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Abstract. We show that Hardy’s inequalities for Laguerre expansions
hold on the space L1(0,∞) when the Laguerre parameters α are positive, and
we prove that although the inequality holds on the real Hardy space H1(0,∞)
if α = 0, it does not hold on L1(0,∞). Further, Hardy’s inequality for Hermite
expansion is established on L1(0,∞).

1. Introduction and Results.

Let F (z) =
∑∞

n=0 anzn be an analytic function belonging to the Hardy space
H1(D) which consists of analytic functions F (z) on the unit disc D satisfying
‖F‖H1 = sup0<r<1

∫ 2π

0
|F (reiθ)| dθ < ∞. Then the coefficients satisfy an inequal-

ity

∞∑
n=0

|an|
n + 1

≤ C‖F‖H1 , (1)

which is well-known as Hardy’s inequality. Inequalities of this type were estab-
lished for Hermite and Laguerre expansions in [7]. The aim of this paper is to
revisit and improve these inequalities.

Let Hn(x) be the Hermite function defined by

Hn(x) =
{
π1/22nn!

}−1/2
Hn(x)e−x2/2, (2)

where Hn(x) is the Hermite polynomial of degree n given by

Hn(x) = (−1)n exp(x2)
(

d

dx

)n

exp(−x2).
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Then, the system {Hn}∞n=0 is complete orthonormal on the real line R with respect
to the ordinary Lebesgue measure dx (cf. [13, 5.7]). This system leads to the
formal expansion

f(x) ∼
∞∑

n=0

cn(f)Hn(x),

of a function f(x) on R, where cn(f) =
∫∞
−∞ f(x)Hn(x)dx is the nth Hermite-

Fourier coefficient of f(x).
Let L

(α)
n (x), α > −1 be the Laguerre function defined by

L (α)
n (x) =

√
Γ(n + 1)

Γ(n + α + 1)
L(α)

n (x)e−x/2xα/2,

where L
(α)
n (x) = (n!)−1x−αex(d/dx)n{e−xxn+α} is the Laguerre polynomial of

degree n and of order α. Then, the system {L (α)
n }∞n=0 is complete orthonormal in

L2((0,∞), dx)．We have the formal expansion

g(x) ∼
∞∑

n=0

c(α)
n (g)L (α)

n (x)

of a function g(x) on (0,∞), where

c(α)
n (g) =

∫ ∞

0

g(x)L (α)
n (x)dx

is the nth Laguerre-Fourier coefficient.
Let H1(R) be the real Hardy space on the real line R, and let H1(0,∞) be

the space defined by

H1(0,∞) =
{
h |(0,∞);h ∈ H1(R), supph ⊂ [0,∞)

}
,

where [0,∞) is the closed half line, and we endow the space with the norm
‖g‖H1(0,∞) = ‖h‖H1(R), where h ∈ H1(R), supph ⊂ [0,∞) and g = h|(0,∞).
We remark that H1(0,∞) = {h|(0,∞);h ∈ H1(R), even} and c1‖h‖H1(R) ≤
‖g‖H1(0,∞) ≤ c2‖h‖H1(R) with positive constants c1 and c2, where g = h|(0,∞) and
h ∈ H1(R) is even (cf. [5, Lemma 7.40]). The inequalities ‖f‖L1(R) ≤ ‖f‖H1(R)

and ‖g‖L1(0,∞) ≤ ‖g‖H1(0,∞) hold.
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In [7], we proved the following inequalities.
[A]([7]). (i) There exists a constant C such that

∞∑
n=0

|cn(f)|
(n + 1)29/36

≤ C‖f‖H1(R) (3)

for f(x) ∼ ∑∞
n=0 cn(f)Hn(x) in H1(R).

(ii) Let α ≥ 0. Then, there exists a constant C such that

∞∑
n=0

|c(α)
n (g)|
n + 1

≤ C‖g‖H1(0,∞) (4)

for g(x) ∼ ∑∞
n=0 c

(α)
n (g)L α

n (x) in H1(0,∞).
Radha and Thangavelu [11] established inequalities of Hardy type for higher-

dimensional Hermite and special Hermite expansions, and one of their results is
as follows.

