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Abstract. Let N be a connected, simply connected nilpotent Lie group
with Lie algebra n and let W be a submanifold of n∗ such that the dimen-
sion of all polarizations associated to elements of W is fixed. We choose
(p(w))w∈W and (p′(w))w∈W two smooth families of polarizations in n. Let

πw = indN
P (w) χw and π′w = indN

P ′(w) χw be the corresponding induced repre-

sentations, which are unitary and irreducible. It is well known that πw and
π′w are unitary equivalent. In this paper, we prove the existence of a smooth
family of intertwining operator (Tw)w for theses representations, where w runs
through an appropriate non-empty relatively open subset of W . The intertwin-
ing operators are given by an explicit formula.

Introduction.

Let N = exp n be a connected, simply connected nilpotent Lie group. The
Kirillov orbit method makes it possible to describe all the irreducible unitary
representations of N . Let l ∈ n∗, p(l) be an arbitrary polarization of l (a subalgebra
of n with maximal dimension satisfying 〈l, [p(l), p(l)]〉 ≡ 0) and let P (l) = exp p(l).
The induced unitary representation πl := indN

P (l) χl, where χl(p) = e−i〈l,log p〉 for
all p ∈ P (l), is then irreducible and all the irreducible unitary representations are
obtained in this way, up to unitary equivalence. For two distinct linear forms l and
l′, πl and πl′ are unitary equivalent if and only if l and l′ belong to the same co-
adjoint orbit. If p(l) and p′(l) are two distinct polarizations of the same l, then πl

and π′l := indN
P ′(l) χl, where P ′(l) = exp p′(l), are unitary equivalent. This means

that there exists a unitary operator T (l) : Hπl
−→ Hπ′l (between the respective

representation spaces) such that T (l) ◦ πl(x) = π′l(x) ◦ T (l) for all x ∈ N . In [11],
G. Lion gave an explicit formula for such an intertwining operator:

T (l)ξ(g) =
∫

P ′(l)/P (l)∩P ′(l)
ξ(gp)χl(p)dp, g ∈ N
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for all ξ ∈ S (N/P (l), χl) = H ∞
πl

. This operator is unitary for an appropriate
normalization of the measure dp on P ′(l)/P (l) ∩ P ′(l). In this formula, l ∈ n∗ is
fixed. But one may ask the question of the dependency in l, if (p(l))l and (p′(l))l

are two smooth families of polarizations.
As a matter of fact one often comes upon smooth families of polarizations,

where l runs through a submanifold of n∗. Let us give some examples. Let Z =
{Z1, . . . , Zn} be a fixed Jordan-Hölder basis of n and W be a submanifold of n∗

(for instance W = n∗gen, the open set of generic elements of n∗, as in [12]). For
each w ∈ W , we denote by pZ (w) the Vergne polarization associated to w with
respect to the basis Z (see [3]). Then (pZ (w))w∈W is a smooth family of Vergne
polarizations. Changing to another Jordan-Hölder basis Z ′, would yield a second
smooth family of Vergne polarizations (pZ ′(w))w∈W .

A second important example is obtained in the following way: Let us assume
that H is a closed subgroup of the group Aut(N) of automorphisms of N acting
smoothly on N . Let l ∈ n∗ be fixed. Then the orbit H · l is a submanifold of n∗,
provided it is locally closed, by [15]. For a given fixed Jordan-Hölder basis Z one
may again consider the smooth family of Vergne polarizations (pZ (w))w∈H·l =
(pZ (h · l))h∈H . But for this example there exists another natural smooth family
of polarizations, (h · pZ (l))h∈H . Note that here the actions of H on n and n∗ are
defined by h·X = log(h·expX) and 〈h·l, X〉 = 〈l, h−1 ·X〉. Particular cases of this
example are obtained if either H is the group of conjugations of N or if H = K

is any compact subgroup of Aut(N). In the first case, H · l = Ad∗(N) · l = Ω(l) is
the co-adjoint orbit of l, which is closed as N is nilpotent. In the second case, the
orbit H · l is compact and hence closed. So both cases yield submanifolds of n∗.

We are hence naturally led to the following question: Given a submanifold
W of n∗ and given two distinct smooth families of polarizations (p(w))w∈W and
(p′(w))w∈W , is it possible to define a smooth family of intertwining operators
(T (w))w, via the formula of G. Lion? One immediately sees that some restric-
tions are necessary. So we certainly must assume that all our polarizations, and
hence all the co-adjoint orbits Ad∗(N) · w, have the same dimension. But even
then, one notices that the formula for T (w) strongly depends on the dimension
of P ′(w)/P (w) ∩ P ′(w) and will present singularities each time this dimension
changes. In the example of the action of a group H, this is for instance the case
at the point l = e · l, where e is the identity element of H. So a smooth family of
intertwining operators, if it exists, will probably only be defined on a non-empty
relatively open subset of the submanifold W .

In this paper, we prove the existence of such a smooth family of intertwining
operators for an appropriate non-empty relatively open subset of the manifold W ,
based on the formula of G. Lion [11]. The first section is devoted to introduce
some definitions and tools. Then we explain the construction of different smooth
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bases and we define the generalized Schwartz spaces. In the third section, we
use these tools to prove the main result of a generalized Kirillov theory. This
result is a crucial tool to show that the family of operators (T (w))w constructed in
the next section, is a smooth family of intertwining operators and defines a linear
homeomorphism between K S (V ′

0 ,S (N/P, χ)) and K S (V ′
0 ,S (N/P ′, χ)) where

V ′
0 denotes the appropriate non-empty relatively open subset of W .

The existence of a smooth family of intertwining operators is very useful re-
sult. In the study of certain harmonic analysis properties, it will make it possible
to choose a particularly well suited smooth family of polarizations and then to
transpose the obtained result to an arbitrary setting. Hence, for instance in [12],
the generalized Fourier inversion theorem gives the existence of a Schwartz-retract
if the induced representations for l ∈ n∗gen and their operator kernels are real-
ized via specially chosen Vergne polarizations. The existence of smooth families
of intertwining operators will make it possible to transpose this result to other
realizations of the representations, at least within a certain open subset of n∗gen. A
similar result is obtained for the example of the action of a compact Lie group K

on a connected simply connected nilpotent Lie group N . The existence of a local
retract for the families of Vergne polarizations (p(k · l))k implies the existence of
such retract for the family (k · p(l))k of polarizations and the corresponding rep-
resentations at least locally. Finally, the existence of singularities in this process
may already be studied in the example of the Heisenberg group.

1. On indices and bases.

We start this section by recalling some basic notions and by introducing some
useful definitions which are needed in the next sections. As general references, we
recommend [3], [2], [14]...

First of all, let n be a nilpotent Lie algebra and N = exp n the corresponding
connected, simply connected nilpotent Lie group. In this section, W will denote
any non-empty manifold.

1.1. Definitions.
Definition 1. A family of r vectors {X1(w), . . . , Xr(w)}w∈W is said to be a

smooth family of vectors if for all j ∈ {1, . . . , n}, the map w 7−→ Xj(w) is smooth.

Definition 2. A vector space basis {Z1, . . . , Zn} of the Lie algebra n is said
to be a Jordan-Hölder basis if [Zi, Zj ] ∈ 〈Zr+1, . . . , Zn〉 where r = max(i, j), for
all i, j ∈ {1, . . . , n} and where 〈Zr+1, . . . , Zn〉 denotes the subspace generated by
Zr+1, . . . , Zn. If the family of vectors is smooth, we talk about a smooth Jordan-
Hölder basis.

Definition 3. A vector space basis {Z1, . . . , Zn} of the Lie algebra n is said
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to be a Malcev basis if nj := 〈Zj , . . . , Zn〉 is a subalgebra of n for all j ∈ {1, . . . , n}.
If the family of vectors is smooth, we call it a smooth Malcev basis.

Definition 4. We define a smooth family of subalgebras q = (q(w))w∈W

in the following way:

• All algebras q(w), w ∈ W , have the same fixed dimension denoted by r.
• There exists {X1(w), . . . , Xr(w)}w∈W a smooth family of Malcev bases of

(q(w))w∈W .

If W is a submanifold of n∗ and if p = (p(w))w∈W is a smooth family of
subalgebras, we say that (p(w))w∈W is a smooth family of polarisations if
it satisfies moreover:

• p(w) is a polarization of w in n, for all w ∈ W .

Definition 5. Let h be a subalgebra of n. A family of vectors {Z1, . . . , Zd}
is called a Malcev basis of n relative to h if n =

⊕d
j=1 RZj ⊕ h and if, for every

j = 1, . . . , d, the subspace hj :=
⊕d

i=j RZi ⊕ h is a subalgebra of n.
If q = (q(w))w∈W is a smooth family of subalgebras, we define similarly a

smooth Malcev basis {X1(w), . . . , Xr(w)}w∈W by requiring that:

• The family {X1(w), . . . , Xr(w)}w∈W is smooth.
• For any fixed w ∈ W , {X1(w), . . . , Xr(w)} is a Malcev basis of n relative to

q(w).

Definition 6. Let q = (q(w))w∈W be a smooth family of subalgebras. A
smooth family of vectors {X1(w), . . . , Xd(w)}w∈W is said to be a smooth supple-
mentary basis of polynomial character (smooth SP-basis) of q = (q(w))w∈W , if,
given any smooth family of bases {Yd+1(w), . . . , Yn(w)}w∈W of (q(w))w∈W , the
maps

φw : Rd ×Rn−d −→ N

(x1, . . . , xd, yd+1, . . . , yn) 7−→ expx1X1(w) · · · expxdXd(w)

· exp(yd+1Yd+1(w) + · · ·+ ynYn(w))

are smooth polynomial diffeomorphisms, which means:

• For any fixed w, φw is a diffeomorphism.

• expx1X1(w) · · · expxdXd(w) · exp
(
yd+1Yd+1(w) + · · ·+ ynYn(w)

)

= exp
(
P1(w, x, y)X1(w) + · · ·+ Pd(w, x, y)Xd(w)

+ Pd+1(w, x, y)Yd+1(w) + · · ·+ Pn(w, x, y)Yn(w)
)
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with Pj(w, x, y) polynomials in x, y with smooth coefficients in w.
• The inverse maps defined by

φ−1
w : N −→ Rd ×Rn−d

g = exp
(
x′1X1(w) + · · ·+ x′dXd(w) + y′d+1Yd+1(w) + · · ·+ y′nYn(w)

)

7−→ (
Q1(w, x′, y′), . . . , Qd(w, x′, y′), Qd+1(w, x′, y′), . . . , Qn(w, x′, y′)

)

are such that Qj(w, x′, y′) is polynomial in x′, y′ with smooth coefficients in
w for every j, where the Qj ’s are defined by

exp
(
x′1X1(w) + · · ·+ x′dXd(w) + y′d+1Yd+1(w) + · · ·+ y′nYn(w)

)

= exp Q1(w, x′, y′)X1(w) · · · expQd(w, x′, y′)Xd(w)

· exp
(
Qd+1(w, x′, y′)Yd+1(w) + · · ·+ Qn(w, x′, y′)Yn(w)

)
.

It is of course enough to impose these conditions for one arbitrary smooth family
of bases {Yd+1(w), . . . , Yn(w)}w∈W of (q(w))w∈W .

Example 1. A smooth Malcev basis of n with respect to q = (q(w))w∈W

is a smooth SP-basis. The proof of this fact is similar to the one in the fixed case
(see [3]).

1.2. Indices and a new family of smooth bases of polarizations.
Let (q(w))w∈W be a smooth family of subalgebras in n of fixed dimension r

and Z = {Z1, . . . , Zn} be a Jordan-Hölder basis of n. For each w, we define the
associated index sets in the following way:

I
q(w)
Z = {j ∈ {1, . . . , n} | nj+q(w) = nj+1+q(w)} and J

q(w)
Z = {1, . . . , n}\Iq(w)

Z .

By construction, the set {Zj | j ∈ J
q(w)
Z } is a basis of a supplementary vector

subspace to q(w) in n. Hence, the cardinality of this set is n−r and the cardinality
of I

q(w)
Z is r.
Let us write, for any fixed w ∈ W , J

q(w)
Z = {u1(w), . . . , un−r(w)} ⊂

{1, . . . , n}, ordered such that un−r(w) < · · · < u1(w).
Let

u1 = max
w∈W

u1(w),

U0 = W and U1 = {w ∈ U0 | u1(w) = u1}.

By induction, we define for i = 1, . . . , n− r,



326 R. Lahiani and C. Molitor-Braun

ui = max
w∈Ui−1

ui(w) and Ui = {w ∈ Ui−1 | ui(w) = ui}.

