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Abstract. In this paper, we study limit spaces of a sequence of n-
dimensional complete Riemannian manifolds whose Ricci curvatures have def-
inite lower bound. We will give several measure theoretical properties of such
limit spaces.

1. Introduction.

In this paper, we study a pointed metric space (Y, y) that is pointed Gromov-
Hausdorff limit of a sequence of complete, pointed, connected n-dimensional Rie-
mannian manifolds, {(Mi,mi)}i, with RicMi ≥ −(n − 1). We call such a metric
space (Y, y) Ricci limit space in this paper. See Section 4.1 in [16]. In the papers
[4], [5] and [6], Cheeger-Colding studied such limit spaces, showed many impor-
tant results. There exists a Borel measure υ on a Ricci limit space (Y, y), which
is called the limit measure. See Definition 2.3. They developed the structure the-
ory by using the limit measure υ and results in [4], [5] and [6]. Most of this
paper, we will study measure theoretical properties on Ricci limit spaces for the
limit measure. In the other papers [13] and [14], we will discuss several geometric
applications of the results in this paper to Ricci limit spaces.

First, we study cut loci on Ricci limit spaces in Section 3. We prove that the
measure of cut locus is equal to zero. See Theorem 3.2. We will study cut locus
geometrically in Section 8 in [13]. We also give a relationship between “the limit
space of cut loci” and “cut locus of the limit space”. See Theorem 3.5.

Cheeger-Colding defined the measure of codimension one of υ in [5], we denote
it by υ−1. See Definition 4.1 for the definition of υ−1. If Y is isometric to a k-
dimensional smooth Riemannian manifold, then the measure υ−1 and the (k− 1)-
dimensional Hausdorff measure H k−1 are mutually absolutely continuous. We will
give several properties of υ−1. For example, we will show the following Bishop-
Gromov type inequality for υ−1:
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Theorem 1.1. Let (Y, y) be a Ricci limit space. Then, there exists a positive
constant C(n) > 0 depending only on n, such that for every positive numbers
0 < s < t < ∞, every point x ∈ Y and for every Borel set A ⊂ ∂Bt(x),

υ−1(A)
vol ∂Bt(p)

≤ C(n)
υ−1(∂Bs(x) ∩ Cx(A))

vol ∂Bs(p)

holds.

Here, p is a point in the standard n-dimensional hyperbolic space Hn(−1)
and Cx(A) = {z ∈ Y | There exists w ∈ A such that x, z +z, w = x,w holds.}, x, z

is the distance between x and z on Y . This is like Laplacian comparison theorem
on Riemannian manifolds. If Y is isometric to a smooth Riemannian manifold,
then Theorem 1.1 corresponds to area comparison theorem (see [1, Theorem 0.7]
and (2.13) in [1]). See [13, Theorem 1.2] for a geometric application of Theorem
1.1 to low dimensional Ricci limit spaces.

Also we will show a finiteness result (Theorem 4.2) and a positivity result of
the measure υ−1 (Corollary 4.7). It means that the measure υ−1 is a good measure
on the set ∂Br(x) \ Cx. Here, Cx is the cut locus of x ∈ Y . These properties are
similar to those on Riemannian manifolds.

We will give a relationship between the limit measure υ and the measure υ−1

in Section 5. Theorem 5.2 is like co-area formula for Lipschitz maps on Euclidean
spaces (see [8, 3.2.12. Theorem]). We will discuss an application of Theorem 5.2
to a rectifiability of Ricci limit spaces in [14].

Finally, we also consider the subset of Ricci limit space (Y, y), AY (α) consists
of points x ∈ Y satisfying υ(Br(x)) ∼ rα as r → 0. See Definition 6.1. The limit
measure υ on AY (α) and α-dimensional Hausdorff measure H α are mutually
absolutely continuous. We will give an upper bound of Hausdorff dimension of the
set. As a corollary, we will give an easy new proof of Corollary 6.4.

Acknowledgements. The author is grateful to Professor Kenji Fukaya for
his numerous suggestions and advice. He is also grateful to the referee for many
valuable advice on the first version.

2. Notation.

In this section, we recall some fundamental notion on metric spaces and define
the notion of Ricci limit spaces.

Definition 2.1. We say that a metric space X is proper if every bounded
closed set is compact. A metric space X is said to be a geodesic space if for every
points x1, x2 ∈ X, there exists an isometric embedding γ : [0, x1, x2] → X such
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that γ(0) = x1, γ(x1, x2) = x2. Here x1, x2 is the distance between x1 and x2 on
X. We say that γ is a minimal geodesic from x1 to x2.

For a proper geodesic space X, a point x ∈ X, a set A ⊂ X, and for positive
numbers 0 < r < R, we use the following notations; Br(x) = {z ∈ X | x, z < r},
Br(x) = {z ∈ X | x, z ≤ r}, Ar,R(x) = BR(x) \ Br(x), ∂Br(x) = {z ∈ X | x, z =
r}, Cx(A) = {z ∈ X | There exists w ∈ A such that x, z + z, w = x,w holds.}.
Throughout the paper, we fix a positive integer n > 0.

Definition 2.2. Let (Y, y) be a pointed proper geodesic space (y ∈ Y ), K

a real number. We say that (Y, y) is a (n,K)-Ricci limit space if there exist a
sequence of real numbers {Ki} and a sequence of complete, pointed, connected
n-dimensional Riemannian manifolds {(Mi,mi)}i with RicMi ≥ Ki(n − 1), such
that Ki converges to K and that (Mi,mi) converges to (Y, y) as i → ∞ in the
sense of pointed Gromov-Hausdorff topology.

Here, for a sequence of pointed proper geodesic spaces {(Xi, xi)}i, we say
that (Xi, xi) converges to a pointed proper geodesic space (X∞, x∞) in the sense
of pointed Gromov-Hausdorff topology if there exist sequences of positive numbers
εi, Ri > 0 and exists a sequence of maps φi : (BRi

(xi), xi) → (BRi
(x∞), x∞)

such that εi converges to 0, Ri converges to ∞, |zi, wi − φi(zi), φi(wi)| < εi holds
for every points zi, wi ∈ BRi

(xi), and that Bεi
(Image(φi)) ⊃ BRi

(x∞) holds.
(See Definitions 6.1 and 6.2 in [9].) We say that φi is a εi-Gromov-Hausdorff
approximation. Then for a sequence of points zi ∈ Xi such that the set {xi, zi |
i ∈ N} is bounded set in R, we say that zi converges to a point z∞ ∈ X∞ in the
sense of pointed Gromov-Hausdorff topology if φi(zi), z∞ < εi. We denote it by
either zi → z∞ or zi, z∞ < εi.

We remark that for every K 6= 0 and every (n,K)-Ricci limit space (Y, y),
there exists a sequence of complete, connected n-dimensional Riemannian mani-
folds {(Mi,mi)}i with RicMi ≥ K(n − 1), such that (Mi,mi) converges to (Y, y)
by rescaling. Throughout the paper, (Y, y) is always a (n,−1)-Ricci limit space
and is not a single point. More simply, we say that (Y, y) is Ricci limit space.

We shall give the definition of limit measure. The measure is a useful tool for
studying Ricci limit spaces.

