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Abstract. Shioji and Takahashi proved that for every bounded sequence
{an}∞n=0 of real numbers,

˘
φ({an}∞n=0) | φ is a Banach limit

¯

=

∞\

j=1

co


(n + 1)−1

nX

k=0

ak+m | n ≥ j, m ≥ 0

ff
.

We generalize this result to bounded sequences of vectors and also apply it to
bounded measurable functions.

1. Introduction.

Let X be a Banach space over the complex field C and f : [0,∞) → X be a
locally integrable function. It is well-known that the existence of the Cesáro limit
y := limt→∞ t−1

∫ t

0
f(s)ds implies that the Abel limit limλ↓0 λ

∫∞
0

e−λtf(t)dt also
exists and equals y. In general, the existence of the Abel limit does not guarantee
the existence of the Cesáro limit (cf. [4, p. 8] and [10]). The discrete case has
similar result, too. We ask what will happen if one of these two limits does not
exsist.

We denote the dual space of X by X∗, the algebra of all bounded (linear)
operators on X by B(X), and x∗(x) by 〈x, x∗〉 for x ∈ X and x∗ ∈ X∗. For a
normed algebra A with the identity 1, we denote by D(1,A) the state which is
the set:

D(1,A) :=
{
F ∈ A∗ | ‖F‖ = F (1) = 1

}
.

The (algebra) numerical range [1], [2] of an element a ∈ A is defined as the
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nonempty compact convex set

V (a) := {φ(a) | φ ∈ D(1,A)}.

If L is a closed linear operator in A with L1 = 1, we define πL := {φ ∈ D(1,A) |
L∗φ = φ} [7] and

πL(a) := {φ(a) | φ ∈ πL} for a ∈ A.

An element φ of D(1,A) is said to be a mean (cf. [6]) and φ ∈ πL is said to
be an invariant mean under L∗. If σ : `∞ → `∞ is the operator σ({an}∞n=0) :=
{an+1}∞n=0, then πσ = the set of all Banach limits. Here `∞ is the space of all
bounded sequences in C.

In 1948, Lorentz [13] first studied Banach limits and defined the so-called
σ-limits for bounded sequences in `∞ as following:

σ- lim an := a

if for {an}∞n=0 ∈ `∞, φ({an}∞n=0) = a for all Banach limits φ. Lorentz also showed
that σ- lim an := a if and only if {an}∞n=0 is almost convergence, i.e.,

lim
n→∞

1
n + 1

n∑

k=0

ak+m = a uniformly on m ≥ 0.

For related results of almost convergence, we refer to [3], [5], [12], [14], [15], [16],
[17], [18], [19], [20].

Recently, Naoki Shioji and Wataru Takahashi [23] proved that for every
bounded sequence {an}∞n=0 of real numbers and a real number α, φ({an}∞n=0) ≤ α

for all Banach limits φ if and only if for every ε > 0 there is an integer n0 ≥ 1
such that

(n + 1)−1
n∑

k=0

ak+m ≤ α + ε for all n ≥ n0 and m ≥ 0.

In fact, their result implies that for any bounded sequence {an}∞n=0 of real numbers,

πσ

({an}∞n=0

)
=

∞⋂

j=1

co
{

(n + 1)−1
n∑

k=0

ak+m | n ≥ j, m ≥ 0
}

.
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We ask what will happen if the sequence is an arbitrary bounded sequence of
vectors in a Banach space X.

In Section 2, we shall give some necessary results. For example, we prove a
result (Corollary 2.5) that for a mapping f from a set Ω to a Banach space X,
the range of f is relatively weak compact if and only if for any φ ∈ A∗ there is a
z ∈ X such that

φ(〈f(·), x∗〉) = 〈z, x∗〉 for all x∗ ∈ X∗.

In Section 3, we show two general theorems. One of them is a result (Theorem
3.2) that under some conditions, if the range of f ∈ A(X) is relatively weak
compact, then

Φf (πL) =
⋂
α

co(Sαf)(Ω) =
⋂
α

co
[ ⋃

β≥α

(Sβf)(Ω)
]
.