This inductive process will stop if i = n − r. Thus, we get fixed index sets
J = {un−r < · · · < u1} and I = {1, . . . , n} \ J .

Proposition 1. The subsets Ui satisfy the following properties:

( i ) For each i = 1, . . . , n− r, there exists a continuous function Pi on W such
that,

Ui = {w ∈ U0 | P1(w) 6= 0,P2(w) 6= 0, . . . ,Pi(w) 6= 0}.

( ii ) Each Ui is a non-empty relatively open subset of W , as well as the subset
Ũ =

⋂n−r
i=1 Ui, and the index sets I

q(w)
Z and J

q(w)
Z are constant if w ∈ Ũ .

They are denoted by I and J .

Proof. Let {X1(w), . . . , Xr(w)} denote the given basis of q(w). The fixed
index set J = {un−r < · · · < u1} is obtained by construction. By construction
also, the sets Ui = {w ∈ Ui−1 | ui(w) = ui} are non-empty. Then, we get

w ∈ Ui ⇐⇒w ∈ Ui−1 and rg(Zui
, . . . , Zn, X1(w), . . . , Xr(w)) = rg(Zui+1, . . . , Zn,

X1(w), . . . , Xr(w)) + 1 = r + (i− 1) + 1 = r + i

⇐⇒w ∈ Ui−1 and
∑

D2
r+i 6= 0 where Dr+i runs through all the sub-

determinants (r + i)× (r + i) chosen in the coefficient matrix of
Zui , Zui+1, . . . , Zn, X1(w), . . . , Xr(w)

⇐⇒w ∈ Ui−1 and Pi(w) 6= 0. ¤

Proposition 2. {Zj | j ∈ J} is a smooth Malcev basis of n relative to q(w)
for all w ∈ Ũ . Similarly if the original basis is smooth.

Proof. Same argument as in the fixed case. We refer the reader to [2]. ¤

Proposition 3. There exists a non-empty relatively open subset V of Ũ

such that, for all j ∈ I and for all w ∈ V , there is a unique vector Z̃j(w) ∈ q(w)
of the form

Z̃j(w) = Zj −
n∑

i=j+1,i/∈I

β̃ij(w)Zi ∈ q(w).
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Then Z̃j(w) ∈ nj\nj+1.
Moreover, the map w 7−→ Z̃j(w) is smooth and {Z̃j(w) | j ∈ I} is a smooth

Jordan-Hölder basis of q(w). Let us put Z̃j(w) = Zj if j /∈ I. Then the set

Z̃ :=
{
Z̃1(w), . . . , Z̃n(w)

}

is a smooth Jordan-Hölder basis of all of n. For the two bases Z := {Z1, . . . , Zn}
and Z̃ , the different subspaces nj are the same. Hence, the indices computed in
each one of the two bases are the same for any subalgebra. The same procedure
may of course be applied if the original basis Z is already a smooth basis in w.

Proof. Let us first prove the existence and the uniqueness of Z̃j(w) for
any fixed w ∈ Ũ :

j ∈ I ⇐⇒ Zj ∈ nj+1 + q(w)

⇐⇒ Zj =
n∑

i=j+1

αij(w)Zi + Z ′j(w) for some αij(w) ∈ R and Z ′j(w) ∈ q(w)

=⇒ Z ′j(w) = Zj −
n∑

i=j+1,i/∈I

αij(w)Zi −
n∑

i=j+1,i∈I

αij(w)Zi.

Then, we repeat the same process for i ≥ j + 1, i ∈ I. We finally see that for each
j ∈ I, there exists a vector Z̃j(w) ∈ q(w) of the form

Z̃j(w) = Zj −
n∑

i=j+1,i/∈I

β̃ij(w)Zi ∈ q(w).

An easy argument by contradiction shows the uniqueness of Z̃j(w). To prove the
smoothness of Z̃j(w), we use the fact that there exists a non-empty relatively open
subset V of Ũ such that for all w ∈ V , q(w) is characterized by (n−r) independent
Cartesian equations

∑n
i=1 bki(w)xi = 0 for all 1 ≤ k ≤ n− r, where w 7−→ bki(w)

are smooth functions and where xi are the coordinates in the fixed basis of n.
Introducing Z̃j(w) in these equations, we obtain the conditions

n∑

i=j+1,i/∈I

bki(w)β̃ij(w) = bkj(w) 1 ≤ k ≤ n− r. (1)

Let aj(w) be the affine subspace defined by the following equations
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xi = 0 if 1 ≤ i ≤ j − 1

xj = 1

xk = 0 if k ≥ j + 1 and k ∈ I

(2)

which means that all vectors of aj(w) have the form Zj +
∑n

i=j+1,i/∈I xiZi. In
particular Z̃j(w) ∈ aj(w). We know that the combined system (1) and (2) has
Z̃j(w) as a unique solution. As the coefficients of this system are smooth in w,
the maps w 7−→ Z̃j(w) are smooth in a suitable non-empty relatively open subset
of Ũ . It is easy to prove that {Z̃j(w) | j ∈ I} is a Jordan-Hölder basis of q(w).

The other statements of the proposition are deduced easily from the particular
form of the Z̃j(w)’s. ¤

2. Smooth bases and generalized Schwartz spaces.

2.1. Construction of smooth SP-bases.
Let (q(w))w∈W and (q′(w))w∈W be two smooth families of subalgebras.

Lemma 1. There exists a non-empty relatively open subset Ṽ of W such that
for all w ∈ Ṽ , the dimension of q(w)∩q′(w) is constant and minimal. Furthermore
we can choose a smooth Jordan-Hölder basis of q(w) ∩ q′(w).

Proof. Let q⊥(w) = {ψ ∈ n∗ | 〈ψ, q(w)〉 = 0} be the orthogonal of q(w) in
n∗. The space q⊥(w) may be described by a homogenous system of n− r indepen-
dent equations for the coordinates in the basis {Z∗1 , . . . , Z∗n}, whose coefficients
are smooth functions of w, for w running through a non-empty relatively open
subset U of W . Thus, by solving this system, we may construct a smooth basis
of q(w)⊥ denoted {ϕr+1(w), . . . , ϕn(w)} for all w ∈ U . Applying Proposition 3 to
q′(w), we then conclude that there exists a non-empty relatively open subset V in
U such that {Z̃ ′j′1(w), . . . , Z̃ ′j′r (w)} is a smooth Jordan-Hölder basis of q′(w) where

Z̃ ′j′i(w) = Zj′i −
∑n

k=j′i+1,k/∈I′ β̃
′
kj′i

(w)Zk for all i ∈ {1, . . . , r} and where I ′ is the
index set associated to all q′(w)’s.

In order for a vector C̃(w) =
∑r

i=1 cj′iZ̃
′
j′i

(w) ∈ q′(w) to belong to q(w)∩q′(w),
it is necessary and sufficient to have, for r + 1 ≤ a ≤ n,

r∑

f=1

〈
ϕa(w), Z̃ ′j′f (w)

〉
cj′f =

r∑

f=1

Aaf (w)cj′f = 0

where (Aaf (w))r+1≤a≤n;1≤f≤r = (〈ϕa(w), Z̃ ′j′f (w)〉)r+1≤a≤n;1≤f≤r is a smooth ma-
trix. The solution set of this system is the sub-vector space q′(w) ∩ q(w) of q′(w)
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whose dimension is equal to r− rankAaf (w). To realize the constant and minimal
dimension of the previous sub-vector space, we choose one w0 which realizes the
biggest possible rank for the matrix Aaf (w), which will be denoted by p. In par-
ticular there is a sub-matrix Ã(w0) of dimension p×p such that det Ã(w0) 6= 0 and
the dimension of q(w0)∩q′(w0) is equal to r−p. On the non-empty relatively open
subset V1 = {w ∈ V | det Ã(w) 6= 0}, the dimension of q(w) ∩ q′(w) is constant
and minimal. Furthermore, by an argument similar to the one of Proposition 3,
there is a method to choose a smooth Jordan-Hölder basis of q(w) ∩ q′(w). To do
this, we may have to limit ourselves to another non-empty relatively open subset
Ṽ of V1. ¤

We will now show the existence of a special smooth SP-basis associated to
(q(w))W and (q′(w))w∈W . In order to do this, we generalize the proof of G. Lion
[11] to the smooth case.

Proposition 4. Let (q(w))W and (q′(w))w∈W be two smooth families of
subalgebras. Let us assume that the dimension of q(w) ∩ q′(w) is constant and
minimal on W (by restriction of W if necessary). Then there exists a non-empty
relatively open subset Ṽ of W and a family of smooth SP-bases {U1(w), . . . , Us(w)}
of n with respect to q(w), such that {Ub+1(w), . . . , Us(w)} is a smooth SP-basis of
q′(w) with respect to q(w) ∩ q′(w) for all w ∈ Ṽ .

Proof. By induction. To make this induction rigorous, we may even
assume that both (q(w))w and (q′(w))w are contained in a smooth family of sub-
algebras (n(w))w (spanned by a smooth Jordan-Hölder basis) of the bigger Lie
algebra n.

The induction is then made on dim(n(w)/q′(w)).
If q′(w) = n(w) for all w in a non-empty relatively open subset of W , then

q(w) ∩ q′(w) = q(w) and Proposition 2 gives the SP-basis.
Otherwise, there exists a smooth family (n0(w))w of ideals of codimension 1

in n(w) such that q′(w) ⊂ n0(w) for all w. In fact, by Proposition 2, there exists a
smooth Malcev basis {Z1(w), . . . , Za(w)} of n(w) relative to q′(w). We may then
take n0(w) =

⊕a
j=2 RZj(w) ⊕ q′(w). It is an ideal in n(w), as it is a subalgebra

of codimension 1.
We have to distinguish two cases.
Either q(w) ⊂ n0(w) for all w in a non-empty relatively open subset of W . By

the induction hypothesis, there exists a smooth SP-basis {R1(w), . . . , Ru(w)} of
n0(w) with respect to q(w)∩n0(w) such that {Rv+1(w), . . . , Ru(w)} is a smooth SP-
basis of q′(w) with respect to q′(w)∩ q(w)∩n0(w) = q′(w)∩ q(w). By Proposition
2 there exists a smooth vector S(w) which is a Malcev basis of n(w) relative to
n0(w). Then {S(w), R1(w), . . . , Ru(w)} is the SP-basis of n(w) relative to q(w) we
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are looking for.
In the second case, there exists w such that q(w) 6⊂ n0(w). By smoothness,

this is the case for all w in a non-empty relatively open subset of W . Then the
smooth SP-basis {R1(w), . . . , Ru(w)} of n0(w) relative to q′(w) ∩ q(w) ∩ n0(w) =
q′(w) ∩ q(w) also works for n(w) relative to q(w), for all w in that non-empty
relatively open subset.

At the end of the induction process, we take n(w) = n for all w. ¤

2.2. SP-basis and invariant measure.
Let q = (q(w))w∈W be any smooth family of subalgebras. We have the fol-

lowing smooth versions of results of [11].

Proposition 5. Let {U1(w), . . . , Us(w)}w∈W and {V1(w), . . . , Vs(w)}w∈W

be two smooth SP-bases of n relative to q = (q(w))w∈W . Let us define the maps

ψw : Rs −→ Rs

by (y1, . . . , ys)w = ψw(x1, . . . , xs)w if and only if

expx1U1(w) · · · expxsUs(w) = exp y1V1(w) · · · exp ysVs(w)mod exp q(w).

Then the maps ψw are polynomial with smooth coefficients in w. Similarly for
ψ−1

w . This is in particular the case for two smooth Malcev bases. One may have
to restrict W to a non-empty relatively open subset.

Proof. Obvious. ¤

Remark 1. The maps ψw and ψ−1
w define a change of coordinates in N/Q(w)

where Q(w) = exp q(w). As the Jacobians of this change of coordinates are poly-
nomial functions with smooth coefficients in w as well for ψw and ψ−1

w , these
Jacobians have to be constants.

This leads to the following result:

Proposition 6. Let {U1(w), . . . , Us(w)}w∈W be a smooth SP-basis of n

relative to q = (q(w))w∈W . Then

f 7−→
∫

Rd

f(expu1U1(w) · · · expusUs(w))du1 · · · dus

defines a left-invariant measure on N/Q(w), Q(w) = exp q(w), for every w. One
may have to restrict W .
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Proof. We know that this is the case if the basis is a smooth Malcev basis.
As there always exist smooth Malcev bases and as the transition between a smooth
Malcev basis and a smooth SP-basis has a constant Jacobian, the result is true for
any SP-bases. ¤

2.3. Generalized Schwartz spaces.
Let W be a submanifold of n∗ and p = (p(w))w∈W a smooth family of

polarizations, i.e. such that all polarizations p(w), w ∈ W , have a fixed dimension
r.

