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Abstract. We consider the semiclassical Schrödinger operator with a
well in an island potential, on which we assume smoothness only, except near
infinity. We give the asymptotic expansion of the imaginary part of the shape
resonance at the bottom of the well. This is a generalization of the result by
Helffer and Sjöstrand [HeSj1] in the globally analytic case. We use an almost-
analytic extension in order to continue the WKB solution coming from the
well beyond the caustic set, and, for the justification of the accuracy of this
approximation, we develop some refined microlocal arguments in h-dependent
small regions.

1. Introduction.

This paper is concerned with the quantum resonances of the semiclassical
Schrödinger operator in Rn,

P = −h2∆ + V (x). (1.1)

From the physical point of view, such resonances are associated to metastable
states, that is, states with a finite life-time, and the life-time is given by the
inverse of the absolute value of the imaginary part (width) of the corresponding
resonance.

In the literature, many geometrical situations have been studied where the
location of the resonances of P has been determined up to errors of order O(h∞):
see, e.g., [BaMn], [BCD], [GeSj], [HiSi], [Sj2]. In particular, when the approx-
imated location is at a distance ∼ hN0 of the real line with some fixed N0 > 0,
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2 S. Fujiié, A. Lahmar-Benbernou and A. Martinez

then such results automatically produce good estimates on the widths of such res-
onances, too. However, in the physically most interesting situations where the
resonances are exponentially close to the real axis, only very few results give a
lower bound on the width. In [Bu], a very nice and general estimate is obtained,
extending the results by [Ha], [FeLa], [Vo], independently of the geometrical sit-
uation presented by the potential V . In particular, because of its wide generality,
such a result does not give any precise asymptotic of the width. On the contrary,
the result of [HeSj1] gives a full asymptotic of the width when the (globally an-
alytic) potential V presents the geometric situation of a well in an island, at the
origin of the creation of the so-called shape resonances.

The purpose of this article is to extend the results of [HeSj1] to smooth
potentials that are not assumed to be globally analytic, but only near infinity
(allowing the definition of resonances by analytic distortion). In that case, we
obtain a classical expansion of the first resonance ρ just as in the globally analytic
case of [HeSj1].

Roughly speaking, a quantum resonance is a complex energy ρ for which the
Schrödinger equation

Pu = ρ u

admits a non-trivial solution called resonant state, which is outgoing for large x

(and thus not L2 in general: see Section 2 for a rigorous definition by analytic dis-
tortion). In the case of shape resonances, the resonant state describes a quantum
particle, concentrated in the well for a long period, but then escaping to the sea
(classically allowed region outside the island) by tunneling effect. This effect is
reflected by the width of the resonance ρ.

More precisely, let Γ be the set of points on the boundary of the island Ö

where the Agmon distance from the bottom of the well x0 reaches its minimum S.
In the semiclassical regime, it happens that almost all the tunneling occurs along
a small neighborhood of the geodesic curves from x0 to Γ. Then, the width of the
resonance ρ is determined by the amplitude of u near Γ, and the result is,

Im ρ(h) ∼ −h(1−nΓ)/2

( ∑

j≥0

hjfj

)
e−2S/h mod O(h∞)e−2S/h,

where nΓ is some geometrical constant, and f0 > 0 (see Theorem 2.3 below, and
[HeSj1, Theorem 10.12]).

In order to prove this result for non globally analytic potentials, we mainly
follow the strategy of [HeSj1], with some additional technical difficulties that we
explain now.



Shape resonances for non globally analytic potentials 3

Let W be a bounded domain and (·, ·)W , ‖·‖W the scalar product and the norm
in L2(W ). Then, Im ρ can be represented in terms of the corresponding resonant
state u on W , by applying Green’s formula to the identity ((P − ρ)u, u)W = 0.
This leads to,

Im ρ = − h2

‖u‖2W
Im

∫

∂W

∂u

∂n
ūdS, (1.2)

where ∂/∂n denote the exterior normal derivative on ∂W . The point is that if we
take for W a small neighborhood of Ö, then the contribution from the integral of
the RHS of (1.2) is concentrated near Γ, and the problem is mainly reduced to the
study of the asymptotic behavior of u near Γ.

In the globally analytic case studied by Helffer and Sjöstrand in [HeSj1],
the first step in order to obtain this asymptotic behavior consisted in extending
to the complex domain the WKB solutions coming from the well, in such a way
that one could go round the caustic set (see [HeSj1, Proposition 10.9]). In our
case, such an analytic extension is no longer possible but, by means of almost-
analytic extensions, it is still possible to go round the caustic set on the condition
of staying close enough to the real domain, namely, at a distance O((h lnh−1)2/3)
of the caustic set. In this way, one can recover an (outgoing) WKB expression out
of the island, but still at a distance of order (h lnh−1)2/3 from the boundary (see
Proposition 4.6).

The next step in the proof of [HeSj1] was to use an argument of microlocal
analytic propagation that, thanks to a suitable a priori estimate, permitted to
compare the solution u with the previous WKB constructions near Γ. In our case,
the analogous a priori estimate can be obtained only at a distance O((h lnh−1)2/3)
of Γ (see Proposition 5.2). For this reason, the usual results of propagation do not
apply, and we need to refine them in order to be able to work in h-dependent
open sets (see Lemma 6.4). Then, after a suitable change of scale, and still using
almost-analytic extensions, the comparison between u and the WKB constructions
is obtained up to a distance of order (h lnh−1)2/3 of Γ (see Proposition 6.8, and
Proposition 6.1).

The final step in [HeSj1] consisted in replacing u by its WKB approximation
into (1.2) (with W a fixed small enough neighborhood of Ö), and in using a
stationary phase argument in order to obtain the asymptotic of Im ρ. In our case,
a similar argument can be used with W = {d(x, Ö) < |h lnh|2/3}, but this makes
appear terms in hj(lnh)k in the integrand of the right-hand side of (1.2). However,
by slightly changing the choice of W , and by observing that the left-hand side of
(1.2) does not depend on this choice, we can prove that, indeed, the final expansion
does not contain terms in (lnh)k, k 6= 0 (see (7.2) and Lemma 7.3).
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Summing up, the method consists in the three following parts:

(1) Extension of the WKB solution constructed at the bottom of the well x0 up
to a neighborhood of Γ.

(2) Estimate on the difference between the WKB solution w and the resonant
state u.

(3) Computation of the asymptotics of the integral (1.2) using w instead of u.

Point 1 is performed by solving transport equations along the minimal
geodesics, and then, by using an Airy integral representation of the solution near
Γ. In order to recover a WKB asymptotic expansion outside Ö, almost-analytic
extensions (or, more precisely, holomorphic approximations) are used as well as a
stationary-phase expansion at a distance of order |h lnh|2/3 from Γ.

Point 2 is obtained by using three propagation arguments. At first, a stan-
dard C∞-propagation, exploiting the fact that u is outgoing, gives a microlocal
information on u in the incoming region up to a small distance of Γ. Then, a
refined C∞ propagation result permits to extend this microlocal information up
to a distance of order |h lnh|2/3 of Γ. Finally, performing a change of scale both
in the variables and in the semiclassical parameter, an analytic-type propagation
argument gives the required estimate in a full neighborhood of Γ of size |h lnh|2/3.

For Point 3, we take W = {d(x, Ö) < |h lnh|2/3} and we use Green’s formula
as we explained before. Then, by a deformation argument, we show that the final
expansion does not contain terms in lnh, and actually coincides with the expansion
obtained in [HeSj1].

The article is organized as follows: In Section 2, we assume conditions on
the potential V and state the main results. In Section 3, we prove Theorem 2.2,
especially the global a priori estimate (2.7) of u. Section 4 is devoted to the above
point 1, and Section 5, Section 6 and Section 7 are devoted to the point 2. In
Section 8, we study the point 3, and prove the main Theorem 2.3.

We also refer to [FLM] for a shorter version of some aspects of this work.
Finally, we thank the referee for his valuable remarks which improved the

presentation of this paper.

2. Assumptions and main results.

Let us state precisely the assumptions on the potential.

(A1) V ∈ C∞ is real-valued and there exists some compact set K0 ⊂ Rn such
that V is analytic on KC

0 = Rn\K0 and can be extended as a holomorphic
function in a sector

D0 =
{
x ∈ Cn; | Im x| < σ0|Re x|, Re x ∈ KC

0

}
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for some constant σ0 > 0. Moreover,

V (x) → 0 as |Re x| → ∞, x ∈ D.

This assumption enables us to define resonances near the real axis as complex
eigenvalues of the distorted operator Pθ of P . Let F (x) ∈ C∞(Rn,Rn) such that
F (x) = 0 on the compact set K0, F (x) = x for large enough |x|, and |F (x)| ≤ |x|
everywhere. For small ν > 0, we define a unitary operator on L2(Rn) by

Uνφ(x) = det(1 + νdF (x))1/2φ(x + νF (x)). (2.1)

The conjugate operator P̃ν = UνPU−ν is analytic with respect to ν and we can
define the distorted operator by Pθ = P̃iθ for positive small θ. Then the essential
spectrum is given by σess(Pθ) = e−2iθR+ (Weyl’s perturbation theorem) and
the spectrum σ(Pθ) in the sector Sθ = {E ∈ C;−2θ < arg E < 0} is discrete
(see [Hu]). The elements of σ(Pθ) ∩ Sθ are called resonances. This definition is
independent of θ in the sense that σ(Pθ′) ∩ Sθ = σ(Pθ) ∩ Sθ if θ′ > θ, and also
of the function F (x). Moreover, if uθ is an eigenfunction of Pθ, it can be proved
(see, e.g., [HeMa]) that there exists u ∈ C∞(Rn), holomorphic in D0, such that
uθ = Uiθu. Such functions u are called resonant states of P .

The next assumption describes the shape of V (x) in the island :

(A2) There exist a bounded open domain Ö with smooth boundary, a point x0 in
Ö and a positive number E0 such that

V (x0) = E0,
∂V

∂x
(x0) = 0,

∂2V

∂x2
(x0) > 0,

and

V (x) > E0 in Ö\{x0}, V (x) = E0 on ∂Ö.

To the well {x0} of the potential, we can associate a Dirichlet problem. Let us
denote by d(x, y) the Agmon distance associated with the pseudo-metric ds2 =
max(V (x), 0)dx2, S = d(x0, ∂Ö) the minimal distance from x0 to the boundary
of Ö, and Bd(x0, S) := {x ; d(x, x0) < S} the open ball centered at x0 of radius
S with respect to the distance d. We consider a Dirichlet realization PD of the
operator P on the domain Bd(x0, S − η) for sufficiently small η. The following
result is due to Helffer and Sjöstrand [HeSj2] (see also Simon [Si] for a partial
version):
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Theorem 2.1 (Helffer-Sjöstrand). Let λD(h) be the first eigenvalue of PD

and uD(x, h) the corresponding normalized eigenfunction. Then λD(h) has a com-
plete classical asymptotic expansion with respect to h:

λD(h) = E0 + E1h + E2h
2 + · · · ,

where E1 = tr
√

(1/2)(∂2V /∂x2)(x0) is the first eigenvalue of the corresponding
harmonic oscillator −∆+(1/2)〈(∂2V /∂x2)(x0)x, x〉. Moreover, in a neighborhood
ω of x0, uD(x, h) can be written in the WKB form:

uD(x, h) = h−n/4a(x, h)e−d(x0,x)/h, (2.2)

where a is a realization of a classical symbol :

a(x, h) ∼
∞∑

j=0

aj(x)hj , a0(0) > 0. (2.3)

Above the sea ÖC , on the other hand, we assume that p has no trapped
trajectories of energy E0, in the sense that,

(A3) For any (x, ξ) ∈ p−1(E0) with x ∈ ÖC , the quantity | exp tHp(x, ξ)| tends to
infinity as |t| tends to ∞.

Here Hp is the Hamilton vector field

Hp =
∂p

∂ξ
· ∂

∂x
− ∂p

∂x
· ∂

∂ξ
= 2ξ · ∂

∂x
− ∂V

∂x
· ∂

∂ξ
.

If x ∈ ∂Ö, in particular, the only ξ ∈ Rn such that p(x, ξ) = E0 is 0, and
Hp = −∇V (x) · ∂/∂ξ. Hence (A3) also implies,

∇V (x) 6= 0 on ∂Ö. (2.4)

Under the conditions (A1), (A2), (A3), we have the following theorem (it is an
analog to our situation of a result due to Heffer and Sjöstrand in the globally
analytic case):

Theorem 2.2. Assume (A1)–(A3). Then, there exists a unique resonance
ρ(h) of P such that h−1|ρ(h)− λD(h)| → 0 as h → 0+, and it verifies,



Shape resonances for non globally analytic potentials 7

|λD(h)− ρ(h)| = O
(
e−(2S−ε(η))/h

)
. (2.5)

Moreover, denoting by u(x, h) the corresponding (conveniently normalized) reso-
nant state, one has,

|uD(x, h)− u(x, h)| = O
(
e−(2S−d(x0,x)−ε(η))/h

)
, (2.6)

uniformly in Bd(x0, S − η), where ε(η) → 0 as η → 0, and, for any K ⊂ Rn

compact, there exists NK ∈ N such that,

∥∥es(x)/hu(x, h)
∥∥

H1(K)
= O(h−NK ), (2.7)

uniformly as h → 0, where s(x) = d(x0, x) if x ∈ Bd(x0, S) and s(x) = S other-
wise.

Finally we assume some conditions on the set ∂Ö ∩ Bd(x0, S) and on the
caustic set C = {x ∈ Ö; d(x0, x) = d(x, ∂Ö) + S}.

The points of the set ∂Ö ∩ Bd(x0, S) are called points of type 1 in [HeSj1].
Since they mainly concentrate the interactions between the well and the sea, here
we prefer to call them points of interaction.

Our additional assumption is,

(A4) ∂Ö∩Bd(x0, S) is a submanifold Γof ∂Ö, and C has a contact of order exactly
2 with ∂Ö along Γ.

We denote by nΓ (≤ n− 1) the dimension of Γ. Then, our main result is,

Theorem 2.3. Under Assumptions (A1)–(A4), there exists a classical sym-
bol

f(h) ∼
∑

j≥0

hjfj ,

with f0 > 0, such that

Im ρ(h) = −h(1−nΓ)/2f(h)e−2S/h.

Remark 2.4. In the globally analytic case, it has been shown in [HeSj1]
that f(h) is an analytic classical symbol. In the general case, however, such a
property is probably no longer satisfied.
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Remark 2.5. Our arguments can also be applied to resonances of P with a
larger real part, and give, as in [HeSj1, Theorem 10.14], a lower bound on their
width when the corresponding eigenvalue of PD is asymptotically simple.

3. Proof of Theorem 2.2.

Proceeding as in [CMR] and [Ma2], we consider the distorted operator Pθ

with θ = h ln(1/h), constructed with the unitary operator Uν as in (2.1), and with
F (x) = 0 on some arbitrary large compact set K ⊂ Rn, that we can assume to
contain Ö. Moreover, following the same idea as in [HeSj1, Section 9], we also
consider the corresponding operator P̃θ where the well has been filled-up, that is,

P̃θ = Pθ + W (x),

where W ∈ C∞0 (Ö), W (x0) > 0, W ≥ 0 everywhere, SuppW arbitrarily small
around x0 (in particular, the Hamilton flow of p + W has no trapped trajectories
with energy E0).

Then, proceeding as in [CMR, Section 7] (or [Ma2, Section 4]), one can
construct a function ψ0 ∈ C∞0 ((Rn\SuppW )×Rn) such that,

− Im p̃θ

(
x− t∂xψ0 − it∂ξψ0, ξ − t∂ξψ0 + it∂xψ0

) ≥ 1
C0

h ln
1
h

, (3.1)

for some constant C0 > 0 large enough, where t := 2C0θ, p̃θ is an almost-analytic
extension of the semiclassical principal symbol of P̃θ, and the inequality holds for
(x, ξ) such that |Re p̃θ(x, ξ)− E0| ≤ 〈ξ〉2/C0.

