Atomic property of the fundamental groups of the Hawaiian earring and wild locally path-connected spaces

By Katsuya Eda

(Received Aug. 5, 2008)
(Revised Feb. 19, 2010)

Abstract

We strengthen previous results on the fundamental groups of the Hawaiian earring and wild Peano continua. Let X be a path-connected, locally path-connected, first countable space which is not locally semi-simply connected at any point. If the fundamental group $\pi_{1}(X)$ is a subgroup of a free product $*_{j \in J} H_{j}$, then it is contained in a conjugate subgroup to some H_{j}.

1. Introduction.

Until recently the Hawaiian earring had been only a typical example of a nonlocally simply connected space [14], [19, p. 59], but now the fundamental group of the Hawaiian earring has called attentions of several authors [2], [10], [11], [20]. The Hawaiian earring \boldsymbol{H} is the plane compactum

$$
\left\{(x, y):\left(x+\frac{1}{n+1}\right)^{2}+y^{2}=\frac{1}{(n+1)^{2}}, n<\omega\right\} .
$$

We call the fundamental group of the Hawaiian earring as the Hawaiian earring group for short, following [2]. Particularly the Hawaiian earring group played a central role in $[\mathbf{1 0}]$, where it is shown that homomorphic images of the Hawaiian earring group in the fundamental group of a one-dimensional metric space determine points of the space.

We call a group G quasi-atomic, if for each homomorphism h from G to the free product $A * B$ of arbitrary groups A and B there exists a finitely generated subgroup A^{\prime} of A or B^{\prime} of B such that $\operatorname{Im}(h)$ is contained in $A^{\prime} * B$ or $A * B^{\prime}$.

By definition, finitely generated groups and abelian groups are quasi-atomic, but free products of infinitely generated groups are not quasi-atomic. Every ho-

[^0]momorphic image of a quasi-atomic group is also quasi-atomic. In the following theorem $\mathbb{*}_{i \in I}^{\sigma} G_{i}$ is the free σ-product of groups G_{i}, the definition of which will be given in the next section.

Theorem 1.1 ([3, Theorem 4.1]. (See also [4].)). Let G_{i} be a finitely generated group for each $i \in I$. Then $\mathbb{x}_{i \in I}^{\sigma} G_{i}$ is quasi-atomic. Consequently the Hawaiian earring group is quasi-atomic.

A topological counterpart to the above is given in the following theorem, where A and B denote arbitrary groups.

Theorem 1.2 ([12, Theorem 1.5]). Let X be a Peano continuum which is not semi-locally simply connected at any point. For every injective homomorphism $h: \pi_{1}\left(X, x_{0}\right) \rightarrow A * B$, there exists a finitely generated subgroup A_{0} of A such that $\operatorname{Im}(h) \leq A_{0} * B$ or there exists a finitely generated subgroup B_{0} of B such that $\operatorname{Im}(h) \leq A * B_{0}$.

In the present paper we strengthen the above results as follows:
Theorem 1.3. Let $G_{i}(i \in I)$ and $H_{j}(j \in J)$ be groups and $h: \mathbb{x}_{i \in I}^{\sigma} G_{i} \rightarrow$ $*_{j \in J} H_{j}$ be a homomorphism from the free σ-product of groups G_{i} to the free product of groups H_{j}. Then there exist a finite subset F of I and $j \in J$ such that $h\left(\circledast_{i \in I \backslash F}^{\sigma} G_{i}\right)$ is contained in a subgroup which is conjugate to H_{j}.

Theorem 1.4. Let X be a path-connected, locally path-connected, first countable space which is not semi-locally simply connected at any point and $h: \pi_{1}\left(X, x_{0}\right) \rightarrow *_{j \in J} H_{j}$ be an injective homomorphism. Then the image of h is contained in a conjugate subgroup to some H_{j}.

Corollary 1.5. Let X be a Peano continuum which is not semi-locally simply connected at any point. For every injective homomorphism $h: \pi_{1}\left(X, x_{0}\right) \rightarrow$ $*_{j \in J} H_{j}$, the image of h is contained in a conjugate subgroup to some H_{j}.
"The atomic property" in the title refers to this type of general property. It may not be adequate to single out a specific property for the name "atomic property", since many similar, but slightly different variants could be observed in various situations. Theorems 1.1 and 1.2 play important role in [10] and [3], where the information of a wild point of a space is recovered from the fundamental group by these properties. Using key lemmas in [10], the author has proved that the fundamental groups of the one-dimensional Peano continua determine their homotopy types [13]. There, the quasi-atomness of the Hawaiian earring group, i.e. Theorem 1.1, underlies the proofs.

Since Theorem 1.4 does not presume compactness, the result can be applied
to asymptotic cones of word-metric spaces. The asymptotic cone of a word-metric space is a path-connected, geodesic metric space, and in particular locally pathconnected. M. Bridson [1] constructed a finitely presented group Γ which satisfies a polynomial isoperimetric inequality such that the asymptotic cone $\mathrm{Con}_{\mathscr{U}} \Gamma$ is not simply connected for each non-principal ultrafilter \mathscr{U}, answering a question of M. Gromov. According to $[\mathbf{1}, \mathrm{p} .544]$ the space ConथU Γ satisfies the assumptions of Theorem 1.4 and hence its fundamental group cannot be decomposed to nontrivial free products. This contrasts with the following result due to Drutu and Sapir [5, Corollary 7.32]: there exists a finitely generated group such that the fundamental group of whose asymptotic cone is isomorphic to an uncountable free group.

A modified form of Theorem 1.3 (see also Theorem 3.1) will be applied in our forthcoming paper [6]. There we construct a space from a manifold by attaching copies of the Hawaiian earring and then recover the manifold from the fundamental group of the constructed space in the way of defining spaces from abstract groups in [3].

2. Word theoretic arguments.

Since our argument requires results of $[8]$ in detail, we review and reprove some results of $[8]$ and $[4]$ for the reader's convenience.

Let $G_{i}(i \in I)$ be groups such that $G_{i} \cap G_{j}=\{e\}$ for distinct i and j. A letter is a non-identity element of $\bigcup_{i \in I} G_{i}$. Two letters are of the same kind, if they belong to the same G_{i}. A word W is a function $W: \bar{W} \rightarrow \bigcup_{i \in I} G_{i}$ such that \bar{W} is a linearly ordered set, $W(\alpha)$ is a letter for each $\alpha \in \bar{W}$ and $\left\{\alpha \in \bar{W}: W(\alpha) \in G_{i}\right\}$ is finite for each $i \in I$. A word W is called a σ-word, if \bar{W} is countable. We denote the set of all words by $\mathscr{W}\left(G_{i}: i \in I\right)$ and the set of all σ-words by $\mathscr{W}^{\sigma}\left(G_{i}: i \in I\right)$.

For a word $W \in \mathscr{W}\left(G_{i}: i \in I\right)$ let W^{-}be the word defined by the following: for $\alpha \in \bar{W}$ there associates a formal symbol α^{-}with the order such that $\alpha^{-} \leq \beta^{-}$ if and only if $\beta \leq \alpha$. Let $\overline{W^{-}}=\left\{\alpha^{-}: \alpha \in \bar{W}\right\}$ and define $W^{-}\left(\alpha^{-}\right)=W(\alpha)^{-1}$ for each $\alpha \in \bar{W}$.

Two words U and V are the same word, denoted by $U \equiv V$, if there exists an order preserving bijection $\varphi: \bar{U} \rightarrow \bar{V}$ such that $U(\alpha)=V(\varphi(\alpha))$ for all $\alpha \in \bar{U}$. The notation $U=V$ means that the words U and V represent the same element in the inverse limit $\lim \left(*_{i \in F} G_{i}, p_{F F^{\prime}}: F \subseteq F^{\prime} \Subset I\right)$. Here $F^{\prime} \Subset I$ means that F^{\prime} is a finite subset of \overleftarrow{I} and $p_{F F^{\prime}}: *_{i \in F^{\prime}} G_{i} \rightarrow *_{i \in F} G_{i}$ is the projection. The free σ-product $\Vdash_{i \in I}^{\sigma} G_{i}$ is the subgroup of $\lim _{\leftrightarrows}\left(*_{i \in F} G_{i}, p_{F F^{\prime}}: F \subseteq F^{\prime} \Subset I\right)$ consisting of all elements which are presented by σ-words. When the index set I is countable, we simply write $\mathbb{x}_{i \in I} G_{i}$ instead of $\times_{i \in I}^{\sigma} G_{i}$.

A word V is a subword of a word W, if there exist words X and Y such that $X V Y \equiv W$. A word W is a reduced word [8], if
(1) for contiguous elements $\alpha, \beta \in \bar{W} W(\alpha)$ and $W(\beta)$ never belong to the same group G_{i};
(2) $V \neq e$ for any non-empty subword V of W.

The notion of reduced words is also defined in [2] and [9, Definition 4.3] in terms of generators. These all generalize the standard notion of reduced words of finite length $[\mathbf{1 6}],[\mathbf{1 8}]$. In particular every word has the unique reduced word $[8$, Theorem 1.4].