Definition 2.3. Let υ be a Borel measure on Y . We say that υ is a limit
measure if there exists a sequence of complete, pointed, connected n-dimensional
Riemannian manifolds {(Mi,mi)}i with RicMi ≥ −(n − 1), such that (Mi,mi)
converges to (Y, y) and that for every positive number r > 0 and every points
x ∈ Y , m̂j ∈ Mj satisfying m̂j → x in the sense of pointed Gromov-Hausdorff
topology,
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volBr(m̂j)
volB1(mj)

→ υ(Br(x))

holds. Then we say that (Mj ,mj , vol / volB1(mj)) converges to (Y, y, υ) in the
sense of measured Gromov-Hausdorff topology.

There exists a limit measure on Y (see [4, Theorem 1.6], [4, Theorem 1.10]
and [9]). In general, it is not unique (see [4, Example 1.24]). Throughout the
paper, υ is always a fixed limit measure on Y .

3. Cut locus.

In this section, we study a cut locus on Ricci limit spaces.

3.1. Measure of cut locus.
First, we give the definition of cut locus.

Definition 3.1. For a proper geodesic space X and every w ∈ X, we put
Cw = {x ∈ X | For every point z ∈ Y \ {x}, w, x + x, z −w, z > 0 holds.}. If X is
a single point, then Cx = ∅. We say that Cw is the cut locus of w.

The following theorem is the main result in this subsection.

Theorem 3.2. We have υ(Cw) = 0 for every point w ∈ Y .

Proof. We shall give only a proof of the case w = y. There exists a
sequence of complete pointed, connected n-dimensional Riemannian manifolds,
{(Mj ,mj)}j such that RicMj

≥ −(n− 1) and that (Mj ,mj , vol / volB1(mj)) con-
verges to (Y, y, υ) in the sense of measured Gromov-Hausdorff topology. For every
positive number r > 0 and every positive integer N ∈ N , we put Cy(r) = {x ∈ Y |
For every z ∈ Y \Br(x), y, x+x, z− y, z > 0 holds.} and Cy(r,N) = {x ∈ Y | For
every z ∈ Y \Br(x), y, x + x, z − y, z ≥ N−1 holds.}. By the definition, Cy(r,N)
is closed.

Claim 3.3. We have Cy(r) =
⋃

N∈N Cy(r,N).

It suffices to see that Cy(r) ⊂ ⋃
N∈N Cy(r,N). This proof is done by a

contradiction. We assume that there exists a point x ∈ Cy(r) \ ⋃
N∈N Cy(r,N).

Then, for every positive integer N , there exists a point yN ∈ Y \Br(x) such that
y, x + x, yN − y, yN < N−1 holds. Clearly, for every positive integer N , there
exists a point zN ∈ ∂Br(x) such that x, zN + zN , yN = x, yN holds. Then, by
triangle inequality, we have y, x + x, zN − y, zN < N−1. Since ∂Br(x) is compact,
there exists a subsequence {zk(N)}N and a point z∞ ∈ ∂Br(x) such that zk(N)
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converges to z∞ in Y . Therefore, we have y, x + x, z∞ = y, z∞. This contradicts
the assumption. Thus we have Claim 3.3.

By the definition, we have Cy =
⋂

r>0 Cy(r). We fix a positive number r > 0
and a positive integer N ∈ N . Let l ∈ N be a positive integer, δ > 0 a sufficiently
small positive number satisfying 0 < δ ¿ min{2−l, r,N−1}. Let {xi}k

i=1 be a
maximal 100δ-separated subset of the set Cy(r,N)∩A2−l,2l(y). For every positive
integers i, j > 0 (1 ≤ i ≤ k), we take xi(j) ∈ Mj such that xi(j) converges to
xi as j → ∞ in the sense of pointed Gromov-Hausdorff topology. In general,
for a complete pointed, connected n-dimensional Riemannian manifold (M, m),
we put SmM = {u ∈ TmM | |u| = 1} and define t(u) > 0 as the supremum
of t ∈ (0,∞) such that expm su|[0,t] is a minimal geodesic segment from m to
expm tu for u ∈ SmM . For every positive numbers 0 < r1 < r2 and η > 0, we
put X(m, r1, r2, η) = {expm tu ∈ M | u ∈ SmM, t(u) − η ≤ t < t(u), expm tu ∈
Ar1,r2(m)}.

Claim 3.4. We have
⋃k

i=1 B10δ(xi(j)) \Cmj
⊂ X(mj , 2−l−1, 2l+1, 100r) for

every sufficiently large j.

We take x ∈ B10δ(xi(j)) \ Cmj
. For every point z ∈ Mj \ B40r(x), we take

w ∈ Y such that z, w < εj in the sense of pointed Gromov-Hausdorff topology
(εj → 0). Then, we have

mj , x + x, z −mj , z ≥ mj , xi(j) + xi(j), z −mj , z − 20δ

≥ y, xi + xi, w − y, w − 20δ − 7εj (∗)

and w, xi ≥ z, xi(j)− 3εj ≥ z, x− x, xi(j)− 3εj ≥ 40r − 10δ − 3εj > 30r. By the
definition of xi, we have

(∗) ≥ N−1 − 20δ − 7εj ≥ (2N)−1 > 0.

Thus there exist u ∈ Smj
Mj and positive number t > 0 such that t(u) − 50r ≤

t < t(u) and x = expmj
tu hold. Because, if we assume that t < t(u) − 50r, then

there exists α ∈ Mj such that x, α = 45r and that mj , x + x, α − mj , α = 0.
On the other hand, since α ∈ Mj \ B40r(x), by the argument above, we have
mj , x + x, α−mj , α > 0. This is a contradiction. Thus we have t(u)− 50r ≤ t.

Since x, xi(j) < 10δ holds, we have x ∈ A2−l−1,2l+1(mj). Therefore, we have
x ∈ X(mj , 2−l−1, 2l+1, 100r). Hence, we have Claim 3.4.

Since {B10δ(xi(j))}i are pairwise disjoint for every sufficiently large j, Claim
3.4 yields
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k∑

i=1

volB10δ(xi(j)) ≤ volX(mj , 2−l−1, 2l+1, 100r).

Here, vol = vol/volB1(mj). By the proof of [4, Lemma 2.16], there exists
a positive constant C = C(l, n) > 0 depending only on l, n, such that volX
(mj , 2−l−1, 2l+1, 100r) ≤ C(l, n)r holds. Thus, we have

υ
(
Cy(r,N) ∩A2−l,2l(y)

) ≤
k∑

i=1

υ(B100δ(xi))

≤ C
k∑

i=1

υ(B10δ(xi))

≤ Cr.

Therefore, by letting δ → 0, N →∞, r → 0, and l →∞, we have υ(Cy) = 0. ¤

We remark that W E 0(w) ⊂ Cw holds for every w ∈ Y . (See [4, Definition
2.10] for the definition of W E 0(w).) Therefore, Theorem 3.2 differs from [4, Propo-
sition 2.13].

3.2. Convergence of cut loci.
In this subsection, we give a relationship between “the limit space of cut loci”

and “the cut locus of the limit space”. Roughly speaking, we will show that “the
limit space of cut loci” contains “the cut locus of the limit space”. Let {(Mi,mi)}i

be a sequence of complete pointed, connected n-dimensional Riemannian manifolds
with RicMi

≥ −(n − 1). For every positive number R > 0, the sequence of
pointed compact metric spaces (B2R(mi) ∩ (Cmi ∪ {mi}),mi)i∈N is precompact
in the sense of pointed Gromov-Hausdorff topology. We assume that there exist a
pointed proper geodesic space (Y, y) and a pointed compact metric space (XR, xR)
such that (B2R(mi) ∩ (Cmi

∪ {mi}),mi) conveges to (XR, xR) and that (Mi,mi)
converges to (Y, y).