In particular, by [CMR, Proposition 7.2], we easily obtain,

∥∥etψ0/hTv
∥∥

L2(R2n)
= O(|h lnh|−1)

∥∥etψ0/hT (P̃θ − z)v
∥∥

L2(R2n)
, (3.2)

uniformly for h > 0 small enough, v ∈ L2(Rn), and |z − E0| ¿ h ln(1/h). Here
T = T1 is the so-called FBI-Bargmann transform defined by (8.5).

This means that the norm of (P̃θ − z)−1 is uniformly O(|h lnh|−1) when we
consider P̃θ as acting on the space Ht := L2(Rn) endowed with the norm,

‖v‖t :=
∥∥etψ0/hTv

∥∥
L2(R2n)

. (3.3)

From this point, one can proceed exactly as in [HeSj1, Proof of Proposition 9.6]
(that is, by considering a Grushin problem for Pθ, the inverse of which is obtained
by using the corresponding Grushin problem for PD, and by using Agmon-type
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estimates inside the island Ö), and, working with uθ := Uiθu (= u on K), one
concludes (2.5). Indeed, this proof never uses the analyticity of V , but just the
fact that one has a good enough control on the resolvent of the “filled-up well”-
operator.

Similarly, (2.6) is obtained as in the proof of [HeSj1, Theorem 9.9], mainly
by considering the spectral projector of Pθ as in [HeSj1, Formula (9.37)] (in that
case, u must be normalized, e.g., by requiring that ‖uθ‖t = 1).

Moreover, the same arguments also show that,

∥∥etψ0/hTuθ

∥∥
L2((Rn\Bd(x0,S−η))×Rn)

= O
(
e−(S−ε(η))/h

)
,

and thus, also,

‖uθ‖L2(Rn\Bd(x0,S−η)) = O
(
e−(S−ε′(η))/h

)
.

As a consequence, up to some constant factor of the type 1 + O(e−δ/h) (δ > 0),
the normalization of u does not depend on the particular choices of K, F , and ψ0.

Now, we come to the proof of (2.7).
Let χ1 ∈ C∞0 (Bd(x0, S − η)), such that χ1 = 1 in Bd(x0, S − 2η) (η > 0 fixed

arbitrarily small), and let χ2 ∈ C∞0 (Bd(x0, (1/2)(S + η))), such that χ2 = 1 in
Bd(x0, (1/2)(S − η)). Setting, for z ∈ γ := {z ∈ C; |z − λD| = h2},

Rθ(z) := χ1(PD − z)−1χ2 + (P̃θ − z)−1(1− χ2), (3.4)

one has (see [HeSj1, Formula (9.39)]),

(Pθ − z)Rθ(z) = I + Kθ(z), (3.5)

with,

Kθ(z) := [Pθ, χ1](PD − z)−1χ2 −W (P̃θ − z)−1(1− χ2)

= [−h2∆, χ1](PD − z)−1χ2 −W (P̃θ − z)−1(1− χ2).

Now, if W is taken in such a way that SuppW ⊂ Bd(x0, η), then, as in [HeSj1]
(in particular the proof of Lemma 9.4), Agmon estimates show that,

‖Kθ‖ = O
(
e−(S−ε(η))/2h

)
,
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uniformly with respect to h > 0 small enough and z ∈ γ, and where ε(η) → 0 as
η → 0+ (here, Kθ is considered as an operator acting on Ht). In particular, we
deduce from (3.5),

(Pθ − z)−1 = Rθ(z)
(
I + O(e−(S−ε(η))/2h)

)
.

Moreover, setting

k := h ln
1
h

, (3.6)

by (3.2) and (3.4), for z ∈ γ, we have,

‖Rθ(z)‖L (Ht) = O(h−2 + k−1) = O(h−2),

and thus, we obtain,

‖(Pθ − z)−1‖L (Ht) = O(h−2), (3.7)

uniformly for z ∈ γ and h > 0 small enough.
Now, in order to obtain estimates on u even very close to ∂Ö, we consider the

Dirichlet realization Ph of P on the h-dependent domain,

Mh :=
{
x ∈ Ö; dist(x, ∂Ö) ≥ k2/3

}
.

We denote by λh its first eigenvalue, and by vh the corresponding normalized
eigenstate. We also denote by dh the Agmon distance on Mh, associated with the
pseudo-metric (V − λh)+dx2 (so that, in particular, dh depends on h, too), and
we set,

ϕh(x) := dh(x, x0).

At first, with χ1 as before, we observe that (Ph − λD)χ1uD = (PD − λD)χ1uD =
O(h∞), and thus, by the Min-max principle (and since V ≥ E0 on Mh), we have
E0 ≤ λh ≤ λD +O(h∞) (in particular, λh = E0 +O(h)). Moreover, since x0 is the
only point of Mh where V reaches its (non-degenerate) minimum E0, and since
V −E0 ≥ δk2/3 À h near ∂Mh, standard techniques (see, e.g., [HeSj2, Section 3],
and [Si]) show that, actually, λh = λD + O(h∞), and the gap between λh and the
second eigenvalue of Ph behaves like h.

Since V − λh ≤ V − E0, we also have,
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ϕh(x) ≤ d(x0, x). (3.8)

Lemma 3.1. There exists a constant C1 ≥ 0, such that, for x ∈ Mh and
h > 0 small enough, one has,

ϕh(x) ≥ s(x)− C1k,

where, as before, k = h ln(1/h).

Proof. We set U±
h := {x ∈ Mh ; ±V (x) ≥ ±λh}. Then, since V (x)−E0 ∼

k2/3 À λh − E0 on ∂Mh, by definition, we have,

ϕh(x) = dh

(
U−

h , x
)

= inf
`∈Lx

∫

`

√
V (y)− λh|dy|,

where Lx stands for the set of C1 curves ` : [0, 1] → U+
h with `(0) ∈ U−

h and
`(1) = x. Moreover, since λh = E0 + E1h + O(h2) > E0, Assumptions (A2)–(A3)
imply that ∇V 6= 0 on {V = λh} for h > 0 small enough. Then, if ϕh(x) < Sh :=
dh(x0, Ö), standard arguments of Riemannian geometry (exploiting the fact that,
in that case, ˙̀(t) remains colinear to∇ϕh(`(t)) for any minimal geodesic `: see, e.g.,
[Mi], [HeSj2], and [Ma3, Section 3]) show that, for V (x) > λh, ϕh(x) is reached
at some minimal geodesic ` that can be re-parametrized in such a way that the map
t 7→ (`(t), (1/2) ˙̀(t)) becomes a null bicharacteristic of qh(x, ξ) := ξ2−(V (x)−λh).
In particular, such an ` verifies | ˙̀(t)| = 2

√
V (`(t))− λh, and thus, we obtain,

ϕh(x) = 2
∫ Tx

0

(V (`(t))− λh)dt,

where Tx = Tx(h) > 0 represents the time necessary for going from U−
h to x in the

new parametrization. Writing λh = E0 + hµh, where µh = E1 + O(h), this gives,

ϕh(x) = 2
∫ Tx

0

(V (`(t))− E0)dt− 2Txhµh

=
∫ Tx

0

√
V (`(t))− E0

√
| ˙̀(t)|2 + 4hµhdt− 2Txhµh

≥
∫

`

√
V (y)− E0d|y| − 2Txhµh

≥ d(U−
h , x)− 2Txhµh. (3.9)
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Moreover, since, for x close to x0, we have d(x0, x) = O(|x − x0|2), we see that
d(U−

h , x0) = O(h), and thus, by the triangular inequality, d(x0, x) ≤ d(U−
h , x)+Ch

for some constant C > 0. Combining with (3.9), we obtain,

ϕh(x) ≥ d(x0, x)− Ch− 2Txhµh ≥ s(x)− Ch− 2Txhµh, (3.10)

still for x verifying ϕh(x) < Sh. Thus, in that case, it remains only to prove that
Tx = O(ln(1/h)). To do so, we set (x(t), ξ(t)) := (`(t), (1/2) ˙̀(t)) = exp tHq(xh, 0),
where Hq(x, ξ) := (2ξ,∇V (x)) is the Hamilton field of qh, and xh := `(0) ∈
U−

h . If ε > 0 is any arbitrarily small fixed number, we see that Hq(x, ξ) remains
outside some fixed neighborhood of 0 on {(x, ξ); |x − x0| ≥ ε, qh(x, ξ) = 0}. As
a consequence, if |x − x0| ≥ ε, the time needed by ` to go from x to the set
{y; |y − x0| = ε} is bounded, uniformly with respect to h. Therefore, it remains
to estimate the time T̃ employed by ` to go from `(0) ∈ U−

h to {y; |y − x0| = ε}.
Since we stay in an arbitrarily small neighborhood of x0, we can assume x(t) ·
∇V (x(t)) ≥ 4δ2|x(t)|2 for t ∈ [0, T̃ ] and with some δ > 0 constant. Then, setting
f(t) := x(t) · ξ(t)/|x(t)|2, we compute,

ḟ(t) + 4(f(t))2 =
2|ξ(t)|2 + x(t) · ∇V (x(t))

|x(t)|2 ≥ 4δ2.

Therefore, on its domain of definition, the function g(t) := (δ − f(t))−1 verifies,

ġ ≥ 4
δ2 − f2

(δ − f)2
= 4

δ + f

δ − f
= 8δg − 4,

and thus, since g(0) = δ−1, we easily deduce,

g(t) ≥ 1
2δ

(1 + e8δt),

as long as f(t) < δ, and thus,

f(t) ≥ δ − 2δ

1 + e8δt
,

on the same interval. Now, if f(t1) = δ for some t1 ∈ [0, T̃ ), we fix δ1 < δ arbitrary,
and, for t close to t1, we set g1(t) := (δ1− f)−1. Using that ḟ(t) + 4(f(t))2 ≥ 4δ2

1 ,
the same procedure gives,
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g1(t) ≥ 1
2δ1

−
(

1
2δ1

+
1

δ − δ1

)
e8δ1(t−t1),

as long as f(t) > δ1, that is,

1
f(t)− δ1

≤
(

1
2δ1

+
1

δ − δ1

)
e8δ1(t−t1) − 1

2δ1
.

In particular, (f(t) − δ1)−1 remains bounded on any finite interval [t1, T1] where
f(t) > δ1, and this means that f(t) cannot take the value δ1 on [t1, T̃ ]. Thus, in
this case, f(t) necessarily remains ≥ δ on [t1, T̃ ]. Summing up, we have proved,

f(t) ≥ δ − 2δ

1 + e8δt
, (3.11)

on the whole interval [0, T̃ ]. Since,

d

dt
ln |x(t)| = x(t) · ẋ(t)

|x(t)|2 = 2f(t),

and |x(0)| ≥ δ′
√

h for some δ′ > 0 constant, we deduce from (3.11),

ln |x(t)| ≥ ln
(
δ′
√

h
)

+ 2δt−
∫ t

0

2δds

1 + e8δs
≥ ln(δ′

√
h) + 2δt−

∫ +∞

0

2δds

1 + e8δs
,

and thus, on [0, T̃ ],

|x(t)| ≥ δ′′
√

he2δt, (3.12)

with δ′′ = δ′e−C2 , C2 :=
∫ +∞
0

(2δds/(1 + e8δs)). Since δ′′
√

he2δt = ε when
t = (2δ)−1 ln(ε/δ′′

√
h), we deduce from (3.12) that, necessarily, one has T̃ ≤

(2δ)−1 ln(ε/δ′′
√

h), and, by (3.10), it follows that,

ϕh(x) ≥ s(x)− C ′1k, (3.13)

for x verifying ϕh(x) < Sh, and some constant C ′1 > 0, independent of x. On the
other hand, ϕh(x) reaches Sh at some point xh verifying V (xh) = λ0 = E0 +O(h)
(and xh away from some fix neighborhood of x0), and thus dist(xh, Ö) = O(h)
(where dist stands for the Euclidian distance). As a consequence, the Agmon
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distance d(xh, Ö) = O(h), too, and thus, d(x0, xh) ≥ S − Ch for some constant
C > 0. Therefore, by continuity, (3.13) also proves that Sh ≥ S − C1k with
C1 = C ′1 + C, and it follows that (3.13) is still valid if ϕh(x) ≥ Sh (since, by
definition, s(x) ≤ S everywhere). ¤

Lemma 3.2. There exists a constant N0 ≥ 0, such that,

∥∥eϕh/hvh

∥∥
H1(Mh)

= O(h−N0),

uniformly for h > 0 small enough.

Proof. Following [HeSj2], we set,

φ(x) :=





ϕh(x)− Ch ln
[
ϕh(x)

h

]
if ϕh(x) ≥ Ch;

ϕh(x)− Ch lnC if ϕh(x) ≤ Ch,

where C ≥ 1 is some constant that will be fixed large enough later on. Then,
we use the following identity (that is at the origin of Agmon estimates: see, e.g.,
Lemma 8.2 below, and [HeSj2, Theorem 1.1]),

Re
〈
eφ/h(P − λh)vh, eφ/hvh

〉

= h2
∥∥∇(eφ/hvh)

∥∥2 +
〈
(V − λh − (∇φ)2)eφ/hvh, eφ/hvh

〉
. (3.14)

Now, if C is taken large enough, by (3.8) we see that Mh ∩{ϕh(x) ≥ Ch} ⊂ {V ≥
λh}. Moreover, on this set we have,

∇φ =
(

1− Ch

ϕh

)
∇ϕh,

and thus, using that (∇ϕh)2 ≤ (V − λh)+,

V − λh − (∇φ)2 ≥ V − λh −
(

1− Ch

ϕh

)2

(V − λh) ≥ Ch
V − λh

ϕh
.

Writing again λh = E0 + µhh with µh = E1 + O(h), and using again (3.8) and
the fact that d(x0, x) ≤ C0(V (x) − E0) near x0 (for some C0 > 0 constant), we
deduce,
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V (x)− λh − (∇φ(x))2 ≥ Ch
V (x)− E0

d(x0, x)
− Ch

µhh

ϕh
≥ Ch

C0
− µhh,

on Mh ∩ {ϕh(x) ≥ Ch} ∩ {|x− x0| ¿ 1}, and thus, taking C large enough,

V (x)− λh − (∇φ(x))2 ≥ Ch

2C0
,

on the same set. On the other hand, away from some neighborhood of x0, in Mh

we have (possibly by increasing C again),

V (x)− λh − (∇φ(x))2 ≥ hk2/3

C
.

Inserting these estimates into (3.14), and using that the left-hand side is 0, we
obtain,

h2
∥∥∇(eφ/hvh)

∥∥2 + hk2/3
∥∥eφ/hvh

∥∥2

{ϕh≥Ch} = O
(‖eφ/hvh‖2{ϕh≤Ch}

)
,

and thus, since φ ≤ Ch(1− lnC) ≤ 0 on {ϕh ≤ Ch}, we conclude,

h2
∥∥∇(eφ/hvh)

∥∥2 + hk2/3
∥∥eφ/hvh

∥∥2 = O(1).

Then, observing that eφ/h ≥ (h/M)Ceϕh/h with M := sup ϕh = O(1), the result
follows. ¤

Now, let χh ∈ C∞0 (Mh), such that χh = 1 on {x ∈ Ö; dist(x, ∂Ö) ≥ 2k2/3}
and, for all α, ∂αχh = O(k−2|α|/3) (such a χh exists because ∂Ö is a hypersurface
of Rn). In particular, χhvh is in the domain of Pθ, and one has,

Lemma 3.3. There exists a constant N1 ≥ 0, such that, for the positively
oriented contour γ = {z ∈ C; |z − λD| = h2},

∥∥∥∥
1

2iπ

∫

γ

(z − Pθ)−1χhvhdz − χhvh

∥∥∥∥
t

= O
(
h−N1e−S/h

)
,

uniformly for h > 0 small enough.