A word W is quasi-reduced if the reduced word of W is obtained by multiplying contiguous elements which are of the same kind so that the multiplication does not cause cancellation. A word W is cyclically reduced, if W is either empty, a single letter, or $W W$ is reduced.

For a word W and a non-negative integer n, we define W^{0} to be an empty word, $W^{n+1} \equiv W^{n} W$ and $W^{-(n+1)} \equiv W^{-n} W^{-}$.

For a word W and a letter g, let $a_{W}(g)$ be the cardinality of the set $\{\alpha \in$ $\bar{W}: W(\alpha)=g\}$, that is, the number of appearances of g in W. For $a \in *_{j \in J} H_{j}$, $l(a)$ denotes the length of the reduced word for a. We remark that the reduced word for a is a word of finite length. Under this convention, for a word W of finite length, $l(W)$ is the length of the reduced word of W, but not the length of W itself.

Let W be words and g be a letter. The appearance of g in the word $g W$ is called the head of $g W$. Similarly, the appearance of g in the word $W g$ is called the tail of $W g$.

We say that an appearance of a letter g is stable in $X g Y$, if the reduced word of $X g Y$ is of the form $X^{\prime} g Y^{\prime}$ where X^{\prime} and Y^{\prime} are the reduced words of X and Y respectively. We simply say that the head of W is stable when it is stable in W, and say similarly for the tail. The head of a word W is quasi-stable, if the head of the reduced word of W is of the same kind as that of W. The quasi-stability of the tail of a word is defined similarly.

In the present paper the notions "heads" and "tails" are considered only for non-empty words of finite length.

The following lemmas are those for infinitary words, but will be applied for words of finite length.

Lemma 2.1 ([8, Corollary 1.6]). Let U be a non-empty reduced word such that $U \equiv U^{-}$. Then there exist a letter u and a word W such that $u^{2}=e$ and $U \equiv W^{-} u W$.

Lemma 2.2. Let U be a non-empty word such that $U U \equiv X U^{-} Y$ for some words X and Y. Then there exist U_{0} and U_{1} such that $U \equiv U_{0} U_{1}, U_{0} \equiv U_{0}^{-}$and $U_{1} \equiv U_{1}^{-}$.

Proof. We have U_{0} and U_{1} such that $U_{1} U_{0} \equiv U^{-}, U \equiv X U_{1} \equiv U_{0} Y$ by assumption. Then $U \equiv U_{0}^{-} U_{1}^{-}$, which implies $U_{0} \equiv U_{0}^{-}$and $U_{1} \equiv U_{1}^{-}$.

Lemma 2.3 ([8, Lemma 2.2]). Let $H_{j}(j \in J)$ be groups, and U and X be reduced words. If the head g or the tail g^{-1} in $X U X^{-}$is not stable, then $l\left(X U X^{-}\right) \leq l(U)+1$.

Proof. It suffices to deal with the case that the tail g^{-1} is not stable. Let V be the reduced word of $X U$. Then, $l(V) \leq l(X)+l(U)$. Since the tail g^{-1} in $V X^{-}$is not stable, $l\left(V X^{-}\right) \leq l(V)-l\left(X^{-}\right)+1$. Therefore, $l\left(X U X^{-}\right) \leq l(U)+1$.

The following lemma holds and is stated in [8, Lemma 2.3] under the weaker assumption " $m+n+2 \leq k$." However the proof in $[8]$ contains some inaccuracies. Here we re-prove the lemma under the assumption " $m+n+3 \leq k$." This weaker form, whose proof is less involved, is enough for the present paper and also the other papers [8], $[\mathbf{3}],[\mathbf{1 2}]$ in which we used this lemma. But, in Appendix we will give a correct and full proof under the original assumption " $m+n+2 \leq k$."

Lemma 2.4 ([8, Lemma 2.3]). Let $H_{j}(j \in J)$ be groups and $m, n, k \in \boldsymbol{N}$ such that $m+n+3 \leq k$. Also let $y_{i}, z \in *_{j \in J} H_{j}(1 \leq i \leq M)$ be elements of the free product of H_{j}. If the element $u=y_{1} z^{k} \cdots y_{M} z^{k}$ satisfies $l(u) \leq m$ and $l\left(y_{i}\right) \leq n$ for all $1 \leq i \leq M$, then one of the following holds:
(1) z is a conjugate to an element of some H_{j};
(2) there exist $j, j^{\prime} \in J, i \in\{2, \ldots, M\}, f \in H_{j}, g \in H_{j^{\prime}}, x, y \in *_{j \in J} H_{j}$ and a non-negative integer r such that $f^{2}=g^{2}=e, z=x^{-1} f x y^{-1} g y$, and $y_{i}=$ $z^{r} x^{-1} f x$ or $y_{i}=y^{-1} g y z^{r}$.

Proof. It is easy to see that for $z \neq e$ there exist reduced words U and W such that
(a) $z=W^{-} U W$;
(b) $U U$ is reduced or $l(U)=1$;
(c) $W^{-} U W$ is quasi-reduced.

If $l(U)=1$, then the proof is done. Hence, we assume $l(U) \geq 2$ and that $U U$ is reduced. Let Y_{i} be the reduced word for y_{i} for each $1 \leq i \leq M$. Then,

$$
u=Y_{1} W^{-} U^{k} W Y_{2} W^{-} \ldots W Y_{M} W^{-} U^{k} W
$$

If $M=1$, then $u=y_{1} z^{k}$ and hence $2 k \leq l\left(z^{k}\right) \leq l(u)+l\left(y_{1}\right) \leq m+n$, which is a contradiction. Hence $M \geq 2$. Let p be the least number so that $2 p \geq n+1$. Then
$2 p \leq n+2$. Since $W^{-} U^{k}$ is reduced and $l\left(Y_{1}\right) \leq n$, the reduced word of $Y_{1} W^{-} U^{k}$ is of the form $Z_{1} U^{p+2}$ whether the tail of $Y_{1} W^{-}$is stable or not. Let Z_{i} be the reduced word of $W Y_{i} W^{-}$for each $2 \leq i \leq M$. Now we have

$$
\text { (*) } \quad u=Z_{1} U^{p+2} Z_{2} U^{k} \cdots U^{k} Z_{M} U^{k} W .
$$

We are concerned with the reduced word of $U^{p+1} Z_{i} U^{p+1}$. Suppose that the head and the tail of $U^{p+1} Z_{i} U^{p+1}$ are quasi-stable for every $i \geq 2$. Since $2 p+2 \leq n+4 \leq$ $m+n+3 \leq k$ and U is cyclically reduced, by considering the rightmost U^{k} we conclude

$$
(* *) \quad 2 m+n \leq 2 k-(n+2)-2 \leq 2(k-(p+1)) \leq l(u) \leq m,
$$

which is a contradiction. Therefore the head or the tail of $U^{p+1} Z_{i} U^{p+1}$ is not quasi-stable for some $i \geq 2$. We fix such an i.

Case 1: The tail of $U^{p+1} Z_{i} U^{p+1}$ is not quasi-stable.
The head or the tail of $W Y_{i} W^{-}$is not stable, because otherwise $U^{p+1} Z_{i} U^{p+1}$ is a quasi-reduced word. Hence we have $l\left(Z_{i}\right)=l\left(W Y_{i} W^{-}\right) \leq l\left(Y_{i}\right)+1 \leq n+1$ by Lemma 2.3. The reduced word of $Z_{i} U^{p+1}$ is of the form $Z_{i}^{\prime} X_{i}^{\prime} U^{q+1}$ for some $0 \leq q \leq p$ such that $X_{i} X_{i}^{\prime} \equiv U$ for some word X_{i} and $l\left(Z^{\prime}{ }_{i}\right) \leq l\left(Z_{i}\right)$. We examine the cancellation that occurs in the rightmost U. Then we have S, T such that $S T \equiv U$ and $S \equiv S^{-}$and $T \equiv T^{-}$. Since $U U$ is reduced, neither S nor T is empty. By Lemma 2.1, $S=x_{0}^{-1} f x_{0}$ and $T=y_{0}^{-1} g y_{0}$ for some $f \in H_{j}$ and $g \in H_{j^{\prime}}$ with $f^{2}=g^{2}=e$ and $x_{0}, y_{0} \in *_{j \in J} H_{j}$. Let $x=x_{0} W$ and $y=y_{0} W$. Then $z=x^{-1} f x y^{-1} g y$. Moreover $W Y_{i} W^{-} U^{p-q}=Z_{i}^{\prime} X_{i}^{\prime}=U^{-l} T$ for some l. Hence

$$
y_{i}=Y_{i}=W^{-} U^{-l} T U^{-(p-q)} W=W^{-}(T S)^{l} T(T S)^{p-q} W .
$$

If $p-q>l$, then we have $y_{i}=z^{p-q-l-1} x^{-1} f x$ and if $p-q \leq l$, then we have $y_{i}=y^{-1} g y z^{l-p+q}$.

Case 2: The head of $U^{p+1} Z_{i} U^{p+1}$ is not quasi-stable.
Since the reduced word of $U^{p+1} Z_{i}$ is of the form $U^{q+1} X_{i} Z_{i}^{\prime}$ for some $0 \leq q \leq p$ such that $X_{i} X_{i}^{\prime} \equiv U$ for some word X_{i}^{\prime} and $l\left(Z^{\prime}{ }_{i}\right) \leq l\left(Z_{i}\right)$. We observe the cancellation of the left most U and have the same conclusion as in Case 1.

