{A}))$ by the assumption of (1) such that

$$
\psi\left(\left\langle f(\cdot), x^{*}\right\rangle\right)=\left\langle z, x^{*}\right\rangle \text { for all } x^{*} \in X^{*}
$$

Therefore we have for every $x^{*} \in X^{*}$,

$$
\begin{aligned}
\left\langle z, x^{*}\right\rangle & =\psi\left(\left\langle f(\cdot), x^{*}\right\rangle\right) \\
& =\lim _{\beta} \phi_{\beta}\left(\left\langle f(\cdot), x^{*}\right\rangle\right) \\
& =\lim _{\beta}\left\langle z_{\beta}, x^{*}\right\rangle .
\end{aligned}
$$

This proves that the subnet $\left\{z_{\beta}\right\}$ of $\left\{z_{\alpha}\right\}$ converges weakly to z and so $\Phi_{f}(D(\mathbf{1}, \mathbf{A}))$ is weakly compact.

Definition 2.6. Let T and S be two bounded linear operators in \mathbf{A} and $\mathbf{A}(X)$, respectively. Then (T, S) is said to be a corresponding pair in $(\mathbf{A}, \mathbf{A}(X))$ if for every $f \in \mathbf{A}(X)$ and for all $x^{*} \in X^{*}$,

$$
T\left\langle f(\cdot), x^{*}\right\rangle=\left\langle(S f)(\cdot), x^{*}\right\rangle \text { for all } x^{*} \in X^{*}
$$

The following lemma is immediately from Definition 2.6 and (1).
Lemma 2.7. Let $f \in \mathbf{A}(X)$ satisfy (1).
(a) If S is a bounded linear operator on $\mathbf{A}(X)$, then $S f$ also satisfy (1).
(b) Let T and S be two bounded linear operators on \mathbf{A} and $\mathbf{A}(X)$, respectively. If (T, S) is a corresponding pair, then

$$
\Phi_{f}\left(T^{*} \phi\right)=\Phi_{S f}(\phi) \text { for all } \phi \in \mathbf{A}^{*} .
$$

3. General results.

We show the following main theorems.
Theorem 3.1. Let A be a complex normed algebra with identity $\mathbf{1}$ and let L be a closed linear operator on \mathbf{A} with $L \mathbf{1}=\mathbf{1}$. Suppose that $\left\{A_{\alpha}\right\}$ is a contractive ($L-I$)-semi-ergodic net on \mathbf{A}. If $a \in \mathbf{A}$, then

$$
\pi_{L}(a)=\bigcap_{\alpha} V\left(A_{\alpha} a\right)=\bigcap_{\alpha} \overline{\operatorname{co}}\left(\bigcup_{\beta \geq \alpha} V\left(A_{\beta} a\right)\right) .
$$

Proof. Since $\left\|A_{\alpha} a\right\| \leq\|a\|$ for all α, it follows from the definition of numerical range that $V\left(A_{\alpha} a\right) \subset\left\{x \in C||z| \leq\|a\|\}\right.$ for all α. If $\phi \in \pi_{L}$, then by Lemma 2.2(ii) we have that for every α,

$$
\phi(a)=\left(A_{\alpha}^{*} \phi\right)(a)=\phi\left(A_{\alpha} a\right) \in V\left(A_{\alpha} a\right) .
$$

So, we have

$$
\pi_{L}(a) \subset V\left(A_{\alpha} a\right) \text { for all } \alpha
$$

that is, $\pi_{L}(a) \subset \bigcap_{\alpha} V\left(A_{\alpha} a\right)$. We show

$$
\bigcap_{\alpha} \overline{\bigcup_{\beta \geq \alpha} V\left(A_{\beta} a\right)} \subset \pi_{L}(a) .
$$