In section 4, we show a result (Theorem 4.1) that if f ∈ L∞([0,∞), X) satisfies
that f [0,∞) is relatively weak compact, then

⋂
t>0

co
{

s−1

∫ s

0

f(r + u)dr | s ≥ t, u ≥ 0
}

=
⋂
t>0

co
{

t−1

∫ t

0

f(r + u)dr | u ≥ 0
}

=
⋂

λ>0

co
{

λ

∫ ∞

0

e−λtf(t + s)dt | s ≥ 0
}

=
⋂

λ>0

co
{

µ

∫ ∞

0

e−µtf(t + s)dt | 0 < µ < λ, s ≥ 0
}

.

In Section 5, we prove that if {xn}∞n=0 is a bounded sequence in a Banach space
X such that the trace {xn | n ≥ 0} is relatively weak compact, then

⋂

n≥1

co
{

1
j + 1

j∑

k=0

xk+m | j ≥ n,m ≥ 0
}

=
⋂

n≥1

co
{

1
n + 1

n∑

k=0

xk+m | m ≥ 0
}
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=
⋂
r>0

co
{

(1− e−r)
∞∑

k=0

e−krxk+m | m ≥ 0
}

=
⋂
r>0

co
{

(1− e−s)
∞∑

k=0

e−ksxk+m | 0 < s < r,m ≥ 0
}

.

2. Preliminaries.

To do our work, we need the following definitions and some basic results.

Definition 2.1. Let A be a closed linear operator in X. A net {Aα} of
bounded operators on X is called an A-semi-ergodic net if it satisfies the following
conditions:

(Ea) There is an M > 0 such that ‖Aα‖ ≤ M for all α;
(Eb) N(A) ⊂ N(Aα− I) and R(Aα− I) ⊂ R(A) for all α, where N(A) is the null

space of A and R(A) the range of A;
(Ec) R(Aα) ⊂ D(A) for all α and s-limα AαAx = 0 for all x ∈ D(A).

{Aα} is called an A-ergodic net [7], [21], [22] if it is an A-semi-ergodic net and
satisfies

w- lim
α

AAαx = 0 for all x ∈ X.

The A-ergodic net {Aα} is said to be contractive if M = 1.

Example 1. Let S : [0,∞) → B(Y ) be an integrated semigroup (cf. [8])
with generator A, where Y is a Banach space. Suppose ‖S(t + h) − S(t)‖ ≤ h

for all t, h ≥ 0. Thus ‖S(t)‖ ≤ t for all t ≥ 0. Let At := t−1S(t), t > 0 and
let the resolvent operators of S(·) defined by R(λ)f := λ2

∫∞
0

e−λtS(t)fdt for
f ∈ Y and λ > 0. (For instance, if Y = L∞([0,∞), X), we can take [S(t)f ](s) :=∫ t

0
[T (r)f ](s)dr for all t, s ≥ 0 and f ∈ L∞([0,∞), Y ), where T (·) is the translation

semigroup on L∞([0,∞), Y ).) Then we have [8], [9]

S(t)f − tf = A

∫ t

0

S(r)fdr for all t ≥ 0 and f ∈ Y

=
∫ t

0

S(r)Afdr for all t ≥ 0 and f ∈ D(A).

It follows from the assumption on S(·) that we have ‖At‖ ≤ 1 for all t > 0
and ‖R(λ)‖ ≤ 1 for all λ > 0. Therefore both {At}t>0 and {R(λ)}λ>0 satisfy
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(Ea). And for every f ∈ D(A), ‖S′(t)f‖ ≤ ‖f‖∞ and S′(t)f − f = S(t)Af . This
implies

‖At‖ ≤ 1 for all t > 0

and

‖AtAf‖ = ‖t−1S(t)Af‖ = t−1‖S′(t)f − f‖ ≤ t−1‖f‖ → 0 as t →∞.

So, {At}t>0(t → ∞) satisfies (Ec). Next, integrating by parts, we have that for
every f ∈ D(A) and λ > 0,

R(λ)Af = λ3

∫ ∞

0

e−λt

[ ∫ t

0

S(r)Afdr

]
dt

= λ3

∫ ∞

0

e−λt[S(t)f − tf ]dt

= λR(λ)f − λf → 0 as λ ↓ 0.