Let A and B be groups, and let C_{1} and C_{2} be subsets of $A * B$ defined by: $C_{1}=\left\{x^{-1} u x: u \in A \cup B, x \in A * B\right\}$ and $C_{2}=\left\{x y: x, y \in C_{1}\right\}$.

Note C_{2} is closed under conjugacy, that is, $u^{-1} x u \in C_{2}$ if and only if $x \in C_{2}$. We consider cyclically reduced words for elements in C_{2}. A word U is cyclically
equivalent to a word V, if $U=X^{-} V X$ for some X, i.e. U represents an element conjugate to the element represented by V. Now we easily have:

Lemma 2.5. Every word W for an element of $C_{2}(\subseteq A * B)$ is cyclically equivalent to a word which has one of the following forms:
(1) empty;
(2) u_{0} where $u_{0} \in A \cup B$;
(3) $V_{0}^{-} u_{0} V_{0} v_{0}$ where $u_{0}, v_{0} \in A \cup B$ and V_{0} is a reduced word.

We remark the following: if $W \in C_{2} \backslash C_{1}$ for a cyclically reduced word W, then W is of the form $W_{0}^{-} w_{0} W_{0} W_{1}^{-} w_{1} W_{1}$.

In the remaining part of this section A and B denote groups. We prove word theoretic lemmas that will be used in the proof of Theorem 3.1.

Lemma 2.6. Suppose that every element of A has order 2 . Let $a_{1}, a_{2} \in A$ $\left(a_{1} \neq a_{2}\right)$ and $b \in B$ be non-trivial elements. Then

$$
u^{-1} a_{1} u v^{-1} b v u^{-1} a_{2} u v^{-1} b v u^{-1}\left(a_{1} a_{2}\right) u v^{-1} b v
$$

does not belong to C_{2} for any $u, v \in A * B$.
Proof. Let $a_{3}=a_{1} a_{2}$. Since

$$
\begin{aligned}
& v u^{-1} a_{1} u v^{-1} b v u^{-1} a_{2} u v^{-1} b v u^{-1}\left(a_{1} a_{2}\right) u v^{-1} b v v^{-1} \\
& \quad=w^{-1} a_{1} w b w^{-1} a_{2} w b w^{-1} a_{3} w b
\end{aligned}
$$

where $w=u v^{-1}$, we may assume $v=e$ and moreover that $U^{-} a_{1} U b U^{-} a_{2} U b U^{-}\left(a_{1} a_{2}\right) U b$ is cyclically reduced for the reduced word U for u. Let $V \equiv U^{-} a_{1} U b U^{-} a_{2} U b U^{-} a_{3} U b$. We remark $a_{3} \neq a_{1}$ and $a_{3} \neq a_{2}$. Then $a_{V}\left(a_{1}\right), a_{V}\left(a_{2}\right)$ and $a_{V}\left(a_{3}\right)$ are odd, because each of a_{1}, a_{2} and a_{3} appearing in U also appears in U^{-}. Hence we have three distinct letters g for which $a_{V}(g)$ is odd and $g^{2}=e$.

Since V is cyclically reduced, V does not belong to C_{1}. If $V \in C_{2}$, then by the remark preceding Lemma V must be of the form $W_{0}^{-} w_{0} W_{0} W_{1}^{-} w_{1} W_{1}$. But then we have at most two distinct letters g for which $a_{V}(g)$ is odd and $g^{2}=e$. Hence we conclude $V \notin C_{2}$.

Lemma 2.7. Let $a \in A$ be an element satisfying $a^{2} \neq e$ and $b \in B$ be a non-trivial element. Then $u^{-1} a u v^{-1} b v u^{-1} a u v^{-1} b v u^{-1} a u v^{-1} b v$ does not belong to C_{2} for every $u, v \in A * B$.

Proof. Let U be the reduced word for u. As in the proof of Lemma 2.6, we may assume that $v=e$ and $W \equiv U^{-} a U b U^{-} a U b U^{-} a U b$ is cyclically reduced. Since the length of W is even, W does not belong to C_{1}. We see $a_{W}(a)-a_{W}\left(a^{-1}\right)=$ 3. If W is of the form $W_{0}^{-} w_{0} W_{0} W_{1}^{-} w_{1} W_{1}$, then we have $a_{W}(a)-a_{W}\left(a^{-1}\right) \leq 2$. Hence we conclude $W \notin C_{2}$ again by the remark preceding Lemma 2.6.

Lemma 2.8. Let H be a subgroup of $A * B$ containing $\left\langle W^{-} a W\right\rangle *\langle V\rangle$, where $a \in A \cup B, W^{-} a W$ is a reduced word and V is a cyclically reduced word with $l(V) \geq 2$. There exists $u \in H$ such that $u \notin C_{2}$.

Proof. Since V is cyclically reduced and $l(V) \geq 2$, either $W^{-} a W V$ or $V W^{-} a W$ is reduced. Since the argument proceeds symmetrically, we assume that $V W^{-} a W$ is reduced. Choose k so that $k \cdot l(V)>l\left(W^{-} a W\right)$. Then the tail of $V W^{-} a W$ is stable in $V W^{-} a W V^{k+1}$. We claim that the head of $V W^{-} a W$ is also stable in $V W^{-} a W V^{k+1}$. To show this by contradiction, suppose that it is unstable. We consider a reduction process of the word $V W^{-} a W V^{k+1}$. Since $V W^{-} a W$ and V^{k+1} are reduced words, a reduction process of the word $V W^{-} a W V^{k+1}$ is a straight road. Let c be the head of V. The head c of $V W^{-} a W$ is affected under the reduction between $V W^{-} a W$ and V^{k+1}, i.e. there is a letter c^{\prime} in V^{k+1} such that the multiplication $c c^{\prime}$ occurs in the reduction process. Then, we have V_{0} and V_{1} such that $c V_{0} V_{1} \equiv V \equiv V_{0}^{-} c^{\prime} V_{1}^{-}$, which implies $c V_{0} \equiv V_{0}^{-} c^{\prime}$ and hence $c^{\prime}=c^{-1}$. Now we have $V_{0}^{-} c^{-1} \equiv c V_{0}, V_{1}^{-} \equiv V_{1}$ and $W^{-} a W \equiv V_{0}^{-} c^{-1}\left(V^{-}\right)^{l}$ for some $l \geq 0$. This implies $\left(W^{-} a W V^{l+1}\right)^{2}=\left(V_{0}^{-} c^{-1} V\right)^{2}=\left(V_{1}\right)^{2}=e$, which contradicts that $\left\langle W^{-} a W\right\rangle$ and $\langle V\rangle$ have no relation.

Let W_{0} be the reduced word of $V W^{-} a W V^{k+1}$. Since the head and tail of $V W^{-} a W V^{k+1}$ are stable, the word $V W_{0} V$ is reduced. The reduction process of $V W^{-} a W V^{k+1}$ stops when the multiplication in A or B produces a non-identity element. By looking at this final step, we have a non-negative integer l, letters u_{0}, u of the same kind and words U_{0}, U_{1}, X such that $U_{0} u_{0} U_{1} \equiv V, W_{0} \equiv X u U_{1} V^{l}$, and $u \neq u_{0}$.

Let $U \equiv W_{0} V^{2 k+2} W_{0} V^{6 k+8} W_{0} V^{14 k+18}$ which is the reduced word of

$$
V W^{-} a W V^{k+1} V^{2 k+2} V W^{-} a W V^{k+1} V^{6 k+8} V W^{-} a W V^{k+1} V^{14 k+18} .
$$

To show $U \notin C_{2}$ by contradiction, suppose $U \in C_{2}$. Since U is cyclically reduced, U does not belong to C_{1} and hence is of the form $X_{0}^{-} x_{0} X_{0} X_{1}^{-} x_{1} X_{1}$. Remark the inequality $l\left(W_{0}\right)<(2 k+2) l(V)$. From this we see that the indicated appearance of x_{1} is located in $V^{14 k+18}$.

Case 1: The rightmost $W_{0} V$ is located in $X_{1}^{-} x_{1} X_{1}$. Then it is located in X_{1}^{-} because $l\left(V^{14 k+17}\right)>l\left(W_{0} V^{2 k+2} W_{0} V^{6 k+8} W_{0} V\right)$. Since X_{1} is a subword of
$V^{14 k+18}$, we have V_{0} and V_{1} such that $V_{0} V_{1} \equiv V, V_{0}^{-} \equiv V_{0}, V_{1}^{-} \equiv V_{1}$ and $W_{0} V \equiv$ $X u U_{1} V^{l} V \equiv Y V_{0} V_{1} V_{0} V^{-l} V_{1}$ for some word Y. This implies $X u U_{1} \equiv Y V_{0} V_{1} \equiv$ $Y V \equiv Y U_{0} u_{0} U_{1}$, which contradicts $u \neq u_{0}$.