Let $F:=\bigcap_{\alpha} \overline{\bigcup_{\beta \geq \alpha} V\left(A_{\beta} a\right)}$. We have shown $\pi_{L}(a) \subset F$. Let $\varepsilon>0$ be arbitrary Suppose $F \backslash \overline{N\left(\pi_{L}(a) ; \varepsilon\right)} \neq \emptyset$, where $N\left(\pi_{L}(a) ; \varepsilon\right)=\left\{z \in C \mid \operatorname{dist}\left(\pi_{L}(a), z\right)<\varepsilon\right\}$. Then for every α, there is a

$$
\lambda_{\alpha} \in \bigcup_{\beta \geq \alpha} V\left(A_{\beta} a\right) \backslash \overline{N\left(\pi_{L}(a) ; \varepsilon\right)} .
$$

Thus $\lambda_{\alpha}=\phi_{\alpha}\left(A_{r_{\alpha}} a\right)$ for some $\phi_{\alpha} \in D(\mathbf{1}, \mathbf{A})$ and for some $r_{\alpha} \geq \alpha$. By Alaoglu's
theorem, $\left\{A_{r_{\alpha}}^{*} \phi_{\alpha}\right\}$ has a convergent subnet $\left\{A_{r_{\beta}}^{*} \phi_{\beta}\right\}$. Say, $A_{r_{\beta}}^{*} \phi_{\beta} \rightarrow \psi$ weakly*. Therefore $\psi \in \pi_{L}$ by Lemma 2.2(i) and

$$
\psi(a)=\lim _{\beta}\left(A_{r_{\beta}}^{*} \phi_{\beta}\right)(a)=\lim _{\beta} \phi_{\beta}\left(A_{r_{\beta}} a\right) \notin N\left(\pi_{L}(a) ; \varepsilon\right) .
$$

This is impossible because $\psi(a) \in \pi_{L}(a)$. We have shown $F \subset \overline{N\left(\pi_{L}(a) ; \varepsilon\right)}$ for any $\varepsilon>0$. Since $\pi_{L}(a)$ is a compact set in \boldsymbol{C}, this implies

$$
\bigcap_{\alpha} \bigcup_{\beta \geq \alpha} V\left(A_{\beta} a\right) \supset \pi_{L}(a)=\bigcap_{\varepsilon>0} \overline{N\left(\pi_{L}(a) ; \varepsilon\right)} \supset F \supset \pi_{L}(a) .
$$

Therefore these sets are all equal. By Lemma 2.3(c), we have that for every $\varepsilon>0$,

$$
\bigcup_{\beta \geq \alpha} V\left(A_{\beta} a\right) \subset \overline{N\left(\pi_{L}(a) ; \varepsilon\right)} \text { for sufficiently large } \alpha
$$

Since $\overline{N\left(\pi_{L}(a) ; \varepsilon\right)}$ is also compact and convex, this implies

$$
\overline{\mathrm{co}} \bigcup_{\beta \geq \alpha} V\left(A_{\beta} a\right) \subset \overline{N\left(\pi_{L}(a) ; \varepsilon\right)}
$$

and hence

$$
\pi_{L}(a)=\bigcap_{\alpha} \overline{\operatorname{co}} \bigcup_{\beta \geq \alpha} V\left(A_{\beta} a\right) .
$$

The proof is complete.
Theorem 3.2. Let A be a closed linear operator in $\mathbf{A}(X)$, let L be a closed linear operator in \mathbf{A} with $L \mathbf{1}=\mathbf{1}$ and let $f \in \mathbf{A}(X)$ satisfy (1). Suppose that $\left\{\left(A_{\alpha}, S_{\alpha}\right)\right\}$ is a net in $B(\mathbf{A}) \times B(\mathbf{A}(X))$ satisfying the following conditions:
$\left(1^{*}\right)\left\{A_{\alpha}\right\}$ is a contractive $(L-I)$-semi-ergodic net on \mathbf{A} such that $L \mathbf{1}=\mathbf{1}$;
$\left(2^{*}\right)\left\{S_{\alpha}\right\}$ is a contractive (A)-semi-ergodic net on $\mathbf{A}(X)$;
$\left(3^{*}\right)$ for every α, the pair $\left(A_{\alpha}, S_{\alpha}\right)$ is a corresponding pair in $(\mathbf{A}, \mathbf{A}(X))$.
Then

$$
\Phi_{f}\left(\pi_{L}\right)=\bigcap_{\alpha} \overline{\operatorname{co}}\left(S_{\alpha} f\right)(\Omega)=\bigcap_{\alpha} \overline{\mathrm{co}}\left[\bigcup_{\beta \geq \alpha}\left(S_{\beta} f\right)(\Omega)\right]
$$

