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Abstract. For a given closed surface, we study height functions with
three critical values associated with immersions of the surface into 3-space,
where the critical points may not be non-degenerate. We completely charac-
terize the numbers of critical points corresponding to the three critical values
that can be realized by such height functions. We also study the cases where
the immersion can be replaced by an embedding or the critical points are all
non-degenerate. Similar problems are studied for distance functions as well.

1. Introduction.

In [1], Banchoff and Takens studied height functions on closed surfaces with
exactly three critical points, and completely characterized those closed surfaces
which admit such height functions. Namely, a closed connected surface admits
such a height function if and only if it is non-orientable or orientable of genus 0
or 1. In this paper, we extend their result to height functions with three critical
values.

More precisely, we consider the sequence (n1, n2, n3) of positive integers,
where nj is the number of critical points corresponding to the j-th critical value,
j = 1, 2, 3, with respect to the natural order in R. Our main result completely
characterizes those sequences of three positive integers that can be realized as the
sequence of critical point numbers of a height function with three critical values
on a given closed surface. As a corollary, we can give a similar characterization
of those sequences (n1, n2, . . . , n`) of positive integers that can be realized as the
critical point number sequence of a height function with ` critical values for an
arbitrary ` ≥ 3.

The paper is organized as follows. In Section 2, we state our main theorem
concerning height functions with three critical values. As a corollary, we prove the
characterization of the critical point number sequences for an arbitrary number
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of critical values. In Section 3, we prove the main theorem by using a method
similar to that in [1]. We will see that for n2 ≥ 2 and M orientable, the sequence
(n1, n2, n3) can be realized by the height function associated with an embedding
of M . In Section 4, we consider the realization by height functions which have
only non-degenerate critical points. In Section 5, we study the same problem for
the distance function. It is interesting to see that any sequence (n1, n2, n3) can be
realized by a distance function on any closed surface, which is different from the
height function case.

Throughout the paper, manifolds and maps between them are differentiable
of class C∞ unless otherwise specified. All surfaces are assumed to be connected.

The authors would like to express their thanks to Yasutaka Masumoto for
stimulating discussions and to Shyuichi Izumiya for posing a question about the
Morse function case.

2. Results.

Let ι : M → R3 be an immersion of a closed surface M into the 3-space.
Let Z : R3 → R be the projection defined by Z(x, y, z) = z. Then, the smooth
function h on M defined by the composition h = Z ◦ ι : M → R is called a height
function associated with the immersion ι.

In this paper, we consider the critical points and critical values of such height
functions. Throughout the paper, we will always assume that the number of critical
points is finite. Note that the critical points that we consider may not necessarily
be non-degenerate.

Recall also that there exist smooth functions on surfaces that can never be
realized as a height function (for example, see [1], [3]).

Let h : M → R be a height function on a closed surface M as above, and
let v1 < v2 < · · · < v` be its critical values. If ` = 2, then it is known that M is
diffeomorphic to S2 and h has exactly two critical points. Therefore, throughout
this paper, we assume ` ≥ 3. For j with 1 ≤ j ≤ `, we denote by nj the number of
critical points of h corresponding to the critical value vj . The sequence of positive
integers (n1, n2, . . . , n`) is called the critical point number sequence of the height
function h associated with the immersion ι : M → R3.

Banchoff and Takens [1] showed that the sequence (1, 1, 1) can be realized
as the critical point number sequence of the height function associated with an
immersion of a closed surface M if and only if M is non-orientable or is orientable
of genus 0 or 1. Our first result is a generalization of their result.

Theorem 2.1. For a closed surface M and a sequence (n1, n2, n3) of positive
integers, we have the following.
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(1) When n2 = 1, the sequence (n1, 1, n3) can be realized as the critical point
number sequence of the height function associated with an immersion of M

into R3 if and only if M is non-orientable or is orientable of genus 0 or 1.
(2) When n2 ≥ 2, the sequence (n1, n2, n3) can always be realized as the critical

point number sequence of the height function associated with an immersion of
M into R3. Furthermore, if M is orientable, then it can be realized even by
an embedding.