Definition 7. Let W be a non-empty relatively open subset of W . We de-
note PD(W,Rs) the set of differential operators in the coordinates (v1, . . . , vs) ∈
Rs with polynomial coefficients in the coordinates (v1, . . . , vs), the coefficients of
these polynomials being smooth functions on W . Formally, for each w ∈ W , we
write

Dw(v) =
∑

|α|≤a

∑

|β|≤b

cαβ(w)vβ ∂α

∂vα

for such a differential operator where cαβ(w) are smooth coefficients, α, β multi-
indices and a, b ∈ N .

For all A,B, C ∈ N and for all compact subset K contained in a local chart
(U,ϕ) of W , we denote by ∂a/∂wa the partial derivatives with respect to the
coordinate system of this chart U . Then, we define a semi-norm on the smooth
functions from W ×Rs to C in the following way:

‖ξ̃‖K
A,B,C = sup

w∈K,(v1,...,vs)∈Rs

sup
|a|≤A,|b|≤B,|c|≤C

∣∣∣∣
∂a

∂wa
vb ∂c

∂vc
ξ̃(w, v1, . . . , vs)

∣∣∣∣. (3)

We can now define the generalized Schwartz space as follows:

Definition 8. Let

K S
(
W,S (N/P, χ)

)

≡ K S (W,S (Rs))

=
{
ξ = (ξ(w))w∈W | ξ : W −→ S (N/P, χ) smooth, ξ(w; g(w)q(w))

:= ξ(w)(g(w) · q(w)) = χw(q(w))ξ(w; g(w)) if q(w) ∈ P (w) and

‖ξ̃‖K
A,B,C < ∞ for all K and all A,B, C

}
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where ξ̃(w, v1, . . . , vs) := ξ(w, exp v1V1(w) · · · exp vsVs(w)) and where S (N/P, χ)
:= (S (N/P (w), χw))w∈W .

The space K S (W,S (N/P, χ)) will be called generalized Schwartz space.
Here {V1(w), . . . , Vs(w)} denotes an arbitrary smooth Malcev basis of n relative
to p(w) (see Proposition 7 below).

Then, the semi-norms given in (3) define the same topology on our function
space as the following family of semi-norms:

‖ξ̃‖K
A,D = sup

w∈K,(v1,...,vs)∈Rs

sup
|a|<A

∣∣∣∣
∂a

∂wa
Dw(v)ξ̃(w, v1, . . . , vs)

∣∣∣∣ < ∞ (4)

for all A ∈ N , for all D = (Dw)w∈W ∈ PD(W,Rs) and for all compact subset K

contained in a chart of W .

Proposition 7. The generalized Schwartz space is independent of the choice
of the smooth Malcev basis of n relative to p(w), provided we are willing to restrict
the domain of w appropriately, if necessary.

Proof. Let {V ′
1(w), . . . , V ′

s (w)} be another smooth Malcev basis of n rela-
tive to p(w). Let {X1(w), . . . , Xr(w)} be a smooth Malcev basis of p(w). We may
have to restrict W for the existence of {X1(w), . . . , Xr(w)}. Then, by Proposition
5, for all ξ ∈ K S (W1,S (N/P, χ)), for some open subset W1 of W , we have

˜̃
ξ
(
w; v′1, . . . , v

′
s

)

:= ξ
(
w; exp v′1V

′
1(w) · · · exp v′sV

′
s (w)

)

= ξ
(
w; exp

(
P1(w; v′1, . . . , v

′
s)V1(w)

) · · · exp
(
Ps(w; v′1, . . . , v

′s)Vs(w)
)

· exp
(
Q1(w; v′1, . . . , v

′
s)X1(w)

) · · · exp
(
Qr(w; v′1, . . . , v

′
s)Xr(w)

))

=
r∏

j=1

eiQj(w;v′1,...,v′s)〈w,Xj(w)〉ξ̃
(
w;P1(w; v′1, . . . , v

′
s), . . . , Ps(w; v′1, . . . , v

′
s)

)

where for all j ∈ {1, . . . , r}, Qj(w; v′1, . . . , v
′
s) is a polynomial function in the

variables v′1, . . . , v
′
s with smooth coefficients in w and the map (v′1, . . . , v

′
s) 7−→

(P1(w; v′1, . . . , v
′
s), . . . , Ps(w; v′1, . . . , v

′
s)) is a bi-polynomial diffeomorphism with

smooth coefficients in w. We have similar relations for the passage from
{V ′

1(w), . . . , V ′
s (w)} to {V1(w), . . . , Vs(w)}. Since our differential operator satis-

fies the smooth version Lemma A.2.1 in [3], we get the result. ¤
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3. The generalized Kirillov theorem.

3.1. The statement of the theorem.
We denote by U (n) the universal enveloping algebra of n. Let Y = Y (w) =

{V1(w), . . . , Vs(w)} be a smooth family of Malcev bases of n relative to p(w). We
identify the Hilbert space L2(N/P (w), χw) with L2(Rs) via the unitary operator
U defined by Uξ(w)(v1, . . . , vs) := ξ(w; exp v1V1(w) · · · exp vsVs(w)). We denote
by ρw = U ◦ πw ◦ U∗ the corresponding realization of the representation πw of N

on the space L2(Rs). This realization ρw of πw on the space L2(Rs) depends of
course on the choice of the basis of n relative to p(w).

We may now present one of the main results of this paper, the generalized
Kirillov theorem.

Theorem 1. There exists a non-empty relatively open subset D of W such
that for every w0 ∈ D and for every relative neighborhood V0 of w0 contained in
D , there are w′0 ∈ V0 and a relative neighborhood V ′

0 of w′0 contained in V0 which
satisfy: For every D = (Dw)w∈V ′

0
∈ PD(V ′

0 ,Rs), there exists (Xw)w∈V ′
0

with

Xw =
∑

|ζ|<C

cζ(w)Zζ ∈ U (n), ∀w ∈ V ′
0

where Zζ is defined by Zζ = Zζ1
1 · · ·Zζn

n if ζ = (ζ1, . . . , ζn) and where the maps
w 7−→ cζ(w) are smooth, such that dρw(Xw) = Dw for all w ∈ V ′

0 . This result is
independent of the choice of the family of smooth Malcev bases used to define the
realization ρw of πw.

Here {Z1, . . . , Zn} denotes the fixed Jordan-Hölder basis of n.

3.2. The theorem in variable Lie groups.
To prove Theorem 1, we will proceed by induction on the dimension of n.

However, new parameters and new variations will appear in the proof. In order
to control those, we shall carry out the proof not only for one single Lie algebra,
but for so-called variable Lie algebras. We refer the reader to the references [13],
[12], [10] for more details about variable Lie structures and we present only a few
aspects which are useful in our proof.

Definition 9. Let n be a real vector space of finite dimension n and b be
a submanifold of Rd. We say nb := (n, [·, ·]b) is a variable nilpotent Lie algebra if
it satisfies the following conditions:

1. For every b ∈ b, there exists a Lie bracket [·, ·]b defined on n such that (n, [·, ·]b)
is a nilpotent Lie algebra.

2. There exists a fixed basis {Z1, . . . , Zn} of n such that the structure constants



334 R. Lahiani and C. Molitor-Braun

ck
ij(b) defined by [Zi, Zj ]b =

∑n
k=1 ck

ij(b)Zk are smooth and verify the follow-
ing property: For all b ∈ b, for k ≤ max(i, j), ck

ij(b) = 0. This means that
{Z1, . . . , Zn} is a Jordan-Hölder basis for every nb.

Let Nb = expb nb be the associated connected, simply connected variable
nilpotent Lie group. We denote by W ′ a smooth submanifold in b× n∗.

For every (b, w) ∈ W ′, we consider the largest ideal a(b, w) in nb contained in
the stabilizer nb(w) := {X ∈ n, | 〈w, [X, n]b〉 = 0}. We now define indices j1(b, w)
and k1(b, w) by

j1(b, w) = max{j ∈ {1, . . . , n} | 〈w, [Zj , n]b〉 6= 0}
= max{j ∈ {1, . . . , n} | Zj /∈ a(b, w)}

k1(b, w) = max{k ∈ {1, . . . , n} | 〈w, [Zj1(b,w), Zk]b〉 6= 0}.

The equality in the definition of j1(b, w) is due to the fact that {Z1, . . . , Zn} is a
Jordan-Hölder basis. We consider also

j1 = max{j1(b, w) | (b, w) ∈ W ′}
k1 = max{k1(b, w) | (b, w) ∈ W ′ and j1(b, w) = j1}.

Set D1 := {(b, w) ∈ W ′ | j1(b, w) = j1 and k1(b, w) = k1}. Then

D1 = {(b, w) ∈ W ′ | 〈w, [Zk1 , Zj1 ]b〉 6= 0}.

and it is a non-empty relatively open subset of W ′. For further details, we refer
the reader to [12], even if our definition of the indices j1 and k1 is slightly different.
It is easy to see that, for all (b, w) ∈ D1, n1(b, w) := {U ∈ nb | 〈w, [U,Zj1 ]b〉 = 0}
is an ideal of codimension 1 in nb and B1(b, w) = {Z1

i (b, w) | i ∈ I1} is a smooth
Jordan-Hölder basis of n1(b, w) for all (b, w) ∈ D1, where I1 := {1, . . . , n}\{k1}
and

Z1
i (b, w) := Zi − 〈w, [Zj1 , Zi]b〉

〈w, [Zj1 , Zk1 ]b〉
Zk1

(see [14]).
We define a new variable Lie algebra n1 in the following way: As a vector

space, n1 is spanned by a basis denoted {Z1
u, u ∈ I1}, where, for fixed (b, w),

Z1
u is identified with Z1

u(b, w). The variable Lie brackets on n1 are defined by
[Z1

u, Z1
v ](b,w) := [Z1

u(b, w), Z1
v (b, w)]b for all (b, w) ∈ D1. Then, (n1, [·, ·](b,w)) may
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be identified with (n1(b, w), [·, ·]b). Since we use this algebra in the induction, we
will define a new variation on n1, i.e. a new submanifold W1 of (b × n∗) × n∗1 as
follows:

(b, w, w̃) ∈ W1 with (b, w) ∈ W ′ and w̃ ∈ n∗1 ≡ n1(b, w)∗

⇐⇒ (b, w) ∈ W ′ and w̃ is defined by
〈
w̃, Z1

j

〉
:=

〈
w, Z1

j (b, w)
〉∀j ∈ I1.

To prove Theorem 1, it suffices to show the corresponding result in the variable
case and then reduce b to a single point. As in the fixed case, we choose a family
of smooth Malcev bases to define the realization ρ(b,w) of π(b,w).

Let’s notice that the results of Sections 1 and 2 remain valid if we replace the
variation in w by a variation in (b, w) and we denote ρ(b,w) the realization of the
representation π(b,w) := indN

P (b,w) χ(b,w) of Nb on the space L2(Rs).

Theorem 2. There exists a non-empty relatively open subset D ′ ⊂ W ′

such that for all (b0, w0) ∈ D ′ and for every relative neighborhood V0 of (b0, w0)
contained in D ′, there exist (b′0, w

′
0) ∈ V0 and a relative neighborhood V ′

0 of (b′0, w
′
0)

contained in V0 such that: For every D = (D(b,w))(b,w) ∈ PD(V ′
0 ,Rs), there is

a smooth family of vectors X = (X(b,w))(b,w)∈V ′
0

in the enveloping algebras, i.e.
X(b,w) =

∑
|ζ|<C cζ(b, w)Zζ ∈ U (nb), satisfying dρ(b,w)(X(b,w)) = D(b,w). In the

previous formula, Zζ is defined by Zζ = Zζ1
1 · · ·Zζn

n if ζ = (ζ1, . . . , ζn) and the
map (b, w) 7−→ cζ(b, w) is smooth. This result is independent of the choice of the
family of smooth Malcev bases used to define the realizations ρ(b,w).

3.3. Proof of the variable generalized Kirillov theorem.
The Kirillov theorem in the fixed case is known. But the proof has to be

rewritten, in order to study the dependency on (b, w).
It is easy to see that Theorem 2 is independent of the choice of the smooth

Malcev basis of nb relative to p(b, w) since the transition between two such smooth
Malcev bases is given, modulo p(b, w), by a smooth bi-polynomial function in the
coordinates, with coefficients which are smooth functions in (b, w) for all (b, w) ∈
W ′ ⊂ W ′, where W ′ is a non-empty relatively open subset of W ′. In particular,
our differential operators are transformed into differential operators of the same
type via this transition. So we may choose appropriate bases to make the proof.