Proof. If $\phi \in \pi_{L}$, then we have that for every $\alpha, \phi=A_{\alpha}^{*} \phi$ by (1^{*}). By Lemma 2.4(b) and Lemma 2.7(b), we have

$$
\Phi_{f}(\phi)=\Phi_{f}\left(A_{\alpha}^{*} \phi\right)=\Phi_{S_{\alpha} f}(\phi) \in \overline{\operatorname{co}}\left(S_{\alpha} f\right)(\Omega) .
$$

This means that $\Phi_{f}\left(\pi_{L}\right) \subset \bigcap_{\alpha} \overline{\operatorname{co}}\left(S_{\alpha} f\right)(\Omega)$. It suffices to show $\bigcap_{\alpha} \overline{\operatorname{co}}\left[\bigcup_{\beta \geq \alpha}\left(S_{\beta} f\right)(\Omega)\right] \subset \Phi_{f}\left(\pi_{L}\right)$. Since $A_{\alpha}^{*} D(\mathbf{1}, \mathbf{A}) \subset D(\mathbf{1}, \mathbf{A})$ for every α, we have

$$
\begin{aligned}
\overline{\mathrm{co}}\left(S_{\alpha} f\right)(\Omega) & =\Phi_{S_{\alpha} f}(D(\mathbf{1}, \mathbf{A})) & & \text { by Lemma 2.4(b) } \\
& =\Phi_{f}\left(A_{\alpha}^{*} D(\mathbf{1}, \mathbf{A})\right) \subset \Phi_{f}(D(\mathbf{1}, \mathbf{A})) & & \text { by Lemma } 2.7(\mathrm{~b}) \text { and }\left(1^{*}\right) \\
& =\overline{\operatorname{co}} f(\Omega) & & \text { by Lemma 2.4(b) again. }
\end{aligned}
$$

This proves that $\overline{\mathrm{co}}\left[\bigcup_{\beta \geq \alpha}\left(S_{\beta} f\right)(\Omega)\right]$ is weakly compact for all α. Let $x^{*} \in X^{*}$ be arbitrary. We have

$$
\begin{array}{rlr}
\left\langle\Phi_{f}\left(\pi_{L}\right), x^{*}\right\rangle & =\left\{\left\langle\Phi_{f}(\phi), x^{*}\right\rangle \mid \phi \in \pi_{L}\right\} \\
& =\left\{\phi\left(\left\langle f(\cdot), x^{*}\right\rangle\right) \mid \phi \in \pi_{L}\right\} \\
& =\bigcap_{\alpha} \overline{\operatorname{co}} \bigcup_{\beta \geq \alpha}\left\{\phi\left(A_{\beta}\left\langle f(\cdot), x^{*}\right\rangle\right) \mid \phi \in D(\mathbf{1}, \mathbf{A})\right\} \quad \text { by Theorem 3.1 } \\
& =\bigcap_{\alpha} \overline{\operatorname{co}} \bigcup_{\beta \geq \alpha}\left\{\phi\left(\left\langle S_{\beta} f(\cdot), x^{*}\right\rangle\right) \mid \phi \in D(\mathbf{1}, \mathbf{A})\right\} \quad \text { by }\left(3^{*}\right) \\
& =\bigcap_{\alpha} \overline{\operatorname{co}}\left\langle\bigcup_{\beta \geq \alpha} \Phi_{S_{\beta} f}(D(\mathbf{1}, \mathbf{A})), x^{*}\right\rangle & \\
& =\bigcap_{\alpha} \overline{\cos }\left\langle\bigcup_{\beta \geq \alpha}\left(S_{\beta} f\right)(\Omega), x^{*}\right\rangle & \text { by Lemma 2.4(b) } \\
& =\left\langle\bigcap_{\alpha}^{\overline{c o}} \bigcup_{\beta \geq \alpha}\left(S_{\beta} f\right)(\Omega), x^{*}\right\rangle & \text { by Lemma 2.3(a) and (b). }
\end{array}
$$