Theorem 3.5. Under the notation above, there exists an isometric embed-
ding Φ : (BR(y) ∩ (Cy ∪ {y}), y) → (XR, xR).

Proof. First, we shall prove that for every finite points x1, x2, . . . , xN ∈
Cy ∩ BR(y), there exists an isometric embedding φN : ({x1, x2, . . . , xN , y}, y) →
(XR, xR). We fix finite points x1, x2, . . . , xN ∈ Cy ∩BR(y). For every sufficiently
large k ∈ N , there exists a positive number τ > 0 such that y, xj +xj , x−y, x ≥ τ

holds for every 1 ≤ j ≤ N and every point x ∈ B10R(y) \ Bk−1(xj). We take
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εi-Gromov-Hausdorff approximations (εi → 0), φi : (BRi
(mi),mi) → (BRi

(y), y),
φ̂i : (BRi

(y), y) → (BRi
(mi),mi), ψi : (B2R(mi) ∩ (Cmi

∪ {mi}),mi) → (XR, xR)
and ψ̂i : (XR, xR) → (B2R(mi) ∩ (Cmi

∪ {mi}),mi) such that φi ◦ φ̂i, id < εi,
φ̂i ◦ φi, id < εi, ψi ◦ ψ̂i, id < εi hold and that ψ̂i ◦ ψi, id < εi holds. Here, the
inequality φi ◦ φ̂i, id < εi means that φi ◦ φ̂i(x), x < εi holds for every x ∈ B2R(y).
Since φi(B2R(mi) \ B100k−1(φ̂i(xj))) ⊂ B2R+εi

(y) \ B100k−1−2εi
(xj), we have

mi, φ̂i(xj)+φ̂i(xj), zi−mi, zi > τ/100 for every sufficiently large i, every 1 ≤ j ≤ N

and every point zi ∈ B2R(mi) \ B100k−1(φ̂i(xj)). Thus, there exists a point

xj(i, k) ∈ Cmi
∩ B2R(mi) such that φ̂i(xj), xj(i, k) < 100k−1 holds. By taking a

subsequence, we can assume that the sequence {ψi(xj(i, k))}i is a Cauchy sequence
in XR for every 1 ≤ j ≤ N . We put x(j, k) = limi→∞ ψi(xj(i, k)). Similarly,
without loss of generality, we can assume that the sequence {x(j, k)}k is a Cauchy
sequence for every j. We put x(j,∞) = limk→∞ x(j, k) and put φN (xj) = x(j,∞).
Then we have an isometric embedding φN : ({x1, x2, . . . , xN , y}, y) → (XR, xR).
By using φN and diagonal argument, it is not difficult to construct the map Φ. ¤

Clearly, in general, the cut locus of the limit space is not isometric to the limit
space of cut loci. For example, consider the situation that the flat tori S1(r)×S1

converges to S1 as r → 0. Here, S1(r) = {x ∈ R2 | |x| = r}.

4. The measure of codimension one.

In this section, we recall the definition of the measure υ−1 on Ricci limit
spaces, and give several properties of υ−1.

4.1. Definition and finiteness.
First, we recall the definition of υ−1. (See (2.1) and (2.2) in [5].)

Definition 4.1. For positive numbers β, δ > 0 and a subset A ⊂ Y , we put

(υ−β)δ(A) = inf
{ ∑

i∈I

r−β
i υ(B(xi))

∣∣∣∣ ]I ≤ ℵ0, A ⊂
⋃

i∈I

Bri
(xi), ri < δ

}
,

υ−β(A) = lim
δ→0

(υ−β)δ(A).

By Carathéodory criterion, υ−β is a Borel measure on Y . We remark that
υ−β({x}) > 0 holds if and only if lim infr→0 υ(Br(x))/rβ > 0 holds. The following
theorem is the main result in this subsection. However, we will prove a result
where sharpens the conclusion in the following theorem later. See Corollary 5.7.
The following theorem is used in the proof of Theorem 1.1.



426 S. Honda

Theorem 4.2. There exists a positive constant C(n) > 0 depending only on
n such that for every positive number t > 0 and every point x ∈ Y ,

υ−1(∂Bt(x))
υ(Bt(x))

≤ C(n)
vol ∂Bt(p)
volBt(p)

holds. Here, p is a point in the standard n-dimensional hyperbolic space Hn(−1).
Especially, we have υ−1(∂Bt(x)) < ∞.

Proof. We can assume that ∂Bt(x) 6= ∅. There exists a sequence of com-
plete, pointed, connected n-dimensional Riemannian manifolds {(Mj ,mj)}j with
RicMj

≥ −(n−1) such that (Mj ,mj , vol / volB1(mj)) converges to (Y, y, υ) in the
sense of measured Gromov-Hausdorff topology. We fix a sufficiently small positive
number δ > 0 satisfying sinhn−1(t + 2δ)/ sinhn−1(t − 2δ) < 2. Let {xi}N

i=1 be
a maximal 100δ-separated subset of ∂Bt(x). For every positive integers i, j > 0
(1 ≤ i ≤ N), we take x(j), xi(j) ∈ Mj such that xi(j) converges to xi as j → ∞
and that x(j) converges to x as j → ∞. We put Si

j = {u ∈ Sx(j)Mj | There
exists 0 < s < t(u) such that expx(j) su ∈ Bδ(xi(j)) holds.}. Also we put
Ii
j(u) = {s ∈ (0, t(u)) | expx(j) su ∈ Bδ(xi(j))} for u ∈ Si

j , k(s) = sinh(s) and
put θ(s, u) = sn−1

√
det(gij |expx(j) su)). Here, gij = g(∂/∂xi, ∂/∂xj) for a normal

coordinate around x(j), (x1, x2, . . . , xn). Then, we have

volBδ(xi(j)) =
∫

Si
j

∫

Ii
j(u)

θ(s, u)dsdu

≤
∫

Si
j

∫

Ii
j(u)

θ(t− 2δ, u)
kn−1(s)

kn−1(t− 2δ)
dsdu

≤ 2
∫

Si
j

∫

Ii
j(u)

θ(t− 2δ, u)dsdu

≤ 8δ

∫

Si
j

θ(t− 2δ, u)du

≤ 8δ vol
(
∂Bt−2δ(x(j)) ∩ Cx(j)(Bδ(xi(j)))

)
.

Since the set {∂Bt−2δ(x(j)) ∩ Cx(Bδ(xi(j)))}i are pairwise disjoint for every suf-
ficiently large j, we have

N∑

i=1

δ−1 volBδ(xi(j)) ≤ 4 vol
(
∂Bt−2δ(x(j)) \ Cx(j)

)
.
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By Bishop-Gromov volume comparison theorem, we have

vol(∂Bt−2δ(x(j)) \ Cx(j)) =
volBt−2δ(x(j))

volB1(mj)
vol(∂Bt−2δ(mj) \ Cx(j))

volBt−2δ(x(j))

≤ volBt−2δ(x(j))
volB1(mj)

vol ∂Bt−2δ(p)
volBt−2δ(p)

.

Thus, we have

N∑

i=1

δ−1 volBδ(xi(j)) ≤ 8
volBt−2δ(x(j))

volB1(mj)
vol ∂Bt−2δ(p)
volBt−2δ(p)

.