In order to get PD(V ′
0 ,Rs) ⊂ (dρ(b,w)(U (nb)))(b,w), we proceed by induction

on the dimension of nb.
If Nb is abelian for all b, then s = 0 and the result is trivial.
Assume now that the theorem is true for all variable nilpotent Lie groups and

algebras of dimension less than or equal to n− 1. We will show that the theorem
also holds for (Nb)b∈b. Put
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X(b, w) =
Zk1

〈w, [Zk1 , Zj1 ]b〉
; Y = Zj1 ; Z(b, w) = [X(b, w), Y ]b ∈ a(b, w)

for all (b, w) ∈ D1. If we replace Y by Y (b, w) = Y − 〈w, Y 〉Z(b, w), we obtain

〈w, Z(b, w)〉 = 1; 〈w, Y (b, w)〉 = 0 and

[X(b, w), Y (b, w)]b = Z(b, w)− 〈w, Y 〉[X(b, w), Z(b, w)]b =: Z̃(b, w)

where X(b, w), Y (b, w), Z(b, w) and Z̃(b, w) are smooth functions.
Since Z(b, w) ∈ a(b, w) ⊂ n(b, w), 〈w, Z̃(b, w)〉 = 1. So we may replace Z(b, w)

by Z̃(b, w) and call it again Z(b, w).
Given (b0, w0) ∈ D1, we distinguish three cases:

First Case: 〈w, [p(b, w), Zj1 ]b〉 = 0, i.e. p(b, w) ⊂ n1(b, w) for all (b, w) ∈
V0 ⊂ D1 where V0 is a relative neighborhood of (b0, w0) contained in D1.

Let N1(b, w) = expb n1(b, w) be the closed normal subgroup of Nb of Lie alge-
bra n1(b, w) and N1

(b,w) = exp(b,w) n1 be the associated variable group of dimension
n− 1. It’s easy to see that W1 ⊂ W ′× n∗1 is a submanifold of b× n∗×n∗1 such that

(b, w, w̃) ∈ W1 with (b, w) ∈ V0

=⇒ (b, w) ∈ W ′

=⇒ dim p(b, w) is constant and by hypothesis p(b, w) ⊂ n1(b, w)

=⇒ the dimension of a polarization at w̃ in n1(b, w) is constant.

Let π1
(b,w,w̃) be the representation of N1

(b,w) identified with the representation

π1
(b,w) = indN1(b,w)

P (b,w) χ(b,w) of N1(b, w). By stage induction, we have π(b,w) '
indNb

N1(b,w)π
1
(b,w). The intertwining operator between π(b,w) and indNb

N1(b,w)π
1
(b,w)

is given by (V(b,w)ξ(b, w))(t)(g1) := ξ(b, w)(expb(tX(b, w)) · g1) for all
ξ(b, w) ∈ L2(Nb/P (b, w), χ(b,w)). We can hence identify the Hilbert
space L2(Nb/P (b, w), χ(b,w)) with L2(R, L2(N1(b, w)/P (b, w), χ(b,w,w̃))) =
L2(R,Hπ1

(b,w)
). According to Proposition 1 and Proposition 2, there exists a

non-empty relatively open subset V ′
0 of V0 such that I1 := I

p(b,w)
B1(b,w) is a fixed set

and {Z1
j (b, w), j /∈ I1} is a smooth Malcev basis of n1(b, w) relative to p(b, w) for

all (b, w) ∈ V ′
0 . We denote this basis by Y 1

(b,w) := {Y 1
2 (b, w), . . . , Y 1

s (b, w)}. If
we put Y 1

1 (b, w) = X(b, w), then Y ′
(b,w) := {Y 1

1 (b, w), . . . , Y 1
s (b, w)} is a smooth

Malcev basis of nb relative to p(b, w).
Let π′(b,w) := indNb

N1(b,w) π1
(b,w) be the induced representation of Nb on the

space L2(R,Hπ1
(b,w)

) and EY 1
(b,w)

(t2, . . . , ts) := expb t2Y
1
2 (b, w) · · · expb tsY

1
s (b, w).
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Then π′(b,w) and ρ(b,w) are equivalent and the corresponding intertwining oper-
ator is given by (V ′

(b,w)η(b, w))(t, t2, . . . , ts) := η(b, w)(t)(EY 1
(b,w)

(t2, . . . , ts)) for

all η(b, w) ∈ L2(R,Hπ1
(b,w)

). A simple computation shows that we have for all

ξ(b, w) ∈ L2(R,Hπ1
(b,w)

) and all t ∈ R,

(
π′(b,w)(expb xX(b, w))ξ(b, w)

)
(t) = ξ(b, w)(t− x)

(
π′(b,w)(expb yY (b, w))ξ(b, w)

)
(t) = eityξ(b, w)(t)

(
π′(b,w)(u

1
(b,w))ξ(b, w)

)
(t) = π1

(b,w)

(
(u1

(b,w))
(−t)

)
(ξ(b, w)(t))

where u1
(b,w) ∈ N1

(b,w), x, y ∈ R and where (u1
(b,w))

−t := expb(−tX(b, w)) · u1
(b,w) ·

expb(tX(b, w)). From now on we will work with C∞ vectors, i.e. with Schwartz
functions only. It follows that for X(b, w), Y (b, w) ∈ nb, d1

(b,w) ∈ U (n1(b, w)) and
for a smooth vector ξ(b, w), we have

(
dπ′(b,w)(X(b, w))ξ(b, w)

)
(t) = − d

dt
ξ(b, w)(t)

(
dπ′(b,w)(Y (b, w))ξ(b, w)

)
(t) = itξ(b, w)(t)

(
dπ′(b,w)(d

1
(b,w))ξ(b, w)

)
(t) = dπ1

(b,w)

(
(d1

(b,w))
−t

)
(ξ(b, w)(t))

where (d1
(b,w))

−t =
∑∞

j=0((−t)j/j!)(adb(X(b, w)))jd1
(b,w). Since nb is nilpotent, the

previous sum is finite. We denote it by
∑m

j=0.
Now we consider d(b,w) ∈ U (nb) and we define

d̃(b,w) =
m∑

j=0

1
j!ij

Y j(b, w)adj
bX(b, w)d(b,w) ∈ U (nb).

Let us compute dπ′(b,w)(d̃
1
(b,w)) where d1

(b,w) ∈ U (n1(b, w)). For ξ(b, w) ∈
L2(R,Hπ1

(b,w)
) and t ∈ R, we have

(
dπ′(b,w)(d̃

1
(b,w))ξ(b, w)

)
(t)

= dπ1
(b,w)

(
(d̃1

(b,w))
−t

)
(ξ(b, w)(t))

= dπ1
(b,w)

(( m∑

j=0

1
j!ij

Y j(b, w)adj
bX(b, w)d1

(b,w)

)−t )
(ξ(b, w)(t))
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=
(

dπ1
(b,w)

( m∑

j=0

1
j!ij

(Y j(b, w))−t
(
adj

bX(b, w)
)
d1
(b,w)

)−t )
(ξ(b, w)(t)).

One shows easily that dπ1
(b,w)(Y

−t(b, w)) = itIH
π1
(b,w)

. Then we get

(
dπ′(b,w)(d̃

1
(b,w))ξ(b, w)

)
(t) = dπ1

(b,w)

( m∑

j=0

1
j!

tj
(
adj

bX(b, w)
)(

d1
(b,w)

)−t
)

(ξ(b, w)(t))

= dπ1
(b,w)

(
d1
(b,w)

)
(ξ(b, w)(t)).

Let ρ′(b,w) be the realization of the representation π′(b,w) on L2(R, L2(Rs−1)) with
an appropriate choice of smooth Malcev bases of n relative to p(b, w). Since
π′(b,w) ≡ π(b,w), then ρ(b,w) and ρ′(b,w) are equivalent and we denote S(b,w) the cor-

responding intertwining operator. It is defined by (S(b,w)ξ̃(b, w))(t1)(t2, . . . , ts) =
ξ̃(b, w)(t1, t2, . . . , ts).

For all η(b, w) ∈ S (Rs), we have

(
dρ(b,w)(X(b, w))η(b, w)

)
(t1, . . . , ts) = − d

dt1
η(b, w)(t1, . . . , ts)

(
dρ(b,w)(Y (b, w))η(b, w)

)
(t1, . . . , ts) = it1η(b, w)(t1, . . . , ts)

(
dρ(b,w)(d̃1

(b,w))η(b, w)
)
(t1, t2, . . . , ts)

=
(
dρ1

(b,w)

(
d1
(b,w)

)
((S(b,w)η(b, w))(t1))

)
(t2, . . . , ts)

where ρ1
(b,w) is the induced representation π1

(b,w) realized on L2(Rs−1).
Let now D(b,w) be a smooth differential operator in the coordinates (t2, . . . , ts)

with polynomial coefficients in the coordinates (t2, . . . , ts). We may of course
identify it with a differential operator in the coordinates (t1, . . . , ts), which is
constant in the direction of t1 and write

(D(b,w)η(b, w))(t1, . . . , ts) = D(b,w)((S(b,w)η(b, w))(t1))(t2, . . . , ts)

for all η(b, w) ∈ S (Rs). The induction hypothesis applied to dρ1
(b,w) gives us the

existence of a smooth family (U1
(b,w))(b,w) in the enveloping algebras such that
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(D(b,w)η(b, w))(t1, . . . , ts) = D(b,w)((S(b,w)η(b, w))(t1))(t2, . . . , ts)

= dρ1
(b,w)

(
U1

(b,w)

)
((S(b,w)η(b, w))(t1))(t2, . . . , ts)

= dρ(b,w)

(
Ũ1

(b,w)

)
η(b, w)(t1, t2, . . . , ts).

This implies that (dρ(b,w)(U (nb)))(b,w)∈V ′
0

contains all the (b, w)-smooth differen-
tial operators with polynomial coefficients in the variables (t2, . . . , ts). As it also
contains the operator ∂/∂t1 and the multiplication operator by t1, it contains all
of PD(V ′

0 ,Rs).

Second case: 〈w, [p(b, w), Zj1 ]b〉 6= 0 for all (b, w) ∈ V0 ⊂ D1, i.e. for all
(b, w) ∈ V0, a relative neighborhood of (b0, w0), we have p(b, w) 6⊂ n1(b, w). Let us
now show that there exists a smooth family of vectors X̃(b, w) in n satisfying the
following conditions

X̃(b, w) ∈ p(b, w); X̃(b, w)−X(b, w) ∈ n1(b, w); 〈w, X̃(b, w)〉 = 0.

In fact, there exists X̃(b, w) ∈ p(b, w) such that 〈w, [X̃(b, w), Zj1 ]〉 6= 0. As, n =
RX(b, w) ⊕ n1(b, w), we may choose this vector of the form X̃(b, w) = X(b, w) +
U(b, w) with U(b, w) ∈ n1(b, w). By adding an appropriate multiple of Z(b, w), we
may even assume that 〈w, X̃(b, w)〉 = 0.

Let us now show that the previous choice implies that the family (X̃(b, w))(b,w)

can be chosen smoothly in a certain non-empty relatively open subset V ′ of V0. In
fact, if we characterize p(b, w) by a system of Cartesian equations with smooth co-
efficients in (b, w), then the three defining conditions of X̃(b, w) can be expressed as
a system of linear equations in the coordinates of X̃(b, w) with smooth coefficients
in (b, w). By construction, this system has solutions for every (b, w). We may then
construct a smooth solution of the system in a certain non-empty relatively open
subset V ′ in V0.

One has p(b, w) = p(b, w)∩n1(b, w)+RX̃(b, w). Let us now consider p′(b, w) =
p(b, w)∩n1(b, w)+RY (b, w). It is easy to check that this is again a smooth family
of polarizations.