Proof. Setting wh := χhvh, we have,

Pθwh = Phwh = λhwh+[P, χh]vh = λhwh−2h2(∇χh)(∇vh)−h2(∆χh)vh. (3.15)
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Moreover, on the support of ∇χh, we have dist(x, ∂Ö) ≤ 2k2/3, and thus, by
standard properties of the Agmon distance near ∂Ö (see, e.g., below Lemma 4.1,
and [HeSj1, Section 10]), we see that s(x) ≥ S − Ck for some constant C > 0.
Therefore, by Lemma 3.1, we also have ϕh(x) ≥ S − C ′k (C ′ = C + C0), and by
Lemma 3.2, we deduce from (3.15),

‖(Pθ − λh)wh‖L2 = O
(
h−Ne−S/h

)
,

with some constant N ≥ 0. As a consequence, since ψ0 is bounded and T is an
isometry, rh := (Pθ − λh)wh verifies,

‖rh‖t =
∥∥h−2C0ψ0Trh

∥∥ = O(h−M )‖rh‖L2 = O
(
h−M ′

e−S/h
)
, (3.16)

with M, M ′ > 0 constant. Then, writing,

1
2iπ

∫

γ

(z − Pθ)−1whdz − wh =
1

2iπ

∫

γ

[
(z − Pθ)−1 − (z − λh)−1

]
whdz

=
1

2iπ

∫

γ

1
z − λh

(z − Pθ)−1rhdz, (3.17)

and using (3.7) and (3.16), the result immediately follows. ¤

Using the equation (Ph−λh)vh = 0 and the ellipticity (in the standard sense)
of Ph, it is not difficult to deduce from (3.16) and Lemma 3.2, that, for all ` ≥ 0,
there exists M` ≥ 0 such that,

∥∥P `
θ rh

∥∥
t
= O

(
h−M`e−S/h

)
. (3.18)

As a consequence, applying P `
θ to (3.17), we deduce from (3.18),

∥∥∥∥P `
θ

(
1

2iπ

∫

γ

(z − Pθ)−1χhvhdz − χhvh

)∥∥∥∥
t

= O
(
h−N`e−S/h

)
, (3.19)

for all ` ≥ 0 and some N` ≥ 0 constant. Then, using the classical ellipticity of
Pθ and the fact that, for all u, ‖u‖L2 = ‖Tu‖L2 = O(h−M‖u‖t), we deduce from
(3.19),

∥∥∥∥
1

2iπ

∫

γ

(z − Pθ)−1χhvhdz − χhvh

∥∥∥∥
Hs(Rn)

= O
(
h−Nse−S/h

)
, (3.20)
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for all s ≥ 0 and some constant Ns ≥ 0.
It also follows from Lemmas 3.2 and 3.3, that,

∥∥∥∥
1

2iπ

∫

γ

(z − Pθ)−1χhvhdz

∥∥∥∥
t

= 1 + O(e−δ/h),

for some δ > 0 constant, and therefore, we necessarily have,

uθ =
α′

2iπ

∫

γ

(z − Pθ)−1χhvhdz,

with |α′| = 1 + O(e−δ/h). In particular, by (3.20),

∥∥uθ − α′χhvh

∥∥
Hs = O

(
h−Nse−S/h

)
. (3.21)

Then, since uθ = u on K, (2.7) easily follows from Lemma 3.1, Lemma 3.2, and
(3.21).

4. Extension of the WKB solution.

Let x1 ∈ Γ. In this section, we will extend to a neighborhood of x1 the WKB
solution,

w(x, h) ≈ h−n/4a(x, h)e−d(x0,x)/h, (4.1)

that approximates both the eigenfunction uD(x, h) of PD near x0 (see (2.2)) and
the resonant state u(x, h) (Theorem 2.2).

4.1. Extension up to the caustic set.
The extension in the island will be done along the geodesic with respect to

the Agmon distance from x0 to x1.
Let q(x, ξ) = ξ2−V (x) and Hq = 2ξ ·∂/∂x+∂xV (x)·∂/∂ξ its Hamilton vector

field. Then, one can see as in [HeSj1] that the integral curve γ̃(t) = (x̃(t), ξ̃(t)) of
Hq starting at (x̃(0), ξ̃(0)) = (x1, 0) verifies,

(x(−∞), ξ(−∞)) = (x0, 0).

Moreover, its projection on the x-space is the unique minimal geodesic between
x0 and x1 staying in Ö ∪ {x1} (see [HeSj1, Section 10] and [HeSj2]).

If φ(x) := d(x0, x)−S, we learn from [HeSj2] that φ is C∞ in a neighborhood
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Ω of x̃([−∞, 0)), and the Lagrangian manifold,

Λ = {(x,∇φ(x));x ∈ Ω},

is the outgoing stable manifold of dimension n associated to the fixed point (x0, 0)
of Hq.

In particular, Λ is Hq-invariant and contains γ̃([−∞, 0)). Moreover, since Hq

does not vanish at γ̃(0) = (x1, 0) by (A3), Λ can be extended by the flow of Hq to
a larger Lagrangian manifold (that we still denote by Λ) that contains γ̃([−∞, 0]).
The natural projection Π : Λ → Rn

x is singular at γ̃(0), and, as shown in [HeSj1,
Lemma 10.1], the kernel of dΠ(x1, 0) is a one-dimensional vector space generated
by Hq(x1, 0).

Let us choose Euclidian coordinates x centered at x1 such that Tx1(∂Ö) is
given by xn = 0, and ∂/∂xn is the exterior normal of Ö at this point. Then by
Assumption (A3),

V (x)− E0 = −C0xn + W (x), (4.2)

where C0 > 0 is a constant and W (x) = O(|x|2). In a neighborhood of the point
γ̃(0), the Lagrangian manifold Λ is defined by a real-valued C∞ function g(x′, ξn)
with g(0) = 0, dg(0) = 0, that is,

Λ =
{

(x, ξ); ξ′ =
∂g

∂x′
(x′, ξn), xn = − ∂g

∂ξn
(x′, ξn)

}
. (4.3)

Moreover, there exist real-valued smooth functions ξc
n(x′), a(x′), b(x′) and

ν0(x′, ξn), ν1(x′, ξn), such that,

∣∣ξc
n(x′)

∣∣ + |a(x′)|+ |b(x′)| = O(|x′|2) as |x′| → 0; (4.4)

ν0 = ν1 + O
(|ξn − ξc

n(x′)|) =
1
C0

+ O(|x′|+ |ξn|); (4.5)

g(x′, ξn) = a(x′) + b(x′)
(
ξn − ξc

n(x′)
)

+
1
3
ν0(x′, ξn)

(
ξn − ξc

n(x′)
)3; (4.6)

∂g

∂ξn
(x′, ξn) = b(x′) + ν1(x′, ξn)

(
ξn − ξc

n(x′)
)2

. (4.7)

All these properties are proved in [HeSj1, pages 136–148] and do not require the
analyticity of the potential.

Then, near (x1, 0), the caustic set C (that, by definition, is the set where φ
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fails to be smooth, and thus, the set of x for which the roots ξn(x) of the equation
xn = −∂ξn

g(x′, ξn) are not smooth) is given by,

C = {x;xn + b(x′) = 0}. (4.8)

It is shown in [HeSj1, Lemma 10.2], that there exists a positive constant C such
that

φ(x)|C ≥ C(V (x)− E0). (4.9)

(The proof of (4.9) does not use the analyticity, but rather the fact that, since
V |C ≥ 0, one has |∇(V |C )| = O(

√
V |C ).)

This estimate together with Assumptions (A3) and (A4) mean that φ(x)|C is
non-negative and quadratic along Γ, with φ |Γ= 0.

Let Ω̃ be a small neighborhood of γ([−∞, 0]) and let

Ω̃+ =
{
x ∈ Ω̃; xn + b(x′) > 0

}
, Ω̃− = Ω̃\(Ω̃+ ∪ C

)
. (4.10)

Then the phase function −d(x0, x) = −φ(x)− S of (4.1) is a C∞ function defined
in Ω̃−. The symbol a(x, h) can also be extended to Ω̃− by solving successively
for aj(x) in (2.3) the transport equations (that are first-order ordinary differ-
ential equations along the integral curves of Hq), and by re-summing the series∑

j≤0 hjaj .
More generally, the previous arguments also permit us to extend w in the

open set defined as the union of all smooth minimal geodesics included in Ö and
starting from x0. We denote this set by Ω.

4.2. Extension beyond the caustic set.
In order to extend the WKB solution w beyond the caustic set, we follow the

idea of [HeSj1] and represent hn/4eS/hw in the integral form,

I[c](x, h) = h−1/2

∫

γ(x)

e−(xnξn+g(x′,ξn))/hc
(
x′, ξn, h

)
dξn. (4.11)

For x in Ω̃− close to x1, the phase function xnξn + g(x′, ξn) has two real critical
points (see (4.7)). The steepest descent method at one of these points gives us the
asymptotic expansion of I[c]. Comparing this with the symbol a, we can determine
c(x′, ξn, h) so that the asymptotic expansion of eS/hw coincides with that of I[c]
in Ω̃−.

Hence, in order to determine a possible asymptotic expansion of eS/hw in Ω̃+,
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it is enough to compute it for I[c].
If g was analytic with respect to ξn, we would find two complex critical points

for x ∈ Ω̃+, one of them corresponding to an outgoing solution (i.e. resonant
state). In our C∞ case, however, g is only defined for real ξn. So we will extend
g(x′, ·) almost-analytically (see Appendix for the definition) to a (h-dependent)
small complex neighborhood of ξn = 0. Then, we will apply the steepest descent
method for x ∈ Ω̃+ sufficiently close to x1 so that the imaginary part of the critical
point ξn remains sufficiently small.

In the following, we carry out the above procedure in several steps.

4.2.1. Integral representation in Ω̃−.
We first determine the C∞ classical symbol c(x′, ξn, h) ∼ ∑∞

j=0 cj(x′, ξn)hj

and the integration contour γ(x) for x ∈ Ω̃−.
Let x3 be in Ω̃− close to x1 and Ũ a small neighborhood of x3. The critical

points of the phase function xnξn + g(x′, ξn) are the zeros of the function xn +
(∂g/∂ξn)(x′, ξn). From (4.7), we see that for x ∈ Ũ , there are two real critical
points ξ+

n (x), ξ−n (x), and they verify,

ξ±n (x) ∼ ξc
n(x′)±

√
−(xn + b(x′))
ν1(x′, ξc

n(x′))
,

as |xn + b(x′)| → 0. We define a sufficiently small real open interval γ(x) so that it
contains ξ+

n (x) inside as the only non-degenerate minimal point of xnξn+g(x′, ξn).
The minimal value is

φ(x) = xnξ+
n (x) + g

(
x′, ξ+

n (x)
)
. (4.12)

Then by the steepest descent method, we obtain the asymptotic expansion as
h → 0 of I[c],

I[c](x, h) ∼ e−φ(x)/h
∞∑

j=0

bj(x)hj , (4.13)

for some C∞ functions bj(x) defined on Ũ . In particular,

b0(x) =
√

π

r(x)
c0

(
x′, ξ+

n (x)
)
,

where
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r(x) =
1
2

∂2g

∂ξ2
n

(
x′, ξ+

n (x)
)
.

Moreover, the map (defined by (4.13)) that associates a sequence of functions
{bj(x)}∞j=0 on Ũ to a sequence of functions {cj(x′, ξn)}∞j=0 on U = {(x′, ξ+

n (x));x ∈
Ũ} is bijective, and we define the function c(x′, ξn, h) as a realization of the inverse
image of {aj(x)}∞j=0 by this map. In particular,

c0

(
x′, ξ+

n (x)
)

=

√
r(x)
π

a0(x). (4.14)

4.2.2. Extension of c(x′, ξn, h) to a neighborhood of (x′, ξn) =
(0,0).

The symbol c(x′, ξn, h), previously defined in U , formally verifies,

eg/h(P̂ − ρ(h))
(
e−g/hc

) ∼ 0. (4.15)

Here P̂ = −h2∆x′ − ξ2
n + V (x′, h(∂/∂ξn)), where V (x′, h(∂/∂ξn)) is considered as

a pseudodifferential operator whose action on e−g/hc is defined by the standard
asymptotic expansion,

V

(
x′, h

∂

∂ξn

)(
e−g/hc

)

:= e−g/h
∑

`≥0

h`

`!
∂`

xn
V

(− ∂ξn
g
)
∂`

η

(
c(x′, η)e−κ(x′,ξn,η)/h

)∣∣∣∣
η=ξn

,

where κ(x′, ξn, η) := g(x′, η)− g(x′, ξn)− (η − ξn)∂ξn
g(x′, ξn).

(4.15) leads us to transport equations, which are also differential equations
along the integral curves of Hq on Λ. The flows emanating from U covers a full
neighborhood of (x′, ξn) = (0, 0), and thus we have extended c there.

4.2.3. Critical points and the extension of φ.
Let N ≥ 1, k = h ln(1/h), and let ν̃0 be a holomorphic (Nk)1/3-approximation

of ν0 with respect to ξn (in the sense of Lemma 8.1), where ν0 is the function
appearing in (4.6). Then, setting,

g̃(x′, ξn) := a(x′) + b(x′)
(
ξn − ξc

n(x′)
)

+
1
3
ν̃0(x′, ξn)

(
ξn − ξc

n(x′)
)3 (4.16)
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we see that g̃ is a holomorphic (Nk)1/3-approximation of g with respect to ξn, and
we look for the critical points of ξn 7→ xnξn + g̃(x′, ξn), that is, the roots of the
equation with respect to ξn,

xn +
∂g̃

∂ξn
(x′, ξn) = 0. (4.17)

Recalling the definition of ν1(x′, ξn) in (4.7), we fix a small enough neighborhood
Ω′ of (x′, ξn) = (0, 0), such that infΩ′ ν1 ≥ c1 for some constant c1 > 0. Then,
possibly by shrinking a little bit Ω̃+, we have,

Lemma 4.1. Let x ∈ Ω̃+ ∩ {xn + b(x′) ≤ c1(Nk)2/3}. Then, the equation
(4.17) has two complex roots ξ−i

n (x), ξ+i
n (x) satisfying

ξ±i
n (x) ∼ ξc

n(x′)± i

√
xn + b(x′)

ν̃1(x′, ξc
n(x′))

as xn + b(x′) tends to 0, where ν̃1 is a holomorphic (Nk)1/3-approximation in the
ξn-variable of ν1(x′, ξn). Moreover, setting,

φ̃(x) = xnξ−i
n (x) + g̃

(
x′, ξ−i

n (x)
)
, (4.18)

one has,

Im∇xφ̃(x) = − 1√
ν̃1(x′, ξc

n(x′))

(
xn + b(x′)

)1/2∇(
xn + b(x′)

)
+ O

(
xn + b(x′)

)
,

(4.19)

and there exists ε(h) = O(h∞) real, such that,

Re φ̃(x) ≥ ε(h), (4.20)

for all x ∈ Ω̃+ ∩ {xn + b(x′) ≤ c1(Nk)2/3} and α ∈ Nn.

Proof. From (4.16), we have,

xnξn + g̃(x′, ξn) = a(x′) + xnξc
n(x′) +

(
xn + b(x′)

)(
ξn − ξc

n(x′)
)

+
1
3
ν̃0(x′, ξn)

(
ξn − ξc

n(x′)
)3

, (4.21)
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xn +
∂g̃

∂ξn
(x′, ξn) = xn + b(x′) + ν̃1(x′, ξn)

(
ξn − ξc

n(x′)
)2

, (4.22)

where, actually, ν̃1(x′, ξn) is a holomorphic (Nk)1/3-approximations in the ξn-
variable of ν1(x′, ξn).

We set,

xn + b(x′) = −z2.

If ξn is a critical point of the phase, the left-hand side of (4.22) vanishes, and one
has,

z =
√

ν̃1(x′, ξn)
(
ξn − ξc

n(x′)
)
.