We will prove Theorem 2.1 in Section 3.
As a corollary, we have the following.

Corollary 2.2. Let M be an arbitrary closed surface. Then, an arbitrary
sequence of positive integers (n1, n2, . . . , n`) with ` ≥ 4 can be realized as the
critical point number sequence of the height function associated with an immersion
of M into R3.

Proof. Set

n =
`−1∑

j=2

nj .

Then, since n ≥ 2, by Theorem 2.1, the sequence (n1, n, n`) can be realized as
the critical point number sequence of the height function associated with an im-
mersion of M into R3. By slightly and appropriately changing the heights of
the critical points that are not minimal nor maximal, we can realize the sequence
(n1, n2, . . . , n`−1, n`). This completes the proof. ¤

In Corollary 2.2, if M is orientable, then the sequence can be realized by
an embedding of M into R3. Note that closed connected non-orientable surfaces
cannot be embedded in R3.

3. Proof of Theorem 2.1.

In this section, we prove Theorem 2.1.

Proof of Theorem 2.1.

(1) Let M be a closed orientable surface of genus g, and let ι : M → R3 be
an immersion such that the associated height function h = Z ◦ ι has exactly three
critical values v1 < v2 < v3 and that there is exactly one critical point, say p,
corresponding to the middle critical value v2. Without loss of generality, we may
assume v1 = −1, v2 = 0 and v3 = 1. We denote by n1 (or n3) the number of
critical points of h corresponding to the critical value −1 (resp. 1).
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By the same argument as in [1], we may assume that around p, ι is locally
equivalent to the graph of a function of the form

(x, y) 7→ Re
(
(x +

√−1y)k
)

for some positive integer k, and h−1(0) is homeomorphic to the bouquet of k copies
of S1.

For t ∈ (−1, 0)∪ (0, 1), set Mt = h−1(t) and jt = ι|Mt : Mt → R2×{t}. Note
that Mt is a finite disjoint union of circles and jt is an immersion, since so is ι.
As has been observed in [1], for t < 0 (or t > 0), jt is an immersion of n1 copies
(resp. n3 copies) of S1 and its restriction to each component has winding number
±1. Therefore, we have

|R− −R+| = n1 + n3 − 2r (3.1)

for some non-negative integer r, where R− (or R+) is the sum of the winding
numbers of jt with t < 0 (resp. t > 0) restricted to the components.

On the other hand, we can prove

|R− −R+| = k − 1 (3.2)

as in [1] by examining the behavior of jt with |t| ¿ 1 near the critical point p.
Furthermore, since M has the structure of a cell complex consisting of one

vertex p, k 1-cells and n1 + n3 2-cells, we have

2− 2g = χ(M) = 1 + n1 + n3 − k,

where χ denotes the Euler characteristic.
By (3.1) and (3.2), we have n1 + n3 − 2r = k − 1, and therefore we have

2− 2g = 2r

for some non-negative integer r. Thus, we must have g = 0 or 1.

Let us now show that (n1, 1, n3) can be realized as the critical point number
sequence of a height function, provided that M is non-orientable or M is orientable
of genus 0 or 1. We proceed by induction on n1+n3. In the following, M(s) denotes
the surface M with s open disks removed.

When n1 = n3 = 1, this has been proved in [1] by explicitly constructing an
immersion ι1 : M(2) → R2×[−ε, ε] for some sufficiently small ε > 0 such that Z◦ι1
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Figure 1. Increasing n1 by one.

has exactly one critical point, which has the value zero, and that on R2×{±ε}, ι1
corresponds to an immersion of the circle of winding number ±1. Since the latter
immersion is regularly homotopic to an embedding, we can extend ι1 to obtain an
immersion ι2 : M(2) → R2 × [−2ε, 2ε] such that on R2 × {±2ε}, ι2 corresponds
to an embedding of the circle. Then, the required immersion ι : M → R3 can
be constructed by gluing an embedding of the 2-disk whose height function has
exactly one critical point at the center, to ι2 along each of the two boundary
components of M(2).