According to the first case, we know that the generalized Kirillov result is
true for the family of polarizations p′(b, w) ⊂ n1(b, w). We are going to transfer
this result to the family of polarizations (p(b, w))(b,w) by studying explicitly the
intertwining operators between the families of associated representations, as well
as their dependency in (b, w). Since p′(b, w) is a polarization of w in nb, it implies
that π(b,w) ' π′(b,w) where π′(b,w) = indNb

P ′(b,w) χ(b,w) and P ′(b, w) = expb p′(b, w).
Hence there exists a family of intertwining operators T(b,w). For a fixed (b, w), this
intertwining operator may be given by
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T(b,w)ξ((b, w))
(
g1 · expb xX̃(b, w)

)

:=
∫

R

ξ(b, w)
(
g1 · expb xX̃(b, w) · expb yY (b, w)

)
χ(b,w)(expb yY (b, w))︸ ︷︷ ︸

=1

dy

=
∫

R

eixyξ(b, w)(g1 · expb yY (b, w))dy

according to [11], for all g1 ∈ N1(b, w) and x ∈ R.
We now have to study the realizations of π(b,w) and π′(b,w) on the space L2(Rs).

As the result of the theorem will be independent of the choice of the corresponding
smooth families of Malcev bases, let’s proceed as follows: It is easy to check
that p(b, w) + p′(b, w) is a subalgebra of nb for all (b, w). Hence we may pick an
arbitrary smooth family {V1(b, w), . . . , Vs−1(b, w)} of Malcev bases of nb relative
to p(b, w) + p′(b, w). This may for instance be done by the index method in
Proposition 2, which remains valid in the variable case. It is even possible to
choose these vectors V1(b, w), . . . , Vs−1(b, w) in n1(b, w), what we will do. In the
process of choosing this family of bases, we might have to restrict once more the
relatively open set V ′ to a non-empty relatively open subset V ′

0 of V0.
Then one checks that {V1(b, w), . . . , Vs−1(b, w), Y (b, w)} is a smooth family of

Malcev bases of nb relative to p(b, w) and that {V1(b, w), . . . , Vs−1(b, w), X̃(b, w)}
is a smooth family of Malcev bases of nb relative to p′(b, w). These two families
of bases are then used to define ρ(b,w) and ρ′(b,w). For any ξ(b, w) ∈ Hπ(b,w) , we

define ξ̃(b, w) ∈ L2(Rs) by

ξ̃(b, w)(v1, . . . , vs−1, y)

:= ξ(b, w)
(
exp v1V1(b, w) · · · exp vs−1Vs−1(b, w) · exp yY (b, w)

)

and we identify thus Hπ(b,w) with L2(Rs), and π(b,w) with ρ(b,w). Similarly, for
ξ′(b, w) ∈ Hπ′(b,w)

, we define ξ̃′(b, w) ∈ L2(Rs) by

ξ̃′(b, w)(v1, . . . , vs−1, x)

:= ξ′(b, w)
(
exp v1V1(b, w) · · · exp vs−1Vs−1(b, w) · expxX̃(b, w)

)

and we identify thus Hπ′(b,w)
with L2(Rs), and π′(b,w) with ρ′(b,w) acting on L2(Rs).

The intertwining operator T̃(b,w) between ρ(b,w) and ρ′(b,w) is then deduced from
T(b,w) and is given by
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(
T̃(b,w)ξ̃(b, w)

)
(v1, . . . , vs−1, x) =

∫

R

eixy ξ̃(b, w)(v1, . . . , vs−1, y)dy.

It is nothing but a partial Fourier transform which sends S (Rs) onto itself
and PD(V ′

0 ,Rs) onto itself. As the Kirillov result is true for the family
(ρ′(b,w))(b,w) by the first case, it remains hence true for the family (ρ(b,w))(b,w),
thanks to this smooth family of intertwining operators, i.e. PD(V ′

0 ,Rs) ⊂
(dρ(b,w)(U (nb)))(b,w)∈V ′

0
.

Third case: 〈w0, [p(b0, w0), Zj1 ]b0〉 = 0 and for every neighborhood V0 of
(b0, w0) there exists (b′, w′) ∈ V0 such that 〈w′, [p(b′, w′), Zj1 ]b′〉 6= 0. Then there
exists a neighborhood V ′ of (b′, w′) contained in V0 such that for all (b′′, w′′) ∈ V ′,
we have 〈w′′, [p(b′′, w′′), Zj1 ]b′′〉 6= 0 and we apply the second case to all (b′′, w′′) ∈
V ′. This proves that there exists a non-empty relatively open subset V ′

0 of V ′

such that PD(V ′
0 ,Rs) ⊂ (dρ(b,w)(U (nb)))(b,w)∈V ′

0
.

The other inclusion, (dρ(b,w)(U (nb)))(b,w)∈V ′ ⊂ PD(V ′,Rs), for any non-
empty relatively open subset V ′ in W ′, may be easily checked. ¤

Remark 2. If b is reduced to a single point, i.e. if there is no variable
structure but a fixed Lie group, then we have Theorem 1.

Remark 3. In the particular case where W = n∗gen, the set of generic linear
forms in the sense of Ludwig-Zahir [14], there exists a more precise result: For
every differential operator D on Rs, there exists a rational mapping

n∗gen −→ U (n)

w 7−→ A(w) =
∑

|I|≤n0

aI(w)ZI

such that dρw(A(w)) = D for all w ∈ n∗gen (see [13]).

4. Smooth families of intertwining operators.

Let (p(w))w∈W and (p′(w))w∈W be two smooth families of polarisations in
n. Let us first recall that there exist a non-empty relatively open subset W of
W and a smooth SP-basis {U1(w), . . . , Us(w)} of n relative to p(w) such that
{Ub+1(w), . . . , Us(w)} is a smooth SP-basis of p′(w) relative to p(w)∩p′(w) for all
w ∈ W (Proposition 4). Similarly, there exist a non-empty relatively open subset
W̃ of W and a smooth SP-basis {U ′

1(w), . . . , U ′
s(w)} of n relative to p′(w) such

that {U ′
b+1(w), . . . , U ′

s(w)} is a smooth SP-basis of p(w) relative to p(w) ∩ p′(w)
for all w ∈ W̃ . Let us also recall that we may use SP-bases instead of Malcev
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bases to define invariant measures on the quotients.
We may then apply the results of G. Lion [11] pointwise. Let w ∈ W be fixed.

For every ξ(w) ∈ H ∞
πw

= S (N/P (w), χw), the integral

Twξ(w; g) := Twξ(w)(g)

=
∫

P ′(w)/P (w)∩P ′(w)

ξ(w; gu)χw(u)du

=
∫

Rs−b

ξ(w; g · expub+1Ub+1(w) · · · expusUs(w))

· e−i〈w,log(exp ub+1Ub+1(w)··· exp usUs(w))〉dub+1 · · · dus

converges for every g ∈ N . The operator Tw defines a homeomorphism from
H ∞

πw
= S (N/P (w), χw) onto H ∞

π′w
= S (N/P ′(w), χw). It may be extended to an

intertwining operator for πw and π′w, between the spaces Hπw
= L2(N/P (w), χw)

and Hπ′w = L2(N/P ′(w), χw). If the measure on P ′(w)/P (w)∩P ′(w) is correctly
normalized (which may for instance be obtained by multiplying one of the vectors
of the basis Zw by a constant), then Tw is an isometry.

In this section, our aim is to establish similar results for the family (Tw)w∈U

as a whole, for some non-empty relatively open subset U of W and to do it in a
smooth way. This has of course to be specified. We need some preliminary results.

Let us first introduce some definitions and notations (see also Definition 8).
For every ξ ∈ K S (W,S (N/P, χ)) we denote, as previously, the corresponding el-
ement of K S (W,S (Rs)) by ξ̃, the identification of S (N/P, χ) with S (Rs) being
made via any smooth Malcev basis. For A ∈ N , D = (Dw)w∈W ∈ PD(W,Rs),
we put

∥∥ξ̃(w)
∥∥

A,D
= sup
|a|≤A

sup
(u1,...,us)∈Rs

∣∣∣∣
∂a

∂wa
Dw(u)ξ̃(w;u1, . . . , us)

∣∣∣∣ < ∞,

if w is in a fixed chart of W , so that ∂a/∂wa makes sense.
For any compact subset K contained in a chart of W , we have

∥∥ξ̃
∥∥K

A,D
= sup

w∈K

∥∥ξ̃(w)
∥∥

A,D
.

Let now g := (gw)w∈W a family of elements of N such that the map w 7−→ gw is
smooth and let ξ ∈ K S (W,S (N/P, χ)). We write g−1ξ for the function defined
by
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(g−1ξ)(w)(x) = g−1
w

(ξ(w))(x) = ξ(w)(gw · x) = ξ(w; gw · x).

It is easy to check that g−1ξ ∈ K S (W,S (N/P, χ)) too.
Let Bw = {V1(w), . . . , Vn(w)} be any smooth Malcev basis of n. If gw =∏n

i=1 exp(gi(w)Vi(w)), we write ‖gw‖2Bw
=

∑n
i=1 gi(w)2. If B′

w is any other such
smooth Malcev basis, then there exist a strictly positive continuous function w 7−→
C(w) and R ∈ N∗ such that

‖gw‖2B′
w
≤ C(w)

(
1 + ‖gw‖2Bw

)R (5)

for all w. The exponent R may be chosen independently of w. As a matter of
fact it only depends on the structure of the Campbell-Baker-Hausdorff formula,
i.e. on the degree of nilpotency of n. This inequality is obtained by passing from
coordinates of the second kind to coordinates of the first kind, making the change
of basis and going back to coordinates of the second kind.

Now, we introduce some technical lemmas.

Lemma 2. Let B̃w = {V1(w), . . . , Vs(w), X1(w), . . . , Xr(w)} be a any
smooth Malcev basis of n such that {V1(w), . . . , Vs(w)} is a smooth Malcev ba-
sis of n relative to p(w) and {X1(w), . . . , Xr(w)} is a smooth Malcev basis of
p(w). So s + r = n. Let g = (gw)w be smooth and let g1(w), . . . , gn(w) de-
note the coordinates of the second kind of gw. If one defines u : w 7−→ u(w) =
expu1V1(w) · · · expusVs(w) where u1, . . . , us ∈ R are independent of w, then

gw · u(w) = exp
(
Q1(w; g1(w), . . . , gn(w), u1, . . . , us)V1(w)

) · · ·
exp

(
Qs(w; g1(w), . . . , gn(w), u1, . . . , us)Vs(w)

)

·R(w; g1(w), . . . , gn(w), u1, . . . , us)

where R(w; g1(w), . . . , gn(w), u1, . . . , us) ∈ P (w).
The map (u1, . . . , us) 7−→ (Q1(w; g1(w), . . . , gn(w), u1, . . . , us), . . . ,

Qs(w; g1(w), . . . , gn(w), u1, . . . , us)) is bi-polynomial with respect to the vari-
ables (u1, . . . , us). The coefficients of these polynomial functions may be expressed
as polynomial functions in g1(w), . . . , gn(w) with coefficients that are C∞ in w.
Similarly for the inverse map.

Proof. Similar arguments as in the fixed case. See for instance [3]. ¤

Lemma 3. Let us take the same hypotheses as in Lemma 2 and let’s assume
that w runs through a fixed chart of W . Given A ∈ N and D ∈ PD(W,Rs),
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there exists a finite collection Nj , Aj ∈ N , Dj ∈ PD(W,Rs) and smooth positive
functions Cj(w), for j ∈ {1, . . . , d} such that for all ξ ∈ K S (W,S (N/P, χ)) and
every smooth family g = (gw)w∈W of elements of N we have,

∥∥[(g−1ξ)(w)]
∥̃∥

A,D
=

∥∥[g−1
w

(ξ(w))]
∥̃∥

A,D

≤
d∑

j=1

Cj(w)
(
1 + ‖gw‖2Bw

)Nj
∥∥ξ̃(w)

∥∥
Aj ,Dj

< ∞.

If K is any compact subset of W contained in the fixed chart of W , we have for
some positive constant C depending on g

∥∥(g−1ξ)
∥̃∥K

A,D
≤ C

d∑

j=1

∥∥ξ̃
∥∥K

Aj ,Dj
< ∞.

If A = 0, i.e. if there is no derivative in w, then all the Aj ’s may be taken to be
0 too.

Proof. Obvious by Lemma 2 and by the facts that all the functions in w

are bounded on the compact set K. ¤

Remark 4. In case the coordinates gi = gi(w) are all fixed, the second
bound may be written as

∥∥(g−1ξ)
∥̃∥K

A,D
≤ C

(
1 +

n∑

i=1

g2
i

)N d∑

j=1

∥∥ξ̃
∥∥K

Aj ,Dj
< ∞

where N = max(N1, . . . , Nd).