Since ν̃1(x′, ξc
n(x′)) = 1/C0 + O(|x′|), and ν̃1(x′, ξn) is holomorphic with respect

to ξn in {| Im ξn| ≤ (Nk)1/3}, for z and x′ small enough this equation is solvable
with respect to ξn, and the solution is given by the Lagrange inversion formula,

ξn = ξc
n(x′) + Y (x′, z),

with,

Y (x′, z) :=
∞∑

k=1

dk−1

dξk−1
n

(
ν̃1(x′, ξn)

)−k/2 |ξn=ξc
n(x′)

zk

k!
, (4.23)

that is holomorphic with respect to z in {| Im z| ≤ √
c1(Nk)1/3}. Then, taking the

sign into account, we have,

ξ±n (x) = ξc
n(x′) + Y

(
x′,±

√
−xn − b(x′)

)
,

for x ∈ Ω̃−, and,

ξ±i
n (x) = ξc

n(x′) + Y
(
x′,±i

√
xn + b(x′)

)
,

for x ∈ Ω̃+ ∩ {xn + b(x′) ≤ c1(Nk)2/3}.
We again suppose ξn is a critical point. Then xnξn + g̃ can be represented in

terms of x′ and z, as,

xnξn + g̃(x′, ξn) = a(x′)− b(x′)ξc
n(x′)− ξc

n(x′)z2 − ν̃(x′, z)z3 (4.24)
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where ν̃(x′, z) is smooth in x′, holomorphic in z for {| Im z| ≤ √
c1(Nk)1/3}, and,

ν̃(x′, z) =
2

3
√

ν̃1(x′, ξc
n(x′))

+ O(z) (4.25)

as z → 0. Let Φ(x′, z) be the right-hand side of (4.24). Then, for x ∈ Ω̃−, the
critical value is,

φ̃(x) = Φ
(
x′,

√
−xn − b(x′)

)
= φ(x) + O(h∞), (4.26)

and, for x ∈ Ω̃+ ∩ {xn + b(x′) ≤ c1(Nk)2/3},

φ̃(x) = Φ
(
x′,−i

√
xn + b(x′)

)
. (4.27)

In particular, since the functions a, b and ξc
n are all real valued, we have,

Im φ̃(x) = −(
xn + b(x′)

)3/2 Re ν̃
(
x′,−i

√
xn + b(x′)

)
,

for x ∈ Ω̃+ ∩ {xn + b(x′) ≤ c1(Nk)2/3}, and thus, in view of (4.4) and (4.25), the
estimate (4.19) easily follows.

In order to prove (4.20), recall that φ is solution of the eikonal equation,

q

(
x,

∂φ

∂x

)
+ E0 =

(
∂φ

∂x

)2

− V (x) + E0 = 0.

By (4.26), this implies that Φ verifies,

(
∂Φ
∂x′

− ∂b

∂x′
1
2z

∂Φ
∂z

)2

+
(

1
2z

∂Φ
∂z

)2

− V
(
x′,−z2 − b(x′)

)
+ E0 = O(h∞),

for z real close enough to 0. Since in addition ∂Φ/∂z = O(|z|) by (4.24), we see
that the left-hand side is holomorphic in z for {| Im z| ≤ √

c1(Nk)1/3}, and thus,
returning to the x variable, we easily deduce that φ̃ verifies,

(
∂φ̃

∂x

)2

− V (x) + E0 = O(h∞),

uniformly for x ∈ Ω̃+ ∩ {xn + b(x′) ≤ c1(Nk)2/3} and h > 0 small enough. In
particular, taking the imaginary part, we obtain,
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∇ Im φ̃(x) · ∇Re φ̃(x) = O(h∞). (4.28)

Then, following [HeSj1], we take local coordinates (y′, yn) such that {xn + b = 0}
= {yn = 0} and ∇(xn + b) · ∇ = ∂/∂yn. In view of (4.19), we obtain,

∇ Im φ̃(x) · ∇ = − 1√
ν1(x′, ξc

n(x′))
y1/2

n

∂

∂yn
+

n∑

j=1

O(yn)
∂

∂yj
,

and the vector field ∇ Im φ̃(x) · ∇ can be desingularized at yn = 0 by setting
(z′, zn) := (y′, y1/2

n ), leading to,

∇ Im φ̃(x) · ∇ =
(
− 1

2
√

ν1(x′, ξc
n(x′))

+ O(zn)
)

∂

∂zn
+

n−1∑

j=1

O(z2
n)

∂

∂zj
.

Therefore, using (4.9) and (4.28), we immediately deduce (4.20). ¤

4.2.4. Modification of I[c].
Let us introduce the notation:

Ω(ε1, ε2) =
{
x ∈ Ω̃; ε1 < xn + b(x′) < ε2

}
(4.29)

for two real small numbers ε1 < ε2. We want to extend I[c], which is so far defined
in Ω(−δ, 0) for some δ > 0, to Ω(−δ, c1(Nk)2/3).

If x ∈ Ω(0, c1(Nk)2/3), then by Lemma 4.1, | Im ξ−i
n (x)| ≤ (Nk)1/3. We

modify the integration contour γ(x) in (4.11) within this complex strip so that it
remains to be a steepest descent curve passing by ξ−i

n (x) for x ∈ Ω(0, c1(Nk)2/3).
A careful observation of the real part of the phase as in [HeSj1, Remark 10.4],
gives the following lemma:

Lemma 4.2. Let δ > 0 be small enough. Then, for x ∈ Ω(−δ, c1(Nk)2/3),
there exists a piecewise smooth curve γN (x, h) in a small complex neighborhood of
ξn = ξc

n(x′) satisfying the following properties:

( i ) γN (x, h) is included in a band {ξn ∈ C; | Im ξn| ≤ (Nk)1/3} and the extrem-
ities are independent of x (i.e. fixed when h is fixed).

( ii ) If x ∈ Ω(−δ, 0), γN (x, h) contains ξ+
n (x), and along γN (x, h), one has,

Re
(
xnξn + g̃(x′, ξn)

)− φ(x)

≥ δ1

(|xn + b(x′)|1/2 +
∣∣ξn − ξ+

n (x)
∣∣)∣∣ξn − ξ+

n (x)
∣∣2
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for some constant δ1 > 0. Moreover, |ξn − ξ+
n (x)| ≥ δ1(Nk)1/3 at the

extremities of γN (x, h).
(iii) If x ∈ Ω(0, c1(Nk)2/3), γN (x, h) contains ξ−i

n (x), and along the contour
γN (x, h), one has,

Re
(
xnξn + g̃(x′, ξn)− φ̃(x)

)

≥ δ1

(|xn + b(x′)|1/2 +
∣∣ξn − ξ−i

n (x)
∣∣)∣∣ξn − ξ−i

n (x)
∣∣2

for some constant δ1 > 0. Moreover, |ξn − ξ−i
n (x)| ≥ δ1(Nk)1/3 at the

extremities of γN (x, h).

Now, we also define a holomorphic (Nk)1/3-approximation c̃(x′, ·, h) of the
symbol c(x′, ·, h) by writing c ∼ ∑

j≥0 hjcj , and by taking a holomorphic (Nk)1/3-
approximation c̃j of cj , and by re-summing the formal symbol

∑
j≥0 hj c̃j (note

that here, each c̃j depends on h, but in a very well-controlled way).
With these c̃(x′, ·, h) and γN (x, h), we define the modified integral represen-

tation of eS/hw by the formula,

ĨN [c̃](x, h) = h−1/2

∫

γN (x,h)

e−(xnξn+g̃(x′,ξn))/hc̃(x′, ξn, h)dξn. (4.30)

Lemma 4.3. There exists a constant δ2 > 0 such that, for x ∈ Ω(−δ, 0), and
for all N ≥ 1, one has,

∂α
(
I[c](x, h)− ĨN [c̃](x, h)

)
= O

(
hδ2N−1/2−|α|e−φ(x)/h

)
.

Proof. By definition (c, g) and (c̃, g̃) coincide on the real, up to O(h∞).
Therefore, substituting the real contour γ(x) to γN (x, h) in the expression of
ĨN [c̃](x, h), we obtain an integral JN (x) that coincides with I[c](x, h) up to
O(h∞e−φ(x)/h). Then, modifying continuously γ(x) into γN (x, h) in JN (x), we
recover ĨN [c̃](x, h) up to error terms coming from the fact that γ(x) and γN (x, h)
do not have the same extremities. However, in view of Lemma 4.2 (ii) and the fact
that, along γ(x), the minimum of Re(xnξn + g̃(x′, ξn)) − φ(x) is non-degenerate,
we see that the deformation can be done in such a way that these error terms are
O(e−(φ(x)+δ2Nk)/h) = O(hδ2Ne−φ(x)/h), with δ2 = δ4

1 . ¤

Lemma 4.4. As h → 0, one has

(P − ρ(h))ĨN [c̃] = O
(
hδ2Ne−Re φ̃(x)/h

)
,
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uniformly in Ω(−δ, c1(Nk)2/3).

Proof. In view of (4.15), it is enough to check,

P
(
ĨN [c̃]

)
= h−1/2

∫

γN (x,h)

e−xnξn/hP̂
(
e−g̃/hc̃

)
dξn + O

(
hδ2Ne−Re φ̃(x)/h

)
.

This can be done exactly in the same way as Proposition 10.5 in [HeSj1], with
the only difference that, in our case, the values of Re(xnξn + g) at the extremities
of γN (x, h) are greater than Re φ̃(x) + δ2Nk. ¤

4.2.5. Asymptotic expansion of ĨN [c̃].
Here, we fix c2 ∈ (0, c1), and we study the asymptotic behavior of ĨN [c̃](x, h)

as h tends to 0, for x in Ω(c2(Nk)2/3, c1(Nk)2/3). Setting,

r̃(x) :=
1
2

∂2g̃

∂ξ2
n

(x′, ξ−i
n (x))

(
= −i

√
ν̃1(x′, ξc

n(x′))(xn + b(x′)) + O(|xn + b(x′)|)),

we have,

Proposition 4.5. For all integers L, M and N large enough, and for x in
Ω(c2(Nk)2/3, c1(Nk)2/3), one has,

ĨN [c̃](x, h) =
e−φ̃(x)/h

√
r̃(x)





L+[M/2]∑
m=0

βm(x)
{

h

r̃(x)3

}m

+ RL,M,N (x, h)



 , (4.31)

with, for any α ∈ Nn,

∣∣∂α
x RL,M,N (x, h)

∣∣ ≤ CN,αhδαN−1/2
M∑

m=0

Cm+1
L,α

(
hm

Nk

)m/2

+ CL,αhL+1/2 + h−1/2CM+1
L,α

(
hM

Nk

)M/2

, (4.32)

where the positive constant δα does not depend on (L,M,N), while CN,α does not
depend on (L,M), and CL,α does not depend on (M, N). Moreover, the coefficients
of the symbol verify,
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β0(x) =
√

πc̃0

(
x′, ξ−i

n (x)
)

=
√

πc̃0

(
x′, ξc

n(x′)
)

+ O
(√

xn + b(x′)
)
,

βm(x) = O(1) (m = 0, 1, . . .) as xn + b(x′) → 0.
(4.33)

In particular, taking M = 2[Nk/C ′Lh] with C ′L > 0 large enough depending on L

only, one obtains,

ĨN [c̃](x, h) =
e−φ̃(x)/h

√
r̃(x)





L+[Nk/C′Lh]∑
m=0

βm(x)
{

h

r̃(x)3

}m

+ O
(
hδLN + hL

)


 , (4.34)

uniformly for x ∈ Ω(c2(Nk)2/3, c1(Nk)2/3) and h > 0 small enough, and where
the positive constant δL does not depend on N large enough.

Proof. For x ∈ Ω(c2(Nk)2/3, c1(Nk)2/3), setting η = ξn − ξ−i
n (x), we can

write,

xnξn + g̃(x′, ξn) = φ̃(x) + r̃(x)η2 + G(x, η)η3

where G(x, η) :=
∫ 1

0
((1− t)3/2)∂3

ξn
g̃(x′, ξ−i

n (x)+ tη)dt is holomorphic with respect
to η in {|Re η| < δ1, | Im η| < δ1(Nk)1/3}, with δ1 > 0 small enough (independent
of N). Then, we set,

r̃(x)η2 + G(x, η)η3 = r̃(x)ζ2,

so that η̂ = η/r̃, ζ̂ = ζ/r̃ verify,

η̂
√

1 + G(x, r̃(x)η̂)η̂ = ζ̂,

where the square root is 1 for η̂ = 0. This equation is solvable with respect to
η̂, and gives η̂ = η̂(x, ζ̂) where the function η̂(x, ζ̂) is smooth with respect to
x ∈ Ω(c2(Nk)2/3, c1(Nk)2/3) and holomorphic with respect to ζ̂ in some fixed
neighborhood of 0, and (∂η̂/∂ζ̂)|ζ̂=0 = 1.

Changing the variables from ξn to ζ in (4.30), we obtain,

ĨN [c̃](x, h) = h−1/2e−φ̃(x)/h

∫

ΓN (x,h)

e−r̃(x)ζ2/hF

(
x,

ζ

r̃
, h

)
dζ,

where the contour ΓN (x, h) is such that,
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0 ∈ ΓN (x, h); Re(r̃(x)ζ2) ≥ δ3|r̃(x)| · |ζ|2 along ΓN (x, h); (4.35)

|ζ| ≥ δ3|r̃(x)| at the extremities of ΓN (x, h), (4.36)

for some positive constant δ3, and where the symbol,

F
(
x, ζ̂, h

)
:= c̃

(
x′, ξ−i

n (x) + r̃(x)η̂(x, ζ̂), h
)∂η̂

∂ζ̂

(
x, ζ̂

)

can be developed asymptotically into,

F
(
x, ζ̂, h

) ∼
∑

`≥0

F`

(
x, ζ̂

)
h`,

with F` holomorphic with respect to ζ̂ in a fixed neighborhood of 0, and F0(x, 0) =
c̃0(x′, ξ−i

n (x)). Actually, F` also depends on N , but using Lemma 8.1 (ii) and the
fact that |r̃(x)| ∼ (Nk)1/3, we easily obtain that the derivatives of F` verify,

∣∣∣∂β

ζ̂
F`

∣∣∣ ≤ C
1+|β|
` β!,

for some constant C` > 0 independent of N .
Now we set y = r̃(x)1/2ζ, where r̃(x)1/2 is the branch such that r̃(x)1/2 ∼

e−iπ/4(ν1(xn + b))1/4, and, using (4.35)–(4.36), we see that a new slight modifica-
tion of the contour of integration gives,

ĨN [c̃](x, h) =
e−φ̃(x)/h

√
hr̃(x)

( ∫ δ4r̃3/2

−δ4r̃3/2
e−y2/hF

(
x,

y

r̃3/2
, h

)
dy + O

(
e−δ5r̃(x)3/h

))

for some constants δ4, δ5 > 0. As a consequence, using again that |r̃(x)| ∼ (Nk)1/3

and writing F =
∑L

`=0 F`h
` + O(hL+1), we obtain,

ĨN [c̃](x, h)

=
e−φ̃(x)/h

√
hr̃(x)

( L∑

`=0

h`

∫ δ4r̃3/2

−δ4r̃3/2
e−y2/hF`

(
x,

y

r̃3/2

)
dy + O

(
hδ6N + hL+1

))

with some new positive constant δ6.
At this point, we can proceed with the usual Laplace method in order to

estimate each term of the previous sum. Writing,
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F`

(
x,

y

r̃3/2

)
=

∞∑
m=0

F`,m(x)
ym

r̃3m/2
=

M∑
m=0

F`,m(x)
ym

r̃3m/2
+ SM,`,

with |F`,m(x)| ≤ Cm+1
` and |SM,`| ≤ 2CM+2

` |y/r̃3/2|M+1, we obtain,

ĨN [c̃](x, h)

=
e−φ̃(x)/h

√
hr̃(x)

( L∑

`=0

M∑
m=0

F`,m(x)h`

∫ δ4r̃3/2

−δ4r̃3/2
e−y2/h

(
y

r̃3/2

)m

dy + R
(1)
L,M,N (x)

)

=
e−φ̃(x)/h

√
hr̃(x)

( L∑

`=0

M∑
m=0

F`,m(x)h`

∫ +∞

−∞
e−y2/h

(
y

r̃3/2

)m

dy

+ R
(1)
L,M,N (x) + R

(2)
L,M,N (x)

)

=
e−φ̃(x)/h

√
hr̃(x)

( L∑

`=0

[M/2]∑
m=0

Γ
(

m+
1
2

)
F`,2m(x)

hm+`+1/2

r̃3m
+ R

(1)
L,M,N (x) + R

(2)
L,M,N (x)

)
,

(4.37)

with,

∣∣R(1)
L,M,N (x)

∣∣ ≤ CNhδ6N + CLhL+1 + CM+1
L

(
h

Nk

)M/2

MM/2;

∣∣R(2)
L,M,N (x)

∣∣ ≤ CNhδ6N
M∑

m=0

Cm+1
L

(
h

Nk

)m/2

mm/2,

for some positive constant δ6 independent of (L,M,N), some positive constant
CN independent of (L,M), and some positive constant CL independent of (M, N).
Similar estimates hold true for all the derivatives with respect to x of R

(1)
L,M,N and

R
(2)
L,M,N .