Case 2: The rightmost $W_{0} V$ is not located in $X_{1}^{-} x_{1} X_{1}$. In this case we examine the leftmost $W_{0} V$ and the middle $W_{0} V$. They are located in X_{0}^{-}, because $l\left(V^{6 k+7}\right)>$ $l\left(W_{0} V^{2 k+2} W_{0} V\right)$. Since $l\left(V^{2 k+2}\right)>l\left(W_{0}\right)$, we see the length of the word between the leftmost W_{0} and the middle W_{0} is greater than the length of the rightmost W_{0}. Thus for the leftmost or the middle $W_{0} V$, a similar argument to Case 1 is used to deduce a contradiction.

Lemma 2.9. Let H be a subgroup of $A * B$ such that
(1) H contains a non-trivial element which is conjugate to an element of A or B;
(2) H is not contained in any conjugate subgroup to A nor B; and
(3) H is not contained in any subgroup of the form $\left\langle u_{0}\right\rangle *\left\langle u_{1}\right\rangle$ with $u_{0}^{2}=u_{1}^{2}=e$.

Then, H contains an element $u \notin C_{2}$.
Proof. By the Kurosh subgroup theorem [17], H is of the form $*_{i \in I} u_{i}^{-1} H_{i} u_{i} * *_{j \in J} v_{j}^{-1}\left\langle V_{j}\right\rangle v_{j}$, where H_{i} 's are subgroups of A or B and V_{j} 's are cyclically reduced words and $l\left(V_{j}\right) \geq 2$. Under the condition (1)-(3) H contains
(a) a subgroup $u^{-1}\langle a\rangle u * v^{-1}\langle b\rangle v$ for some non-trivial elements $a, b \in A \cup B$ with $a^{2} \neq e$; or
(b) a subgroup $\left\langle w^{-1} a w\right\rangle *\left\langle v^{-1} V v\right\rangle$, where $a \in A \cup B$ and V is a non-empty cyclically reduced word with $l(V) \geq 2$.

When H contains a subgroup of type (a), Lemma 2.7 implies the conclusion. When H contains a subgroup of type $(b), v H v^{-1}$ contains a subgroup $\left\langle\left(w v^{-1}\right)^{-1} a w v^{-1}\right\rangle *$ $\langle V\rangle$. Let W be the reduced word for $w v^{-1}$. If $W^{-1} a W$ is a reduced word, we can apply Lemma 2.8 to $v H v^{-1}$. Otherwise, $W \equiv a_{0} W_{0}$ with a_{0} being of the same kind as a. Let $a_{1}=a_{0}^{-1} a a_{0}$. Then, $a_{1}{ }^{2}=e$ and $W_{0}^{-} a_{1} W_{0}$ is a reduced word. Hence we can apply Lemma 2.8 to $v H v^{-1}$. In any case we have an element $u \in v H v^{-1}$ satisfying $u \notin C_{2}$. We have $v^{-1} u v \in H$ and $v^{-1} u v \notin C_{2}$.

Lemma 2.10. Let $x \in(A * B) \backslash C_{2}$. Then $x^{m} \notin C_{2}$ for every integer $m \geq 4$. For given x_{1}, \ldots, x_{n}, there exists a positive integer $m \geq 4$ such that $x_{i} x^{m} \notin C_{1}$ for every $1 \leq i \leq n$.

Proof. Let V be the reduced word for x. Obviously $l(V) \geq 2$.
First we assume that V is cyclically reduced and prove the lemma. To show the first statement by contradiction, suppose that $V^{m} \in C_{2}$. Then we have letters w_{0}, w_{1} and words W_{0}, W_{1} such that $V^{m} \equiv W_{0}^{-} w_{0} W_{0} W_{1}^{-} w_{1} W_{1}$. Since $l(V) \leq$
$l\left(W_{0}\right)$ or $l(V) \leq l\left(W_{1}\right), V$ is a subword of W_{0}^{-}or W_{1}. By Lemma 2.2 we have V_{0}, V_{1} such that $V_{0} V_{1} \equiv V, V_{0} \equiv V_{0}^{-}$and $V_{1} \equiv V_{1}^{-}$and consequently $V \in C_{2}$, which is a contradiction. Next we show the second statement. Let m_{0} be a natural number such that $l\left(x_{i}\right)<m_{0} l(V)$ for every $1 \leq i \leq n$ and let $m=m_{0}+3$. To show $x_{i} V^{m} \notin C_{1}$ by contradiction, suppose that $x_{i} V^{m} \in C_{1}$. Then the reduced word for $x_{i} V^{m}$ is of the form $X V^{k+3}$ where $l(X)<l\left(V^{k+1}\right)$. Examining the leftmost V, by a similar argument to the above we conclude $V \in C_{2}$, which is a contradiction.

In a general case we have u such that the reduced word for $u^{-1} x u$ is cyclically reduced. Since C_{2} is closed under conjugacy, we have the first statement on x from the one on $u^{-1} x u$. To see the second statement, we choose m for $u^{-1} x u$ and $u^{-1} x_{i} u$ $(1 \leq i \leq n)$ so that, for every $1 \leq i \leq n, u^{-1} x_{i} x^{m} u=u^{-1} x_{i} u\left(u^{-1} x u\right)^{m} \notin C_{1}$. Since C_{1} is closed under conjugacy, we have $x_{i} x^{m} \notin C_{1}$.

The following lemma seems to be a folklore-result. We prove it for completeness.

Lemma 2.11. Let H be a non-trivial subgroup of $\langle a\rangle *\langle b\rangle$ where $a^{2}=b^{2}=e$.
If H is not conjugate to $\langle a\rangle$ nor $\langle b\rangle$, then H contains an element of the form $(a b)^{k}$ for an arbitrarily large even $k>0$.

Proof. Every non-empty reduced word of even length is of the form $(a b)^{k}$ or $(b a)^{k}$ for some $k>0$ and every reduced word of odd length is of the form $W^{-} a W$ or $W^{-} b W$ for some word W. The reduced word of the concatenation of two words of odd length is of even length and $(b a)^{k}$ is the inverse of $(a b)^{k}$. Hence, if $(a b)^{k}$ does not belong to H for any even $k>0$ and H is not trivial, then H is a conjugate to $\langle a\rangle$ or $\langle b\rangle$. In case H contains an element $(a b)^{k}$ for some $k>0$, it contains an element $(a b)^{k}$ for arbitrary large even k.

Lemma 2.12. Let $u, w_{0} \in *_{j \in J} H_{j}$ and $e \neq h \in H_{j_{0}}$. If $u^{-1} w_{0}^{-1} h w_{0} u \in$ $w_{0}^{-1} H_{j_{0}} w_{0}$, then $u \in w_{0}^{-1} H_{j_{0}} w_{0}$.

Proof. Under the assumption we obtain $\left(w_{0} u w_{0}^{-1}\right)^{-1} h w_{0} u w_{0}^{-1} \in H_{j_{0}}$. Since $H_{j_{0}}$ is a free factor of the free product, $w_{0} u w_{0}^{-1} \in H_{j_{0}}$, that is, $u \in$ $w_{0}^{-1} H_{j_{0}} w_{0}$.

3. Proofs of Theorems 1.3 and 1.4.

The following theorem strengthens a part of [3, Theorem 4.1] (see also [4]) and is a special case of Theorem 1.3. In what follows, \boldsymbol{Z}_{n} denotes a copy of \boldsymbol{Z} indexed by $n<\omega$ and a generator of \boldsymbol{Z}_{n} is denoted by δ_{n}.

Theorem 3.1. Let A, B be arbitrary groups and $h: \mathbf{x}_{n<\omega} \boldsymbol{Z}_{n} \rightarrow A * B$ be a
homomorphism. Then there exist $m<\omega$ and $u \in A * B$ such that $h\left(\mathbf{x}_{n \geq m} \boldsymbol{Z}_{n}\right) \leq$ $u^{-1} A u$ or $h\left(\mathbb{X}_{n \geq m} \boldsymbol{Z}_{n}\right) \leq u^{-1} B u$.

The first lemma is a very special case of the theorem.
Lemma 3.2. Theorem 3.1 holds, if $A=B=\boldsymbol{Z} / 2 \boldsymbol{Z}$.
Proof. Let $a \in A$ and $b \in B$ be the non-identity elements. To show the conclusion by contradiction we suppose $h\left(\mathbb{*}_{n \geq m} \boldsymbol{Z}_{n}\right)$ is not a subgroup of any conjugate of A or B for any natural number m. We construct $x_{m} \in \mathbf{X}_{n \geq m} \boldsymbol{Z}_{n}$ and positive integers k_{m} by induction. The subgroup $h\left(\mathbb{X}_{n \geq 0} \boldsymbol{Z}_{n}\right)$ contains an element of the form $h\left(x_{0}\right)=(a b)^{k_{0}}$ with $k_{0}>0$ by Lemma 2.11. For m, we choose x_{m} and even k_{m} so that $h\left(x_{m}\right)=(a b)^{k_{m}}$ and $k_{m}>\Sigma_{i=0}^{m-1} k_{i}$.