Since $\Phi_{f}\left(\pi_{L}\right)$ and $\bigcap_{\alpha} \overline{\operatorname{co}}\left(S_{\alpha} f\right)(\Omega)$ are closed and convex in X, it follows from the Hahn-Banach separation theorem that

$$
\Phi_{f}\left(\pi_{L}\right)=\bigcap_{\alpha} \overline{\operatorname{co}} \bigcup_{\beta \geq \alpha}\left(S_{\beta} f\right)(\Omega)
$$

This completes the proof.

4. Continuous case.

The following theorem is deduced from Theorem 3.2.
Theorem 4.1. Let X be a Banach space and let the range $f[0, \infty)$ of $f \in$ $L^{\infty}([0, \infty), X)$ be relatively weak compact. Then

$$
\begin{aligned}
\bigcap_{t>0} & \overline{\cos }\left\{s^{-1} \int_{0}^{s} f(r+u) d r \mid s \geq t, u \geq 0\right\} \\
& =\bigcap_{t>0} \overline{\operatorname{co}}\left\{t^{-1} \int_{0}^{t} f(r+u) d r \mid u \geq 0\right\} \\
& =\bigcap_{\lambda>0} \overline{\cos }\left\{\lambda \int_{0}^{\infty} e^{-\lambda t} f(t+s) d t \mid s \geq 0\right\} \\
& =\bigcap_{\lambda>0} \overline{\operatorname{co}}\left\{\mu \int_{0}^{\infty} e^{-\mu t} f(t+s) d t \mid 0<\mu<\lambda, s \geq 0\right\} .
\end{aligned}
$$

Proof. Consider the integrated semigroup $S(\cdot)$ and its resolvent operators $R(\lambda)$ defined on $L^{\infty}([0, \infty), X)$ as in Example 1. By Example 1, both $\left\{t^{-1} S(t)\right\}_{t>0}(t \rightarrow \infty)$ and $\{R(\lambda)\}_{\lambda>0}(\lambda \downarrow 0)$ are all A-semi-ergodic nets on $L^{\infty}([0, \infty), X)$, where A is the generator of $S(\cdot)$. Whenever $X=\boldsymbol{C}$, we denote $S(\cdot)$ and $R(\cdot)$ by $S_{0}(\cdot)$ and $R_{0}(\cdot)$, respectively. Let $L-I$ be the generator of $S_{0}(\cdot)$. Then we have that for every $g \in L^{\infty}([0, \infty), X)$ and $x^{*} \in X^{*}$,

$$
S_{0}(t)\left\langle g(\cdot), x^{*}\right\rangle=\left\langle(S(t) g)(\cdot), x^{*}\right\rangle
$$

So, $\left(S_{0}(t), S(t)\right)$ is a corresponding pair for all $t \geq 0$. Similarly, $\left(R_{0}(\lambda), R(\lambda)\right)$ is also a corresponding pair for all $\lambda>0$. Now, we assume that the range $f[0, \infty)$ of $f \in L^{\infty}([0, \infty), X)$ is relatively weak compact. By Theorem 3.2, we have