Hence, we obtain (4.31) if we set,

βm(x) :=
∑

j+`=m

Γ
(

j +
1
2

)
F`,2j(x)r̃(x)3`,

and,
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RL,M,N (x) := h−1/2

(
R

(1)
L,M,N (x) + R

(2)
L,M,N (x)

−
∑

`+m≤L+[M/2]
`>L or m>[M/2]

Γ
(

m +
1
2

)
F`,2m(x)

hm+`+1/2

r̃3m

)
.

In particular, (4.32) with α = 0 is verified, as well as the estimates on βm(x) and,
moreover,

β0(x) = Γ
(

1
2

)
F0(x, 0) =

√
πc̃0

(
x′, ξ−i

n (x)
)
.

The estimate (4.32) for all α is obtained in the same way.
Finally, substituting M = 2[Nk/C ′Lh] into (4.32) with α = 0, (4.34) follows

by taking C ′L > 4C2
L,0, since in that case, we have,

CM+1
L,0

(
hM

Nk

)M/2

≤ CL,0

(2C2
L,0

C ′L

)M/2

≤ CL,02−[Nk/C′Lh]

≤ 2CL,02−Nk/C′Lh = 2CL,0h
δLN ,

with δL := (ln 2)/C ′L, and,

M∑
m=0

Cm+1
L,0

(
hm

Nk

)m/2

≤
M∑

m=0

Cm+1
L,0

(
2

C ′L

)m/2

≤ CL,0

∞∑
m=0

2−m/2 =
√

2√
2− 1

CL,0. ¤

Let us observe that the principal symbol (denoted by ã0(x)) of the asymptotic
expansion of ĨN [c̃] is,

ã0(x) =
β0(x)√

r̃(x)
=

√
π

r̃(x)
c̃0

(
x′, ξ−i

n (x)
)
,

and it behaves like,

ã0(x) =
√

πc0(x′, ξc
n(x′))

ν1(x′, ξc
n(x′))1/4

z−1/2(1 + O(z)), (4.38)
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as z = −i
√

xn + b(x′) → 0. Recall that the principal term of I[c] for x ∈ Ω̃−
should coincide with a0(x) (see (4.14)), that is,

a0(x) =
√

π

r(x)
c0

(
x′, ξ+

n (x)
)
,

and it has the same behavior (4.38) as ã0(x), as z =
√
−xn − b(x′) → 0.

4.3. Global WKB solution near ∂Ö.
The previous study shows that, for any point x1 of Γ and for any N ≥ 1, the

WKB solution w = h−n/4e−S/hI[c] can be extended in a neighborhood of x1 of
the form,

ΩN (x1) :=
⋃

−t0<t<(Nk)2/3

exp t∇f(ω(x1)),

where ω(x1) is a fixed small enough neighborhood of x1 in the caustic set C , and f

is such that f = 0 is an equation of C near x1, with {f > 0}∩ ÖC 6= ∅. Therefore,
by using a standard partition of unity in a neighborhood ω(Γ) of Γ in C , we obtain
an extension wN of w in an open set of the form,

ΩN :=
⋃

−t0<t<(Nk)2/3

exp tX(ω(Γ)),

where X is any vector-field transverse to C near Γ and directed towards ÖC (for
instance, one can take X = −∇V ).

Moreover, by Assumption (A4) and (4.9) (see also [HeSj1, Remarque 10.4]),
we see that, if x ∈ C is such that dist(Γ, x) ∼ (Nk)1/2, then Re φ̃(x) ∼ Nk, and
thus wN (x) = O(h−n/4e−(S+Re φ̃)/h) = O(hδNe−S/h) for some constant δ > 0.
We also observe that, on C , we have d(x0, x) − S = Re φ̃(x) ∼ dist(Γ, x)2. As a
consequence (thanks to (4.28)), if we set,

γ(C ) := {x ∈ C ; S + Nk ≤ d(x0, x) ≤ S + 2Nk},

then, we also have,

wN = O
(
hδNe−S/h

)
on γ+

N (C ) :=
⋃

0≤t<(Nk)2/3

exp tX(γ(C )).

We extend our WKB solution wN in the domain
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Mη := {x ∈ Ö; dist(x, ∂Ö) > η},

for small η > 0, by patching it (in the standard way by using a partition of unity)
with the eigenfunction corresponding to the first eigenvalue of the Dirichlet prob-
lem of P on Mη. Since they coincide modulo O(h∞e−d(x0,x)/h) locally uniformly
in Ω∩Mη (see [HeSj2]), the extension (that we always denote by wN ) still satisfies

(P − ρ(h))wN (x, h) = O
(
h∞e−(S+Re φ̃(x))/h

)

locally uniformly in Ω ∪Mη.
Now, for ε, t0 > 0 small enough, we set,

ω(ε) := {x ∈ C ; d(x0, x) ≤ S + ε};

ω+(ε, t0) :=
⋃

0≤t<t0

exp tX(ω(ε));

Ω(ε, t0) := {x ∈ Ω ∪Mη; d(x0, x) < S + ε} ∪ ω+(ε, t0).

Then Ω(ε, t0) is an open set including Bd(x0, S) for sufficiently small η, and the
previous discussion shows that wN is well defined and C∞ on Ω(2Nk, (Nk)2/3),
with,

wN = O
(
hδNe−S/h

)
on Ω(2Nk, (Nk)2/3)\Ω(Nk, (Nk)2/3), (4.39)

(see [HeSj2] for this estimate in Mη\Ω), and moreover, by construction, it satisfies

(P − ρ(h))wN (x, h) = O
(
hδNe−(S+Re φ̃(x))/h

)
(4.40)

on Ω(2Nk, (Nk)2/3), for some constant δ > 0.
As a consequence, if we take a cut-off function χN such that SuppχN ⊂

Ω(2Nk, (Nk)2/3), χN = 1 on Ω(Nk, (1/2)(Nk)2/3), ∂αχN = O(k−Nα) (for all
α ∈ Nn, and some Nα ≥ 0 independent of N), then, setting,

w̃N := χNwN ,

we see that w̃N is C∞ on {dist(x, Ö) < δ0(Nk)2/3} for some fixed δ0 > 0, and it
verifies,

(P − ρ)w̃N = O
(
hδNe−Re φ̃/h

)
in {dist(x, Ö) < δ0(Nk)2/3}.
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Summing up (and slightly changing the notations by writing wN instead of
w̃

23/2N/δ
3/2
0

), we have proved,

Proposition 4.6. For any large enough N , there exists a smooth function
wN (x, h) ∈ C∞(ÖN ), with ÖN := {dist(x, Ö) < 2(Nk)2/3}, verifying the following
properties:

( i ) There exists a constant δ > 0, independent of N , such that uniformly in
ÖN , and for all α ∈ Zn

+, one has,

∂αwN (x, h) = O
(
h−mαe−(S+Re φ̃(x))/h

)
;

(P − ρ(h))wN (x, h) = O
(
hδNe−(S+Re φ̃(x))/h

)
,

for some mα ≥ 0, and where φ̃ is defined by φ̃(x) = d(x0, x) − S for x ∈
Ω ∪Mη, and by (4.18) for x ∈ ω+(2Nk, (Nk)2/3).

( ii ) In any compact subset of Ω, for any M ∈ N , one has,

wN (x, h) = h−n/4e−(S+φ̃(x))/h

( M∑

j=0

aj(x)hj + O(hM+1)
)

,

as h → 0, where aj(x) are extensions of those given in (2.3), and a0 is
elliptic.

(iii) In {(Nk)2/3 < dist(x, Ö) < 2(Nk)2/3} ∩ ω+(Nk, (1/2)(Nk)2/3), for any
large enough L, there exist C ′L > 0 and δL > 0 independent of N such that

wN (x, h) = h−n/4e−(S+φ̃(x))/h

( L+[Nk/C′Lh]∑

j=0

ãj(x)hj + O
(
hδLN + hL

))
,

(4.41)

as h → 0, with ãj (independent of h) of the form,

ãj(x) = (dist(x,C ))−3j/2−1/4β̃j(x,dist(x,C )), (4.42)

where β̃j is smooth near Γ × {0} for all j, and in particular β̃0 is elliptic
near Γ× {0}.
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5. Comparison in the island.

In this section, we compare the WKB solution wN with the true resonant state
u inside Ö near a point of interaction x1. More precisely, we obtain an estimate
on the difference up to a distance of order (Nk)2/3 of x1.

We use the same notations as in Section 4. Let x ∈ Ω̃− be a point suffi-
ciently close to x1. Using the representation formula (4.12) for φ (see also [HeSj1,
Formula (10.22)]), we see that,

φ(x) ≥ φ(x′,−b(x′)) + (xn + b(x′))ξc
n(x′)− C1|xn + b(x′)|3/2, (5.1)

for some positive constant C1. Moreover, thanks to Assumption (A4), we already
know that φ(x′,−b(x′)) = φ|C (x′,−b(x′)) ≥ δ|x′|2 with δ > 0 constant, and thus,
using (4.4), we see that φ(x′,−b(x′)) + (xn + b(x′))ξc

n(x′) ≥ 0 near x1. As a
consequence, we deduce from (5.1),

d(x0, x) ≥ S − C1|xn + b(x′)|3/2. (5.2)

In particular, if x ∈ Ω(−(Nk)2/3, 0), k = h log(1/h), we have,

e−s(x)/h = O
(
h−C1Ne−S/h

)
.

The aim of this section is to show a local a priori estimate near a point of
interaction x1 (Proposition 5.1), and then, as a direct consequence, a global a
priori estimate in a neighborhood of ∂Ö (Proposition 5.2).

Proposition 5.1. There exists N2 ∈ Z and C > 0, such that, for any
N > 0, one has,

‖u(x, h)− wCN (x, h)‖H1(Ω(−(Nk)2/3,0)) = O
(
h−N2e−S/h

)
,

uniformly as h → 0.

Proof. Recall (Theorem 2.2) that there exists N0 such that

∥∥es(x)/hu(x, h)
∥∥

H1(Ω̃−)
= O(h−N0).

The WKB solution wCN also satisfies the same estimate (see Proposition 4.6), and
hence so does the difference,
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∥∥es(x)/h(u(x, h)− wCN (x, h))
∥∥

H1(Ω̃−)
= O(h−N0).

In particular,

‖u(x, h)− wCN (x, h)‖H1(Ω̃−∩{d(x0,x)≥S−2k}) = O
(
h−N ′

0e−S/h
)
,

for some other constant N ′
0.

Now, we set,

Ω1 = Ω1(h) := Bd(x0, S − k) ∩ Ω̃−.

Since every point of Ω1 can be connected to x0 by a smooth minimal geodesic
(with respect to the Agmon distance), the arguments of the previous section show
that the WKB solution wCN (x, h) is well defined in all of Ω1 (we use its integral
representation when x becomes too close to a point of interaction). Moreover, it is
not difficult to construct χh ∈ C∞0 (Ω1), such that χh = 1 on {d(x0, x) ≤ S − 2k},
0 ≤ χh ≤ 1 everywhere, and, for all α ∈ Nn,

∂αχh = O(h−Nα),

for some constant Nα ≥ 0. Then, we set,

ŵ := χh(x)wCN (x, h),

and, for N ≥ 1 arbitrarily large,

φN (x) = min
(
d(x0, x) + C1Nk + k(S − d(x0, x))1/3,

S + (1− k1/3)(S − d(x0, x))
)
.

On Ω(−(Nk)2/3, 0), by (5.2) we have d(x0, x) ≥ S−C1Nk. Therefore, φN (x) ≥ S

there, and it suffices to show that there exists N0 such that, for any N ≥ 1,

∥∥eφN /h(χhu− ŵ)
∥∥

H1(Ω1)
= O(h−N0).

We prove it by using Agmon estimates (see Lemma 8.2 in Appendix). At first, we
observe that, by construction (and since φN ≤ d(x0, x)+ (C1N +S1/3)k), we have
(uniformly in Ω1),
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(P − ρ(h))ŵ = [P, χh]wCN + O
(
hδCNe−d(x0,x)/h

)

= O
(
1Supp∇χh

h−M1e−S/h
)

+ O
(
hδCN−C1N−S1/3

e−φN /h
)
, (5.3)

for some M1 ≥ 0 constant. Moreover, using (2.7),

∥∥eφN /h(P − ρ(h))χhu
∥∥

L2 =
∥∥eφN /h[P, χh]u

∥∥
L2 = O

(
h−M ′

1e(FN−S)/h
)
, (5.4)

for some other constant M ′
1 ≥ 0, and with,

FN := sup
Supp∇χh

φN .

Since S − d(x0, x) ≤ 2k on Supp∇χh, we have FN ≤ S + 2(1− k1/3)k ≤ S + 2k,
and thus, we deduce from (5.4),

∥∥eφN /h(P − ρ(h))χhu
∥∥

L2 = O
(
h−M ′

1−2
)
. (5.5)

Setting,

u′h := χhu− ŵ,

and choosing C such that δC ≥ C1, we obtain from (5.3)–(5.5),

∥∥eφN /h(P − ρ(h))u′h
∥∥

L2 = O(h−M2), (5.6)

for some constant M2 ≥ 0, independent of N .
We also observe, that, on Ω−1 := Ω1∩{d(x0, x)+C1Nk +k(S−d(x0, x))1/3 <

S + (1− k1/3)(S − d(x0, x))}, we have,

∇φN =
(

1− k

3(S − d(x0, x))2/3

)
∇d(x0, x),

and, on Ω+
1 := Ω1 ∩ {d(x0, x) + C1Nk + k(S − d(x0, x))1/3 > S + (1 − k1/3)(S −

d(x0, x))},

∇φN = −(1− k1/3)∇d(x0, x).

Since k(S − d(x0, x))−2/3 ≤ k1/3 ¿ 1, for h sufficiently small we easily deduce,
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V − Re ρ− |∇φN |2 ≥ k

3(S − d(x0, x))2/3
(V − E0)− (Re ρ− E0), on Ω−1 ;

and,

V − Re ρ− |∇φN |2 ≥ k1/3(V − E0)− (Re ρ− E0), on Ω+
1 .

Now, since ∇V 6= 0 on ∂Ö, a quick examination of the Hamilton curves of q =
ξ2 − V (x) starting from ∂Ö × {0}, shows that, for x ∈ Ö close enough to ∂Ö,
one has d(x, ∂Ö) = O((V (x) − E0)3/2). Therefore, by the triangle inequality, we
deduce,

d(x0, x) ≥ S − C2(V (x)− E0)3/2, (5.7)

where C2 > 0 is a constant, and the inequality is actually valid in all of Ö except
for some fixed small enough neighborhood U0 of x0 (since V −E0 > 0 on Ö\{x0}).