So, the R(λ)(λ ↓ 0) satisfies (Ec).
Finally, if f ∈ N(A), the null space of A, then 0 =

∫ t

0
S(r)Afdr = S(t)f − tf .

So, we have Atf = f for all t > 0 and

R(λ)f = λ2

∫ ∞

0

e−λtS(t)fdt = λ2

∫ ∞

0

e−λttfdt = f.

On the other hand, we have that for every f ∈ Y , Atf − f = t−1A
∫ t

0
S(r)fdr ∈

R(A) and the closedness of A implies

R(λ)f − f = λ2

∫ ∞

0

e−λt[S(t)f − tf ]dt

= λ2

∫ ∞

0

e−λtA

[ ∫ t

0

S(r)fdr

]
dt

= λ2A

∫ ∞

0

e−λt

[ ∫ t

0

S(r)fdr

]
dt ∈ D(A).

Therefore both {At}t>0(t →∞) and {R(λ)}λ>0(λ ↓ 0) satisfy (Eb) and then they
are all A-semi-ergodic nets on Y .
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Lemma 2.2. Let A be a complex unital normed algebra and let L be a closed
linear operator on A with L1 = 1. Suppose that {Aα} is a contractive (L − I)-
semi-ergodic net on A.

( i ) If φα ∈ D(1,A) for all α and ψ is a weakly∗ limiting point of {A∗αφα}, then
ψ ∈ πL.

( ii ) If φ ∈ πL, then A∗αφ = φ for all α.

Proof. Since L1 = 1, it is immediate that (ii) follows from the second part
of (Eb). We show (i). The assumption ‖Aα‖ ≤ 1 and Alaoglu’s theorem imply
that there is a weakly∗ convergent subnet {A∗βφ} of {A∗αφ} such that ψ = w∗-
limβ A∗βφ and ‖ψ‖ ≤ 1 for some ψ ∈ A∗. Since (L− I)1 = 0, the first part of (Eb)
implies Aα1 = 1 for all α. Therefore, we have

|ψ(1)− 1| = lim
β

∣∣A∗βφβ(1)− φβ(1)
∣∣

= lim
β
|φ(Aβ1− 1)| = 0

and hence ψ ∈ D(1,A). Since {Aα} is an (L − I)-semi-ergodic net, by (Ec) we
have limα Aα(L− I)a = 0 for all a ∈ D(L). It follows that

|ψ(La− a)| = lim
β

∣∣A∗βφ(La− a)
∣∣ = lim

β
|φβ(Aβ(La− a))|

≤ lim sup
β

‖Aβ(La− a)‖ = 0

for all a ∈ D(L). This means ψ ∈ πL and then (i) holds. The proof is complete.

Lemma 2.2(i) shows that πL can not be empty. Since D(1,A) is weakly∗

compact and convex, it is easy to see from the definition of πL that πL is also
weakly∗ compact and convex.

Lemma 2.3. Let T : X → Y be a bounded linear operator, where X and Y

are two Banach spaces.

(a) If F is a nonempty subset of X, then T (coF ) ⊂ T (coF ). If, in addition, coF

is weakly compact, then T (coF ) = T (coF ).
(b) If {Fα} is a decreasing net of nonempty weakly compact sets in X and F :=⋂

α Fα, then TF =
⋂

α TFα.
(c) If {Fα} is a decreasing net of nonempty compact sets in X and F =

⋂
α Fα,

then
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lim
α

sup
x∈Fα

dist(F, x) = 0,

where dist(K, x) = inf{‖y − x‖ | y ∈ K} for ∅ 6= K ⊂ X. In particular, if
F = {x}, then limα dist(Fα, x) = 0

Proof. (a) Since T is continuous, T (coF ) ⊂ T (coF ) is immediate. Now,
suppose that coF is weakly compact. Since T is a bounded linear operator, T is
weakly continuous. This implies that T (coF ) is weakly compact and so T (coF ) is
closed. Since

T (coF ) ⊂ T (coF ) ⊂ T (coF ),

we must have that T (coF ) = T (coF ). This proves (a).
(b) Since {Fα} is a decreasing net of weakly compact sets in X, F ⊂ Fα for

all α. So, we have TF ⊂ ⋂
α TFα. Conversely, put a y ∈ ⋂

α TFα and fix an
arbitrary α0. Then for every α there is an xα ∈ Fα such that y = Txα. Since
xα ∈ Fα0 for all α ≥ α0 and Fα0 is weakly compact, {xα} has a weakly convergent
subnet {xβ} which is independent of the choice of α0, say x := w-limβ xβ . Since
for every α ≥ α0, Fα is weakly compact and xβ ∈ Fα0 for all β ≥ α0, we must
have x ∈ Fα0 . Since the choice of α0 is arbitrary, we must have x ∈ F . Since T is
weakly continuous, this also implies

y = lim
β

Txβ = Tw- lim
β

xβ = Tx ∈ TF.