$$
\begin{aligned}
& \bigcap_{t>0} \overline{\overline{\mathrm{Co}}}\left\{s^{-1} \int_{0}^{s} f(r+u) d r \mid s \geq t, u \geq 0\right\} \\
& \quad=\bigcap_{t>0} \overline{\operatorname{co}} \bigcup_{s \geq t}\left(s^{-1} S(s) f\right][0, \infty) \\
& \quad=\bigcap_{t>0} \overline{\operatorname{co}}\left[t^{-1} S(t) f\right][0, \infty)=\bigcap_{t>0} \overline{\operatorname{co}}\left\{t^{-1} \int_{0}^{t} f(r+u) d r \mid u \geq 0\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\Phi_{f}\left(\pi_{L}\right) \\
& =\bigcap_{\lambda>0} \overline{\overline{c o}}[R(\lambda) f][0, \infty) \equiv \bigcap_{\lambda>0} \overline{\overline{c o}}\left\{\lambda \int_{0}^{\infty} e^{-\lambda t} f(t+s) d t \mid s \geq 0\right\} \\
& =\bigcap_{\lambda>0} \overline{\operatorname{co}} \bigcup_{0<\mu<\lambda}[R(\mu) f][0, \infty) \\
& =\bigcap_{\lambda>0} \overline{\operatorname{co}}\left\{\mu^{2} \int_{0}^{\infty} e^{-\mu t} \int_{0}^{t}[T(r) f](s) d r d t \mid 0<\mu<\lambda, s \geq 0\right\}, \\
& =\bigcap_{\lambda>0} \overline{\operatorname{co}}\left\{\mu \int_{0}^{\infty} e^{-\mu t} f(t+s) d t \mid 0<\mu<\lambda, s \geq 0\right\} \text { by integrating by parts, }
\end{aligned}
$$

where $T(\cdot)$ is the translation semigroup on $L^{\infty}([0, \infty), X)$. This completes the proof.

The following result is an analogue of the proposition in [21].
Corollary 4.2. Let X be a Banach space and let the range $f[0, \infty)$ of $f \in L^{\infty}([0, \infty), X)$ is relatively weak compact. If $y \in X$, then
$\lim _{t \rightarrow \infty} t^{-1} \int_{0}^{t} f(r+s) d r=y$ weakly uniformly on $s \geq 0$
if and only if
$\lim _{\lambda \downarrow 0} \lambda \int_{0}^{\infty} e^{-\lambda t} f(t+s) d t=y$ weakly uniformly on $s \geq 0$.
From Lemma 2.3(c), if $f[0, \infty)$ is relatively compact, the convergence in Corollary 4.2 is strongly.

5. Discrete case.

Example 2. Let $\ell^{\infty}(X)$ be the space of all bounded sequences in X with sup-norm $\|\cdot\|_{\infty}$. Let $\hat{\sigma}$ be the bounded operator on $\ell^{\infty}(X)$ defined by $\hat{\sigma}\left\{x_{n}\right\}_{n=0}^{\infty}=$ $\left\{x_{n+1}\right\}_{n=0}^{\infty}$. Define $C_{m}:=1 /(m+1) \sum_{k=0}^{m} \hat{\sigma}^{k}, m=1,2, \ldots$, and

$$
A_{r}:=\left(1-e^{-r}\right) \sum_{k=0}^{n} e^{-k r} \hat{\sigma}^{k} \text { for all } r>0 .
$$

We show that both the C_{m} and the A_{r} are $(\hat{\sigma}-I)$-ergodic nets on $\ell^{\infty}(X)$. Since $\|\hat{\sigma}\| \leq 1$, we have that $\left\|C_{m}\right\| \leq 1$ for all $m \geq 1$ and $\left\|A_{r}\right\| \leq 1$ for all $r>0$. So,
both C_{m} and A_{r} satisfy (Ea).
If $\left\{x_{n}\right\}_{n=0}^{\infty} \in N(\hat{\sigma}-I)$, then we have that
$C_{m}\left\{x_{n}\right\}_{n=0}^{\infty}=\left\{x_{n}\right\}_{n=0}^{\infty}$ and $A_{r}\left\{x_{n}\right\}_{n=0}^{\infty}=\left(1-e^{-r}\right) \sum_{k=0}^{n} e^{-k r}\left\{x_{n}\right\}_{n=0}^{\infty}=\left\{x_{n}\right\}_{n=0}^{\infty}$.
Since $\hat{\sigma}^{k}-I=(\hat{\sigma}-I) \sum_{j=0}^{k-1} \hat{\sigma}^{j}$ for all $k=1,2, \ldots$, it is easy to see that

$$
R\left(C_{m}-I\right) \subset \overline{R(\hat{\sigma}-I)} \text { for all } m=1,2, \ldots
$$

and

$$
R\left(A_{r}-I\right) \subset \overline{R(\hat{\sigma}-I)} \text { for all } r>0
$$