By letting j →∞, we have

(υ−1)1000δ(∂Bt(x)) ≤
N∑

i=1

(1000δ)−1υ(B1000δ(xi))

≤ C(n)
8

N∑

i=1

δ−1υ(Bδ(xi))

≤ C(n)υ(Bt(x))
vol ∂Bt−2δ(p)
volBt−2δ(p)

for some C(n) > 0. Therefore, by letting δ → 0, we have

υ−1(∂Bt(x)) ≤ C(n)υ(Bt(x))
vol ∂Bt(p)
volBt(p)

. ¤

We shall state the following proposition stated in (4.3) of [6]. Since there is
no proof of the following proposition in [6], we give a proof of it.

Proposition 4.3. We assume that ∂B1(y) 6= ∅. Then for every positive
number R > 0 and every point x ∈ BR(y), we have

υ(Bs(x)) ≤ C(R, n)s

for every positive number 0 < s < 1. Here, C(R, n) > 0 is a positive constant
depending only on R and n.

Proof. By an argument simular to the proof of [13, Proposition 5.2]. ¤
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As a corollary of Theorem 4.2 and Proposition 4.3, we have a universal upper
bound for υ−1(∂Bt(x)):

Corollary 4.4. We assume that ∂B1(y) 6= ∅. Then for every positive
number R > 0 and every point x ∈ BR(y), we have

υ−1(∂Bs(x)) ≤ C(R, n).

for every positive number 0 < s < 1.

4.2. Bishop-Gromov type inequality.
In this subsection, we shall give a proof of Theorem 1.1.

Proof of Theorem 1.1. First, we assume that A is compact. There ex-
ists a sequence of complete, pointed, connected n-dimensional Riemannian mani-
folds {(Mj ,mj)}j with RicMj ≥ −(n−1) such that (Mj ,mj , vol / volB1(mj)) con-
verges to (Y, y, υ) in the sense of measured Gromov-Hausdorff topology. We fix a
sufficiently small positive number δ > 0 and put Cx(A, s, δ) = {z ∈ ∂Bs(x) | There
exists p ∈ Bδ(A) such that x, z+z, p−x, p ≤ δ holds.}. Clearly, Cx(A, s, δ) is com-
pact and

⋂
δ>0 Cx(A, s, δ) = ∂Bs(x)∩Cx(A) holds. Let ε > 0 be a positive number

satisfying ε ¿ min{s, t − s, δ}. There exists a sequence of sets {Bri
(xi)}N

i=1 such
that |υ−1(Cx(A, s, 7δ))−∑N

i=1 r−1
i υ(Bri

(xi))| < ε, Cx(A, s, 7δ) ⊂ ⋃N
i=1 Bri

(xi) and
0 < ri < min{s, t− s, δ}/1000(1 ≤ i ≤ N) hold, and that Cx(A, s, 7δ) ∩Bri

(xi) 6=
∅(1 ≤ i ≤ N) holds. We put τ = min1≤i≤N{ri/1000}. Let x(j), xi(j) be points
in Mj satisfying xi(j), xi < εj , x(j), x < εj in the sense of pointed Gromov-
Hausdorff topology (εj → 0). For every positive integers i, j (1 ≤ i ≤ N), we put
Sj

i = {u ∈ Sx(j)Mj | There exists 0 < r < t(u) such that expx(j) ru ∈ B4ri
(xi(j))

holds.} and Ŝj
i = {u ∈ Sj

i | t(u) > t− 100δ}. Also we put Ij
i (u) = {r ∈ (0, t(u)) |

expx(j) ru ∈ B4ri
(xi(j))} and Îj

i (u) = Bri
(Ij

i (u)) (⊂ (0, t(u))) for u ∈ Ŝj
i . Then,

we have

volB10ri
(xi(j)) ≥

∫

Ŝj
i

∫

Îj
i

θ(r, u)drdu

≥
∫

Ŝj
i

∫

Îj
i

kn−1(r)
θ(t− 104δ, u)
kn−1(t− 104δ)

drdu

≥ kn−1(s− 104δ)
kn−1(t− 104δ)

ri

∫

Ŝj
i

θ(t− 104δ, u)du

=
kn−1(s− 104δ)
kn−1(t− 104δ)

ri vol
(
∂Bt−104δ(x(j)) ∩ Sx(j)(B4ri

(xi(j)))
)
.
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Here, Sx(j)(Â) = {α ∈ Mj \ Cx(j) | There exists β ∈ Â such that x(j), β + β, α =
x(j), α holds or x(j), α+α, β = x(j), β holds.} for every subset Â ⊂ Y . Therefore,
we have

N∑

i=1

r−1
i volB10ri

(xi(j))

≥ kn−1(s− 104δ)
kn−1(t− 104δ)

N∑

i=1

vol
(
∂Bt−104δ(xj) ∩ Sx(j)(B4ri

(xi(j)))
)
.

Let {x̂i}N̂
i=1 be a maximal 1010δ-separated subset of A and x̂i(j) ∈ Mj a point

satisfying x̂i(j), x̂i < εj .

Claim 4.5. For every sufficiently large j > 0, every point zj ∈ Bδ(x̂i(j))
and every minimal geodesic from x(j) to zj, γ : [0, x(j), zj ] → Mj, we have

Image(γ) ∩
( N⋃

i=1

B4ri(xi(j))
)
6= ∅.

We take αj ∈ Y such that γ(s + τ), αj < εj . Since s < x, αj < s + 2τ

for every sufficiently large j, we can take w ∈ ∂Bs(x) such that x,w + w, αj =
x, αj . Then, we have x,w + w, x̂i − x, x̂i ≤ x, αj + αj , x̂i − x, x̂i + 4τ ≤
x(j), γ(s + τ) + γ(s + τ), x̂i(j) − x(j), x̂i(j) + 5τ ≤ 2δ + 5τ ≤ 7δ. Therefore,
we have w ∈ Cx(A, s, 7δ). Thus, there exists a ball Brl

(xl) such that w ∈ Brl
(xl).

Therefore, we have αj ∈ B2rl
(xl). Thus, we have γ(s + τ) ∈ B4rl

(xl(j)). We have
Claim 4.5.

For every ball Bδ(x̂i(j)), we put Śj
i = {u ∈ Sx(j)Mj | There exists 0 <

r < t(u) such that expx(j) ru ∈ Bδ(x̂i(j)) holds.} and Íj
i (u) = {r ∈ (0, t(u)) |

expx(j) ru ∈ Bδ(x̂i(j))} for u ∈ Śj
i . Then, we have

volBδ(x̂i(j)) =
∫

Śj
i

∫

Íj
i

θ(r, u)drdu

≤
∫

Śj
i

∫

Íj
i

kn−1(r)
θ(t− 104δ, u)
kn−1(t− 104δ)

drdu

≤ 2
kn−1(t + 104δ)
kn−1(t− 104δ)

δ

∫

Śj
i

θ(t− 104δ, u)du
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= 2
kn−1(t + 104δ)
kn−1(t− 104δ)

δ vol
(
∂Bt−104δ(x(j)) ∩ Cx(j)(Bδ(x̂i(j)))

)
.

Therefore, we have

N̂∑

i=1

δ−1 volBδ(x̂i(j))

≤ 2
N̂∑

i=1

kn−1(t + 104δ)
kn−1(t− 104δ)

vol
(
∂Bt−104δ(x(j)) ∩ Cx(j)(Bδ(x̂i(j)))

)

= 2
kn−1(t + 104δ)
kn−1(t− 104δ)

vol
(

∂Bt−104δ(x(j)) ∩ Cx(j)

( N̂⊔

i=1

Bδ(x̂i(j))
))

.