Therefore
⋂

α TFα ⊂ TF and hence the equality holds. This proves (b).
(c) Clearly, the supx∈Fα

dist(F, x) decrease. Fix an arbitrary α0. Suppose
that there is a positive number ε > 0 such that

lim
α

sup
x∈Fα

dist(F, x) > ε.

Then for every α ≥ α0 there is an xα ∈ Fα such that dist(F, xα) > ε. Since Fα0

is compact and Fα decrease, {xα} has a convergent subnet {xβ} in Fα0 . Say y =
limβ xβ . Thus we have y ∈ Fα0 . Since α0 is arbitrary, this implies

y ∈
⋂
α

Fα = F.

Therefore

0 = dist(F, y) = lim
β

dist(F, xβ) ≥ ε.
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This is impossible and the proof is complete.

Now, we consider a unital normed algebra A consisting of bounded functions
from a nonempty set Ω to C equipped with the sup-norm ‖ · ‖∞. Define

A(X) :=
{
f : Ω → X | 〈f(·), x∗〉 ∈ A for all x∗ ∈ X∗},

where X∗ is the dual space of X. Let f ∈ A(X). Then for any φ ∈ D(1,A), there
is an x∗∗ ∈ X∗∗ = (X∗)∗ such that

φ(〈f(·), x∗〉) = 〈x∗, x∗∗〉 for all x∗ ∈ X∗.

In general, such x∗∗ may not be in X, where X is considered as the canonical
subspace of X∗∗.

Lemma 2.4. Let f ∈ A(X).

(a) If φ ∈ A∗ and the range f(Ω) of f is relatively weak compact in X, then there
is a vector z ∈ X such that

φ(〈f(·), x∗〉) = 〈z, x∗〉 for all x∗ ∈ X∗.

In particular, ‖z‖ ≤ ‖φ‖ · ‖f‖∞, where ‖f‖∞ := supw∈Ω ‖f(w)‖. Such z is
unique and will be denoted by Φf (φ).

(b) Suppose that for every φ ∈ A∗, there is an Φf (φ) ∈ X such that

φ(〈f(·), x∗〉) = 〈Φf (φ), x∗〉 for all x∗ ∈ X∗ (1)

Then Φf (D(1,A)) = cof(Ω).

Proof. (a) Let the range f(Ω) of f ∈ A(X) be relatively weak compact
in X. By Theorem 31.1 of [2], we have A∗ = the linear span of D(1,A). Such
mean case was shown by Kido and Takahashi [6] for another situation. We show
the mean case by applying Kido and Takahashi’s method as following. Assume φ

is a mean on A. Then there is some h ∈ X∗∗ such that

φ(〈f(·), x∗〉) = 〈x∗, h〉 for all x∗ ∈ X∗.

Since f(Ω) is relatively weak compact, cof(Ω) is a weakly compact subset of X,
and so the strong and weak closed subset cof(Ω) is also a weakly compact subset
of X. This subset of X can also be written as σ(X∗∗, X∗)-clcof(Ω) when it is
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considered as a subset of X∗∗. We show that h ∈ σ(X∗∗, X∗)-clcof(Ω). If it is
not, then by the Hahn-Banach separation theorem and the property of a mean,
there would exist an x∗ ∈ X∗ such that

Reh(x∗) < inf Re
{〈x∗, x∗∗〉 | x∗∗ ∈ σ(X∗∗, X∗)-clcof(Ω)

}

= inf Re{〈f(s), x∗〉; s ∈ Ω}
≤ Reφ(〈f(·), x∗〉) = Reh(x∗).