Therefore both C_{m} and A_{r} satisfy (Eb).
Finally, we have

$$
C_{m}(\hat{\sigma}-I)=\frac{1}{m+1}\left(\hat{\sigma}^{m+1}-I\right) \rightarrow 0 \text { as } m \rightarrow \infty
$$

and

$$
A_{r}(\hat{\sigma}-I)=\left(e^{r}-1\right) A_{r}-e^{r}\left(1-e^{-r}\right) \rightarrow 0 \text { as } r \downarrow 0 .
$$

Therefore both C_{m} and A_{r} satisfy (Ec) and hence they are all ($\hat{\sigma}-I$)-ergodic nets.

The proof of the following theorem is similar to Theorem 4.1. So, we ommited it.

Theorem 5.1. Let the trace $\left\{x_{n} ; n \geq 0\right\}$ of $\left\{x_{n}\right\}_{n=0}^{\infty} \in \ell^{\infty}(X)$ is relatively weak compact. Then

$$
\begin{aligned}
& \bigcap_{n \geq 1} \overline{\operatorname{co}}\left\{\left.\frac{1}{j+1} \sum_{k=0}^{j} x_{k+m} \right\rvert\, j \geq n, m \geq 0\right\} \\
& \quad=\bigcap_{n \geq 1} \overline{\cos }\left\{\left.\frac{1}{n+1} \sum_{k=0}^{n} x_{k+m} \right\rvert\, m \geq 0\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\bigcap_{r>0} \overline{\mathrm{Co}}\left\{\left(1-e^{-r}\right) \sum_{k=0}^{\infty} e^{-k r} x_{k+m} \mid m \geq 0\right\} \\
& =\bigcap_{r>0} \overline{\mathrm{co}}\left\{\left(1-e^{-s}\right) \sum_{k=0}^{\infty} e^{-k s} x_{k+m} \mid 0<s<r, m \geq 0\right\} .
\end{aligned}
$$

In Theorem 5.1, we see from Lemma 2.3(c) that the convergence is strongly whenever the trace $\left\{x_{n} \mid n \geq 0\right\}$ is compact. If $\left\{x_{n}\right\}_{n=0}^{\infty}$ is a bounded sequence in X, we say that $\left\{x_{n}\right\}_{n=0}^{\infty}$ is weakly almost convergent to some x, written as $\sigma-\lim _{n \rightarrow \infty} x_{n}=x$ or $\sigma-\lim x_{n}=x($ see $[8])$ if

$$
\phi\left(\left\{\left\langle x_{n}, x^{*}\right\rangle\right\}_{n=0}^{\infty}\right)=\left\langle x, x^{*}\right\rangle \text { for all } \phi \in \pi_{\sigma} \text { and for all } x^{*} \in X^{*} .
$$

The following corollary is an analogue of [8, Theorem 3.2(d)].
Corollary 5.2. If $\left\{x_{n}\right\}_{n=0}^{\infty}$ is a bounded sequence in X such that the trace $\left\{x_{n} \mid n \geq 0\right\}$ is relatively weak compact and $x \in X$, then $\sigma-\lim x_{n}=x$ if and only if for every $x^{*} \in X^{*}$,

$$
\lim _{r \downarrow 0}\left(1-e^{-r}\right) \sum_{k=0}^{\infty} e^{-k r}\left\langle x_{k+m}, x^{*}\right\rangle=\left\langle x, x^{*}\right\rangle \text { uniformly on } m \geq 0 \text {. }
$$

Example 3. For every noninteger real number x,

$$
\lim _{r \downarrow 0}\left(1-e^{-r}\right) \sum_{k=0}^{\infty} e^{-k r} \cos (2(k+m) \pi x)=0 \text { uniformly on } m \geq 0
$$

since $\sigma-\lim _{n \rightarrow \infty} \cos (2 n \pi x)=0$ for all noninteger real number x (see [12, Theorem 3.1]).