By Claim 4.5, we have

∂Bt−104δ(mj)∩Cx(j)

( N̂⊔

i=1

Bδ(x̂i(j))
)
⊂ ∂Bt−104δ(x(j))∩Sx(j)

( N⋃

i=1

B4ri(xi(j))
)

.

Thus, we have

N̂∑

i=1

δ−1 volBδ(x̂i(j)) ≤ 3
kn−1(t− 104δ)
kn−1(s− 104δ)

N∑

i=1

r−1
i volB10ri(xi(j)).

Therefore, by letting j →∞, we have

(υ−1)1011δ(A) ≤
N̂∑

i=1

(1011δ)−1υ(B1011δ(x̂i))

≤ C(n)
N̂∑

i=1

δ−1υ(Bδ(x̂i))

≤ C(n)
kn−1(t− 104δ)
kn−1(s− 104δ)

N∑

i=1

r−1
i υ(B10ri

(xi))

≤ C(n)
kn−1(t− 104δ)
kn−1(s− 104δ)

(
υ−1(Cx(A, s, 7δ)) + ε

)
.

By letting ε → 0 and δ → 0, we have Theorem 1.1 for every compact set A. By
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standard covering argument, it is easy to prove Theorem 1.1 for every Borel set
A. ¤

See [13, Theorem 1.2] for an application of Theorem 1.1 to low dimensional
Ricci limit spaces.

4.3. Positivity result of the measure υ−1.
First, we shall prove the following theorem:

Theorem 4.6. There exists a positive constant C(n) > 0 depending only on
n such that for every positive numbers 0 < s ≤ r < t, every point x ∈ Y and every
Borel set A ⊂ Ar,t(x),

υ(A)
volBt(p)− volBr(p)

≤ C(n)
υ−1(∂Bs(x) ∩ Cx(A))

vol ∂Bs(p)

holds. Especially, if υ(A) > 0 holds, then υ−1(∂Bs(x) ∩ Cx(A)) > 0 holds.

Proof. Without loss of generality, we can assume that s < r holds and
A is compact. We fix a sufficiently small positive number δ. Let ε > 0 be
a positive number. There exists {Bri

(xi)}N
i=1 such that |υ−1(Cx(A, s, 7δ)) −∑N

i=1 r−1
i υ(Bri

(xi))| < ε, Cx(A, s, 7δ) ⊂ ⋃N
i=1 Bri

(xi), 0 < ri < min{r, t − s, δ}/
1000 hold for every i, and that Cx(A, s, 7δ) ∩ Bri

(xi) 6= ∅ holds. By taking a
maximal 100δ - separated subset of A and by an argument simular to the proof of
Theorem 1.1, we have

υ(A) ≤ C(n)
volBt+100δ(p)− volBr−100δ(p)

vol ∂Bs−100δ(p)
(υ−1(Cx(A, s, 7δ)) + ε).

Therefore, by letting ε → 0, δ → 0, we have Theorem 4.6. ¤

Next corollary is a positivity result similar to the properties on Riemannian
manifolds.

Corollary 4.7. Let x be a point in Y and R > 0 a positive number.
Assume that ∂BR(x)\Cx 6= ∅. Then for every z ∈ ∂BR(x)\Cx and every positive
number ε > 0, υ−1(Bε(z) ∩ ∂BR(x) \ Cx) > 0 holds.

Proof. There exist a sufficiently small positive number 0 < τ < ε/1000
and a point w ∈ Y such that x, z + z, w = x,w and z, w = τ hold. Then,
since ∂BR(x)∩Cx(Bτ/1000(w)) ⊂ Bε(z)∩ ∂BR(x) \Cx, Corollary 4.7 follows from
Theorem 4.6. ¤
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Finally, we shall give the following theorem.

Corollary 4.8. For every points x, z ∈ Y such that x 6= z, the following
conditions are equivalent :

(1) υ(Cx({z})) > 0 holds.
(2) υ−1(∂Bt(x) ∩ Cx({z})) > 0 holds for every 0 < t < x, z.
(3) υ−1(∂Bt(x) ∩ Cx({z})) > 0 holds for some 0 < t < x, z.

Proof. First, we assume that υ(Cx({z})) > 0 holds. We put r = x, z > 0.
There exists a positive integer N ∈ N such that υ(Cx({z})∩A(N+1)−1r, N−1r(x)) >

0 holds. Thus, by Theorem 4.6, we have υ−1(∂Bt(x) ∩ Cx({z})) > 0 for every
0 < t < (N + 1)−1r. Since ∂Bs(x) ∩ Cx({z}) = ∂Br−s(z) ∩ Cz({x}) holds for
every 0 < s < r, by Theorem 1.1, we have υ−1(∂Bt(x) ∩ Cx({z})) > 0 for every
0 < t < r.

Next, we assume that υ(Cx({z})) = 0. Then, by Corollary 5.7 below, there
exists t ∈ (0, x, z) such that υ−1(∂Bt(x) ∩ Cx({z})) = 0 holds. ¤

See [13, Theorem 6.5] for an application of Corollary 4.8.

5. Co-area formula for distance function.

In this section, we give a relationship between the limit measure υ and the
measure υ−1. Let x be a point in Y and A ⊂ Y a subset. We define ΦA : R≥0 →
R≥0 by

ΦA(t) = υ−1(∂Bt(x) ∩A).

Proposition 5.1. For every Borel set A ⊂ Y , the map ΦA is a Lebesgue
measurable function.

We will give a proof of Proposition 5.1 in Appendix. The following theorem
is the main result in this subsection.

Theorem 5.2. Let x be a point in Y . There exists a non-negative valued
function f ∈ L∞(Y ) and a constant C(n) ≥ 1 depending only on n, such that
C(n)−1 ≤ f(w) ≤ C(n) holds for every w ∈ Y and

∫ ∞

0

∫

∂Bt(x)\Cx

gdυ−1dt =
∫

Y

gfdυ

holds for every g ∈ L1(Y ).
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Proof. Recall that there exists a sequence of complete, pointed, connected
n-dimensional Riemannian manifolds {(Mj ,mj)}j with RicMj

≥ −(n−1) such that
(Mj ,mj , vol / volB1(mj)) converges to (Y, y, υ) in the sense of measured Gromov-
Hausdorff topology. For every positive number τ > 0, we put Dτ = Y \ Cx(τ) =
{w ∈ Y | There exists z ∈ Y \Bτ (w) such that x,w + w, z = x, z holds.}. Clearly,⋃

τ>0 Dτ = Y \Cx. We fix τ > 0. Let s, t, r, R, δ > 0 be positive numbers satisfying
0 < δ ¿ τ, s and δ ¿ r < t < R. We assume that Ar,R(x) 6= ∅. We take a point
w ∈ Ar,R(x). Let {xi}N

i=1 be a maximal 100δ-separated subset of ∂Bt(x)∩Bs(w).
We take a positive number t̂ > 0 such that |t− t̂| ≤ δ and t̂ ∈ [r,R] hold.

Claim 5.3. We have ∂Bt̂(x) ∩Dτ ∩Bs−100δ(w) ⊂ ⋃N
i=1 B300δ(xi).

Let z be a point in ∂Bt̂(x) ∩Dτ ∩Bs−100δ(w). First, we assume t̂ ≥ t. Then
there exists α ∈ ∂Bt(x) ∩ Bs(w) such that x, α + α, z = x, z and α, z ≤ δ hold.
Thus, there exists a positive integer 1 ≤ i ≤ N such that α ∈ B250δ(xi) holds.
Therefore, we have z ∈ B300δ(xi).