[B]([11, Theorem 2.3]). Let n ≥ 2. Let 0 < p ≤ 1 and put σ = 3n(2 − p)/4.
Then there exists a constant C such that

∑
µ

|f̂(µ)|p(|µ|+ n)−σ ≤ C‖f‖p
Hp(Rn)

for all f ∈ Hp(Rn) where µ = (µ1, . . . , µn) ∈ Nn are multi-indices and f̂(µ) =∫
Rn f(x)

∏n
j=1 Hµj

(xj)dx are the n-dimensional Fourier-Hermite coefficients.
We remark that if in the above theorem we could take n = 1 and p = 1,

then σ = 3/4, which is better than the order 29/36 in (3). On the other hand,
Balasubramanian and Radha [3] improved (3) by using the vanishing moment
property of atoms. The atoms appearing in the atomic decompositions of functions
in the real Hardy spaces can be chosen to have as many vanishing moments as we
wish. Considering this property, we easily see that a part of their results can be
restated as follows.

[C]([3]). Let ε > 0. Then there exists a constant Cε such that

∞∑
n=0

|cn(f)|
(n + 1)3/4+ε

≤ Cε‖f‖H1(R)

for f(x) ∼ ∑∞
n=0 cn(f)Hn(x) in H1(R).

These observations drove us to revisit the inequalities of [A] and to reconsider
them more carefully. The results obtained by this reconsideration seem to be
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remarkable. They say that we can replace the space H1(R) of [C] with the space
L1(R), and if α > 0, then we can also replace H1(0,∞) of [A] (ii-1) with L1(0,∞).
Precise statements are as follows.

Theorem.

(i) Let ε > 0. Then there exists a constant Cε such that

∞∑
n=0

|cn(f)|
(n + 1)3/4+ε

≤ Cε‖f‖L1(R)

for f(x) ∼ ∑∞
n=0 cn(f)Hn(x) in L1(R).

(ii-1) Let α > 0. Then there exists a constant C such that

∞∑
n=0

|c(α)
n (g)|
n + 1

≤ C‖g‖L1(0,∞)

for g(x) ∼ ∑∞
n=0 c

(α)
n (g)L (α)

n (x) in L1(0,∞).
(ii-2) Let α = 0. Then there exists a constant C such that

∞∑
n=0

|c(0)
n (g)|
n + 1

≤ C‖g‖H1(0,∞) (5)

for g(x) ∼ ∑∞
n=0 c

(0)
n (g)L (0)

n (x) in H1(0,∞).

The inequalities of our theorem are optimal in the sense of the following
proposition.

Proposition.

(i) There exists a function f ∈ L1(R) such that

∞∑
n=0

|cn(f)|
(n + 1)3/4

= ∞.

(ii-1) Let α > 0. Let λ = {λn}∞n=0 be a sequence of positive numbers satisfying
λ0 < λ1 < · · · < λn → ∞ (n → ∞). Then there exists a function f ∈
L1(0,∞) such that



Hardy’s inequalities for Hermite and Laguerre expansions 757

∞∑
n=0

λn|c(α)
n (f)|

n + 1
= ∞.

(ii-2) Let α = 0. Then there exists a function f ∈ L1(0,∞) such that

∞∑
n=0

|c(0)
n (f)|
n + 1

= ∞.

Remark. It is natural to ask whether the inequality

∞∑
n=0

|cn(f)|
(n + 1)3/4

≤ C‖f‖H1(R)

holds or not. But, at this point we have no words to answer this question.
Some other results related to Hardy-type inequalities will be found in Colzani

and Travaglini [4], Thangavelu [14], Betancor and Rodŕıguez-Mesa [2], Guadalupe
and Kolyada [6], Kanjin and Sato [9] and Sato [12].

The proof of the theorem will be given in the next section, and the proposition
will be proved in the last section. Our proofs will be done by using the asymptotic
formulas of Hermite and Laguerre polynomials and a simple fact which will be
stated here as a lemma for later convenience.

Let (a, b) be an interval with −∞ ≤ a < b ≤ ∞. Let {φn}∞n=0 be a sequence
of continuous functions φn(x) on (a, b) which are real-valued and bounded. For
a function f ∈ L1(a, b), we denote by (f, φn) the inner product of f and φn:
(f, φn) =

∫ b

a
f(x)φn(x)dx.

Lemma 1. Let {ρ(n)}∞n=0 be a sequence of positive numbers. Then, the
following (i) and (ii) are equivalent.

( i ) There exists a positive constant C such that
∑∞

n=0 ρ(n)|φn(x)| ≤ C for all
x ∈ (a, b).

( ii ) There exists a positive constant C such that
∑∞

n=0 ρ(n)|(f, φn)| ≤
C‖f‖L1(a,b) for all f ∈ L1(a, b).