This is a contradiction. Therefore h ∈ cof(Ω) and this proves the existence of z.
Since z ∈ X satisfies that

φ(〈f(·), x∗〉) = 〈z, x∗〉 for all x∗ ∈ X∗,

it is clear that such z is unique by the Hahn-Banach separation theorem and

‖z‖ = sup
{|φ(〈f(·), x∗〉)| | x∗ ∈ X∗, ‖x∗‖ ≤ 1

}

= ‖φ‖ · sup
{|〈f(w), x∗〉| | w ∈ Ω, x∗ ∈ X∗, ‖x∗‖ ≤ 1

}

≤ ‖φ‖ · ‖f‖∞.

This proves (a).
(b) Clearly, Φf is linear. Since D(1,A) is weakly∗ compact and convex in

A∗, Φf (D(1,A)) is closed and convex. If for w ∈ Ω, δw ∈ A∗ is defined by

δw(h) := h(w) for all h ∈ A,

then δw ∈ D(1,A) and

〈Φf (δw), x∗〉 = δw(〈f(·), x∗〉) = 〈f(w), x∗〉

for all x∗ ∈ X∗. Therefore f(w) = Φf (δw) and so cof(Ω) ⊂ Φf (D(1,A)).
Conversely, suppose φ ∈ D(1,A) and Φf (φ) 6∈ cof(Ω). By the Hahn-Banach

separation theorem, there is an x∗ ∈ X∗ such that

sup
w∈Ω

Re〈f(w), x∗〉 < Re〈Φf (φ), x∗〉

= Reφ(〈f(·), x∗〉)
≤ sup

w∈Ω
Re〈f(w), x∗〉.
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This is a contradiction and so Φf (φ) = cof(Ω).

From Lemma 2.4, we see that if f ∈ A(X) satisfies (1), then Φf : A∗ → X is
a bounded linear operator and ‖Φf‖ ≤ ‖f‖∞.

Corollary 2.5. Let f ∈ A(X). Then f satisfies (1) if and only if f(Ω) is
relatively weak compact.

Proof. “If ” part. follows from Lemma 2.4(a).
We prove “Only if ” part. Suppose f satisfies (1). By Lemma 2.4, it suffices

to show that Φf (D(1,A)) is weakly compact. Let {zα} be an arbitrary net in
Φf (D(1,A)). Then we have that for every α, there is an φα ∈ D(1,A) such that

φα(〈f(·), x∗〉) = 〈zα, x∗〉 for all x∗ ∈ X∗.

Since D(1,A) is weakly∗ compact, {φα} has a weakly∗ convergent subnet {φβ}.
Say, {φβ} converges to ψ weakly∗. Then we have ψ ∈ D(1,A) and there is a
unique z ∈ Φf (D(1,A)) by the assumption of (1) such that

ψ(〈f(·), x∗〉) = 〈z, x∗〉 for all x∗ ∈ X∗.

Therefore we have for every x∗ ∈ X∗,

〈z, x∗〉 = ψ(〈f(·), x∗〉)
= lim

β
φβ(〈f(·), x∗〉)

= lim
β
〈zβ , x∗〉.

This proves that the subnet {zβ} of {zα} converges weakly to z and so Φf (D(1,A))
is weakly compact.

Definition 2.6. Let T and S be two bounded linear operators in A and
A(X), respectively. Then (T, S) is said to be a corresponding pair in (A,A(X))
if for every f ∈ A(X) and for all x∗ ∈ X∗,

T 〈f(·), x∗〉 = 〈(Sf)(·), x∗〉 for all x∗ ∈ X∗.

The following lemma is immediately from Definition 2.6 and (1).

Lemma 2.7. Let f ∈ A(X) satisfy (1).
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(a) If S is a bounded linear operator on A(X), then Sf also satisfy (1).
(b) Let T and S be two bounded linear operators on A and A(X), respectively. If

(T, S) is a corresponding pair, then

Φf (T ∗φ) = ΦSf (φ) for all φ ∈ A∗.

3. General results.

We show the following main theorems.

Theorem 3.1. Let A be a complex normed algebra with identity 1 and let L

be a closed linear operator on A with L1 = 1. Suppose that {Aα} is a contractive
(L− I)-semi-ergodic net on A. If a ∈ A, then

πL(a) =
⋂
α

V (Aαa) =
⋂
α

co
( ⋃

β≥α

V (Aβa)
)

.