The following construction of an element of $\mathbf{x}_{n<\omega} \boldsymbol{Z}_{n}$ is a modification of that in the proofs of [8, Theorem 2.1 and etc.], [$\mathbf{7}$, Theorem 1.1], [3, Theorem 4.1] and [12, Theorem 1.5]. A similar construction will appear in the proof of Theorem 3.1. We start with recalling some notions.

Let $S e q$ be the set of all finite sequences of natural numbers and denote the length of $s \in \operatorname{Seq}$ by $l h(s)$. An element $s \in S e q$ of the length $n=l h(s)$ is written as $\left\langle s_{0}, \ldots, s_{n-1}\right\rangle$ where $s_{k} \in \boldsymbol{N}(0 \leq k<n)$. The lexicographical ordering \prec on $S e q$ is defined as follows: for $s, t \in S e q, s \prec t$, if $s_{i}<t_{i}$ for the minimal i with $s_{i} \neq t_{i}$ or t is an extension of s.

Let $W_{m} \in \mathscr{W}\left(\boldsymbol{Z}_{n}: n \geq m\right)$ be the reduced word for x_{m}, so $W_{m}=x_{m}$. Let

$$
\bar{V}=\left\{(s, p): s \in S e q, 0 \leq s_{i}<k_{i} \text { for } 0 \leq i<\operatorname{lh}(s), p \in \overline{W_{l h(s)}}\right\}
$$

be endowed with the lexicographical ordering and define a word $V \in \mathscr{W}\left(\boldsymbol{Z}_{n}: n<\right.$ ω) by $V(s, p)=W_{l h(s)}(p)$. We remark $h\left(W_{l h(s)}\right)=h\left(x_{l h(s)}\right)=(a b)^{k_{l h(s)}}$. Then V is a word in $\mathscr{W}\left(\boldsymbol{Z}_{n}: n<\omega\right)$. Let

$$
\overline{V_{m}}=\bar{V} \cap\left\{(s, p): \operatorname{lh}(s) \geq m, s_{i}=0 \text { for } 0 \leq i<m, p \in \overline{W_{l h(s)}}\right\}
$$

and V_{m} be the restriction of V to $\overline{V_{m}}$. We remark $V \equiv V_{0} \equiv\left(W_{0} V_{1}\right)^{k_{0}}$ and $V_{m} \equiv\left(W_{m} V_{m+1}\right)^{k_{m}}$.

We consider $h(V) \in\langle a\rangle *\langle b\rangle$ and take $m>0$ so that $m>l(h(V))$. First we assume $l\left(h\left(W_{m+1} V_{m+2}\right)\right)$ is odd, then $h\left(W_{m+1} V_{m+2}\right)^{2}=e$ and hence $h\left(V_{m+1}\right)=$ $h\left(\left(W_{m+1} V_{m+2}\right)^{k_{m+1}}\right)=e$. Therefore $h(V)=(a b)^{k}$, where

$$
k=\Sigma_{i=0}^{m} k_{i} \Pi_{j=0}^{i} k_{j} \geq k_{m} \geq m>l(h(V))=2 k,
$$

which is a contradiction.

Next we assume $l\left(h\left(W_{m+1} V_{m+2}\right)\right)$ is even. Then, $h\left(W_{m+1} V_{m+2}\right)=(a b)^{p}$ for some $p \geq 0$ or $(b a)^{p}$ for some $p>0$. Since $h\left(W_{\operatorname{lh(s)}}\right)=(a b)^{k_{l h(s)}}$, in the former case we deduce a contradiction similarly to the odd case. In the latter case, we have $h(V)=(b a)^{k}$, where

$$
\begin{aligned}
k & =p k_{m+1} \Pi_{j=0}^{m} k_{j}-\sum_{i=0}^{m} k_{i} \Pi_{j=0}^{i} k_{j} \\
& \geq\left(p k_{m+1}-\sum_{i=0}^{m} k_{i}\right) \Pi_{j=0}^{m} k_{j}>m>l(h(V))=2 k,
\end{aligned}
$$

which is a contradiction. Now we have shown the lemma.
Proof of Theorem 3.1. Let $h: \mathbb{X}_{n<\omega} \boldsymbol{Z}_{n} \rightarrow A * B$ be a homomorphism. We consider the subgroups $h\left(\mathbb{X}_{n \geq m} \boldsymbol{Z}_{n}\right)$ for $m<\omega$. By the Kurosh subgroup theorem a subgroup of $A * B$ is of the form $*_{i \in I} u_{i}^{-1} H_{i} u_{i} * *_{j \in J} v_{j}^{-1}\left\langle V_{j}\right\rangle v_{j}$, where H_{i} 's are subgroups of A or B and V_{j} 's are cyclically reduced and $l\left(V_{j}\right) \geq 2$. We remark that $v_{j}^{-1}\left\langle V_{j}\right\rangle v_{j}$'s are free subgroups.

If there exists $m<\omega$ such that $h\left(\mathbb{X}_{n \geq m} \boldsymbol{Z}_{n}\right)$ is contained in a free subgroup, we have $m_{0} \geq m$ such that $h\left(\mathbb{*}_{n \geq m_{0}} \boldsymbol{Z}_{n}\right)$ is trivial by the Higman theorem [15] (see also [8, Corollary 3.7]) and we are done. So, we may assume that, for each $m, h\left(\mathbf{x}_{n \geq m} \boldsymbol{Z}_{n}\right)$ has a free factor $u^{-1} H u$ for some non-trivial subgroup H of A or B. If, further, there exists $m_{0}<\omega, u_{0}, u_{1} \in A \cup B$ and $w_{0}, w_{1} \in A * B$ such that $u_{0}^{2}=u_{1}^{2}=e, h\left(\mathbf{x}_{n \geq m} \boldsymbol{Z}_{n}\right) \leq w_{0}^{-1}\left\langle u_{0}\right\rangle w_{0} * w_{1}^{-1}\left\langle u_{1}\right\rangle w_{1}$, then the conclusion for $w_{0}^{-1}\left\langle u_{0}\right\rangle w_{0} * w_{1}^{-1}\left\langle u_{1}\right\rangle w_{1}$ follows from Lemma 3.2 and so does for $A * B$.

Therefore, in the following argument we assume that $h\left(\mathbf{x}_{n \geq m} \boldsymbol{Z}_{n}\right)$ has a free factor $u^{-1} H u$ for some non-trivial subgroup H of A or B and is not a subgroup of $w_{0}^{-1}\left\langle u_{0}\right\rangle w_{0} * w_{1}^{-1}\left\langle u_{1}\right\rangle w_{1}$ for any $m<\omega, u_{0}, u_{1} \in A \cup B$ with $u_{0}^{2}=u_{1}^{2}=e$ and $w_{0}, w_{1} \in A * B$.

As in the proof of Lemma 3.2 we suppose the negation of the conclusion. Then by Lemma 2.9 we have an element $x_{m} \in \mathbb{X}_{n \geq m} \boldsymbol{Z}_{n}$ such that $h\left(x_{m}\right) \notin C_{2}$. Then we choose natural numbers k_{m} by induction. Let $k_{0}=1$ and k_{m} be a natural number which meets the following requirements:
(1) $k_{m} \geq 4$ and

$$
\max \left\{l\left(h\left(x_{i}^{k_{i}} \cdots x_{m-1}^{k_{m-1}}\right)\right): 0 \leq i \leq m-1\right\}+m+2 \leq k_{m} ;
$$

(2) $h\left(x_{i}^{k_{i}} \cdots x_{m-1}^{k_{m-1}}\right) h\left(x_{m}^{k_{m}}\right) \notin C_{1}$ for every $0 \leq i \leq m-1$.

The existence of k_{m} and also $h\left(x_{m}^{k_{m}}\right) \notin C_{2}$ are assured by Lemma 2.10. Now we modify the proof of Lemma 3.2. Let $W_{m} \in \mathscr{W}\left(\boldsymbol{Z}_{n}: n \geq m\right)$ be a reduced word for $x_{m}^{k_{m}}$. Let

$$
\bar{V}=\left\{(s, p): s \in S e q, 0 \leq s_{i}<k_{i} \text { for } 0 \leq i<\operatorname{lh}(s), p \in \overline{W_{l h(s)}}\right\}
$$

be endowed with the lexicographical ordering and define a word $V \in \mathscr{W}\left(\boldsymbol{Z}_{n}: n \geq\right.$ m) by $V(s, p)=W_{l h(s)}(p)$. We remark $h\left(W_{l h(s)}\right)=h\left(x_{l h(s)}^{k_{l h(s)}}\right)$. A subword V_{m} of V is defined by a restriction as before with a slightly different domain. Let

$$
\begin{align*}
& \overline{V_{m}}=\left\{(s, p): s \in S e q, l h(s) \geq m, s_{i}=0 \text { for } 0 \leq i<m,\right. \\
& \left.0 \leq s_{i}<k_{i} \text { for } m \leq i<\operatorname{lh}(s), p \in \overline{W_{l h(s)}}\right\} \tag{1}
\end{align*}
$$