If n1 > 1, then by our induction hypothesis, (n1 − 1, 1, n3) can be realized
by a height function, say h : M → R, where we may assume that the middle
critical value is equal to zero. Then, consider the operation as depicted in Figure
1, where p is the unique critical point of h corresponding to the middle critical
value and ε > 0 is sufficiently small. Note that around p, the immersion can be
identified with the graph of the height function. In Figure 1, the left-hand side
figure explains the immersion restricted to h−1([−ε, ε]) in a neighborhood of p.
The right-hand side figure explains the new height function h̃, whose source is the
surface M(n1+n3). Then, we see that the sequence (n1, 1, n3) is realized by the new
height function h̃ : M → R.

When n3 > 1, a similar argument can be applied. This completes the proof
of Theorem 2.1 (1).

(2) As has been seen above, when M is non-orientable or orientable of genus
0 or 1, the sequence (n1, 1, n3) can be realized. In order to increase the number of
critical points corresponding to the middle critical value, we consider the operation
as in Figure 2.

At the new critical point, the immersion is locally the graph of the function
(x, y) 7→ y3 − x2. Repeating this procedure, we see that the sequence (n1, n2, n3)
can be realized.

Let us now assume that M is orientable of genus g ≥ 1. When (n1, n2, n3) =
(1, 2, 1), we consider the construction as in Figure 3, where the number of bands
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Figure 2. Increasing n2 by one.

Figure 3. Realizing (1, 2, 1).

is equal to 2g + 2. This explains the construction of an embedding ι1 : M(2) →
R2 × [−ε, ε] for ε > 0 sufficiently small, where h = Z ◦ ι1 is the height function
associated with the embedding ι1.

Note that each band is twisted so that the surface is orientable. By an Euler
characteristic argument, we see that the source surface is diffeomorphic to M(2).
Around each of the two critical points of the associated height function, ι1 is iden-
tified with the graph of the function (x, y) 7→ Re((x +

√−1y)g+1). Furthermore,
on R2×{±ε}, ι1 corresponds to an embedding of the circle. Therefore, we get an
embedding ι : M → R3 whose associated height function realizes (1, 2, 1).

Then, we can increase the number of critical points corresponding to the top
or the bottom critical value by using the same argument as in the proof of (1). We
can also increase the number of critical points corresponding to the middle critical
value as in Figure 2.

Finally, let us observe that when n2 ≥ 2 and M is orientable, the immersion
of M into R3 realizing (n1, n2, n3) can be chosen to be an embedding. In fact,
when increasing n1 (or n3), we perform the operation as in Figure 1 along the
curve h−1(ε) (resp. h−1(−ε)) in Figure 3 near the left-hand side vertex (resp. the
right-hand side vertex) so that on each level R2 × {±ε}, the components bound
disjointly embedded disks.

We can similarly construct a desired embedding for the 2-sphere case as well.
We just start with an embedding of the annulus as in Figure 3 with two twisted
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bands, whose associated height function has no critical points.
This completes the proof. ¤

Remark 3.1. It would also be an interesting problem to consider similar
problems in higher dimensions. Note that in [5], Morse functions with three critical
values are thoroughly studied.

4. Morse function case.

In this section, we determine those sequences (n1, n2, n3) of three positive
integers which can be realized as the critical point number sequence of a height
function on a given closed connected surface M with only non-degenerate critical
points. A smooth function with only non-degenerate critical points is called a
Morse function.

Theorem 4.1. Let M be a closed connected surface and (n1, n2, n3) a se-
quence of three positive integers. Then, the sequence can be realized as the critical
point number sequence of a height function associated with an immersion ι : M →
R3 with only non-degenerate critical points if and only if n1 − n2 + n3 = χ(M).
Furthermore, when M is orientable, the immersion can be chosen to be an embed-
ding.

Proof. If (n1, n2, n3) is realized, then the indices of the n2 critical points
corresponding to the middle critical value must be all equal to 1. Therefore, we
have n1 − n2 + n3 = χ(M) by the Morse equality (for example, see [4]).