Proof. Since ‖Aαa‖ ≤ ‖a‖ for all α, it follows from the definition of nu-
merical range that V (Aαa) ⊂ {x ∈ C | |z| ≤ ‖a‖} for all α. If φ ∈ πL, then by
Lemma 2.2(ii) we have that for every α,

φ(a) = (A∗αφ)(a) = φ(Aαa) ∈ V (Aαa).

So, we have

πL(a) ⊂ V (Aαa) for all α,

that is, πL(a) ⊂ ⋂
α V (Aαa). We show

⋂
α

⋃

β≥α

V (Aβa) ⊂ πL(a).

Let F :=
⋂

α

⋃
β≥α V (Aβa). We have shown πL(a) ⊂ F . Let ε > 0 be arbitrary.

Suppose F \ N(πL(a); ε) 6= ∅, where N(πL(a); ε) = {z ∈ C | dist(πL(a), z) < ε}.
Then for every α, there is a

λα ∈
⋃

β≥α

V (Aβa) \N(πL(a); ε).

Thus λα = φα(Arαa) for some φα ∈ D(1,A) and for some rα ≥ α. By Alaoglu’s
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theorem, {A∗rα
φα} has a convergent subnet {A∗rβ

φβ}. Say, A∗rβ
φβ → ψ weakly∗.

Therefore ψ ∈ πL by Lemma 2.2(i) and

ψ(a) = lim
β

(
A∗rβ

φβ

)
(a) = lim

β
φβ(Arβ

a) 6∈ N(πL(a); ε).

This is impossible because ψ(a) ∈ πL(a). We have shown F ⊂ N(πL(a); ε) for any
ε > 0. Since πL(a) is a compact set in C, this implies

⋂
α

⋃

β≥α

V (Aβa) ⊃ πL(a) =
⋂
ε>0

N(πL(a); ε) ⊃ F ⊃ πL(a).

Therefore these sets are all equal. By Lemma 2.3(c), we have that for every
ε > 0,

⋃

β≥α

V (Aβa) ⊂ N(πL(a); ε) for sufficiently large α.

Since N(πL(a); ε) is also compact and convex, this implies

co
⋃

β≥α

V (Aβa) ⊂ N(πL(a); ε)

and hence

πL(a) =
⋂
α

co
⋃

β≥α

V (Aβa).

The proof is complete.

Theorem 3.2. Let A be a closed linear operator in A(X), let L be a closed
linear operator in A with L1 = 1 and let f ∈ A(X) satisfy (1). Suppose that
{(Aα, Sα)} is a net in B(A)×B(A(X)) satisfying the following conditions:

(1*) {Aα} is a contractive (L− I)-semi-ergodic net on A such that L1 = 1;
(2*) {Sα} is a contractive (A)-semi-ergodic net on A(X);
(3*) for every α, the pair (Aα, Sα) is a corresponding pair in (A,A(X)).

Then

Φf (πL) =
⋂
α

co(Sαf)(Ω) =
⋂
α

co
[ ⋃

β≥α

(Sβf)(Ω)
]
.
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Proof. If φ ∈ πL, then we have that for every α, φ = A∗αφ by (1*). By
Lemma 2.4(b) and Lemma 2.7(b), we have

Φf (φ) = Φf (A∗αφ) = ΦSαf (φ) ∈ co(Sαf)(Ω).

This means that Φf (πL) ⊂ ⋂
α co(Sαf)(Ω). It suffices to show⋂

α co[
⋃

β≥α(Sβf)(Ω)] ⊂ Φf (πL). Since A∗αD(1, A) ⊂ D(1, A) for every α, we
have

co(Sαf)(Ω) = ΦSαf (D(1,A)) by Lemma 2.4(b)

= Φf (A∗αD(1,A)) ⊂ Φf (D(1,A)) by Lemma 2.7(b) and (1*)

= cof(Ω) by Lemma 2.4(b) again.