In particular, U0 can be assumed to be disjoint from Ω+
1 , and then (5.7) shows

that V (x)−E0 ≥ (k/C2)2/3 on Ω+
1 . Therefore, observing also that |ρ−E0| ≤ C3h

with C3 > 0 constant, on this set, we obtain,

V − Re ρ− |∇φN |2 ≥ k

C
2/3
2

− C3h ≥ k

2C
2/3
2

, (5.8)

for h > 0 small enough.
Moreover, by (5.7), on Ö\U0, we also have,

V − E0

3(S − d(x0, x))2/3
≥ 1

3C
2/3
2

,

and thus, if x ∈ Ω−1 \U0,

V − Re ρ− |∇φN |2 ≥ k

3C
2/3
2

− C3h ≥ k

4C
2/3
2

, (5.9)

for h > 0 small enough. On the other hand, by (2.5) and the results of [HeSj2],
we know that wCN (x, h) is a good approximation of u(x, h) on U0, in the sense
that,

∥∥ed(x0,x)/hu′h
∥∥

L2(U0)
= O(h∞).
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Since eφN /h = O(h−C1N−S1/3
ed(x0,x)/h), we deduce,

∥∥eφN /hu′h
∥∥

L2(U0)
= O(h∞). (5.10)

Now, we apply the identity (3.14) with u′h, φN ,Re ρ instead of vh, φ, λh. Using
(5.6), (5.8), (5.9), and (5.10), this permits us to obtain,

h2
∥∥∇(eφN /hu′h)

∥∥2 + k
∥∥eφN /hu′h

∥∥2 = O
(
h∞ + h−M2‖eφN /hu′h‖

)
.

In particular,

∥∥eφN /hu′h
∥∥ = O(h−(M2+1)),

and thus, also,

∥∥∇(eφN /hu′h)
∥∥ = O(h−(M2+3/2)),

and the result follows. ¤

Now, we estimate u−wCN globally in an N, h-dependent small neighborhood
UN := {x; dist(x, ∂Ö) < 2(Nk)2/3} of the boundary of the island. We show

Proposition 5.2. There exist N2 ∈ Z and C > 0 such that, for any N ,
one has as h → 0

‖u− wCN‖H1(UN ) = O
(
h−N2e−S/h

)
. (5.11)

Proof. Let UN,1 be the neighborhood of Γ in UN defined by,

UN,1 = UN ∩ Ω(Nk, t0), (5.12)

with t0 > 0 small enough. We may assume,

UN,1 ⊂
⋃

x1∈Γ

Ω1
x1

(− (Nk)2/3, (Nk)2/3
)
,

where Ω1
x1(−(Nk)2/3, (Nk)2/3) is the neighborhood of each x1 ∈ Γ defined by

(4.29).
Then Proposition 5.1, (2.7) and an estimate of Ĩ[c̃] in the sea mean that there
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exists N2 such that

‖u− wCN‖H1(UN,1) = O
(
h−N2e−S/h

)
. (5.13)

It follows from (2.7) and the fact (UN\UN,1) ∩Bd(x0, S) = ∅ that

‖u‖H1(UN\UN,1) = O
(
h−N2e−S/h

)
,

and since wCN vanishes in UN\UN,1, we obtain (5.11). ¤

6. Comparison in the sea.

In this section, we give a more precise estimate on vN = eS/h(u−wCN ) (C > 0
being as in Proposition 5.1), in the neighborhood UN of ∂Ö. We will show

Proposition 6.1. For any L > 0 and for any α ∈ Zn
+, there exists NL,α ≥ 1

such that, for any N ≥ NL,α, one has,

∂α
x vN (x, h) = O(hL) as h → 0, (6.1)

uniformly in UN .

Let x̂ be an arbitrary point on ∂Ö. In the sequel, all the estimates we give
are locally uniform with respect to x̂ ∈ ∂Ö (and thus, indeed, globally uniform
since ∂Ö is compact).

Here again, we choose Euclidian coordinates x as in Section 4.1 but centered
at x̂ such that Tx̂(∂Ö) is given by xn = 0, and ∂/∂xn is the exterior normal of Ö

at this point.
Consider h-dependent neighborhoods of x̂, of the form

ω̂N (h) =
{
x; |xn − x̂n| < (Nk)2/3; |x′ − x̂′| < (Nk)1/2

}
, (6.2)

where k = h log(1/h).
Let (x(t), ξ(t)) = exp tHp(0, 0) be the Hamilton flow passing by the origin at

time 0 i.e.





dx

dt
= 2ξ, x(0) = 0;

dξ

dt
= −∂V

∂x
, ξ(0) = 0.

(6.3)
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Recall that, by the non-trapping condition (A3), there exists, at any point x̂ on
∂Ö, a positive constant C0 = C0(x̂) such that the potential V is written in the
form (4.2). Hence −(∂V /∂x) = (0, . . . , 0, C0) + O(|x|), and the flow is tangent to
the ξn-axis. As t → 0, one has

xn(t) = C0t
2 + O(t3), ξn(t) = C0t + O(t2),

x′(t) = O(t4), ξ′(t) = O(t3).
(6.4)

When t → ±∞, on the other hand, |x(t)| → ∞ by Assumption (A3), and ξ(t) →
ξ±∞ for some ξ±∞ ∈ Rn satisfying |ξ±∞|2 = E0 by (A1). That is, as t → ±∞,

x(t) = 2ξ±∞t + o(|t|), ξ(t) = ξ±∞ + o(1), |ξ±∞| =
√

E0. (6.5)

In particular,

{
x(t) · ξ(t) = 2E0t + o(|t|)
|x(t)| · |ξ(t)| = 2E0|t|+ o(|t|)

as t → ±∞. (6.6)

6.1. Propagation in the incoming region.
Here, we study the microlocal estimate of eS/hu and eS/hwCN independently

along the incoming Hamilton flow
⋃

t<0(x(t), ξ(t)). For the estimate on eS/hu, we
use the fact that u is outgoing at infinity and the propagation of frequency set. For
that of eS/hwCN , we use the result of Section 4.

6.1.1. Microlocal estimate of eS/hu.
We first study ũ = eS/hu. Using the Bargmann-FBI transform Tµ of (8.5),

we plan to prove that, for some convenient µ > 0, Tµũ(x, ξ, h) is exponentially
small for (x, ξ) close enough to (x(−t), ξ(−t)), t > 0 sufficiently large. Actually,
we prove something slightly better, namely,

Lemma 6.2. For any S1 > 0, there exist t1 > 0 and µ > 0, such that, for
all t ≥ t1, one has,

Tµu(x, ξ, h) = O(e−S1/h),

uniformly for (x, ξ) in a neighborhood of (x(−t), ξ(−t)).

Proof. Let F (x) be the function used to define the distorted operator Pθ

(see (2.1)), and let χ ∈ C∞(R+) verifying χ(|x|) = 0 on πx(Suppψ0)∪{F (x) 6= x},
χ = 1 on [R, +∞) for R > 1 large enough, χ′ ≥ 0 everywhere.
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For δ > 0 small enough, we consider the distortion,

Gδ(x) := x + iδχ(|x|)x,

and the corresponding distortion operator Ũδ, formally given by,

Ũδφ(x) := (detGδ)1/2φ(Gδ(x)).

Then, the distorted operator Pθ,δ := ŨδPθŨ
−1
δ is well defined, and its principal

symbol pθ,δ verifies,

pθ,δ(x, ξ) = pθ(x, ξ) if x ∈ πx(Suppψ0) ∪ {F (x) 6= x};
pθ,δ(x, ξ) = (1 + iθ)−2(dGδ(x)−1ξ)2 + V ((1 + iθ)Gδ(x))

if x /∈ πx(Suppψ0) ∪ {F (x) 6= x}.

Next, we observe that,

dGδ(x) = (1 + iδχ(|x|))I + iδA(x),

with,

A(x) =
χ′(|x|)
|x| (xjxk)1≤j,k≤n.

In particular, one has 〈A(x)y, y〉 = (χ′(|x|))/(|x|)〈x, y〉2 ≥ 0 for all y ∈ Rn, and
thus, it is not difficult to deduce that Im tdGδ(x)−1dGδ(x)−1 ≤ 0 for δ > 0 small
enough. As a consequence, we see that, for x /∈ πx(Suppψ0) ∪ {F (x) 6= x}, one
has,

Im pθ,δ(x, ξ) ≤ −θξ2 + O
(〈x〉−δ1

)
,

and thus, if F (x) and ψ0 have been conveniently constructed, and using (3.1), we
obtain,

− Im pθ,δ

(
x− t∂xψ0 − it∂ξψ0, ξ − t∂ξψ0 + it∂xψ0

) ≥ k

C
,

for some constant C > 0, and for (x, ξ) such that |Re pθ,δ(x, ξ) + W (x) − E0| ≤
〈ξ〉2/C. As for P̃θ (see Section 2), this implies that (Pθ,δ +W −ρ)−1 is well defined
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and has a norm O(k−1) on Ht.
On the other hand, we also know that uθ,δ := Ũδuθ = ŨδUiθu is well defined,

and is in L2(Rn) (see, e.g., [HeMa]). Thus, we can write,

(Pθ,δ + W − ρ)uθ,δ = Wuθ,δ = Wu,

that is, uθ,δ = (Pθ,δ + W − ρ)−1Wu, and thus,

‖uθ,δ‖L2(Rn) = O(h−M )‖uθ,δ‖t = O(h−Mk−1), (6.7)

for some M > 0 constant, independent of δ > 0 small enough.
Making in the expression of Tµu the change of contour of integration,

Rn 3 y 7→ Gθ,δ(y) := Gδ(y) + iθF (Gδ(y)),

we obtain,

Tµu(x, ξ) = cµ

∫

Rn

ei(x−Gθ,δ(y))ξ/h−µ(x−Gθ,δ(y))2/2huθ,δ(y) det dGθ,δ(y)dy,

and thus, using (6.7) and the Cauchy-Schwarz inequality,

Tµu(x, ξ) = O(h−M1)
[ ∫

e{2 Im Gθ,δ(y)ξ+µ(Im Gθ,δ(y))2−µ(x−Re Gθ,δ(y))2}/hdy

]1/2

(6.8)

for some M1 > 0 constant, independent of δ.
Now, let R1 À 1 be some fixed number arbitrarily large, and take t > 0

sufficiently large to have |x(−t)| ≥ R + 2R1. Then, for (x, ξ) close enough to
(x(−t), ξ(−t)), and setting δ̃ := δ + θ, we deduce from (6.8),

Tµu(x, ξ) = O(h−M1)
[ ∫

|y−x|≤|x|/2

e2δ̃yξ/h+µδ̃2y2/h−µ(x−y+θδy)2/hdy

]1/2

+ O
(
h−M1e−µx2/16h

)

×
[ ∫

|y−x|≥|x|/2

e2δ̃yξ/h+µδ̃2y2/h−µ(x−Re Gθ,δ(y))2/2hdy

]1/2

,

and thus, for δ/µ small enough, (and since |y − x| ≥ |x|/2 implies |y − x| ≥ |y|/4,
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and we have Re Gθ,δ(y) = y + O(θδ|y|), and |ξ| remains uniformly bounded),

Tµu(x, ξ) = O(h−M1)
[ ∫

|y−x|≤|x|/2

e2δ̃yξ/h+µδ̃2y2/hdy

]1/2

+ O
(
e−µR2

1/4h
)
. (6.9)

Moreover, if |y−x| ≤ |x|/2, we have y ·ξ ≤ x ·ξ + |x| · |ξ|/2, and thus, by (6.6), and
for (x, ξ) close enough to (x(−t), ξ(−t)), we obtain (possibly by taking t larger),

y · ξ ≤ −E0t

2
.

In the same way, using (6.5), we also obtain,

|y| ≤ 3|x|
2

≤ 4
√

E0t,

and thus, inserting these estimates into (6.9), we find,

Tµu(x, ξ) = O
(
h−M1e−E0δ̃t(1−16µδ̃t)/h

)
+ O

(
e−µR2

1/4h
)
.

In particular, for any S1 > 0, if we first fix µ > 0 such that E0 > 64µS1, then
R1 such that µR2

1/4 ≥ S1, then t À 1 such that |x(−t)| ≥ R + 2R1, and finally
δ := (32µt)−1 − θ = (32µt)−1 − k, we obtain,

Tµu(x, ξ) = O
(
h−M1e−E0δ̃t/2h + e−S1/h

)

= O
(
h−M1e−E0/64µh + e−S1/h

)

= O
(
e−S1/h

)
,

uniformly for (x, ξ) close enough to (x(−t), ξ(−t)) and h > 0 small enough. ¤

In particular, taking S1 > S, we obtain,

Tµ(eS/hu) = O(h∞) near (x(−t1), ξ(−t1)),

and therefore,

(x(−t1), ξ(−t1)) /∈ FS(eS/hu),

where FS(eS/hu) stands for the frequency set of eS/hu (see, e.g., [GuSt],
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[Ma1]). Moreover, by (2.7), we know that, for any K ⊂ Rn\Bd(x0, S) compact,
‖eS/hu‖H1(K) = O(h−NK ) for some NK > 0 constant. Since Rn\Bd(x0, S) is a
neighborhood of {x(−t); t > 0}, and (P −ρ)(eS/hu) = 0 in D ′(Rn\Bd(x0, S)), the
standard result of propagation of the frequency set for solutions of real-principal
type partial differential equations (see, e.g., [Ma1, Chapter 4, Exercise 7]) can be
applied above this set, and tells us,

(x(−t), ξ(−t)) /∈ FS(eS/hu) for all t > 0. (6.10)

In particular, for any µ > 0 fixed (independent of h), for any t > 0, and for
any K ⊂ Rn\Bd(x0, S) compact containing (x(−t), ξ(−t)) in its interior, we have
(denoting by 1K the characteristic function of K),

Tµ(1KeS/hu) = O(h∞) uniformly near (x(−t), ξ(−t)). (6.11)

Now, we set,

TNu(x, ξ) :=
∫

ei(x−y)ξ/h−µn(xn−yn)2/2h−(x′−y′)2/2hu(y)dy, (6.12)

where µn := (Nk)−1/3.

Lemma 6.3. For any t > 0, for any K ⊂ Rn\Bd(x0, S) compact containing
x(−t) in its interior, and for any N ≥ 1, we have,

TN (1KeS/hu) = O(h∞) uniformly near (x(−t), ξ(−t)).

Proof. We write,

TN (1KeS/hu) = (TNT ∗1 )T1(1KeS/hu),

and a straightforward computation shows that the distribution kernel KN of TNT ∗1
verifies (see, e.g., [Ma1, proof of Proposition 3.2.5]),

|KN (x, ξ; z, ζ)| = αe−(µn/(1+µn))(xn−zn)2/2h−(1/(1+µn))(ξn−ζn)2/2h

× e−(x′−z′)2/4h−(ξ′−ζ′)2/4h,

with α = O(h−n). Then, the result easily follows from the obvious observation
that, for any fixed δ > 0, one has,
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e−(µn/(1+µn))δ/h + e−(1/(1+µn))δ/h = O(h∞). ¤

Now, we fix once for all a compact set K1 = K\Bd(x0, S), where K b Rn is
a compact neighborhood of the closure of Ö.

Lemma 6.4. There exists δ0 > 0 such that, for any δ ∈ (0, δ0], for all N ≥ 1
large enough, and for tN := δ−1(Nk)1/3, one has,

TN (1K1e
S/hu) = O(hδN ) uniformly in W (tN , h),

where,

W (tN , h) :=

{ |xn − xn(−tN )| ≤ δ(Nk)2/3, |ξn − ξn(−tN )| ≤ δ(Nk)1/3,

|x′ − x′(−tN )| ≤ δ(Nk)1/3, |ξ′ − ξ′(−tN )| ≤ δ(Nk)1/3

}
.