Conversely, suppose that n1 − n2 + n3 = χ(M) holds. When M is orientable,
we can construct the desired embedding starting from the embedding M(n1+n3) →
R2 × [−ε, ε] explained in Figure 4, where there are 2g + 2 twisted bands in the
middle and g is the genus of M . Since each vertex of h−1(0) has degree four,
we can arrange the embedding so that the associated height function is a Morse
function. Since the components of h−1(±ε) bound disjointly embedded disks in
R2 × {±ε}, we can get a desired embedding of the whole M .

When M is non-orientable, we use the immersion M(2) → R2 × [−ε, ε] as
explained in Figure 5 when n1 = n3 = 1, where g is the genus of M and the
non-degenerate critical points are indicated by small black dots. Note that the
winding number of each of the boundary curves is equal to ±1. We can easily
increase n1 and n3 as in the orientable case. This completes the proof. ¤

Compare the above theorem with the results obtained in [2], [3].

Remark 4.2. In the case of a sequence consisting of four or more positive
integers, the authors do not know a complete characterization.
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Figure 4. Orientable case.

Figure 5. Non-orientable case.

5. Number of critical points of distance function.

Let D : R3 \ {0} → (0,∞) be the function defined by

D(x, y, z) =
√

x2 + y2 + z2,

which measures the distance from the origin. For an immersion ι : M → R3 \ {0}
of a closed surface M , the composition d = D ◦ ι is called the distance function
associated with the immersion ι.

Let d : M → R be a distance function on a closed surface M with finitely
many critical points, and let v1 < v2 < · · · < v` be its critical values. For j with
1 ≤ j ≤ `, we denote by nj the number of critical points of d corresponding to
the critical value vj . The sequence of positive integers (n1, n2, . . . , n`) is called
the critical point number sequence of the distance function d associated with the
immersion ι : M → R3.

Consider the commutative diagram
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M
ι //

h

²²

R2 ×R
η×exp //

Z

²²

S2 × (0,∞)
ϕ //

π2

²²

R3 \ {0}
D

²²
R

= // R
exp // (0,∞) = // (0,∞),

where h is the height function associated with an immersion ι : M → R3, η :
R2 → S2 is an embedding, exp is the exponential function, π2 is the projection
to the second factor, and ϕ is an appropriate diffeomorphism. Therefore, we see
that if a sequence (n1, n2, . . . , n`) is realized as the critical point number sequence
of a height function, then it is also realized as that of a distance function.

In fact, we can prove the following, which should be compared with Corollary
2.2.

Theorem 5.1. Let M be an arbitrary closed surface. Then, an arbitrary
sequence of positive integers (n1, n2, . . . , n`) with ` ≥ 3 can be realized as the critical
point number sequence of the distance function associated with an immersion of
M into R3 \ {0}.

Proof. We have only to consider the case where ` = 3 and M is orientable.
We proceed by induction on the genus g of M .

When g = 0 or 1, the result follows from Theorem 2.1. In order to increase
the genus, let us consider the operation as depicted in Figure 6. The left-hand
side figure explains an immersion

ι1 : M(n1+n3) → S2 × [exp (−ε), exp ε]

such that d = π′2 ◦ ι1 has exactly n2 critical points with value zero, where π′2 :
S2 × [exp (−ε), exp ε] → [exp (−ε), exp ε] is the projection to the second factor.
Furthermore, d−1(exp (−ε)) (or d−1(exp ε)) consists of n1 circles (resp. n3 circles)
of “odd winding numbers”.

Figure 6. Increasing the genus by two.
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Then the source surface of the new immersion ι2 is orientable and has genus
greater than that of M(n1+n3) by two. On the level of S2×{−ε}, it corresponds to
n1 immersed circles, and their winding numbers are all congruent modulo two to
those of ι1. Therefore, as immersed circles in S2, they are regularly homotopic. For
the level of S2 × {ε}, we have the same situation. Therefore, we can construct an
immersion M̃ → S2×(0,∞) ∼= R3\{0} whose associated distance function realizes
(n1, n2, n3), where M̃ is a closed orientable surface of genus greater than that of
M by two. Thus, by induction, we get the desired conclusion. This completes the
proof. ¤
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