Proof. It is clear that (i) implies (ii). Conversely, (ii) implies

∣∣∣∣
M∑

n=0

ρ(n)(f, φn)bn

∣∣∣∣ ≤ C‖f‖L1(a,b)‖b‖∞

for every positive integer M and all bounded sequence b = {bn}∞n=0, where ‖b‖∞ =
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supn |bn|. Since

M∑
n=0

ρ(n)(f, φn)bn =
∫ b

a

f(x)
M∑

n=0

ρ(n)φn(x)bn dx,

it follows from the (L1, L∞)-duality that |∑M
n=0 ρ(n)φn(x)bn| ≤ C‖b‖∞ for a.e.

x ∈ (a, b), and in fact, for all x ∈ (a, b) because of the continuity of φn. Therefore,
by the (l1, l∞)-duality we obtain

∑M
n=0 ρ(n)|φn(x)| ≤ C for all x ∈ (a, b), and

letting M →∞ we have (i). ¤

2. Proof of the theorem.

Proof of (i). Because of Lemma 1, it is enough to prove the following.

Lemma 2. Let ε > 0 and put

G(x) =
∞∑

n=0

|Hn(x)|
(n + 1)3/4+ε

.

Then there exists a positive constant Cε such that G(x) ≤ Cε for every x ∈ R.

Proof. We can assume that ε < 1/4, and it is enough to show the inequality
for x ≥ 0 since every |Hn(x)| is an even function. We shall use the following
estimate [15, Lemma 1.5.1] (cf. [1, the table on p. 700], [10, (2.3)]). There exist
positive constants C and D such that

|Hn(x)| ≤ C ·




(|ñ− x2|+ ñ1/3
)−1/4

, x2 < 2ñ,

e−Dx2
, x2 ≥ 2ñ.

(6)

Here, we used the following notation. Given an integer n, we write ñ = 2n + 1.
The following estimate also holds:

|Hn(x)| ≤ Cñ−1/8
(
x− ñ1/2

)−1/4 exp
(− κñ1/4(x− ñ1/2)3/2

)
(7)

for ñ1/2 + ñ−1/6 ≤ x ≤ (2ñ)1/2, where κ is an absolute positive constant.
Here and below, the letter C denotes a positive constant which may be dif-

ferent at each different occurrence, even in the same chain of inequalities.
Let A be a fixed constant large enough. We may take A = 107 here. For

x2 < A, it follows from (6) that |Hn(x)| ≤ C(n + 1)−1/4, n = 0, 1, . . . , which
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imply G(x) ≤ Cε, where Cε may depend on ε.
Assume that x2 ≥ A. Let nx, n′x and n′′x be the nonnegative integers such

that

nx = max
{
n ∈ N : 2ñ < x2

}
, n′x = max

{
n ∈ N : ñ + ñ5/6 < x2

}

and

n′′x = max
{
n ∈ N : ñ < x2

}
,

respectively. We note that nx < n′x < n′′x. We write

G(x) =
{ nx∑

n=0

+
n′x∑

n=nx+1

+
n′′x∑

n=n′x+1

+
∞∑

n=n′′x+1

} |Hn(x)|
(n + 1)3/4+ε

= S0(x) + S1(x) + S2(x) + S3(x), say.

By (6), we have that |Hn(x)| ≤ Ce−Dx2
for n with 0 ≤ n ≤ nx, which

implies S0(x) ≤ Cεe
−Dx2

n
1/4−ε
x , where Cε is a constant depending on ε, but in-

dependent of x. Since 2nx̃ ≤ x2 ≤ 2(nx + 1)∼ and x2 ≥ A, it follows that
S0(x) ≤ Cεe

−Dx2
x1/2−2ε ≤ Cε.

We estimate S1(x). We note that (ñ1/2 + ñ1/4)2 ≤ ñ + ñ5/6 for n ≥ 106 and
nx + 1 > (x2 − 2)/4 ≥ 106 for x2 ≥ A(= 107). Thus, (ñ1/2 + ñ1/4)2 ≤ ñ + ñ5/6

for n ≥ nx + 1. By this and our choice of nx and n′x, we have that (2ñ)1/2 ≥ x ≥
ñ1/2 + ñ1/4 for nx + 1 ≤ n ≤ n′x. Therefore, the inequality (7) holds for every n

with nx + 1 ≤ n ≤ n′x. Since x ≥ n′x̃
1/2

+ n′x̃
1/4

, (7) leads to

|Hn(x)| ≤ Cnx̃
−1/8n′x̃

−1/16
exp

(
− κnx̃

1/4n′x̃
3/8

)

for nx + 1 ≤ n ≤ n′x. It follows from x2 ≥ A that there exist positive constants
K1 and K2 such that K1x