Acknowledgements. The author would like to thank the referee for his valuable suggestions.

References

[1] F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebra, London Math. Soc. Lecture Note Series No. 2, Cambridge University Press, 1971.
[2] F. F. Bonsall and J. Duncan, Numerical ranges II, London Math. Soc. Lecture Note Series No. 10, Cambridge University Press, 1973.
[3] R. E. Bruck, On the almost-convergence of iterates of a nonexpansive mapping in Hilbert
space and the structure of the weak ω-limit set, Israel J. Math., 29 (1978), 1-16.
[4] R. Emilion, Mean-bounded operators and mean ergodic theorems, J. Funct. Anal., 61 (1985), 1-14.
[5] J. D. Hill, Almost-convergent double sequences, Tôhoku Math. J., 17 (1995), 105-116.
[6] K. Kido and W. Takahashi, Mean ergodic theorems for semigroups of linear operators, J. Math. Anal. Appl., 103 (1984), 387-394.
[7] Y.-C. Li and S.-Y. Shaw, Generalized limits and a mean ergodic theorem, Studia Math., 121 (1996), 207-219.
[8] Y.-C. Li and S.-Y. Shaw, N-times integrated C-semigroups and the abstract Cauchy problem, Taiwanese J. Math., 1 (1997), 75-101.
[9] Y.-C. Li and S.-Y. Shaw, On local α-times integrated C-semigroup, Abstract Appl. Anal., 2007, Art. ID 34890, 18 pp.
[10] Y.-C. Li, R. Sato and S.-Y. Shaw, Convergence theorems and Tauberian theorems for functions and sequences in Banach spaces and Banach lattices, Israel J. Math., 162 (2007), 109-149.
[11] Y.-C. Li, S. Li and C. Li, On σ-limit and $s \sigma$-limit in Banach spaces, Taiwanese J. Math., 9 (2005), 359-371.
[12] Y.-C. Li, Almost convergence of sequences in Banach spaces in weak, strong, and absolute senses, Taiwanese J. Math., 10 (2006), 209-218.
[13] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math., 80 (1948), 167-190.
[14] I. J. Maddox, A new type of convergence, Math. Proc. Cambridge-Philos. Soc., 83 (1978), 61-64.
[15] F. Móricz and B. E. Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Cambridge Philos. Soc., 104 (1988), 283-294.
[16] M. Mursaleen, On some new invariant matrix methods of summability, Quart. J. Math. Oxford Ser. (2), 34 (1983), 77-86.
[17] I. Miyadera, Nonlinear mean ergodic theorems, Taiwanese J. Math., 1 (1997), 433-449.
[18] R. A. Raimi, Invariant means and invariant matrix methods of summability, Duke Math. J., 30 (1963), 81-94.
[19] P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc., 36 (1972), 104-110.
[20] P. Schaefer, Mappings of positive integers and subspaces of m, Port. Math., 38 (1979), 29-38.
[21] S.-Y. Shaw, Ergodic projections of continuous and discrete semigroups, Proc. Amer. Math. Soc., 78 (1980), 69-76.
[22] S.-Y. Shaw, Mean ergodic theorems and linear functional equations, J. Funct. Anal., 87 (1989), 428-441.
[23] N. Shioji and W. Takahashi, Strong convergence of approximated sequences for nonexpansive mapping in Banach spaces, Proc. Amer. Math. Soc., 125 (1997), 3641-3645.

Yuan-Chuan Li

Department of Applied Mathematics
National Chung-Hsing University
Taichung, 402 Taiwan
E-mail: ycli@amath.nchu.edu.tw

[^0]: 2000 Mathematics Subject Classification. Primary 40G05, 47A35; Secondary 40 E05.
 Key Words and Phrases. Cesáro limit, Abel limit, mean, Banach limit, σ-limit, weakly almost convergent, strongly almost convergent, ergodic net, semi-ergodic net.

 This research is supported in part by the National Science Council of Taiwan.