We denote ξ̃ and ξ̃(w; ·) for the function ξ written in the coordinates of the
second kind in any smooth Malcev basis {V1(w), . . . , Vs(w)} of n relative to p(w).
On the other hand, we will write ξ̃SP for the corresponding function on Rs−b ≡
P ′(w)/P (w) ∩ P ′(w), resp. on Rs ≡ N/P (w), defined by

ξ̃SP (w; 0, . . . , 0, ub+1, . . . , us) = ξ
(
w; exp ub+1Ub+1(w) · · · expusUs(w)

)

ξ̃SP (w;u1, . . . , us) = ξ
(
w; exp u1U1(w) · · · expusUs(w)

)

where the Uj(w)’s are the vectors of the SP-basis constructed in Proposition 4.
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This will in particular be used to compute integrals over P ′(w)/P (w) ∩ P ′(w).
We remark that for fixed w ∈ W , we have the intertwining operator Tw defined

by

Twξ(w; g) =
∫

P ′(w)/P (w)∩P ′(w)

ξ(w; gu)χw(u)du.

This defines T = (Tw)w on K S (W,S (N/P, χ)) by (Tξ)(w) := Tw(ξ(w)). We
may also view it as acting on K S (W,S (Rs)) by T̃ = (T̃w)w where (T̃ ξ̃)(w) =
T̃w(ξ̃(w)) := (Tw(ξ(w)))˜. For fixed w, T̃w is then an intertwining operator between
ρw and ρ′w. We will use the smooth Malcev basis {V1(w), . . . , Vs(w)} to compute
the Schwartz semi-norms on S (N/P (w), χw), as explained in the beginning of
this section, by identifying ξ(w) and ξ̃(w).

We have the following result:

Lemma 4. For every M̃ ∈ N , there exists M ∈ N and a continuous family
of positive constants (C(w))w such that

∥∥ξ̃SP (w)
∥∥

0,DM̃

:= sup
(u1,...,us)∈Rs

∣∣∣∣
(

1 +
s∑

j=1

u2
j

)M̃

ξ̃SP (w)(u1, . . . , us)
∣∣∣∣

≤ C(w) sup
(v1,...,vs)∈Rs

∣∣∣∣
(

1 +
s∑

j=1

v2
j

)M

ξ̃(w)(v1, . . . , vs)
∣∣∣∣

=: C(w)
∥∥ξ̃(w)

∥∥
0,DM

.

Proof.

∥∥ξ̃SP (w)
∥∥

0,DM̃

:= sup
(u1,...,us)∈Rs

∣∣∣∣
(

1 +
s∑

j=1

u2
j

)M̃

ξ̃SP (w)(u1, . . . , us)
∣∣∣∣

= sup
(u1,...,us)∈Rs

∣∣∣∣
(

1 +
s∑

j=1

u2
j

)M̃

ξ(w)(expu1U1(w) · · · expusUs(w))
∣∣∣∣

= sup
(u1,...,us)∈Rs

∣∣∣∣
(

1 +
s∑

j=1

u2
j

)M̃

ξ(w)(expP1(w, u1, . . . , us)V1(w) · · ·

expPs(w, u1, . . . , us)Vs(w))
∣∣∣∣
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for polynomial functions Pj(w, u1, . . . , us) with smooth coefficients in w. In fact,
as a smooth Malcev basis is also a smooth SP-basis, we know by Proposition 5,
that the change of coordinates

(u1, . . . , us) 7→ (v1, . . . , vs)

is bipolynomial with smooth coefficients in both directions, if (v1, . . . , vs) denote
the coordinates of the second kind in the Malcev basis {V1(w), . . . , Vs(w)} of n

relative to p(w). Hence, there are polynomial functions Qj such that

∥∥ξ̃SP (w)
∥∥

0,DM̃

:= sup
(v1,...,vs)∈Rs

∣∣∣∣
(

1 +
s∑

j=1

Qj(w, v1, . . . , vs)2
)M̃

ξ(w)(exp v1V1(w) · · · exp vsVs(w))
∣∣∣∣

≤ C(w) sup
(v1,...,vs)∈Rs

∣∣∣∣
(

1 +
s∑

j=1

v2
j

)M

ξ̃(w)(v1, . . . , vs)
∣∣∣∣

=: C(w)
∥∥ξ̃(w)

∥∥
0,DM

as any polynomial P (w, x1, . . . , xs) is bounded by some C(w)(1 +
∑s

j=1 x2
j )

N . ¤

We then get the following bounds for these intertwining operators Tw and T̃w.

Lemma 5. There exist a continuous family of positive constants (C(w))w

and an integer M ∈ N∗ such that, for all w,

|Twξ(w; e)| = ∣∣T̃w ξ̃(w; 0)
∣∣ ≤ C(w)

∥∥ξ̃(w)
∥∥

0,DM
< ∞

where e is the unit element of the group N and DM is the element of PD(W,Rs)
defined by multiplication by (1+

∑s
j=1 v2

j )M if the coordinates of ξ̃(w) are denoted
by (v1, . . . , vs).

If K is a compact subset of a fixed chart and if w ∈ K we have of course

|Twξ(w; e)| = ∣∣T̃w ξ̃(w; 0)
∣∣ ≤ C

∥∥ξ̃
∥∥K

0,DM
< ∞

where C = supw∈K C(w).

Proof. Let M̃ ∈ N∗ such that
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A :=
∫

Rs−b

1
(1 +

∑s
j=b+1 u2

j )M̃
dub+1 · · · dus < ∞.

Then

∣∣T̃w ξ̃(w; 0)
∣∣ =

∣∣Twξ(w; e)
∣∣

≤
∫

Rs−b

∣∣ξ̃SP (w; 0, . . . , 0, ub+1, . . . , us)
∣∣dub+1 · · · dus

≤ A · sup
(ub+1,...,us)∈Rs−b

∣∣∣∣
(

1 +
s∑

j=b+1

u2
j

)M̃

ξ̃SP (w; 0, . . . , 0, ub+1, . . . , us)
∣∣∣∣

≤ A · ∥∥ξ̃SP (w)
∥∥

0,DM̃

≤ C(w)
∥∥ξ̃(w)

∥∥
0,DM

< ∞

for some M and some continuous C(w), by Lemma 4. ¤

Let B̃w be the smooth Malcev basis as in Lemma 2. Similarly, let B̃′
w =

{V ′
1(w), . . . , V ′

s (w), X ′
1(w), . . . , X ′

r(w)} be any similar smooth Malcev basis of n,
replacing p(w) by p′(w). We have:

Lemma 6. There exist a finite family of smooth positive functions C̃j(w),
integers Aj ,Mj , M̃j ∈ N , partial differential operators DMj

∈ PD(W,Rs), j ∈
{1, . . . , d} such that

|Twξ(w; gw)| ≤
d∑

j=1

C̃j(w)
(
1 + ‖gw‖2B̃′

w

)M̃j
∥∥ξ̃(w)

∥∥
0,DMj

< ∞

for all ξ ∈ K S (W,S (N/P, χ)), for every smooth family g = (gw)w, of elements
N and for all w ∈ W .

Proof.

|Twξ(w; gw)| = ∣∣Tw(g−1
w

ξ(w; e))
∣∣

≤ C(w)
∥∥(g−1ξ)˜(w)

∥∥
0,DM

by Lemma 5

≤ C(w)
d∑

j=1

Cj(w)
(
1 + ‖gw‖2B̃w

)Nj
∥∥ξ̃(w)

∥∥
0,DMj

by Lemma 3

≤
d∑

j=1

C̃j(w)
(
1 + ‖gw‖2B̃′

w

)M̃j
∥∥ξ̃(w)

∥∥
0,DMj

< ∞ by (5). ¤
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Remark 5. If gw is of the form gw = exp v1V
′
1(w) · · · exp vsV

′
s (w) for fixed

v1, . . . , vs ∈ R, we have

∣∣T̃w ξ̃(w; v1, . . . , vs)
∣∣ ≤

(
1 +

s∑

i=1

v2
i

)M d∑

j=1

C̃j(w)
∥∥ξ̃(w)

∥∥
0,DMj

where M = supj=1,...,d M̃j . For w ∈ K, we even have

∣∣T̃w ξ̃(w; v1, . . . , vs)
∣∣ ≤ C

(
1 +

s∑

i=1

v2
i

)M d∑

j=1

∥∥ξ̃
∥∥K

0,DMj

.

Remark 6. Let now K be a compact subset contained in a chart so that
∂a/∂wa makes sense. For a multi-index a and w ∈ K, we have

∂a

∂wa
(T̃w ξ̃)(w; 0)

=
∂a

∂wa

∫

Rs−b

ξ̃SP (w; 0, . . . , 0, ub+1, . . . , us)
s∏

j=b+1

e−iuj〈w,Uj(w)〉dub+1 · · · dus

=
∫

Rs−b

∂a

∂wa

[
ξ̃SP (w; 0, . . . , 0, ub+1, . . . , us)

s∏

j=b+1

e−iuj〈w,Uj(w)〉
]
dub+1 · · · dus.

In fact, ξ̃SP ∈ K S (W,S (Rs)), as this is the case for ξ̃ and as the change of
coordinates is bipolynomial with smooth coefficients. It is then easy to check
the hypothesis of the theorem which allows to interchange derivation and in-
tegration [5]. If we apply successively the formula of derivation of a product
of functions, we see that there exist two finite families of polynomial functions
Pk(w, 0, . . . , 0, ub+1, . . . , us) and Qi(w, 0, . . . , 0, ub+1, . . . , us), indexed by multi-
indices k and i which are C∞ in w such that

∂a

∂wa

(
T̃w ξ̃

)
(w; 0)

=
∫

Rs−b

∑

|k|≤|a|

[(
∂k

∂wk
ξ̃SP

)
(w; 0, . . . , 0, ub+1, . . . , us)

]

· Pk(w, 0, . . . , 0, ub+1, . . . , us)
s∏

j=b+1

e−iuj〈w,Uj(w)〉dub+1 · · · dus
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=
∫

Rs−b

∑

|i|≤|a|

∂i

∂wi

[
Qi(w, 0, . . . , 0, ub+1, . . . , us)ξ̃SP (w; 0, . . . , 0, ub+1, . . . , us)

]

·
s∏

j=b+1

e−iuj〈w,Uj(w)〉dub+1 · · · dus.

Let us consider Qi(w, 0, . . . , 0, ub+1, . . . , us) as a polynomial in u1, . . . , us which
is constant in u1, . . . , ub and which we will also denote by Qi. Let (v1, . . . , vs)
denote the coordinates in the Malcev basis (V1(w), . . . , Vs(w)). We know that the
change of coordinates between the u′s and the v’s is bipolynomial with smooth
coefficients in w. In this change of coordinates the polynomial Qi is hence changed
into a new polynomial Ri in the variables v1, . . . , vs, such that Qi = (Ri)SP . Hence
Qi(w, ·)ξ̃SP (w, ·) becomes Ri(w, ·)ξ̃(w, ·) if we change from coordinates uj to vj

and

∣∣∣∣
∂a

∂wa

(
T̃w ξ̃

)
(w; 0)

∣∣∣∣ ≤
∑

|i|≤|a|

∣∣∣∣T̃w

(
∂i

∂wi

(
Qi(w; ·)ξ̃SP (w; ·))(0)

)∣∣∣∣

≤ C(w)
∑

|i|≤|a|

∥∥∥∥
∂i

∂wi

(
Ri(w; ·)ξ̃(w; ·))

∥∥∥∥
0,DMi

by lemma 5

≤ C(w)
∑

|i|≤|a|

∥∥ξ̃(w)
∥∥
|a|,DMi

Di

= C(w)
∑

|i|≤|a|

∥∥ξ̃(w)
∥∥
|a|,D̃i

< ∞

where Di is the element of PD(W,Rs) obtained by multiplication by Ri and
D̃i = DMi

Di.
Finally, we get:

Lemma 7. For any compact subset K contained in a fixed chart of W and
for any multi-index a, there exist C > 0, M ∈ N and finite families of multi-
indices Aj and of differential operators Dj ∈ PD(W,Rs), j ∈ {1, . . . , d} such
that

∣∣∣∣
∂a

∂wa

(
T̃w ξ̃

)
(w; v1, . . . , vs)

∣∣∣∣ ≤ C

(
1 +

s∑

i=1

v2
i

)M d∑

j=1

∥∥ξ̃
∥∥K

Aj ,Dj
< ∞

for all ξ̃ ∈ K S (W,S (Rs)) and for all w ∈ K.
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Proof. By arguments similar to the ones in Lemma 6 and Remark 5. ¤

Definition 10. A family T = (Tw)w of linear operators from
K S (W,S (N/P, χ)) to K S (W,S (N/P ′, χ)) is said to be smooth if, for ev-
ery ξ ∈ K S (W,S (N/P, χ)) and ξ′ ∈ K S (W,S (N/P ′, χ)), the map w 7−→
〈Tw(ξ(w)), ξ′(w)〉L2(N/P ′(w),χw) is smooth. In this definition, we assume of course
that we have chosen a smooth family of bases of n relative to p′(w) and that we
endow N/P ′(w) with the corresponding Lebesgue measure.