2 ≤ nx̃ ≤ n′x̃≤ K2x
2, which implies

|Hn(x)| ≤ Cx−3/8 exp
(− κ′x5/4

)
,

where κ′ is a positive constant. Therefore, we have

S1(x) ≤ C
(
n′x − nx

)
n−3/4−ε

x x−3/8 exp
(− κ′x5/4

)

≤ Cx2x−3/2−2εx−3/8 exp
(− κ′x5/4

) ≤ C
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with a constant C independent of x.
Let us estimate S2(x). We have that ñ ≤ x2 < ñ + ñ5/6 < 2ñ for n′x + 1 ≤

n ≤ n′′x. Thus it follows from (6) that |Hn(x)| ≤ Cn−1/12 for n′x + 1 ≤ n ≤ n′′x.
By our choice of n′x and n′′x, we see that

ñ′′x − ˜(n′x + 1) < x2 − ˜(n′x + 1) < ˜(n′x + 1)
5/6

,

which implies n′′x − n′x < 10(n′x)5/6. It follows that

S2(x) ≤ C

n′′x∑

n=n′x+1

(n + 1)−3/4−εn−1/12

≤ C
(
n′′x − n′x

)(
n′x

)−3/4−ε(
n′x

)−1/12

≤ C
(
n′x

)5/6(
n′x

)−5/6−ε ≤ C,

where C is independent of x.
We now come to estimating the last sum S3(x). For n > n′′x, we have that

x2 < ñ and ñ− x2 ≥ ñ− (n′′x + 1)∼ = 2(n− n′′x − 1). It follows from (6) that

|Hn(x)| ≤ C
(
n− n′′x

)−1/4
, n = n′′x + 1, n = n′′x + 2, . . . ,

where C is independent of x and n. Therefore, we obtain that

S3(x) ≤ C
∞∑

n=n′′x+1

(n + 1)−3/4−ε
(
n− n′′x

)−1/4
,

≤ C
∞∑

k=1

k−1−ε ≤ C,

where C is independent of x, and may depend on ε. We complete the proof of the
lemma. ¤

Proof of (ii-1). The proof will be done in the same way as the proof of
(i). We shall use the following estimates for the Laguerre functions L

(α)
n , α > −1

[15, Lemma 1.5.3] (cf. [1, the table on p. 699], [10, (2.5)]). There exist positive
constants C and γ independent of n and x such that
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∣∣L (α)
n (x)

∣∣ ≤ C ·





(xn̂)α/2, 0 < x ≤ 1
n̂

,

(xn̂)−1/4,
1
n̂

< x ≤ n̂

2
,

n̂−1/4
(|n̂− x|+ n̂1/3

)−1/4
,

n̂

2
< x ≤ 3n̂

2
,

e−γx, x >
3n̂

2
,

(8)

where n̂ = 4n + 2α + 2. The following lemma will complete the proof of the part
(ii-1) of the theorem.

Lemma 3. Let α > 0. Put

T (x) =
∞∑

n=0

|L (α)
n (x)|
n + 1

.

Then there exist a constant C such that T (x) ≤ C for every x ∈ (0,∞).

Proof. Let A be a positive constant large enough. For x with 1/A < x <

A/2, it follows from (8) that |L (α)
n (x)| ≤ C(x(n + 1))−1/4, n = 0, 1, . . . , where C

is independent of x and n. Thus we have

T (x) ≤ Cx−1/4
∞∑

n=0

(n + 1)−5/4 ≤ CA1/4 ≤ C

with a constant C independent of x.
We deal with the case 0 < x ≤ 1/A. Let nx be the positive integer such

that (n̂x + 1)−1 < x ≤ (n̂x)−1. We remark that K1 ≤ xnx ≤ K2 with positive
constants K1 and K2. We have by (8) that

T (x) =
{ nx∑

n=0

+
∞∑

n=nx+1

} |L (α)
n (x)|
n + 1

,

≤ C

{ nx∑
n=0

(x(n + 1))α/2

n + 1
+

∞∑
n=nx+1

(x(n + 1))−1/4

n + 1

}
,

≤ C
{
xα/2nα/2

x + x−1/4n−1/4
x

} ≤ C,

where C is independent of x. We used the assumption α > 0 to get the last
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inequality.
Let x ≥ A. We redefine nx and define n′x by

nx = max{n ∈ N : 3ñ < 2x}, n′x = max{n ∈ N : ñ < 2x}.