Next, we assume that t̂ < t. Since δ ¿ τ , there exists α ∈ ∂Bt(x) ∩ Bs(w)
such that x, z + z, α = x, α and α, z ≤ δ hold. Thus there exists a positive
integer 1 ≤ i ≤ N such that α ∈ B200δ(xi) holds. Hence, we have z ∈ B300δ(xi).
Therefore, we have Claim 5.3.

For every positive integers i, j > 0 (1 ≤ i ≤ N), let xi(j), x(j) ∈ Mj be points
satisfying xi(j), xi < εj and x(j), x < εj (εj → 0). We put Si

j = {u ∈ Sx(j)Mj |
There exists 0 < r < t(u) such that expx(j) ru ∈ Bδ(xi(j)) holds.} and Ii(u) =
{r ∈ (0, t(u)) | expx(j) ru ∈ Bδ(xi(j))} for u ∈ Si

j . Then, we have

volBδ(xi(j)) =
∫

Si
j

∫

Ii(u)

θ(ŝ, u)dŝdu

≤
∫

Si
j

∫

Ii(u)

kn−1(ŝ)
θ(t̂− 10δ, u)
kn−1(t̂− 10δ)

dŝdu

≤ 2
∫

Si
j

∫

Ii(u)

θ(t̂− 10δ, u)dŝdu

≤ 5δ

∫

Si
j

θ(t̂− 10δ, u)du

≤ 5δ vol
(
∂Bt̂−10δ(x(j)) ∩ Cx(j)(Bδ(xi(j))) ∩B20δ(xi(j)) \ Cx(j)

)
.

Claim 5.4. For every i1, i2 ∈ {1, 2, · · · , N} such that i1 6= i2, for ev-
ery sufficiently large integer j, we have Cx(j)(B2δ(xi1(j))) ∩ Cx(j)(B2δ(xi2(j))) ∩
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B20δ(xi2(j)) = ∅.

Assume that the assertion is false. We take zj ∈ Cx(j)(B2δ(xi1(j))) ∩
Cx(j)(B2δ(xi2(j))) ∩ B20δ(xi2(j)). There exist yi1(j) ∈ B2δ(xi1(j)), yi2(j) ∈
B2δ(xi2(j)) such that x(j), zj + zj , yi1(j) = x(j), yi1(j) and x(j), zj + zj , yi2(j) =
x(j), yi2(j) hold. Then, by triangle inequality, we have

xi1(j), xi2(j) ≤ xi1(j), yi1(j) + yi1(j), zj + zj , yi2(j) + yi2(j), xi2(j)

≤ 2δ + yi1(j), zj + zj , yi2(j) + 2δ

≤ 4δ + t + 5δ − x(j), zj + zj , yi2(j)

≤ 9δ + t− (x(j), yi2(j)− zj , yi2(j)) + zj , yi2(j)

≤ 9δ + t− x(j), yi2(j) + 50δ

≤ 9δ + 5δ + 50δ = 64δ.

Thus, we have xi1 , xi2 < 70δ. This is a contradiction. Therefore, we have Claim
5.4.

Let w(j) ∈ Mj be a point satisfying w(j), w < εj . By Claim 5.4 and
B20δ(xi(j)) ⊂ Bs+100δ(w(j)), we have

N∑

i=1

volBδ(xi(j)) ≤ 10δ vol
(
∂Bt̂−10δ(x(j)) ∩Bs+100δ(w(j)) \ Cx(j)

)
.

On the other hand, for every sufficiently large j, we have

∣∣∣∣
N∑

i=1

υ(Bδ(xi))−
N∑

i=1

volBδ(xi(j))
∣∣∣∣ < δ2.

Therefore, for every sufficiently large j, we have

(υ−1)1000δ

(
∂Bt̂(x) ∩Bs−100δ(w) ∩Dτ

)

≤
N∑

i=1

(1000δ)−1υ(B1000δ(xi))

≤ C(n)
N∑

i=1

δ−1υ(Bδ(xi))
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≤ C(n)
(

δ +
N∑

i=1

δ−1 volBδ(xi(j))
)

≤ C(n)δ + C(n) vol
(
∂Bt̂−10δ(x(j)) ∩Bs+100δ(w(j)) \ Cx(j)

)
. (∗)

Let {ti}k
i=1 ⊂ [r,R] be a subset satisfying [r,R] ⊂ ⋃k

i=1 Bδ/2(ti). For every i =
1, 2, . . . , k, we have that inequality (∗) holds for every sufficiently large integer j

and every t̂ ∈ [r,R] satisfying |t̂ − ti| < δ. Hence, inequality (∗) holds for every
sufficiently large j and every t̂ ∈ [r,R]. Therefore, for such j, we have

∫ R

r

(υ−1)1000δ

(
∂Bt̂(x) ∩Bs−τ (w) ∩Dτ

)
dt̂

≤
∫ R

r

(υ−1)1000δ

(
∂Bt̂(x) ∩Bs−100δ(w) ∩Dτ

)
dt̂

≤ C(n)(R− r)δ + C(n)
∫ R

r

vol
(
∂Bt̂−10δ(x(j)) ∩Bs+100δ(w(j)) \ Cx(j)

)
dt̂

≤ C(n)(R− r)δ + C(n)
∫ R−10δ

τ−10δ

vol
(
∂Bα(x(j)) ∩Bs+100δ(w(j)) \ Cx(j)

)
dα

≤ C(n)(R− r)δ + C(n) volBs+100δ(w(j)).

By letting j →∞, δ → 0, R →∞, r → 0 and letting τ → 0, we have

∫ ∞

0

υ−1

(
∂Bt̂(x) ∩Bs(w) \ Cx

)
dt̂ ≤ C(n)υ(Bs(w)).

Here, we remark that the map Ψ̂ : B(Y ) → R≥0 ∪ {∞} defined by

Ψ̂(A) =
∫ ∞

0

υ−1(∂Bt(x) ∩A \ Cx)dt

is an additive set function on B(Y ) = {A ∈ 2Y | A is a Borel subset of Y }. By
standard covering argument, for every A ∈ B(Y ), we have

∫ ∞

0

υ−1(∂Bt(x) ∩A \ Cx)dt ≤ C(n)υ(A).

By Radon-Nikodym theorem, there exists f ∈ L∞(Y ) such that 0 ≤ f ≤ C(n)
holds and that
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∫ ∞

0

∫

∂Bt(x)\Cx

gdυ−1dt =
∫

Y

gfdυ

holds for every g ∈ L1(Y ).

Claim 5.5. Let w be a point in Y and 0 < τ < 1 < R positive numbers.
Assume w ∈ BR(x) \ (Bτ (x) ∪ Cx(τ)). Then, for every 0 < ε < τ/1000, we have

υ(Bε(w)) ≤ C(n,R)
∫ ∞

0

υ−1(∂Bt(x) ∩Bε(w) \ Cx)dt.

Here, C(n,R) is a positive constant depending only on n,R.

Because, for every 0 < ε < τ/100, we take a minimal geodesic γ : [0, x, w +
10ε] → Y such that γ(0) = x and that γ(x,w) = w. Then, by Theorem 4.6, for
every t ∈ [x,w − ε/100, x, w], we have

υ(B10ε(w)) ≤ C(n)υ
(
Bε(γ(x,w + 5ε))

)

≤ C(n) volAx,w,x,w+20ε(p)
υ−1

(
∂Bt(x) ∩ Cx(Bε(γ(x,w + 5ε))

)

vol ∂Bt(p)

≤ C(n,R)ευ−1(∂Bt(x) ∩B10ε(w) \ Cx).