This proves that co[
⋃

β≥α(Sβf)(Ω)] is weakly compact for all α. Let x∗ ∈ X∗ be
arbitrary. We have

〈Φf (πL), x∗〉 =
{〈Φf (φ), x∗〉 | φ ∈ πL

}

=
{
φ(〈f(·), x∗〉) | φ ∈ πL

}

=
⋂
α

co
⋃

β≥α

{
φ(Aβ〈f(·), x∗〉) | φ ∈ D(1,A)

}
by Theorem 3.1

=
⋂
α

co
⋃

β≥α

{
φ(〈Sβf(·), x∗〉) | φ ∈ D(1,A)

}
by (3*)

=
⋂
α

co
〈 ⋃

β≥α

ΦSβf (D(1,A)), x∗
〉

=
⋂
α

co
〈 ⋃

β≥α

(Sβf)(Ω), x∗
〉

by Lemma 2.4(b)

=
〈 ⋂

α

co
⋃

β≥α

(Sβf)(Ω), x∗
〉

by Lemma 2.3(a) and (b).

Since Φf (πL) and
⋂

α co(Sαf)(Ω) are closed and convex in X, it follows from
the Hahn-Banach separation theorem that

Φf (πL) =
⋂
α

co
⋃

β≥α

(Sβf)(Ω).
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This completes the proof.

4. Continuous case.

The following theorem is deduced from Theorem 3.2.

Theorem 4.1. Let X be a Banach space and let the range f [0,∞) of f ∈
L∞([0,∞), X) be relatively weak compact. Then

⋂
t>0

co
{

s−1

∫ s

0

f(r + u)dr | s ≥ t, u ≥ 0
}

=
⋂
t>0

co
{

t−1

∫ t

0

f(r + u)dr | u ≥ 0
}

=
⋂

λ>0

co
{

λ

∫ ∞

0

e−λtf(t + s)dt | s ≥ 0
}

=
⋂

λ>0

co
{

µ

∫ ∞

0

e−µtf(t + s)dt | 0 < µ < λ, s ≥ 0
}

.

Proof. Consider the integrated semigroup S(·) and its resolvent opera-
tors R(λ) defined on L∞([0,∞), X) as in Example 1. By Example 1, both
{t−1S(t)}t>0(t → ∞) and {R(λ)}λ>0(λ ↓ 0) are all A-semi-ergodic nets on
L∞([0,∞), X), where A is the generator of S(·). Whenever X = C, we denote
S(·) and R(·) by S0(·) and R0(·), respectively. Let L− I be the generator of S0(·).
Then we have that for every g ∈ L∞([0,∞), X) and x∗ ∈ X∗,

S0(t)〈g(·), x∗〉 = 〈(S(t)g)(·), x∗〉.

So, (S0(t), S(t)) is a corresponding pair for all t ≥ 0. Similarly, (R0(λ), R(λ)) is
also a corresponding pair for all λ > 0. Now, we assume that the range f [0,∞) of
f ∈ L∞([0,∞), X) is relatively weak compact. By Theorem 3.2, we have

⋂
t>0

co
{

s−1

∫ s

0

f(r + u)dr | s ≥ t, u ≥ 0
}

=
⋂
t>0

co
⋃

s≥t

(s−1S(s)f ][0,∞)

=
⋂
t>0

co[t−1S(t)f ][0,∞) =
⋂
t>0

co
{

t−1

∫ t

0

f(r + u)dr | u ≥ 0
}
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= Φf (πL)

=
⋂

λ>0

co[R(λ)f ][0,∞) ≡
⋂

λ>0

co
{

λ

∫ ∞

0

e−λtf(t + s)dt | s ≥ 0
}

by integrating by parts.

=
⋂

λ>0

co
⋃

0<µ<λ

[R(µ)f ][0,∞)

=
⋂

λ>0

co
{

µ2

∫ ∞

0

e−µt

∫ t

0

[T (r)f ](s)drdt | 0 < µ < λ, s ≥ 0
}

,

=
⋂

λ>0

co
{

µ

∫ ∞

0

e−µtf(t + s)dt | 0 < µ < λ, s ≥ 0
}

by integrating by parts,

where T (·) is the translation semigroup on L∞([0,∞), X). This completes the
proof.

The following result is an analogue of the proposition in [21].

Corollary 4.2. Let X be a Banach space and let the range f [0,∞) of
f ∈ L∞([0,∞), X) is relatively weak compact. If y ∈ X, then

limt→∞ t−1
∫ t

0
f(r + s)dr = y weakly uniformly on s ≥ 0

if and only if

limλ↓0 λ
∫∞
0

e−λtf(t + s)dt = y weakly uniformly on s ≥ 0.