This is possible if we take A to be large depending on α. We note that K1x ≤
nx < n′x ≤ K2x with positive constants K1 and K2. We write

T (x) =
{ nx∑

n=0

+
n′x∑

n=nx+1

+
∞∑

n=n′x+1

} |L (α)
n (x)|
n + 1

,

= T0(x) + T1(x) + T2(x), say.

Since 3n̂/2 < x for 0 ≤ n ≤ nx, it follows from (8) that

T0(x) ≤ Ce−γx
nx∑

n=0

(n + 1)−1 ≤ Ce−γx(nx + 1) ≤ C

with a constant C independent of x. For nx+1 ≤ n ≤ n′x, we have n̂/2 < x ≤ 3n̂/2.
Thus (8) leads to

T1(x) ≤ C

n′x∑
n=nx+1

(n + 1)−1(n + 1)−1/4(n + 1)−1/12 ≤ C.

For n ≥ n′x + 1, we have x ≤ n̂/2. By (8), we have

T2(x) ≤ Cx−1/4
∞∑

n=n′x+1

(n + 1)−1(n + 1)−1/4 ≤ Cx−1/4(n′x)−1/4 ≤ C,

which completes the proof of the lemma. ¤

Proof of (ii-2). In [7], the inequality (5) has already been proved by using
the atomic decomposition characterization of Hardy spaces. Here, we shall describe
that we can also derive the inequality by transplantation method.

In [8, Lemma and Remark], we showed the following. Let C∞c (0,∞) be the
space of infinitely differentiable functions with compact support in (0,∞). For
f ∈ C∞c (0,∞), let V f(t) be a function on (0, 2π) defined by the power-type
Fourier series V f(t) ∼ ∑∞

n=0 c
(0)
n (f)eint. Then we have
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V f(t) =
ie−it/2

2 sin
(

t

2

)
∫ ∞

0

f(x)e−i(x/2) cot(t/2)dx.

Let us use this identity. By making a change of variables u = 2−1 cot(t/2),
we obtain

∫ 2π

0

|V f(t)|dt = 2
∫

R

∣∣∣∣
∫ ∞

0

f(x)e−ixudx

∣∣∣∣(4u2 + 1)−1/2du

≤ C

∫

R

∣∣f̂(u)
∣∣u−1du,

where f̂(u) is the Fourier transform. Thus we have

∫ 2π

0

|V f(t)|dt ≤ C‖f‖H1(0,∞)

for f ∈ H1(0,∞) ∩ C∞c (0,∞) by Hardy’s inequality for the Fourier transform,
which implies the power series

∑∞
n=0 c

(0)
n (f)zn is in H1(D). By the original Hardy

inequality (1), we obtain

∞∑
n=0

|c(0)
n (f)|
n + 1

≤ C‖f‖H1(0,∞), f ∈ H1(0,∞) ∩ C∞c (0,∞).

The standard density argument leads to the desired inequality (5), which completes
the proof of (ii-2) of the theorem.

3. Proof of the proposition.

Proof of (i). Suppose that the series
∑∞

n=0 |cn(f)|/(n + 1)3/4 converges
for every f ∈ L1(R). A standard argument using the closed graph theorem yields
a constant C such that, for every f ∈ L1(R),

∞∑
n=0

|cn(f)|
(n + 1)3/4

≤ C‖f‖L1(R).

Due to Lemma 1, this implies
∑∞

n=0 |Hn(x)|/(n + 1)3/4 ≤ C for all x ∈ R, and in
particular
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∞∑
n=0

|Hn(0)|
(n + 1)3/4

≤ C. (9)

On the other hand, the definition (2) of Hn(x) and the identity H2m(0) =
(−1)m(2m)!/m! (cf. [13, 5.5.5]) lead to

H2m(0) = π−1/4(−1)m

√
(2m)!

2mm!
.

By Stirling’s formula, we easily see that |H2m(0)| ≥ C ′m−1/4 with a positive
constant C ′ independent of m, which contradicts (9). The proof of (i) is complete.

Proof of (ii-1). We shall first obtain a lower bound of |L (α)
n (x)|, α > −1.

Let Jα(z) be the Bessel function of the first kind of order α given by

Jα(z) =
(

z

2

)α ∞∑

k=0

(−1)k

(
z

2

)2k

k!Γ(k + α + 1)
, z ∈ C.