and V_{m} be the restriction of V to $\overline{V_{m}}$. We remark $V_{m}=x_{m}^{k_{m}} V_{m+1}^{k_{m+1}}$.
Finally choose m such that $l(h(V)) \leq m$. We apply Lemma 2.4 to $h(V)$. Here, $n=\max \left\{l\left(h\left(x_{j}^{k_{j}} \cdots x_{m-1}^{k_{m-1}}\right)\right): 0 \leq j \leq m-1\right\}, z=V_{m}, k=k_{m}, M=\Pi_{j=0}^{m-1} k_{j}$. Each y_{i} is $h\left(x_{j}^{k_{j}} \cdots x_{m-1}^{k_{m-1}}\right)$ for some $0 \leq j<m$. To be precise, let

$$
\begin{aligned}
y_{1} & =h\left(x_{0}^{k_{0}} \cdots x_{m-1}^{k_{m-1}}\right), \\
y_{2} & =h\left(x_{m-1}^{k_{m-1}}\right), \ldots, y_{k_{m-1}}=h\left(x_{m-1}^{k_{m-1}}\right), \\
y_{k_{m-1}+1} & =h\left(x_{m-2}^{k_{m-2}} x_{m-1}^{k_{m-1}}\right), \ldots, \\
y_{\Pi_{j=2}^{m-1} k_{j}+1} & =h\left(x_{1}^{k_{1}} \cdots x_{m-1}^{k_{m-1}}\right), \ldots, y_{\Pi_{j=1}^{m-1} k_{j}}=h\left(x_{m-1}^{k_{m-1}}\right)
\end{aligned}
$$

and so on.
We claim that $V_{m} \in C_{1}$. To show this, suppose that Lemma 2.4 (2) holds. Then there exist $j, j^{\prime} \in J, i \in\{2, \ldots, M\}, f \in H_{j}, g \in H_{j^{\prime}}, x, y \in *_{j \in J} H_{j}$ and a non-negative integer r such that $f^{2}=g^{2}=e, z=x^{-1} f x y^{-1} g y$, and $y_{i}=z^{r} x^{-1} f x$ or $y_{i}=y^{-1} g y z^{r}$. Then y_{i} is conjugate to g or f, which implies $y_{i} \in C_{1}$ for some $2 \leq i \leq M$. But, according to our construction $h\left(x_{j}^{k_{j}} \cdots x_{m-1}^{k_{m-1}}\right)$ does not belong to C_{1} for any $0 \leq j<m$. Therefore, Lemma 2.4 (1) holds, i.e. $V_{m} \in C_{1}$.

We apply the above argument also to $m+1$, then we have $V_{m+1} \in C_{1}$ and consequently $h\left(x_{m}^{k_{m}}\right)=h\left(V_{m} V_{m+1}^{-k_{m+1}}\right) \in C_{2}$, which contradicts our construction.

The following is a part of [8, Proposition 1.9].
Lemma 3.3. Let $g_{n}(n<\omega)$ be elements of $\mathbf{x}_{i \in I}^{\sigma} G_{i}$ such that

$$
\left\{n<\omega: \text { the reduced word of } g_{n} \text { contains a letter of } G_{i}\right\}
$$

is finite for each $i \in I$.

Then, there exists a homomorphism $\varphi: \mathbb{X}_{n<\omega} \boldsymbol{Z}_{n} \rightarrow \mathbb{X}_{i \in I}^{\sigma} G_{i}$ such that $\varphi\left(\delta_{n}\right)=$ g_{n} for $n<\omega$.

Lemma 3.4 ([8, Theorem 2.1]). Let $G_{i}(i \in I)$ and $H_{j}(j \in J)$ be groups and $h: \times_{i \in I}^{\sigma} G_{i} \rightarrow *_{j \in J} H_{j}$ be a homomorphism to the free product of groups H_{j} 's. Then there exist finite subsets F of I and E of J such that $h\left(\mathbb{*}_{i \in I \backslash F}^{\sigma} G_{i}\right)$ is contained in $*_{j \in E} H_{j}$.

This lemma is strengthened in Theorem 1.3.
Proof of Theorem 1.3. The proof is an application of Theorem 3.1. First we show Theorem 1.3 when $J=\{0,1\}$. Let $H_{0}=A$ and $H_{1}=B$. To show by contradiction as before, suppose that
$(*)$ for any finite subsets F of I neither $h\left(\mathbf{x}_{i \in I \backslash F}^{\sigma} G_{i}\right)$ is contained in any conjugate of A nor B.
We claim that for each finite subset F of I there exists $x \in \mathbb{X}_{i \in I \backslash F}^{\sigma} G_{i}$ such that $h(x)=w^{-1} a w$ or $w^{-1} b w$ for some $a \in A, b \in B$ and $w \in A * B$. This follows by a similar argument to the first half of the proof of Theorem 3.1. That is, by the Kurosh subgroup Theorem $h\left(\times_{i \in I \backslash F}^{\sigma} G_{i}\right)$ is a free product of a free group and conjugates of subgroups of A or B. If $h\left(\mathbb{*}_{i \in I \backslash F}^{\sigma} G_{i}\right)$ is a free group, then by [8, Proposition 3.5] we reach a contradiction. Hence, we suppose that $h\left(\mathbb{*}_{i \in I \backslash F}^{\sigma} G_{i}\right)$ contains a conjugate to a non-trivial subgroup of A or B.

Now we construct $x_{m} \in \mathbb{X}_{i \in I}^{\sigma} G_{i}, w_{m} \in A * B, u_{m} \in A \cup B$, a finite subset F_{m} of I and an at most countable subset K_{m} of I by induction so that the following conditions hold:
(1) $x_{m} \in \times_{i \in K_{m}}^{\sigma} G_{i}$ where $K_{m} \cap F_{m}=\emptyset, I^{*}=\bigcup_{m<\omega} K_{m}=\bigcup_{m<\omega} F_{m}$ and $F_{m} \subseteq F_{m+1} ;$
(2) $h\left(x_{m}\right)=w_{m}^{-1} u_{m} w_{m}$ with $u_{m} \neq e$;
(3) if $w_{m}=w_{m+1}$, then $u_{m} \in A$ if and only if $u_{m+1} \in B$.

Assuming that x_{m}, u_{m} and w_{m} are constructed, we choose a countable subset K_{m} of I such that $x_{m} \in \mathbf{x}_{i \in K_{m}}^{\sigma} G_{i}$ and enumerate K_{m} so that $\{p(m, n): n<\omega\}=K_{m}$. Then we let $F_{m+1}=\{p(k, n): n \leq m, k \leq m\}$. This is the standard book-keeping method. By our assumption ($*$) we can continue the construction of x_{m}, u_{m}, w_{m}, K_{m} and F_{m} satisfying (1)-(3).

Let δ_{n} be a generator of \boldsymbol{Z}_{n}. By Lemma 3.3 we have a homomorphism $\varphi: \mathbf{x}_{n<\omega} \boldsymbol{Z}_{n} \rightarrow \mathbf{x}_{i \in I}^{\sigma} G_{i}$ such that $h\left(\delta_{m}\right)=x_{m}$ for $m<\omega$. The above bookkeeping method assures that the sequence $\left(x_{m}: m<\omega\right)$ satisfies the condition of Lemma 3.3. By Theorem 3.1 we have $n_{0}<\omega$ such that $h \circ \varphi\left(\mathbf{X}_{n \geq n_{0}} \boldsymbol{Z}_{n}\right)$ is contained in a conjugate subgroup to A or B. But, it never occurs that the both
$h\left(x_{n_{0}}\right)$ and $h\left(x_{n_{0}+1}\right)$ belong to the same conjugate subgroup to A or B by (3), which is a contradiction. Now we have shown the case that $J=\{0,1\}$.

For a general case let $h: \mathbb{x}_{i \in I}^{\sigma} G_{i} \rightarrow *_{j \in J} H_{j}$ be a homomorphism. By Lemma 3.4 there exist finite subsets F of I and E of J such that $h\left(\mathbf{x}_{i \in I \backslash F}^{\sigma} G_{i}\right)$ is contained in $*_{j \in E} H_{j}$. Now the restriction of h to $\times_{i \in I \backslash F}^{\sigma} G_{i}$ maps into $*_{j \in E} H_{j}$. Since $u^{-1}\left(*_{j \in E^{\prime}} H_{j}\right) u=*_{j \in E^{\prime}}\left\langle u^{-1} H_{j} u\right\rangle$ for $E^{\prime} \subseteq I$, by successive use of the case of $J=\{0,1\}$ we have the conclusion.

Next we prove Theorem 1.4. We recall some notions about loops. For a path $f:[0,1] \rightarrow X, f^{-}$denotes the path defined by: $f^{-}(s)=f(1-s)$ for $0 \leq s \leq 1$. For paths $f:[0,1] \rightarrow X$ and $g:[0,1] \rightarrow X$ with $f(1)=g(0)$ we denote the concatenation of the paths f and g by $f g$.