Proof. At first, we cut off the function eS/hu by setting

u1 := χ+eS/hu,

where χ+ ∈ C∞(Rn), Suppχ+ ⊂ {k2/3 ≤ dist(x, Ö) ≤ 2}, χ+ = 1 on {2k2/3 ≤
dist(x, Ö) ≤ 3/2}, and ∂αχ+ = O(k−2|α|/3) for all α ∈ Zn

+. In particular, by (2.7),
we have ‖(P − ρ)u1‖L2 = ‖[P, χ+]eS/hu‖L2 = O(h−N1) for some N1 ≥ 0 constant,
and, if ψ = ψ(x, ξ) ∈ C∞0 (R2n) is such that

πx Suppψ ⊂ {3(Nk)2/3 ≤ dist(x, Ö) ≤ 1}, sup |ψ| ≤ 2, (6.13)

then, for any M ≥ 1, we have,

h−MψTN (P − ρ)u1(x, ξ) = h−MψTN [P, χ+]u1(x, ξ)

and, since |xn−yn| ≥ (Nk)2/3 for x ∈ πx Suppψ and y ∈ Supp[P, χ+]u1, we easily
obtain,

∥∥h−MψTN (P − ρ)u1

∥∥
L2 = O

(
h−N1 + h−2Me−µn(Nk)4/3/2h

)
,

that is,

∥∥h−MψTN (P − ρ)u1

∥∥
L2 = O(h−N1 + h−2M+N/2).
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In particular, for M ≤ N/4, this gives,

∥∥h−MψTN (P − ρ)u1

∥∥
L2 = O(h−N1). (6.14)

Now, in order to specify the function ψ we are going to work with, we first make
a symplectic change of variables near (0, 0) ∈ R2n:





y′ = x′, yn = xn − 1
C0

ξ2
n,

η′ = ξ′, ηn = ξn.
(6.15)

In this new coordinates, we have

p = η′2 − C0yn + W

(
y′, yn +

1
C0

η2
n

)
, (6.16)

Hp = 2η′
∂

∂y′
+ C0

∂

∂ηn
−∇W

∂

∂η
+

2
C0

ηn∂xn
W

∂

∂yn
. (6.17)

Now, we fix t0 > 0 small enough, and we consider the function,

ψ(y, η) := f(ηn)χ
( |η′|
|ηn|

)
χ

( |yn|
|ηn|2

)
χ

( |y′|
|ηn|

)
,

where χ ∈ C∞0 (R+; [0, 1]) is such that,

Suppχ ⊂ [0, a], χ = 1 on
[
0,

a

2

]
, −4

a
≤ χ′ ≤ 0 on R+,

for some constant a > 0 small enough, and f ∈ C∞0 (R; [0, 1 + t0 + ε′]) is defined
in the following way,

f(s) = χ0(s)f1(s) := χ0(s)
(
− Cs− 2C2

1

∫ −C1

s(Nk)−1/3

dt

t3

)
, (6.18)

where C, C1 > 0 are large enough constants, and χ0 is a cut-off function such that,

χ0 ∈ C∞0
(
[−t0 − ε,−C1(Nk)1/3]; [0, 1]

)
;

χ0 = 1 on [−t0,−2C1(Nk)1/3];
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χ′0 ≤ 0 on [−2C1(Nk)1/3,−C1(Nk)1/3];

for all ` ≥ 0, χ
(`)
0 = O((Nk)−|`|/3) on [−2C1(Nk)1/3,−C1(Nk)1/3];

for all ` ≥ 0, χ
(`)
0 = O(1) on [−t0 − ε,−t0].

This ψ satisfies the condition (6.13), since on the support of ψ, one has

E0 − V (x) = η2 + C0yn −W

(
y′, yn +

1
C0

η2
n

)

≥ η2
n − aC0η

2
n + O

(
a2η2

n + η4
n

)

≥ 1
2
η2

n ≥
C2

1

2
(Nk)2/3

for sufficiently small a. In particular, (6.14) is valid with such a ψ.
Moreover, one has

∂α′
y′ ∂

αn
yn

∂β
η ψ = O

(
(Nk)−(|α′|+2|αn|+|β|)/3

)
. (6.19)

Therefore, we see that ψ satisfies the conditions (8.6)–(8.7) in the (y′, η′)-
coordinates, with ρ = 0, and the same conditions in the (yn, ηn)-coordinates,
with ρ = −1/3.

Then, by a straightforward generalization of Proposition 8.3, and by using
(8.9) and (6.14), we obtain,

k
〈
(MHpψ + qMψ)h−MψTNu1, h

−MψTNu1

〉

= O(h)
∥∥〈η〉h−MψTNu1

∥∥2 + O(h−N1)
∥∥h−MψTNu1

∥∥, (6.20)

where M ≤ N/4 and N1 ≥ 1 is independent of N , and qMψ is defined in (8.9).
In the sequel, we use the notations,

I1 := Suppψ ∩ {
ηn ∈ [−t0 − ε′,−t0 + ε′]

}
;

I2 := Suppψ ∩ {
ηn ∈ [−t0 + ε′,−2C1(Nk)1/3]

}
;

I3 := Suppψ ∩ {
ηn ∈ [−2C1(Nk)1/3,−C1(Nk)1/3]

}
.

Let us now estimate |Hpψ| from below on I2 ∪ I3. First, observe that one has
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|f(ηn)| ≤ 2χ0(ηn) (6.21)

if t0 ≤ 1/C, and in particular on I2 ∪ I3, where χ′0 ≤ 0, one has

|f ′(ηn)| ≥
(

C +
2C2

1 (Nk)2/3

|ηn|3
)

χ0(ηn) ≥ Cχ0(ηn). (6.22)

Using these estimates, and the expression (6.17), we can easily show

Lemma 6.5. For t0 < C0/2

|Hpψ| ≥ |f ′(ηn)|
(

C0χ1χ2χ3 − O

(
1
C

))
, (6.23)

where

χ1 = χ

( |η′|
|ηn|

)
, χ2 = χ

( |yn|
|ηn|2

)
, χ3 = χ

( |y′|
|ηn|

)
.

Proof. One can estimate |C0(∂/∂ηn)ψ| from below by

∣∣∣∣C0
∂

∂ηn
ψ

∣∣∣∣ ≥ C0|f ′(ηn)|χ1χ2χ3.

One can also estimate 2|η′(∂/∂y′)ψ|, |∇W (∂/∂η′)ψ|, |ηn| |∇xn
W (∂/∂yn)ψ| from

above by |f ′| times a constant of O(1/C). For example,

2
∣∣∣∣η′

∂

∂y′
ψ

∣∣∣∣ ≤ fχ1χ2
|η′|
|ηn| |χ

′
3| ≤ 4fχ1χ3 ≤ 8

C
χ1χ2|f ′|,

using the facts |η′|/|ηn| ≤ a, |χ′3| ≤ 4/a, f ≤ 2f ′/C. On the other hand, for
|∇W (∂/∂ηn)ψ|, one has

|y|
∣∣∣∣

∂

∂ηn
ψ

∣∣∣∣ ≤ a|ηn|
∣∣∣∣

∂

∂ηn
ψ

∣∣∣∣ ≤ |t0|
∣∣∣∣

∂

∂ηn
ψ

∣∣∣∣,

which is smaller than |(∂/∂ηn)ψ| for sufficiently small t0. ¤

Now, let C2 > C1 be another large enough constant. We set,
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Ω1 := (I2 ∪ I3) ∩
{

χ0 ≥ 1
C2

;χ1 ≥ 1
C2

;χ2 ≥ 1
C2

;χ3 ≥ 1
C2

}
;

Ω2 := (I2 ∪ I3)\Ω1.

Then, by construction, on Ω2 we have by (6.21),

ψ ≤ 1
C2

sup f ≤ 2
C2

. (6.24)

Moreover, in a neighborhood of XN := (0; 0,−3C1(Nk)1/3), of the form,

WN =
{|η′| ≤ δ|ηn|, |yn| ≤ δ|ηn|2, |y′| ≤ δ|ηn|, |(Nk)−1/3ηn + 3C1| < δ

}
,

(where δ > 0 is a small enough constant), we see that,

ψ ≥ 1
2
ψ(XN ) = 3CC1(Nk)1/3 − 2C2

1

∫ −C1

−3C1

dt

t3
≥ 8

9
=: r0, (6.25)

and, by (6.24), we can fix C2 large enough, in such a way that,

sup
Ω2

ψ ≤ 1
2
r0. (6.26)

On the other hand, by (6.22), (6.23), on Ω1, we have,

|Hpψ| ≥ C0

2C3
2

|f ′| ≥ C0

2C4
2

(
C +

2C2
1 (Nk)2/3

|ηn|3
)

. (6.27)

Using the expression of qMψ deduced from Proposition 8.3, and the fact that here,
p(x, ξ) = ξ2 + V (x), we have

Lemma 6.6. As h → 0,

qMψ = −2kM2µn∂xn
ψ∂ξn

ψ + O

(
1

ln 1
h

)
. (6.28)

In particular, on Ω1, for M/N sufficiently small, one has

|qMψ| ≤ M

2
|Hpψ|. (6.29)
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Proof. Taking into account that

∂x′ψ = O(k−1/3), ∂xn
ψ = O(k−2/3),

∂ξ′ψ = O(k−1/3), ∂ξnψ = O(k−1/3),

and hence that

∂z′µψ = O(k−1/3), µ−1
n ∂zµn

ψ = O(k−1/3),

we see that for p = ξ2 + V (x),

Im p
(
x− 2kµ−1∂zµ

ψ, ξ + ik∂zµ
ψ

)
= kHpψ − 2k2µn∂xn

ψ∂ξn
ψ + O(k4/3),

and that

h∂zµ

[
1
µ

∂p

∂ Re x
− i

∂p

∂ Re ξ

](
x− 2kµ−1∂zµ

ψ, ξ + ik∂zµ
ψ

)

= h∂zµ

[
1
µ

∂p

∂ Re x
− i

∂p

∂ Re ξ

]
(x, ξ) + O(h).

Since ∂zµ
[(1/µ)(∂p/∂ Re x)− i(∂p/∂ Re ξ)](x, ξ) is real, we obtain (6.28).

The estimate (6.29) follows from (6.28) and (6.27), because using the estimate

∂ηn
ψ = O(|ηn|−1),

one sees that

kM2µn∂xnψ∂ξnψ = C̃
M

N
·M (Nk)2/3

|ηn|3 ,

for some constant C̃ independent of M, N . ¤

Thus, still by (6.27),

|MHpψ + qMψ| ≥ MCC0

4C4
2

on Ω1. (6.30)

Now, we turn back to (6.20), that we rewrite as,
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〈
(MHpψ + qMψ)h−MψTNu1, h

−MψTNu1

〉
Ω1

= −〈
(MHpψ + qMψ)h−MψTNu1, h

−MψTNu1

〉
I1∪Ω2

+ O
(
hk−1‖〈η〉h−MψTNu1‖2 + h−N1k−1‖h−MψTNu1‖

)
,

and thus, since MHpψ + qMψ = O(h−N3) for some N3 ≥ 1 constant, and η is
bounded on Suppψ,

〈
(MHpψ + qMψ)h−MψTNu1, h

−MψTNu1

〉
Ω1

= O
(
h−N3‖h−MψTNu1‖2I1∪Ω2

+ hk−1‖h−MψTNu1‖2Ω1

)

+ O
(
hk−1‖〈η〉TNu1‖2 + h−N1k−1‖h−MψTNu1‖

)
.

Using (6.30), we deduce,

∥∥h−MψTNu1

∥∥2

Ω1
= O

(
h−N3‖h−MψTNu1‖2I1∪Ω2

+ hk−1‖h−MψTNu1‖2Ω1

)

+ O
(
hk−1‖〈η〉TNu1‖2 + h−N1k−1‖h−MψTNu1‖

)
,

and thus, since hk−1 = | lnh|−1 → 0 as h → 0+,

∥∥h−MψTNu1

∥∥2

Ω1
= O

(
h−N3‖h−MψTNu1‖2I1∪Ω2

)

+ O
(
hk−1‖〈η〉TNu1‖2 + h−N1k−1‖h−MψTNu1‖

)
,

uniformly for h > 0 small enough. Therefore, setting N4 = max(N3, N1 + 1), we
obtain,

∥∥h−MψTNu1

∥∥2

Ω1
− C̃h−N4

∥∥h−MψTNu1

∥∥
Ω1

≤ C̃h−N4
(‖h−MψTNu1‖2I1∪Ω2

+ ‖〈ξ〉TNu1‖2
)
,

for some positive constant C̃, and thus,

∥∥h−MψTNu1

∥∥
Ω1
≤ C ′h−N4

(
1 + ‖h−MψTNu1‖I1∪Ω2 + ‖〈ξ〉TNu1‖

)
,

for some other constant C ′ > 0.
In particular, since WN ⊂ Ω1 and ‖〈ξ〉TNu1‖ = ‖u1‖H1 = O(1),
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∥∥h−MψTNu1

∥∥
WN

= O(h−N4)
(
1 + ‖h−MψTNu1‖I1∪Ω2

)

= O(h−N4)
(
1 + ‖h−MψTNu1‖Ω2 + h−2M‖TNu1‖I1

)
.

Then, using Lemma 6.3, we see that ‖TNu1‖I1 = O(h∞) if a has been taken
sufficiently small, and thus, using (6.25)–(6.26), we obtain,

h−Mr0‖TNu1‖WN
= O

(
h−N4−(M/2)r0

)
,

that is,

‖TNu1‖WN
= O

(
h−N4+(M/2)r0

)
, (6.31)

where the estimate is valid for N large enough, M/N small enough, and is uniform
with respect to h > 0 small enough. This completes the proof. ¤

6.1.2. Microlocal estimate of eS/hwCN .
Now, we study the microlocal behavior of the WKB solution wCN in W (tN , h).

For N ≥ 1 arbitrary, we denote by χN a cut-off function of the type,

χN (x) := χ0

( |xn − x̂n|
(Nk)2/3

)
χ0

( |x′ − x̂′|
(Nk)1/2

)
, (6.32)

where the function χ0 ∈ C∞0 (R+; [0, 1]) verifies χ0 = 1 in a sufficiently large
neighborhood of 0, and is fixed in such a way that χN (x) = 1 in {|xn − x̂n| ≤
|xn(−tN )− x̂n|+2δ(Nk)2/3; |x′− x̂′| ≤ |x′(−tN )− x̂′|+2δ(Nk)1/2} (here, tN and
δ are those of Lemma 6.4). Then, setting,

w̃N := 1Bd(x0,S)C χNwCN ,

(with C > 0 fixed large enough, as in Proposition 5.1), we have,

Lemma 6.7. For any L ∈ N large enough, there exists δL > 0 such that, for
any δ ∈ (0, δL], for all N ≥ 1 large enough, and for tN := δ−1(Nk)1/3, one has,

TN

(
eS/hw̃N

)
= O

(
hδN + hL

)
uniformly in W (tN , h).

Proof. Let χ1(r) ∈ C∞0 (R+; [0, 1]) be a cut-off function such that χ1 = 1
for 0 ≤ r ≤ 2δ and χ1 = 0 for 3δ ≤ r and set,
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χ1
N (x) := χ1

( |xn − xn(−tN )|
(Nk)2/3

)
χ1

( |x′ − x′(−tN )|
(Nk)1/2

)
.

We write,

TN

(
eS/hw̃N

)
= TN

(
eS/hχ1

N w̃N

)
+ TN

(
eS/h(1− χ1

N )w̃N

)
=: I1 + I2.