By integrating this inequality on [x,w − ε/100, x, w], we have Claim 5.5.

Claim 5.6. For every Borel subset A of Y , we have

υ(A) ≤ C(n)
∫ ∞

0

υ−1(∂Bt(x) ∩A \ Cx)dt.

For every τ > 0 and every 0 < R1 < R2 < ∞, we put A(τ, R1, R2, x) =
A ∩AR1,R2(x) \ Cx(τ). We fix τ > 0, 0 < R1 < 1 < R2 such that y ∈ BR2(x). By
standard covering argument, for every ε > 0, there exists a sequence {Bri(xi)}i∈N

of balls such that xi ∈ Leb(A(τ, R1, R2, x)) and that 0 < ri < min{τ, ε, R1,

R2 − R1}/100 and that {Bri
(xi)}i∈N is pairwise disjoint and that υ(Bri

(xi) ∩
A(τ, R1, R2, x))/υ(Bri

(xi)) ≥ 1 − ε holds and that Leb(A(τ, R1, R2, x))\⋃N
i=1 Bri(xi) ⊂

⋃∞
i=N+1 B5ri(xi) holds for every N . Here, Leb(A) = {x ∈ Y |

limr→0 υ(A∩Br(x))/υ(Br(x)) = 1} for each Borel subset A of Y . We take N such
that

∑∞
i=N+1 υ(Bri

(xi)) < ε holds. Then, we have
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∣∣∣∣
N∑

i=1

∫ ∞

0

υ−1(∂Bt(x) ∩Bri
(xi) \ Cx)dt

−
N∑

i=1

∫ ∞

0

υ−1(∂Bt(x) ∩Bri
(xi) ∩A(τ, R1, R2, x))dt

∣∣∣∣

=
∫ ∞

0

υ−1

(
∂Bt(x) ∩

( N⋃

i=1

Bri
(xi) \ (A(τ, R1, R2, x) ∪ Cx)

))
dt

≤ C(n)υ
( N⋃

i=1

Bri
(xi) \A(τ, R1, R2, x)

)

≤ C(n)ε
N∑

i=1

υ(Bri
(xi)) ≤ C(n)ευ(BR2(x)).

Therefore, we have

∫ ∞

0

υ−1(∂Bt(x) ∩A(τ, R1, R2, x))dt

≥
∫ ∞

0

υ−1

(
∂Bt(x) ∩

( N⋃

i=1

Bri
(xi) ∩A(τ, R1, R2, x)

))
dt

=
N∑

i=1

∫ ∞

0

υ−1(∂Bt(x) ∩Bri(xi) ∩A(τ, R1, R2, x))dt

≥
N∑

i=1

∫ ∞

0

υ−1(∂Bt(x) ∩Bri
(xi) \ Cx)dt− εC(n,R2)

≥ C(n)
N∑

i=1

υ(Bri(xi))− εC(n,R2)

≥ C(n)υ
( N⋃

i=1

Bri
(xi) ∪

∞⋃

i=N+1

B5ri
(xi)

)
− εC(n,R2)

≥ C(n)υ(Leb(A(τ, R1, R2, x)))− εC(n,R2)

= C(n)υ(A(τ, R1, R2, x))− εC(n,R2).

By letting ε → 0, R1 → 0, R2 → ∞, τ → 0, we obtain Claim 5.6. The statement
f ≥ C(n) > 0 follows from Claim 5.6. ¤
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See [14] for several applications of Theorem 5.2 to a rectifiability and Lapla-
cian comparison theorems on Ricci limit spaces. For example, in [14], we will give
the following: Let H be a real number, (Y, y) a (n,H)-Ricci limit space (n ≥ 2), υ

a limit measure on Y , x a point in Y , R a positive number and f a non-negative
valued Lipschitz function on BR(x). Then we have

∫

BR(x)

〈df, drx〉dυ ≥ −(n− 1)
∫

BR(x)

k′H(x,w)
kH(x,w)

f(w)dυ.

Here, the function kH on R≥0 defined by k′′H(r) + HkH(r) = 0, kH(0) = 0
and k′H(0) = 1. If Y is an n-dimensional C∞-Riemannian manifold, then this
implies Laplacian comparison theorem on Riemannian manifolds: ∆rx(w) ≥
−(n − 1)k′H(x,w)/kH(x,w) on Y \ (Cx ∪ {x}). Thus we have RicY ≥ H(n − 1).
The formulation above was given in [15, Theorem 3.1]. Roughly speaking, this
statement implies that Laplacian comparison theorems are closed in the sense of
measured Gromov-Hausdorff topology, or lower bounds of Ricci curvature are sta-
ble in the sense of measured Gromov-Hausdorff topology. See [15], [16], [17], [18]
and [19] for related results. We will use Theorem 5.2 in the proof of the statement
above.

We give the next inequality which sharpens the conclusion in Theorem 4.2.

Corollary 5.7. For every positive numbers 0 < r1 < r2 ≤ R, every point
x ∈ Y and every Borel set A ⊂ ∂BR(x),

υ−1(A)
vol ∂BR(p)

≤ C(n)
υ(Ar1,r2(x) ∩ Cx(A))

volBr2(p)− volBr1(p)

holds.

Proof. It follows from Theorems 1.1 and 5.2, immediately. ¤

6. Ahlfors α-regular set and the Hausdorff dimension.

We consider a set that the limit measure υ on the set and a Hausdorff measure
are mutually absolutely continuous.

Definition 6.1. For non-negative numbers α ≥ 0, C > 1, we put

AY (α, C) =
{
x ∈ Y | C−1sα ≤ υ(Bs(x)) ≤ Csα for every 0 < s < 1

}
,

AY (α) =
⋃

C>1

AY (α, C).
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We call the set AY (α) Ahlfors α-regular set.

Note that AY (α, C) is closed. The limit measure υ and α-dimensional Haus-
dorff measure are mutually absolutely continuous on AY (α). Next, we shall define
the notion of tangent cone.

Definition 6.2. Let (W,w), (Z, z) be pointed proper geodesic spaces. We
say that (W,w) is a tangent cone at α ∈ Z if there exists a sequence of positive
numbers ri > 0 such that ri converges to 0 and that rescaled pointed proper
geodesic spaces (Z, r−1

i dZ , α) converges to (W,w) in the sense of pointed Gromov-
Hausdorff topology. Here, dZ is the distance on Z.

We shall give an upper bound of Hausdorff dimension of Ahlfors α-regular
set.