For the Hawaiian earring \boldsymbol{H} (see Introduction), let $\boldsymbol{e}_{n}(t)=((\cos 2 \pi t-1) /(n+$ $1), \sin 2 \pi t /(n+1))$ for $n<\omega, 0 \leq t \leq 1$. Here, \boldsymbol{e}_{n} refers to the n-th earring. Since $\pi_{1}(\boldsymbol{H},(0,0))$ is isomorphic to $\mathbf{x}_{n<\omega} \boldsymbol{Z}_{n}\left[\mathbf{8}\right.$, Theorem A.1] and the loop \boldsymbol{e}_{n} corresponds to δ_{n} under this isomorphism, we identify δ_{n} and the homotopy class of \boldsymbol{e}_{n}. For a path $p:[0,1] \rightarrow X$, we denote the base-point-change isomorphism from $\pi_{1}(X, p(0))$ to $\pi_{1}(X, p(1))$ by φ_{p}.

Lemma 3.5. Let X be a path-connected, locally path-connected, first countable space which is not semi-locally simply connected at any point and h : $\pi_{1}\left(X, x_{0}\right) \rightarrow *_{j \in J} H_{j}$ be an injective homomorphism. For each point $x \in X$ and a path p from x to x_{0} there exists a path-connected open neighborhood U of x satisfying: there exist $w_{x} \in *_{j \in J} H_{j}$ and $j(x) \in I$ such that for every loop l in U with base point x, $h \circ \varphi_{p}([l]) \in w_{x}^{-1} H_{j(x)} w_{x}$.

Proof. Let $\left\{U_{n}: n<\omega\right\}$ be a neighborhood base of x consisting of pathconnected open sets such that $U_{n+1} \subseteq U_{n}$. To show this by contradiction, suppose that the desired neighborhood does not exist for a point x and a path p. We inductively construct loops l_{n} in U_{n} with base point x as follows.

Let l_{0} be an essential loop in U_{0} with base point x. Suppose that we have constructed a loop l_{n-1} in U_{n-1} with base point x. If $h \circ \varphi_{p}\left(\left[l_{n-1}\right]\right)$ is conjugate to an element of some H_{j}, then we have $w_{n-1} \in *_{j \in J} H_{j}$ such that $h \circ \varphi_{p}\left(\left[l_{n-1}\right]\right) \in$ $w_{n-1}^{-1} H_{j} w_{n-1}$. By the assumption we have an essential loop l_{n} in U_{n} with base point x such that $h \circ \varphi_{p}\left(\left[l_{n-1}\right]\right) \notin w_{n-1}^{-1} H_{j} w_{n-1}$. If $h \circ \varphi_{p}\left(\left[l_{n-1}\right]\right)$ is not conjugate to any element of any H_{j}, we choose an arbitrary essential loop l_{n} in U_{n} with base point x.

Since the images $l_{n}([0,1])$ converge to x, we can define a continuous map $f: \boldsymbol{H} \rightarrow X$ so that $f((0,0))=x$ and $f \circ \boldsymbol{e}_{n}=l_{n}$. By Theorem 1.3 there exists m such that $h \circ \varphi_{p} \circ f_{*}\left(\mathbb{X}_{n \geq m} \boldsymbol{Z}_{n}\right)$ is contained in a subgroup conjugate to some H_{j}. Then, $h \circ \varphi_{p} \circ f_{*}\left(\delta_{m}\right)$ belongs to the subgroup conjugate to H_{j}, but $h \circ \varphi_{p} \circ f_{*}\left(\delta_{m+1}\right)$
does not belong to the subgroup by our construction, which is a contradiction.
Proof of Theorem 1.4. Let p be an arbitrary path from x to x_{0}. For each $s \in[0,1]$ let p_{s} be the path defined by: $p_{s}(t)=p((1-s) t)$. Then p_{s} is a path from $p(s)$ to x_{0}. By Lemma 3.5 we have a path-connected open neighborhood U_{s} of $p(s), w_{s} \in *_{j \in J} H_{j}$ and $j_{s} \in J$ such that, for any loop l in U_{s} with base point $p(s), h \circ \varphi_{p_{s}}([l]) \in w_{s}^{-1} H_{j_{s}} w_{s}$. Since p_{1} is a constant path, for any loop l in U_{1} with base point $x_{0}=p(1), h([l])$ is contained in $w_{1}^{-1} H_{j_{1}} w_{1}$.

Considering an open interval which contains s and is contained in $p^{-1}\left(U_{s}\right)$ for each s, we have $0=s_{n} \leq t_{n} \leq s_{n-1} \leq \cdots \leq s_{1} \leq t_{1} \leq s_{0}=1$ such that $p\left(\left[0, t_{n}\right]\right) \subseteq U_{s_{n}}=U_{0}, p\left(\left[t_{1}, 1\right]\right) \subseteq U_{s_{0}}=U_{1}$ and $p\left(\left[t_{i+1}, t_{i}\right]\right) \subseteq U_{s_{i}}$ for $1 \leq i \leq n-1$.

Define paths $q_{i}:[0,1] \rightarrow X$ for $1 \leq i \leq n$ and $r_{i}:[0,1] \rightarrow X$ for $0 \leq i \leq n-1$ by: $q_{i}(t)=p\left(s_{i}(1-t)+t_{i} t\right)$ and $r_{i}(t)=p\left(t_{i+1}(1-t)+s_{i} t\right)$ respectively. Then q_{i} is a path from $p\left(s_{i}\right)$ to $p\left(t_{i}\right)$ and r_{i} is a path from $p\left(t_{i+1}\right)$ to $p\left(s_{i}\right)$, which are restrictions of p. We have an essential loop l_{i} in $U_{s_{i}} \cap U_{s_{i-1}}$ with base point $p\left(t_{i}\right)$ for $1 \leq i \leq n$. Now

$$
\begin{aligned}
\varphi_{p_{s_{i}}}\left(\left[q_{i}^{-} l_{i} q_{i}\right]\right) & =\left[\left(q_{i} p_{s_{i}}\right)^{-} l_{i}\left(q_{i} p_{s_{i}}\right)\right] \\
& =\left[p_{t_{i}}^{-} l_{i} p_{t_{i}}\right] \\
& =\varphi_{p_{s_{i-1}}}\left(\left[r_{i-1}^{-} l_{i} r_{i-1}\right]\right) .
\end{aligned}
$$

We remark that $q_{i}^{-} l_{i} q_{i}$ is a loop in $U_{s_{i}}$ with base points $p\left(s_{i}\right)$ and $r_{i-1}^{-} l_{i} r_{i-1}$ is a loop in $U_{s_{i-1}}$ with base point $p\left(s_{i-1}\right)$.

We have $h\left(\left[p_{t_{1}}^{-} l_{1} p_{t_{1}}\right]\right) \in w_{1}^{-1} H_{j_{1}} w_{1}$ and also

$$
h\left(\left[p_{t_{1}}^{-} l_{1} p_{t_{1}}\right]\right)=h\left(\varphi_{p_{s_{1}}}\left(\left[q_{1}^{-} l_{1} q_{1}\right]\right)\right) \in w_{s_{1}}^{-} H_{j_{s_{1}}} w_{s_{1}} .
$$

Since h is injective and l_{1} is essential, $h\left(\left[p_{t_{1}}^{-} l_{1} p_{t_{1}}\right]\right)$ is a non-trivial element and hence $w_{s_{1}}=w_{1}$ and $j_{s_{1}}=j_{1}$. Generally we have

$$
\begin{aligned}
& h\left(\varphi_{p_{s_{i-1}}}\left(\left[r_{i-1}^{-} l_{i} r_{i-1}\right]\right)\right) \in w_{s_{i-1}}^{-} H_{j_{s_{i-1}}} w_{s_{i}} \\
& \quad=h\left(\varphi_{p_{s_{i}}}\left(\left[q_{i}^{-} l_{i} q_{i}\right]\right)\right) \in w_{s_{i}}^{-} H_{j_{s_{i}}} w_{s_{i}}
\end{aligned}
$$

and by the same reasoning as above $w_{s_{i}}=w_{s_{i-1}}$ and $j_{s_{i}}=j_{s_{i-1}}$. Hence $w_{0}=$ $w_{s_{n}}=w_{1}$ and $j_{0}=j_{1}$. Since p_{1} is the degenerate path on x_{0}, w_{1} and j_{1} are determined only by x_{0} and so a choice of a path p does not effect to this equality.

We apply this to the case for $x=x_{0}$ and an arbitrary loop p with base point x_{0}. We have an open neighborhood U_{0} of $p(0)=x=x_{0}$. Choose an essential loop
l in $U_{0} \cap U_{1}$ with base point x_{0}. Then we have

$$
e \neq h([p])^{-1} h([l]) h([p])=h\left(\left[p^{-} l p\right]\right)=h\left(\varphi_{p}([l])\right) \in w_{1}^{-} H_{j_{1}} w_{1}
$$

and also $h([l]) \in w_{1}^{-1} H_{j_{1}} w_{1}$ by the choice of U_{1}. Now Lemma 2.12 implies $h([p]) \in$ $w_{1}^{-1} H_{j_{1}} w_{1}$.

Remark.