From Lemma 2.3(c), if f [0,∞) is relatively compact, the convergence in Corol-
lary 4.2 is strongly.

5. Discrete case.

Example 2. Let `∞(X) be the space of all bounded sequences in X with
sup-norm ‖·‖∞. Let σ̂ be the bounded operator on `∞(X) defined by σ̂{xn}∞n=0 =
{xn+1}∞n=0. Define Cm := 1/(m + 1)

∑m
k=0 σ̂k, m = 1, 2, . . ., and

Ar := (1− e−r)
n∑

k=0

e−krσ̂k for all r > 0.

We show that both the Cm and the Ar are (σ̂ − I)-ergodic nets on `∞(X). Since
‖σ̂‖ ≤ 1, we have that ‖Cm‖ ≤ 1 for all m ≥ 1 and ‖Ar‖ ≤ 1 for all r > 0. So,
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both Cm and Ar satisfy (Ea).
If {xn}∞n=0 ∈ N(σ̂ − I), then we have that

Cm{xn}∞n=0 = {xn}∞n=0 and Ar{xn}∞n=0 = (1− e−r)
n∑

k=0

e−kr{xn}∞n=0 = {xn}∞n=0.

Since σ̂k − I = (σ̂ − I)
∑k−1

j=0 σ̂j for all k = 1, 2, . . ., it is easy to see that

R(Cm − I) ⊂ R(σ̂ − I) for all m = 1, 2, . . .

and

R(Ar − I) ⊂ R(σ̂ − I) for all r > 0.

Therefore both Cm and Ar satisfy (Eb).
Finally, we have

Cm(σ̂ − I) =
1

m + 1
(σ̂m+1 − I) → 0 as m →∞

and

Ar(σ̂ − I) = (er − 1)Ar − er(1− e−r) → 0 as r ↓ 0.

Therefore both Cm and Ar satisfy (Ec) and hence they are all (σ̂ − I)-ergodic
nets.

The proof of the following theorem is similar to Theorem 4.1. So, we ommited
it.

Theorem 5.1. Let the trace {xn;n ≥ 0} of {xn}∞n=0 ∈ `∞(X) is relatively
weak compact. Then

⋂

n≥1

co
{

1
j + 1

j∑

k=0

xk+m | j ≥ n,m ≥ 0
}

=
⋂

n≥1

co
{

1
n + 1

n∑

k=0

xk+m | m ≥ 0
}
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=
⋂
r>0

co
{

(1− e−r)
∞∑

k=0

e−krxk+m | m ≥ 0
}

=
⋂
r>0

co
{

(1− e−s)
∞∑

k=0

e−ksxk+m | 0 < s < r,m ≥ 0
}

.

In Theorem 5.1, we see from Lemma 2.3(c) that the convergence is strongly
whenever the trace {xn | n ≥ 0} is compact. If {xn}∞n=0 is a bounded sequence
in X, we say that {xn}∞n=0 is weakly almost convergent to some x, written as
σ-limn→∞ xn = x or σ-lim xn = x (see [8]) if

φ
({〈xn, x∗〉}∞n=0

)
= 〈x, x∗〉 for all φ ∈ πσ and for all x∗ ∈ X∗.

The following corollary is an analogue of [8, Theorem 3.2(d)].

Corollary 5.2. If {xn}∞n=0 is a bounded sequence in X such that the trace
{xn | n ≥ 0} is relatively weak compact and x ∈ X, then σ-lim xn = x if and only
if for every x∗ ∈ X∗,

lim
r↓0

(1− e−r)
∞∑

k=0

e−kr〈xk+m, x∗〉 = 〈x, x∗〉 uniformly on m ≥ 0.

Example 3. For every noninteger real number x,

lim
r↓0

(1− e−r)
∞∑

k=0

e−kr cos(2(k + m)πx) = 0 uniformly on m ≥ 0

since σ-limn→∞ cos(2nπx) = 0 for all noninteger real number x (see [12, Theorem
3.1]).

Acknowledgements. The author would like to thank the referee for his
valuable suggestions.
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