Theorem 6.3. We have dimH AY (α) ≤ [α] for every positive number α >

0. Here [α] = sup{k ∈ Z | k ≤ α}.

Proof. This proof is done by a contradiction. We assume that
dimH AY (α) > [α] holds. Then, there exist a sufficiently small positive num-
ber 0 < β < 1 and a positive number C > 1 such that H α+β(AY (α, C)) > 0
holds. By standard covering argument, there exist x ∈ Y , a tangent cone
(TxY, 0x) at x, and a sequence of positive numbers ri > 0 such that ri con-
verges to 0, limi→0 H α+β

∞ (Bri(x))/ri
α+β > 0 holds and that (Y, r−1

i dY , x) con-
verges to (TxY, 0x) (for example, see (1.39) and (10.7) in [5] for the definition
of the (α + β)-dimensional spherical Hausdorff content, H α+β

∞ ). Without loss
of generality, we can assume that there exist a compact metric space Z, a limit
measure υ∞ on (TxY, 0x), a positive number Ĉ > 1 and an isometric embed-
ding φ : Z → ATxY (α, Ĉ)∩B1(0x) for υ∞ such that Hα+β(Z) > 0 holds and that
(Bri

(x)∩AY (α, C), r−1
i dY ) converges to Z in the sense of Gromov-Hausdorff topol-

ogy. Especially, H α+β(B1(0x) ∩ ATxY (α, Ĉ)) > 0 holds. By [2, Proposition 2.5],
we have H α+β(B1(0x) ∩ATxY (α, Ĉ) \W D0(0x)) > 0 (see [4, Definition 2.10] for
the definition of W D0(x)). We put (Y1, y1) = (TxY, 0x). Then, there exist a point
z ∈ AY1(α, Ĉ) \W D0(y1), a sequence of positive numbers si and a pointed proper
geodesic space (W,w) such that si converges to 0, limi→0 H α+β

∞ (Bsi(z))/sα+β
i > 0

and (Y1, s
−1
i dY1 , z) converges to (R×W, (0, w)).

By iterating this argument, there exist an iterated tangent cone (T, t) of
Y , a limit measure υ̃∞ on (T, t), a positive constant C̃ > 1 and a proper
geodesic space X such that H α+β(B1(t) ∩ AT (α, C̃)) > 0 holds for υ̃∞ and T

is isometric to R[α]+1 × X. Therefore, there exists a point w ∈ T such that
lim infr→0 υ̃∞(Br(w))/rα > 0 holds. This contradicts [4, Proposition 1.35]. ¤
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Next corollary follows from [6, Theorem 5.5], immediately. We shall give a
new proof.

Corollary 6.4. We assume that υ(AY (α)) > 0 holds. Then α is an inte-
ger.

Proof. By the assumption, we have H α(A(α)) > 0. Hence, dimH A(α) ≥
α. Therefore, by Theorem 6.3, we have α = [α]. ¤

7. Appendix: A proof of Proposition 5.1.

In this section, we shall give a proof of Proposition 5.1. We fix 0 < r < R.
For every t ∈ Q>0, let {xt

i}i∈N be a countable dense subset of ∂Bt(x). For
every positive integer N ∈ N and every positive number δ > 0, we put B =
{Bs(xt

i) | i ∈ N , s, t ∈ Q>0}, BN
δ = {(Bri(xi))i=1,2,··· ,N ∈ BN | ri < δ} and put

Bδ =
⋃

N∈N BN
δ . Clearly, these are countable sets.

Lemma 7.1. Let A ⊂ Y be a compact set. Then the function t 7→
(υ−1)δ(∂Bt(x)∩A) is a Borel function for every positive number δ > 0. Especially,
the map ΦA |[r,R] is a Borel function.

Proof. For every F = (Bri
(xi))i=1,2,··· ,N ∈ Bδ, we define a map ΨF from

[r,R] to R≥0∪{∞} by ΨF (t) =
∑N

i=1 r−1
i υ(Bri

(xi)) if ∂Bt(x)∩A ⊂ ⋃N
i=1 Bri

(xi)
holds, ΨF (t) = ∞ otherwise. Since ∂Bt(x) ∩ A is a compact set, ΨF is a Borel
function. Therefore, Ψ = infF∈Bδ

ΨF is a Borel function. By the definition of
(υ−1)δ, we have Ψ(t) = (υ−1)δ(∂Bt(x) ∩A). ¤

Therefore, we have the following corollary:

Corollary 7.2. Let O ⊂ Y be an open set. Then the map ΦO|[r,R] is a
Borel function.

Here we put B̂ = {A ∈ B(Y ) | For every positive number ε > 0, there exist
a sequence of compact sets Ki ⊂ A, a sequence of open sets A ⊂ Oi and exists a
Lebesgue measurable set Eε ⊂ [r, R] such that H 1([r,R] \Eε) < ε holds and that
supt∈Eε

υ−1(∂Bt(x) ∩ A \Ki) and supt∈Eε
υ−1(∂Bt(x) ∩ Oi \ A) converge to 0 as

i →∞}. Note that for every Ai ∈ B̂, ΦA|[r,R] is a Lebesgue measurable function
for every set A =

⋃
i∈N Ai.

Lemma 7.3. B̂ is a σ-algebra.

Proof. It suffices to show
⋃

i∈N Ai ∈ B̂ for every sets Ai ∈ B̂. We
take a sequence Ai ∈ B̂. Let ε > 0 be a positive number. For every i ∈ N ,
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there exist a sequence of compact sets Ki(j) ⊂ Ai, a sequence of open sets
Ai ⊂ Oi(j), and exists a Lebesgue measurable set Eε(i) ⊂ [r,R] such that
H 1([r,R] \ Eε(i)) < 2−iε holds and that supt∈Eε(i) υ−1(∂Bt(x) ∩ Oi(j) \ Ai)
and supt∈Ei(l) υ−1(∂Bt(x) ∩ Ai \ Ki(j)) converge to 0 as j → ∞. Thus, for
every l ∈ N , there exists a sufficiently large integer N(l) ∈ N such that for
every 1 ≤ i ≤ l, supt∈Eε(i) υ−1(∂Bt(x) ∩ Ai \ Ki(N(l))) ≤ l−12−i holds. Since
υ−1(∂Bt(x)∩(

⋃l
i=1 Ai)) converges to υ−1(∂Bt(x)∩(

⋃
i∈N Ai)) as l →∞ for every

t ∈ [r,R], by Egoroff’s theorem, there exists a Lebesgue measurable set Eε ⊂ [r,R]
such that H 1([r,R] \ Eε) < ε holds and that supt∈Eε

υ−1(∂Bt(x) ∩ (
⋃

i∈N Ai \⋃l
i=1 Ai)) converges to 0 as l →∞. We put Êε =

⋂
i∈N Eε(i)∩Eε. Then, we have,

H 1([r,R] \ Êε) ≤
∑

i∈N H 1([r,R] \ Eε(i)) + H 1([r,R] \ Eε) < 2ε. We also put
a compact set K̂l =

⋃l
i=1 Ki(N(l)). Then, supt∈Êε

υ−1(∂Bt(x) ∩ (
⋃

i∈N Ai \ K̂l))
converges to 0 as l → ∞. For each l, i ∈ N , there exists a sufficiently large
j(l, i) ∈ N such that supt∈Eε(i) υ−1(∂Bt(x)∩(Oi(j(l, i))\Ai)) < l−12−i holds. We
put an open set Ol =

⋃
i∈N Oi(j(l, i)). Then supt∈Êε

υ−1(∂Bt(x)∩(Ol\
⋃

i∈N Ai))
converges to 0 as l →∞. Therefore

⋃
i∈N Ai ∈ B̂ holds. ¤

Lemma 7.4. B̂ = B(Y ) holds.

Proof. For every open set O ⊂ Y , there exists a sequence of compact
sets Ki ⊂ O such that

⋃
i∈N Ki = O. By Egoroff’s theorem, for every positive

number ε > 0, there exists a Lebesgue measurable set Eε ⊂ [r,R] such that
supt∈Eε

υ−1(∂Bt(x)∩O \Ki)) converges to 0 as i →∞. Thus, O ∈ B̂. Therefore
we have Lemma 7.4. ¤

Proposition 5.1 follows from these lemmas above, immediately.
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