(1) As is shown in [12, Remark 4.6], the injectivity hypothesis of Theorem 1.4 cannot be dropped, yet can be weakened as follows. For a non-empty open set U and a path from a point $p(0)$ in U to x_{0}, let $H_{U}^{p}=\left\{\left[p^{-} l p\right] \mid l\right.$ is a loop in $\left.U\right\} \subseteq$ $\pi_{1}\left(X, x_{0}\right)$. Then the injectivity can be replaced with: $h\left(H_{U}^{p}\right)$ is non-trivial for each non-empty open set U and for each path from a point $p(0)$ in U to x_{0}.
(2) The free σ-product $\mathbb{x}_{i \in I}^{\sigma} G_{i}$ is realized as the fundamental group of the one point union of spaces. To be more precise, let X_{i} be a space locally strongly contractible at x_{i} with $\pi_{1}\left(X_{i}, x_{i}\right)=G_{i}$ and identify all x_{i} 's with one point x^{*}. We assume that $X_{i} \cap X_{j}=\emptyset$ for $i \neq j$. Let $\widetilde{\bigvee}_{i \in I}\left(X_{i}, x_{i}\right)$ be the space with its base set $\left\{x^{*}\right\} \cup \bigcup_{i \in I} X_{i} \backslash\left\{x_{i}\right\}$. The topology of each $X_{i} \backslash\left\{x_{i}\right\}$ is the same as in X_{i}. A neighborhood base of x^{*} is of the form $\left\{x^{*}\right\} \cup \bigcup_{i \in I} O_{i} \backslash\left\{x_{i}\right\}$ where each O_{i} is a neighborhood of x_{i} and all but finite many O_{i} 's are the whole spaces X_{i}. Then $\pi_{1}\left(\widetilde{\bigvee}_{i \in I}\left(X_{i}, x_{i}\right)\right)$ is isomorphic to $\mathbf{x}_{i \in I}^{\sigma} G_{i}[\mathbf{8}$, Theorem A.1].

Appendix.

We remark that the condition $m+n+2 \leq k$ is sufficient in Lemma 2.4 instead of $m+n+3 \leq k$. We have stated the lemma of the form of $m+n+2 \leq k$ in some published papers [8], [3] and [12]. Their uses are similar to the use in the proof of Theorem 3.1 and so the condition $m+n+3 \leq k$ is sufficient for their proofs. Actually the condition $m+n+100 \leq k$ is also sufficient. Since the original statement is still true, we present an additional proof which assures the statement with $m+n+2 \leq k$.

We follow the proof of Lemma 2.4. The fact that $M \geq 2$ is proved precisely the same. Then, instead of (*), we have

$$
u=Z_{1} U^{p+1} Z_{2} U^{k} \cdots U^{k} Z_{M} U^{k} W
$$

such that $Z_{1} U^{p+1}$ is reduced. After the 17 -th line of the proof we considered $U^{p+1} Z_{i} U^{p+1}$. Now we consider $U^{p} Z_{i} U^{p+1}$ instead. In case the head and the tail of $U^{p} Z_{i} U^{p+1}$ is quasi-stable for every $2 \leq i \leq M$, we have the conclusion by the same reasoning as that in the proof of Lemma 2.4. We remark that the inequality
(**) holds even in this case.
If there exists $2 \leq i \leq M$ such that the tail of $U^{p} Z_{i} U^{p+1}$ is not quasi-stable, then we have the conclusion as in the proof again. Hence, we consider the case that for every $2 \leq i \leq M$ the tail of $U^{p} Z_{i} U^{p+1}$ is quasi-stable but, for some $2 \leq i_{0} \leq M$,
(\dagger) the head of $U^{p} Z_{i_{0}} U^{p+1}$ is not quasi-stable.
In addition if the reduced word of $U^{p} Z_{i_{0}}$ is of the form $U X$, then we get the conclusion as in the case when the tail of $U^{p} Z_{i} U^{p+1}$ is not quasi-stable for some i. Otherwise, since $2 p=n+1$ or $n+2$, we have $l\left(Z_{i_{0}}\right)>2(p-1)$ and $l(U)=2$. Moreover, if $2 p=n+1$, then $2 p+2 \leq k$ and hence this case is reduced to the proof of Lemma 2.4. Now, to get the conclusion, we may assume $2 p=n+2$ and hence $2 p-1=l\left(Z_{i_{0}}\right)$. Let $U \equiv a b$. We show $a^{2}=b^{2}=e$, which completes our proof. Since the reduced word of $U^{p} Z_{i_{0}}$ is not of the form $U X, Z_{i_{0}}$ is of the form $\left(b^{-} a^{-}\right)^{p-1} c$ and moreover we have $c=b^{-}$by (\dagger). Then $U^{p} Z_{i_{0}} U^{p+1}=a(a b)^{p+1}$ and again by $(\dagger) a^{2}=e$ and $U^{p} Z_{i_{0}} U^{p+1}=b(a b)^{p}$.

Next we consider $U^{p} Z_{j} U^{p+1}$ for $j \neq i_{0}$. By our assumption the tail is quasistable. If the head is not quasi-stable, then the reduced word of $U^{p} Z_{j} U^{p+1}$ is $b(a b)^{p}$ as in the case of $U^{p} Z_{i_{0}} U^{p+1}$. Since $2 p=n+2$, we have $\operatorname{lh}\left(Z_{j}\right) \leq 2 p-1$ and hence the reduced word of $Z_{j} U^{p}$ is of the form $X b$.

If the tail of $U^{p} Z_{j} U^{p}$ is not quasi-stable for some $j \neq i_{0}$, then we have $b^{2}=e$, since $U^{p} \equiv(a b)^{p}$. Otherwise, i.e. the tail of $U^{p} Z_{j} U^{p}$ is quasi-stable for every $j \neq i_{0}$, the reduced word of $U^{p} Z_{j} U^{p+1}$ is of the form $X a b$. Hence the tail of the reduced word of $U^{p} Z_{i} U^{p+1}$ is b for every $2 \leq i \leq M$, while the head of it is b, a or of the same kind as a. Hence, unless $b^{2}=e$, the rightmost $(a b)^{k-p-1}$ remains in the reduced word for u and $l(u) \geq l\left((a b)^{k-p-1}\right)=2 k-2 p-2 \geq 2 m+n>l(u)$, which is a contradiction. Now we conclude $a^{2}=b^{2}=e$.

Acknowledgments. The author thanks the referee for his careful reading, suitable suggestions and several corrections, which clarify proofs and make the present paper readable.

References

[1] M. Bridson, Asymptotic cones and polynomial isoperimetric inequalities, Topology, 38 (1999), 543-554.
[2] J. W. Cannon and G. R. Conner, The combinatorial structure of the Hawaiian earring group, Topology Appl., 106 (2000), 225-271.
[3] G. R. Conner and K. Eda, Fundamental groups having the whole information of spaces, Topology Appl., 146 (2005), 317-328.
[4] G. R. Conner and K. Eda, Correction to: "Algebraic topology of Peano continua" and "Fundamental groups having the whole information of spaces", Topology Appl., 154 (2007), 771-773.
[5] C. Drutu and M. Sapir, Tree-graded spaces and asymptotic cones of groups, Topology, 44 (2005), 959-1058.
[6] K. Eda, Making spaces wild, in preparation.
[7] K. Eda, The first integral singular homology groups of one point unions, Quart. J. Math. Oxford Ser. (2), 42 (1991), 443-456.
[8] K. Eda, Free σ-products and noncommutatively slender groups, J. Algebra, 148 (1992), 243-263.
[9] K. Eda, Free σ-products and fundamental groups of subspaces of the plane, Topology Appl., 84 (1998), 283-306.
[10] K. Eda, The fundamental groups of one-dimensional spaces and spatial homomorphisms, Topology Appl., 123 (2002), 479-505.
[11] K. Eda, The fundamental groups of one-dimensional wild spaces and the Hawaiian earring, Proc. Amer. Math. Soc., 130 (2002), 1515-1522.
[12] K. Eda, Algebraic topology of Peano continua, Topology Appl., 153 (2005), 213-226.
[13] K. Eda, Homotopy types of one-dimensional Peano continua, Fund. Math., 209 (2010), 27-45.
[14] H. B. Griffiths, The fundamental group of two spaces with a common point, Quart. J. Math. Oxford Ser. (2), 5 (1954), 175-190.
[15] G. Higman, Unrestricted free products, and variety of topological groups, J. London Math. Soc., 27 (1952), 73-81.
[16] M. Hall Jr., The Theory of Groups, Macmillan, 1959.
[17] A. G. Kurosh, The Theory of Groups, Vol. 2, Chelsea, 1960.
[18] J. J. Rotman, An introduction to the Theory of Groups, Springer-Verlag, 1994.
[19] E. H. Spanier, Algebraic Topology, McGraw-Hill, 1966.
[20] A. Zastrow, A construction of infinitely generated group that is not a free-product of surface groups and abelian groups, but freely acts on an \boldsymbol{R}-tree, Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998), 433-445.

Katsuya Eda

School of Science and Engineering Waseda University
Tokyo 169-8555, Japan
E-mail: eda@waseda.jp

[^0]: 2000 Mathematics Subject Classification. Primary 55Q20; Secondary 55Q70, 57M05, 57M07, 20F34.

 Key Words and Phrases. wild space, fundamental group, Hawaiian earring.
 This research was supported by Grant-in-Aid for Scientific Research (C) (No. 20540097), Japan Society for the Promotion of Science.