We are now prepared for our final result.

Theorem 3. Let W be a submanifold of n∗ such that the dimension of
polarizations associated to elements of W is fixed. We consider (p(w))w∈W and
(p′(w))w∈W two smooth families of polarizations of the elements of W in n. Then,
there exists a non-empty relative open subset U ⊂ W such that for every w0 ∈ U
and for every relative open neighborhood V0 of w0 in U there exist w′0 ∈ V0 and a
relative open neighborhood V ′

0 of w′0 in V0 such that

T := (Tw)w : K S
(
V ′

0 ,S (N/P, χ)
) −→ K S

(
V ′

0 ,S (N/P ′, χ)
)

defines a continuous linear operator. Moreover, (Tw)w is a smooth family of in-
tertwining operators between (πw) and (π′w).

Proof. We know by [11], that Tw(ξ(w)) converges for every w and
may be extended to all ξ(w) ∈ L2(N/P (w), χw), that Tw intertwines πw

and π′w, and that T̃w intertwines ρw and ρ′w. The smoothness of w 7−→
〈Tw(ξ(w)), ξ′(w)〉L2(N/P ′(w),χw) is due to the fact that it is possible interchange
derivation and integration (see [5]).

In the proof of the continuity of T = (Tw)w, we will use the bounds established
for |∂a/∂waT̃w(ξ̃(w))| in Lemma 7.

By Theorem 1, there exists a non-empty relatively open subset U of W
such that for every w0 ∈ U and for every relative neighborhood V0 of w0

in U there exists w′0 ∈ V0 and a relative neighborhood V ′
0 of w′0 in V0 with

the following properties: For every D = (Dw)w ∈ PD(V ′
0 ,Rs), there exists

Uw =
∑
|ζ|<C cζ(w)Zζ ∈ U (n) where Zζ is defined by Zζ = Zζ1

1 · · ·Zζn
n if

ζ = (ζ1, . . . , ζn) and cζ(w) are smooth such that dρ′w(Uw) = Dw for all w ∈ V ′
0 .

Let M is the integer obtained by Lemma 7 (taken large enough in order to be
valid for all a such that |a| ≤ A). Let us choose an integer M̃ ≥ M and denote by
DM̃ ∈ PD(V ′

0 ,Rs) the operator obtained by multiplication by (1 +
∑s

i=1 v2
i )M̃ .

For any D′ = (D′
w)w ∈ PD(V ′

0 ,Rs), we define D = (Dw)w by Dw := DM̃D′
w.

We then obtain, for every ξ̃ ∈ K S (V ′
0 ,S (Rs)),
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∣∣∣∣DM̃

∂a

∂wa
D′

w(v)
(
T̃ ξ̃

)
(w; v1, . . . , vs)

∣∣∣∣ =
∣∣∣∣

∂a

∂wa
Dw(v)

(
T̃ ξ̃

)
(w; v1, . . . , vs)

∣∣∣∣

=
∣∣∣∣

∂a

∂wa
dρ′w(Uw)

(
T̃ ξ̃

)
(w; v1, . . . , vs)

∣∣∣∣

=
∣∣∣∣

∂a

∂wa
T̃

(
dρw(Uw)ξ̃

)
(w; v1, . . . , vs)

∣∣∣∣

=
∣∣∣∣

∂a

∂wa
T̃

(
D1ξ̃

)
(w; v1, . . . , vs)

∣∣∣∣

≤ C

(
1 +

s∑

i=1

v2
i

)M d∑

j=1

∥∥D1ξ̃
∥∥K

Aj ,DMj

≤ C

(
1 +

s∑

i=1

v2
i

)M d∑

j=1

∥∥ξ̃
∥∥K

Aj ,DMj
D1

for some smooth families (Uw)w in U (n) and D1 = (D1,w)w ∈ PD(V ′
0 ,Rs) such

that dρw(Uw) = D1,w. Hence

∣∣∣∣
∂a

∂wa
D′

w(v)
(
T̃w ξ̃

)
(w; v1, . . . , vs)

∣∣∣∣ ≤ C
1

(
1 +

∑s
i=1 v2

i

)M̃−M

d∑

j=1

∥∥ξ̃
∥∥K

Aj ,DMj
D1

< ∞.

As M̃ ≥ M , ‖T̃ ξ̃‖K
A,D′ < ∞ and Tξ ∈ K S (V ′

0 ,S (N/P ′, χ)) for all ξ ∈
K S (V ′

0 ,S (N/P, χ)). The continuity of T for the topology of the generalized
Schwartz spaces is deduced from the inequality

∥∥(T̃ ξ̃)
∥∥K

A,D′ ≤ C
r∑

k=1

∥∥ξ̃
∥∥K

Bk,Dk

(for some possibly new choice of r,Bk, Dk). ¤

Proposition 8. There exist a smooth function |α(w)| and a smooth nor-
malization of the bases and measures of (N/P (w))w and (N/P ′(w))w such that
R = (Rw)w is a smooth family of unitary intertwining operators between (πw)w

and (π′w)w where Rw = (1/|α(w)|)Tw.

Proof. It is well known that for a fixed w, πw acts algebraically irreducibly
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on the space of the C∞-vectors and there exists a unitary intertwining operator
Sw between πw and π′w. Since Tw is also an intertwining operator between πw and
π′w, S−1

w ◦ Tw intertwines πw. By Schur’s Lemma, S−1
w ◦ Tw = α(w)IS (N/P (w),χw)

where α(w) ∈ C∗ and Rw := (1/|α(w)|)Tw is a unitary operator. In addition, the
map w 7−→ |α(w)| is smooth. This is due to smoothness of the map

w −→ 〈Twξ(w), Twξ(w)〉L2(N/P ′(w),χw)

by Theorem 3. In fact, let’s choose a smooth family ξ = (ξ(w))w with ξ(w) ∈
L2(N/P (w), χw) and ‖ξ(w)‖22 = 1 for all w. Then

d(w) := 〈Twξ(w), Twξ(w)〉L2(N/P ′(w),χw)

= |α(w)|2〈Swξ(w), Swξ(w)〉L2(N/P ′(w),χw)

= |α(w)|2‖ξ(w)‖22 since Sw is a unitary operator

= |α(w)|2

and w 7−→ |α(w)| =
√

d(w) is smooth. Hence R = (Rw) is a smooth family of
unitary intertwining operators. ¤

We may now make a similar construction by interchanging the roles of p(w)
and p′(w). We get a smooth family of intertwining operators

T ′ := (T ′w)w : K S
(
Ṽ ′

0 ,S (N/P ′, χ)
) −→ K S

(
Ṽ ′

0 ,S (N/P, χ)
)

by

T ′wξ′(w; g) =
∫

P (w)/P (w)∩P ′(w)

ξ′(w; gu)χw(u)du.

Note that the non-empty relatively open subset of W had perhaps to be restricted
once more and is now denoted by Ṽ ′

0. By the same arguments as previously,
there exist α′(w) ∈ C∗ and a unitary intertwining operator S′w such that (S′w)−1 ◦
T ′w = α′(w)IS (N/P ′(w),χw) and also R′w := (1/|α′(w)|)T ′w defines a smooth family
of unitary intertwining operators and the map w 7−→ |α′(w)| is smooth.

On the other hand, T ′w ◦ Tw intertwines πw. But such an operator must be
a multiple c(w) of the identity by Schur’s lemma where c(w) ∈ C∗ and the map
w 7−→ c(w) is smooth by the same argument as previously. By [6] and [11], we
know that c(w) > 0. Since
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R′w ◦Rw =
1

|α′(w)||α(w)|T
′
w ◦ Tw =

1
|α′(w)||α(w)|c(w)IS (N/P (w),χw)

is unitary and since c(w) > 0, we obtain |α′(w)||α(w)| = c(w) and R′w = R−1
w .

This implies that

R = (Rw)w : K S
(
Ṽ ′

0 ,S (N/P, χ)
) → K S

(
Ṽ ′

0 ,S (N/P ′, χ)
)

is a linear homeomorphism.
Let us now define for all K compact subset of V ′

0 and for every ξ(w) ∈
L2(N/P (w), χw) such that w 7−→ ‖ξ(w)‖L2(N/P (w),χw) is measurable, the following
semi-norm

‖ξ‖2,K =
( ∫

K

‖ξ(w)‖2L2(N/P (w),χw)dµ(w)
)1/2

where dµ(w) denotes the usual measure on the submanifold V ′
0 obtained locally

from the Lebesgue measure on the charts. Then we consider

L2
c

(
V ′

0 , L2(N/P, χ)
)

=
{
ξ = (ξ(w))w∈V ′

0
| ξ(w) ∈ L2(N/P (w), χw) ∀w, such that

w 7→ ‖ξ(w)‖L2(N/P (w),χw) is measurable and ‖ξ‖2,K < ∞,

∀K ⊂ V ′
0 compact

}
.

Note that L2
c(V

′
0 , L2(N/P, χ)) is a Fréchet space and that

L2
c

(
V ′

0 , L2(N/P, χ)
)

= K S
(
V ′

0 ,S (N/P, χ)
)L2

c
.

Proposition 9. The families of intertwining operators T = (Tw)w and
R = (Rw)w may be extended continuously to families of intertwining operators
from L2

c(V
′

0 , L2(N/P, χ)) to L2
c(V

′
0 , L2(N/P ′, χ)).

Proof. For ξ ∈ K S (V ′
0 ,S (N/P, χ)), we have

‖Tξ‖22,K =
∫

K

‖Twξ(w)‖2L2(N/P ′(w),χw)dµ(w)

=
∫

K

|α(w)|2‖Rwξ(w)‖2L2(N/P ′(w),χw)dµ(w) ≤ C‖ξ‖22,K



354 R. Lahiani and C. Molitor-Braun

where 0 ≤ C := supw∈K |α(w)|2 < ∞. So the extension of T to the Fréchet
space L2

c(V
′

0 , L2(N/P, χ)) is possible. For R = (Rw)w the argument is similar,
except that |α(w)|2 is replaced by 1. So T and R can be extend to operators from
L2

c(V
′

0 , L2(N/P, χ)) to L2
c(V

′
0 , L2(N/P ′, χ)). ¤

5. Kernel functions and intertwining operators.

5.1.
As before, let (p(w))w∈W and (p′(w))w∈W be two smooth families of polariza-

tions of the elements of W . Let πw and π′w be the corresponding unitary irreducible
representations and R = (Rw)w and R′ = (R′w)w be the smooth families of unitary
intertwining operators obtained in Proposition 8, where w runs through a certain
non-empty open subset of W . Let now f ∈ S (N). Then the operator πw(f)
(resp. π′w(f)) is a kernel operator whose kernel function F (resp. F ′) is given by
the formula

F (w, x, y) =
∫

P (w)

f(xpy−1)χw(p)dp

(resp. F ′(w, x, y) = . . . with P ′(w) instead of P (w) in the formula). It is easy to
check that in this case the kernel functions F and F ′ are related by the formula

F ′(w, x, y) = (Rw ⊗Rw)F (w, x, y)

=
1

|α(w)|2
∫

P ′(w)/P (w)∩P ′(w)

∫

P ′(w)/P (w)∩P ′(w)

· F (w, xu, yv)χw(u)χw(v)dudv.

5.2.
Conversely, one may ask the question whether, given an appropriate kernel

function F , there exists f ∈ S (N) such that πw(f) is a kernel operator and has
F (w, ·, ·) as a kernel function. In this case, R(F ) := f is called a retract for F .

For fixed w, this question has been solved by R. Howe [7]. If w runs through
n∗gen, set of generic linear forms in the sense of Ludwig-Zahir [14] and if the
polarizations and bases are particularly well chosen, a solution to this problem is
given by the generalized Fourier inversion theorem, found in [12]. In particular,
the function F has to satisfy the following covariance condition

F (w, xp, yp′) = χw(p)χw(p′)F (w, x, y) ∀p, p′ ∈ P (w),∀x, y ∈ N.
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If moreover, the polarizations (p(w))w are Vergne polarizations with respect to a
fixed Jordan-Hölder basis, we need the following compatibility relation for kernel
functions corresponding to equivalent representations:

w′ = Ad∗(m)w for some m ∈ N =⇒ F (w′, x, y) = F (w, xm, ym),∀x, y ∈ N.