Fix ω > 0 large enough. We use the following asymptotic formula ([13, (8.22.4)]):

L(α)
n (x)e−x/2xα/2 = N−α/2 Γ(n + α + 1)

Γ(n + 1)
Jα(2(Nx)1/2) + O(nα/2−3/4),

N = n +
α + 1

2
, x > 0,

(10)

where the bound holds uniformly in 0 < x ≤ ω. Then, by the definition of L
(α)
n (x)

and (10), we have

∣∣L (α)
n (x)

∣∣ ≥ C(1)
α,ω

∣∣Jα(2(Nx)1/2)
∣∣− C(2)

α,ωn−3/4, 0 < x ≤ ω, (11)

where C
(1)
α,ω and C

(2)
α,ω are positive constants depending only on α and ω. It follows

from the definition of the Bessel function Jα that

Jα

(
2(Nx)1/2

) ≥ (Nx)α/2

Γ(α + 1)
{
1− ((Nx) + (Nx)2 + (Nx)3 + · · · )},

≥ (Nx)α/2

2Γ(α + 1)
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for Nx ≤ 1/3, where N = n + (α + 1)/2. By this and (11), we have

∣∣L (α)
n (x)

∣∣ ≥ C(3)
α,ω(Nx)α/2 − C(2)

α,ωn−3/4, 0 < x ≤ 1
3N

, (12)

where C
(3)
α,ω is a positive constant depending only on α and ω.

Let α > 0. Given a sequence λ = {λn}∞n=0 such that λ0 < λ1 < · · · < λn →∞
(n → ∞). Suppose that the series

∑∞
n=0 λn|c(α)

n (f)|/(n + 1) converges for every
f ∈ L1(0,∞). By the closed graph theorem, we have that

∑∞
n=0 λn|c(α)

n (f)|/(n +
1) ≤ Cα,λ‖f‖L1(0,∞) with a positive constant Cα,λ depending only on the order α

and the sequence λ. It follows from Lemma 1 that

∞∑
n=0

λn

∣∣L (α)
n (x)

∣∣
n + 1

≤ Cα,λ (13)

for all x ∈ (0,∞).
Let k be an arbitrary positive integer and put k̄ = 3(2k + (α + 1)/2). Let us

consider the sum of terms λn|L (α)
n (1/k̄)|/(n + 1) over n satisfying k ≤ n ≤ 2k.

The inequality (13) and the monotonicity of the sequence {λn}∞n=0 lead to

Cα,λ ≥ λk

∑

k≤n≤2k

∣∣∣∣L
(α)
n

(
1
k̄

)∣∣∣∣
n + 1

(14)

Since n ≤ 2k, it follows that 1/k̄ ≤ 1/(3N). Thus, (12) leads to

∣∣∣∣L (α)
n

(
1
k̄

)∣∣∣∣ ≥ C(3)
α,ω

(
N

k̄

)α/2

− C(2)
α,ωn−3/4, (15)

with which (14) leads to

Cα,λ ≥ λk





C(3)
α,ω

∑

k≤n≤2k

(
N

k̄

)α/2

n + 1
− C(2)

α,ω

∑

k≤n≤2k

n−3/4

n + 1





. (16)

We easily see that
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∑

k≤n≤2k

(
N

k̄

)α/2

n + 1
≥ cα,

∑

k≤n≤2k

n−3/4

n + 1
≤ Ak−3/4,

where cα is a positive constant depending only on α and A is an absolute positive
constant. Therefore, by (16) we have

Cα,λ ≥ λk

{
C(4)

α,ω −AC(2)
α,ωk−3/4

}

with a positive constant C
(4)
α,ω depending only on α and ω. Since we can take k

as large as we wish, this leads us to a contradiction, which completes the proof of
(ii-1).

Proof of (ii-2). Suppose that the series
∑∞

n=0 |c(0)
n (f)|/(n + 1) converges

for every f ∈ L1(0,∞). Let k be a positive integer large enough and put k̄ =
3(2k + 1/2). In the same way as the above proof, we have

C ≥
k∑

n=1

∣∣∣∣L
(0)
n

(
1
k̄

)∣∣∣∣
n + 1

≥
k∑

n=1

{
C

(3)
0,ω

1
n + 1

− C
(2)
0,ω

n−3/4

n + 1

}
≥ C ′ log k,

where C and C ′ are positive constants not depending on k. This is a contradiction
since we can take k large enough. We complete the proof of (ii-2), and the proof
of the proposition.
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