This condition just translates the equivalence relation between the corresponding
representations into a relation between the kernel functions. Furthermore, these
conditions are necessary (but not sufficient) for the existence of a retract.

The compatibility condition may of course be transferred to any other smooth
choice of polarizations (p′(w))w, at least locally, when Theorem 3 and Proposition
8 apply. A corresponding family of operator kernels F ′(w, ·, ·) will have to satisfy

w′ = Ad∗(m)w for some m ∈ N =⇒ (
(R′w′ ⊗R′w′)F ′

)
(w′, x, y)

=
(
(R′w ⊗R′w)F ′

)
(w, xm, ym) ∀x, y ∈ N.

5.3.
The smoothness of the family of intertwining operators is necessary for the

following reason: the theorems for the existence of a retract, when w runs through
an appropriate non-empty relatively open set in our submanifold W , require the
potential kernel functions to be generalized Schwartz functions and smooth families
of intertwining operators send such kernel functions into functions of the same type.
This allows, under appropriate conditions, to transfer results on the existence of
a retract for representations built by using a particular type of polarizations to
a more general or more suitable family of polarizations and representations, at
least locally, where we have the existence of the smooth family of intertwining
operators. The next paragraph will give a more precise example.

5.4.
Let N = exp n be a connected, simply connected, nilpotent Lie group, let B

be a fixed Jordan-Hölder basis and let K be a compact Lie subgroup of Aut(N),
acting smoothly on N . Of course, this action induces a corresponding action of
K on n, n∗, N̂ , . . . Let us assume that for any l′ ∈ n∗, p(l′) denotes the Vergne
polarization of l′ with respect to the basis B. The action of K on N̂ is given by

kπl(x) := πl(k−1 · x) ∀x ∈ N, ∀k ∈ K.

Hence the question: Does there exist a local retract theorem for πk
l , where k runs

through an appropriate section of K/Kπl
? Here Kπl

denotes the stabilizer of πl
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and is equal to the set of all k’s in K such that kπl is equivalent to πl. Let us
assume l to be generic in the sense of Ludwig-Zahir. Let us notice that k · p(l) is
a polarization for k · l and let us define π̃k = indN

k·P (l)χk·l. It is easy to see that
kπl and π̃k are unitary equivalent through the intertwining operator Uk defined by
Ukξ(t) := ξ(k−1 · t) for all ξ ∈ Hkπl

. So, instead of proving the existence of a local
retract for kπl, which turns out to be very complicated, it is sufficient to prove
such an existence for the representation π̃k. But even this is not straightforward.
Let us therefore define πk·l := indN

P (k·l) χk·l where P (k · l) = exp p(k · l) and where
p(k · l) is the Vergne polarization for k · l with respect to the fixed basis B. We
do this for k ∈ K̃ := {k ∈ K|k · l ∈ n∗gen}. As we are now dealing with generic
linear forms k · l and Vergne polarizations p(k · l), we may use the Fourier inversion
Theorem [12], to prove the existence of a local retract for suitable kernel functions
(having compact k-support for k in a local section of K/Kπl

, generalized Schwartz
conditions, covariance and compatibility conditions). Finally, the smooth family
of intertwining operators gives the retract result for the representations (π̃k)k, and
hence for the representations (kπl)k, locally where Theorem 3 and Proposition 8
hold. The details of the argument require a very careful definition of the potential
kernel functions and the proof of the fact that the smooth family of intertwining
operators respects these kernel functions.

6. Example of the Heisenberg group.

In the case of the Heisenberg group H = exp h where h = 〈X, Y, Z〉 with
[X, Y ] = Z, we consider the submanifold of h∗ given by

W = {lε := (1 + ε)Z∗ | ε ∈]− 1, 1[}.

Then p(lε) = RY + RZ and p′(lε) = R(Y + εX) + RZ define two smooth families
of polarizations of the collection of lε’s, for ε ∈] − 1, 1[, and we denote by πε :=
indN

P (lε) χlε and π′ε := indN
P ′(lε) χlε the corresponding induced representations of

H where P (lε) = exp p(lε) and P ′(lε) = exp p′(lε). We will compute explicitly
the families of intertwining operators (Tε)ε and (Rε)ε and we will show how the
singularities appear and behave.

6.1. First method.
We construct a basis of h relative to p(lε) which respects p′(lε) by the index

method of Section 2.1. Similarly, we construct a basis of h relative to p′(lε) which
respects p(lε). To do this, we write the basis {X, Y, Z} as follows

Y1 = X;Y2 = Y ;Y3 = Z.
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Then, we obtain the following index sets I := Ip(lε) = {2, 3} and I ′ := Ip′(lε) =
{1, 3}, which are fixed for ε ∈]−1, 1[\{0}. Moreover, by Proposition 3, we construct
{Y1 + (1/ε)Y2, Y3} = {X + (1/ε)Y, Z} as a smooth Jordan-Hölder basis of p′(lε)
and {Y2, Y3} = {Y, Z} as a smooth Jordan-Hölder basis of p(lε). Finally, we obtain
that {X + (1/ε)Y } is a smooth Malcev basis of h relative to p(lε) and that {Y } is
a smooth Malcev basis of h relative to p′(lε).

Let ξ̃ ∈ S (R) be arbitrary and let us identify it with a function of
K S (W ,S (R)) which is constant in ε. We then define the function ξ ∈
K S (W ,S (H/P (l), χ)) by

ξ

(
ε, exp

(
x

(
X +

1
ε
Y

))
exp yY exp zZ

)

= ei(1+ε)zξ

(
ε, exp

(
x

(
X +

1
ε
Y

)))
:= ei(1+ε)z ξ̃(x),

thanks to the covariance relation. We then have

(
T̃εξ̃

)
(y) := (Tεξ)(ε; exp yY )

=
∫

R

ξ

(
ε; exp yY · expx

(
X +

1
ε
Y

))
χlε

(
expx

(
X +

1
ε
Y

))

︸ ︷︷ ︸
=1

dx

=
∫

R

ξ

(
ε; exp x

(
X +

1
ε
Y

))
e−i(1+ε)xydx

=
∫

R

ξ̃(x)e−i(1+ε)xydx

= ̂̃
ξ((1 + ε)y).

Formally, (T̃εξ̃)(y) converges to ̂̃
ξ(y) when ε tends to 0. But, this makes no sense

for our problem, as the norm of the vector X + (1/ε)Y of the Malcev basis of
h relative to p(lε) tends to infinity. Even, if we would replace this vector by
V (ε) := ε(X + (1/ε)Y ) = Y + εX, then V (ε) would converge to Y ∈ p(l), where
l0 = l, for ε −→ 0, i.e. the limit vector would no longer be a Malcev basis of h

relative to p(l). This illustrates the fact that the singularities are inherent to this
problem and method.

6.2. Second method.
In this particular example of the Heisenberg group, one may find another,

“natural” Malcev basis of h relative to p(lε), respectively p′(lε), i.e. {X}, which is
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a good choice for both families of polarizations.
As we will see, the singularity at ε = 0 will, in this approach, lead to a nice

interpretation: As a matter of fact, for ε = 0, lε = l and p(lε) = p′(lε) = p(l) =
RY + RZ. So, for ε = 0, the polarizations and representations coincide. The
intertwining operator may be taken to be the identity. We will show that, for an
appropriate choice of the unitary intertwining operators Rε (these are only defined
up to a constant of module 1), the family (Rε)ε will converge weakly and strongly
towards the identity operator. Unfortunately, this cannot be done smoothly, nor
in the generalized Schwartz topologies. Moreover, in the case of a general nilpotent
Lie group, such an approach is not possible.

Again, we start with an arbitrary function ξ̃ ∈ S (R) and we define ξ ∈
K S (W ,S (H/P, χ)) by

ξ(ε, expxX · exp yY · exp zZ) = ei(1+ε)zξ(ε, expxX) =: ei(1+ε)z ξ̃(x),

thanks to the covariance relation. As {Y + εX} is a Malcev basis of p′(lε) relative
to p(lε) ∩ p′(lε), we have

(
T̃εξ̃

)
(x) := (Tεξ)(ε, expxX)

=
∫

R

ξ(ε, expxX · exp y(Y + εX))χlε(exp y(Y + εX))︸ ︷︷ ︸
=1

dy

=
∫

R

ξ(ε, exp(x + yε)X)e−i 1
2 y2ε(1+ε)dy

=
1
ε

∫

R

ξ(ε; exp(x + y)X)e−i 1
2

1+ε
ε y2

dy

=
1
ε

∫

R

ξ̃(x + y)e−i 1
2

1+ε
ε y2

dy.

By elementary computation and by the use of integration by parts, the integral

∫

R

e±ix2
dx =

(1± i)
√

π√
2

(see [8]) implies that for every Schwartz function ξ̃ on R and every x ∈ R,

lim
u−→+∞

√
u

∫

R

ξ̃(x + s)e±ius2
ds =

(1± i)
√

π√
2

ξ̃(x).
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In order to use this result, let’s put u := ((1 + ε)/|ε|)/2 and sgn(ε) =
{

+1 if ε>0
−1 if ε<0 .

Hence

(
T̃εξ̃

)
(x) =

√
2

sgn(ε)
√
|ε|(1 + ε)

·
[√

u

∫

R

ξ̃(x + y)e−i sgn(ε)uy2
dy

]

which implies that limε−→0 |(T̃εξ̃)(x)| = +∞ for all x. Let’s define

R̃ε :=
sgn(ε)

√
|ε|(1 + ε)√
2π

· 1 + sgn(ε)i√
2

· T̃ε.

We then have the following pointwise convergence

lim
ε−→0

(
R̃εξ̃

)
(x) = ξ̃(x), ∀x ∈ R,

if ξ̃ ∈ S (R). Of course, the R̃ε’s are intertwining operators. Moreover they are
isometries and hence unitary, by the arguments of Proposition 8. To show the
isometry property, we make the following computations:

(
T̃εξ̃

)
(x) =

1
ε

∫

R

ξ̃(x + y)e−i(1/2)((1+ε)/ε)y2
dy

=
1
ε
e−i(1/2)((1+ε)/ε)x2

∫

R

ξ̃(u)e−i(1/2)((1+ε)/ε)u2

︸ ︷︷ ︸
=:η(ε,u)

ei((1+ε)/ε)uxdu

=
1
ε
e−i(1/2)((1+ε)/ε)x2

η̂

(
ε,−1 + ε

ε
x

)

and

∥∥T̃εξ̃
∥∥2

2
=

∫

R

1
ε2

∣∣∣∣η̂
(

ε,−1 + ε

ε
x

)∣∣∣∣
2

dx

=
1
ε2

|ε|
1 + ε

∫

R

|η̂(ε, u)|2du

=
2π

|ε|(1 + ε)
‖η(ε, ·)‖22

=
2π

|ε|(1 + ε)
‖ξ̃‖22.
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Finally,

∥∥R̃εξ̃
∥∥

2
=

√
|ε|(1 + ε)√

2π

∥∥T̃εξ̃
∥∥

2
=

∥∥ξ̃
∥∥

2
∀ξ̃ ∈ S (R)

and ‖R̃ε‖op = 1. The operators Rε may hence be extended to all of L2(R).
We have seen that R̃εξ̃ −→ ξ̃ pointwise, when ε −→ 0. This implies that

R̃ε −→ IS (R) weakly and strongly, where IS (R) is the identity operator on S (R),
and hence also on L2(R) similarly. As a matter of fact, for all ξ̃, η̃ ∈ S (R),

〈
R̃εξ̃, η̃

〉
= R̃ε

(
ξ̃ ∗ ˇ̃η

)
(0) −→ ξ̃ ∗ ˇ̃η(0) =

〈
ξ̃, η̃

〉
, if ε → 0,

by the pointwise convergence, where ˇ̃η(x) := η̃(−x). So, as the R̃ε’s are isometries,

∥∥R̃ε − ξ̃
∥∥2

2
=

∥∥ξ̃
∥∥2

2
− 〈

R̃εξ̃, ξ̃
〉− 〈

ξ̃, R̃εξ̃
〉

+
∥∥ξ̃

∥∥2

2
−→ 0, if ε → 0

for all ξ̃ ∈ S (R). We have weak and strong convergence of (R̃ε)ε towards IS (R) in
S (R), and hence in L2(R) similarly, by density of S (R) in L2(R). Unfortunately
the family (R̃ε)ε∈]−1,1[, where R̃0 = IS (R), is not smooth at the origin, nor do we
have convergence in the generalized Schwartz topologies.
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