First we study I2. We have |xn − yn| ≥ δ(Nk)2/3 or |x′ − y′| ≥ δ(Nk)1/2 if
|xn−xn(−tN )| ≤ δ(Nk)2/3, and |x′−x′(−tN )| ≤ δ(Nk)1/2, and y ∈ Supp(1−χ1

N ).
Hence, there we have

e−µn(xn−yn)2/2h−(x′−y′)2/2h ≤ hδ2N/2.

With the estimate of eS/hwN in Proposition 4.6 (i), we deduce,

|I2(x, ξ;h)| = O(hδ2N/4),

uniformly for (x, ξ) ∈ W (tN , h).
Next we study I1. Since Suppχ1

N ⊂ Ω(c2(Nk)2/3, c1(Nk)2/3) for some c1 >

c2 > 0, we can use the WKB expansion (4.41), that we prefer to write in the
coordinates z′ = y′, zn = yn + b(y′) as in (4.34). Using also (4.24) and (4.27), we
obtain,

eS/hwN (y;h) = h−n/4e−φ̃(z′,zn)/hA(z′, zn;h) + O
(
hδLN + hL

)
,

where

φ̃(z′, zn) = a(z′)− b(z′)ξc
n(z′) + ξc

n(z′)zn − iν̃
(
z′,−iz1/2

n

)
z3/2
n ,

A(z′, zn;h) =
L+[Nk/c′Lh]∑

j=0

f̃j(z′,−iz
1/2
n )

(−iz
1/2
n )1/2+3j

hj ,

with ν̃(z′,−iz
1/2
n ) and f̃j(z′,−iz

1/2
n ) holomorphic with respect to z

1/2
n for |zn| <

c1(Nk)2/3, and ν̃(0, 0) = (2/3)
√

C0 (see (4.24), (4.25), (4.5)). In particular, on
Suppχ1

N , we have,

|A(z′, zn;h)| = O((Nk)−1/6). (6.33)

Now, I1 is written as,
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I1(x, ξ, h) = h−n/4

∫

Rn

eiψ(x,z,ξ)/hd(x, z, h)dz + O
(
hδLN + hL

)
,

with

ψ(x, z, ξ) = (x′ − z′) · ξ′ + (xn − zn + b(z′))ξn + iφ̃(z′, zn)

+
i(x′ − z′)2

2
+

iµn(xn − zn + b(z′))2

2
;

d(x, z;h) = χ1
N (z′, zn − b(z′))A(z′, zn;h).

By the change of scale,

x′ = (Nk)1/2x̃′; xn = (Nk)2/3x̃n;

z′ = (Nk)1/2z̃′; zn = (Nk)2/3z̃n; (6.34)

ξ′ = (Nk)1/2ξ̃′; ξn = (Nk)1/3ξ̃n,

and setting

h̃ := (Nk)−1h (¿ 1), (6.35)

I1 becomes,

I1(x, ξ, h) = (Nk)(n+1)/3+(n−1)εh−n/4

∫
eiψ̃(x̃,z̃,ξ̃)/h̃d̃(x̃, z̃, h̃)dz̃ + O

(
hδLN + hL

)
,

where

ψ̃ = (x̃− z̃) · ξ̃ +
2
3

√
C0z̃

3/2
n +

i(x̃− z̃)2

2
+ ã(z̃′) + O((Nk)1/3),

with ã(z̃′) = O(|z̃′|2) real-valued, and d̃(x̃, z̃; h̃) is a smooth function in z̃ supported
in

{|z̃n − C0δ
−2 + O((Nk)1/3)| < 3δ

} ∩ {|z̃′ + O((Nk)5/6)| ≤ 3δ
}
, (6.36)

(recall from (6.4) and (4.4) that x(−tN ) = (O((Nk)4/3), C0δ
−2(Nk)2/3 + O(Nk))

and a(z′), b(z′), ξc
n(z′) are real-valued functions that are O(|z′|2)). Moreover, d̃

satisfies the same estimate as (6.33), and it is holomorphic with respect to z̃n in a
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(h-independent) small neighborhood of z̃n = x̃n.
Then it suffices to show,

Re
∂ψ̃

∂z̃n
≥ δ̃, (6.37)

for some positive constant δ̃ independent of h and N . Indeed, in that case, a
standard modification of the integration path with respect to z̃n around z̃n = x̃n

to the upper complex plane with small enough radius, shows that I1 = O(e−δ/h̃)
as h̃ → 0, with another constant δ > 0, and this means that I1 = O(hδN ) as
h → 0.

The fact that (6.37) holds for z̃ in the support of d̃ (where (6.36) holds) and
(x, ξ) ∈ W (tN , h) follows from,

Re
∂ψ̃

∂z̃n
= −ξ̃n +

√
C0z̃

1/2
n + O((Nk)1/3),

and the estimates (6.36) and −ξ̃n ≥ C0δ
−1 − δ implies

−ξ̃n +
√

C0z̃
1/2
n ≥ 2C0δ

−1 − 5δ.

This completes the proof. ¤

6.2. Propagation up to the outgoing region.
Now, for N ≥ 1 large enough, we set,

vN := χNv = χNeS/h(u− wCN ),

where χN is as in (6.32), and C > 0 must be fixed large enough as in Proposition
5.1. Lemmas 6.4 and 6.7 imply that for any L large enough, there exists δL > 0
such that for any N ≥ L/δL,

TN (vN ) = O(hδN + hL) uniformly in W (tN , h), (6.38)

where δ > 0 is a fixed small enough constant independent of N, L, and tN =
δ−1(Nk)1/3. Moreover, since Re φ̃ ≥ −C1Nk on SuppχN (for some C1 > 0 con-
stant), we deduce from Proposition 4.6 that, if C > 0 has been chosen sufficiently
large, then,

(P − ρ(h))vN = [P, χN ]eS/h(u− wCN ) + O(hδN ).
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Now, we introduce the (N, h)-dependent distance d̃N , associated with the metric,

|dx′|2
Nk

+
dx2

n

(Nk)4/3
.

Then, using Proposition 5.1, we see that if

d̃N (x,Supp∇χN ) ≥ ε (6.39)

for some fixed ε > 0, thanks to the Gaussian factor in the definition of TN (see
(6.12) for the definition), we have,

TN (P − ρ(h))vN (x, ξ) = O(h−N5+ε2N/2),

for some N5 > 0 independent of N , and thus,

TN (P − ρ(h))vN (x, ξ) = O(hε2N/4), (6.40)

for all N large enough, and uniformly with respect to h > 0 small enough and
(x, ξ) ∈ R2n verifying (6.39).

Still working in the same coordinates (for which x̂ = 0), we consider the
(h,N)-dependent change of variables,

x = (x′, xn) 7→ x̃ = (x̃′, x̃n) :=
(
(Nk)−1/2x′, (Nk)−2/3xn

)
,

and the corresponding unitary operator UN on L2(Rn). Under this change, the
function vN is transformed into,

ṽN (x̃) := UNvN (x̃) = (Nk)n/4+1/12vN

(
(Nk)1/2x̃′, (Nk)2/3x̃n

)
,

and one can check,

T ṽN

(
x̃, ξ̃; h̃

)
= c1(Nk)−n/4−1/12TNvN

(
AN (x̃, ξ̃);h

)
, (6.41)

where T = T1 is the standard FBI transform defined in (8.5) with c1 =
2−n/2(πh)−3n/4, and,

AN

(
x̃, ξ̃

)
:=

(
(Nk)1/2x̃′, (Nk)2/3x̃n; (Nk)1/2ξ̃′, (Nk)1/3ξ̃n

)
;
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h̃ :=
h

Nk
=

(
N ln

1
h

)−1

.

Then, setting,

(Nk)−2/3(P − ρ) =: P̃ = −(Nk)1/3h̃2∆x̃′ − h̃2∂2
x̃n

+ Ṽ (x̃),

with,

Ṽ (x̃, h̃) := (Nk)−2/3V
(
(Nk)1/2x̃′, (Nk)2/3x̃n

)− (Nk)−2/3ρ

= −C0x̃n + (Nk)−2/3
[
E0 − ρ(h) + W

(
(Nk)1/2x̃′, (Nk)2/3x̃n

)]
,

we deduce from (6.41) that (6.40) becomes,

T P̃ ṽN

(
x̃, ξ̃; h̃

)
= O

(
c1(Nk)−(n+3)/4e−ε2/4h̃

)
= O

(
e−ε2/6h̃

)
, (6.42)

for any N ≥ 1 large enough, and uniformly with respect to h > 0 small enough
and (x̃, ξ̃) ∈ R2n verifying (6.39). (Here, we have used the fact that Nk = h/h̃ =
h̃−1e−1/(Nh̃).)

Moreover, setting,

p̃
(
x̃, ξ̃

)
:= (Nk)1/3|ξ̃′|2 + ξ̃2

n + Ṽ
(
x̃, h̃

)
= (Nk)−2/3p ◦AN

(
x̃, ξ̃

)
,

a direct computation shows that, for all t̃ ∈ R, one has,

exp t̃Hp̃ = A−1
N ◦ (

exp(Nk)1/3t̃Hp

) ◦AN .

As a consequence, still using (6.41), we see that (6.38) can be rewritten as,

T ṽN

(
x̃, ξ̃; h̃

)
= c1(Nk)−n/4−1/12O

(
e−δ/h̃ + e−δL/h̃

)

= O
(
e−δ′L/2h̃

)
, δ′L = min(δ, δL) (6.43)

uniformly in the tubular domain

W̃ (h̃) :=

{
|x̃n − x̃n(−δ−1)| ≤ δ,

∣∣ξ̃n − ξ̃n(−δ−1)
∣∣ ≤ δ,

|x̃′ − x̃′(−δ−1)| ≤ δ(Nk)−1/6,
∣∣ξ̃′ − ξ̃′(−δ−1)

∣∣ ≤ δ(Nk)−1/6

}
,

(6.44)
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where (x̃(t̃), ξ̃(t̃)) = exp t̃Hp̃(0, 0).
Moreover, using (2.7), Proposition 5.1, and the properties of wCN in the sea,

we see that there exists N1 ≥ 0, such that,

‖ṽN‖H1 = O(h−N1) = O
(
eN1/(Nh̃)

)
. (6.45)

In particular, for any ε > 0, one has ‖ṽN‖H1 = O(eε/h̃) when N is large enough.
Now, we are in a situation very similar to that of the propagation of analytic

singularities, except for the fact that the symbol of P̃ is not analytic. However,
denoting by WN a holomorphic C(Nk)2/3-approximation of W near 0 (in the sense
of Lemma 8.1, and with C > 0 sufficiently large), and setting,

W̃N (x̃) := WN

(
(Nk)1/2x̃′, (Nk)2/3x̃n

)
;

ṼN (x̃) := −C0x̃n + (Nk)−2/3
[
E0 − ρ(h) + W̃N (x̃)

]
;

P̃N := −(Nk)1/3h̃2∆x̃′ − h̃2∂2
x̃n

+ ṼN (x̃),

we deduce from (6.42), (6.45), (and, e.g., the fact that (Nk)N = h̃−Ne−1/h̃ =
ON (e−1/2h̃)), that, for any ε > 0 fixed small enough and for any N ≥ 1 large
enough, we have,

T P̃N ṽN

(
x̃, ξ̃; h̃

)
= ON

(
e−ε2/6h̃

)
, (6.46)

uniformly with respect to h̃ > 0 small enough and (x̃, ξ̃) ∈ R2n verifying (6.39),
which can be expresses as

|x̃′| < |x̃′(−δ−1)|+ 2δ − ε, |x̃n| < |x̃n(−δ−1)|+ 2δ − ε. (6.47)

Now, by construction, the symbol of P̃N is holomorphic in a (arbitrarily large)
complex neighborhood of (0, 0), and since E0 − ρ(h) = O(h) and ∂αW (x) =
O(|x|(2−|α|)+), we see that the total h̃-semiclassical symbol p̃N of P̃N verifies,

p̃N

(
x̃, ξ̃

)
= ξ̃2

n − C0x̃n + (Nk)1/3
(
ξ̃′

)2 + (Nk)1/3O

(
|x̃|2 +

(
N ln

1
h

)−1)
,

that tends to,

p̃0

(
x̃, ξ̃

)
:= ξ̃2

n − C0x̃n,
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as h̃ tends to 0. In particular, p̃0 does not depend on N , and the point
exp(−δ−1Hp̃(0, 0)) tends to exp(−δ−1Hp̃0(0, 0)) as h̃ → 0+.

From now on, we fix ε > 0 small enough and the cut-off function χ0 in such
a way that dist(πx(exp t̃Hp̃0(0, 0)),Supp∇χ0) ≥ 2ε for all t̃ ∈ [−δ−1, δ−1], where
δ is the same as in (6.43).

Then, modifying the proof of the theorem of the propagation of analytic
singularities (see, e.g., [Sj1, Theorem 9.1], or [Ma1, Theorem 4.3.7]), we can show
that, in our case, the estimates (6.45), (6.43) and (6.46) imply

Proposition 6.8. There exists a constant δ1 > 0 independent of L, such
that, for all L large enough (and N = L/δL), one has, for h̃ > 0 small enough,

T ṽN

(
x̃, ξ̃; h̃

)
= O

(
e−δ1δL/h̃

)
(6.48)

uniformly in V (δ1) = {x̃; |x̃| ≤ δ1} × {ξ̃; (Nk)1/6|ξ̃′|+ |ξ̃n| ≤ δ1}.

Proof. As in (6.15), we make a symplectic change of coordinates





ỹ′ = x̃′, ỹn = x̃n − 1
C0

ξ̃2
n,

η̃′ = ξ̃′, η̃n = ξ̃n,

(6.49)

which leads to

p̃0 = −C0ỹn, Hp0 = C0
∂

∂η̃n
. (6.50)

For positive constants a, b, c, d with b < a and α, β with α < 2βd, we take
f ∈ C∞0 (]− a, d[; [0, α]) and χ ∈ C∞0 (]− c, c[; [0, 1]) such that

f ′ ≤ −β on
[
− b,

d

2

]
, f(0) =

α

2
,

χ = 1 on
[
− c

4
,
c

4

]
, χ ≥ 1

4
on

[
− c

2
,
c

2

]
, χ ≤ 1

4
outside

[
− c

2
,
c

2

]
.

Then the weight function

ψ(ỹ, η̃) = f(η̃n)χ(|ỹn|)χ
(
(Nk)1/6|ỹ′|)χ(

(Nk)1/6|η̃′|)

satisfies
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|Hp̃0ψ| ≥
C0β

64
in Ω̃1, (6.51)

|ψ| ≤ max
(

α

4
,
α− βd

2

)
=

α

4
in Ω̃2, (6.52)

where Suppψ ⊂ Ω̃1 ∪ Ω̃2 ∪ Ω̃3, with

Ω̃1 = Vc/2 ×
[
− b,

d

2

]
,

Ω̃2 = (Vc × [−b, d])\Ω̃1,

Ω̃3 = Vc × [−a,−b]

and

Vc :=
{
(ỹ, η̃′); |(ỹ′, η̃′)| ≤ c(Nk)−1/6, |ỹn| ≤ c

}
.

Remark that Ω̃3 ⊂ W̃ (h̃) if a, b are suitably chosen.
A microlocal exponential estimate leads us, in our case, to

θ2
∥∥(Hp̃0ψ)eθψ/h̃T ṽN

∥∥2 ≤ C(k1/3 + θ3)
∥∥eθψ/h̃T ṽN

∥∥2 +
∥∥eθψ/h̃T P̃N ṽN

∥∥2
,

for a small parameter θ and for each fixed L, N = L/δL. Let θL be such small
number that C(k1/3/θ2 + θ)×C0β/64 < 1/2 holds for sufficiently small h, and let
denote again by δL the minimum of δ′L and θL. Then we have, by (6.51),

∥∥eδLψ/h̃T ṽN

∥∥2

L2(Ω̃1)
≤

∥∥eδLψ/h̃T ṽN

∥∥2

L2(Ω̃1∪Ω̃3)
+ CL

∥∥eδLψ/h̃T P̃N ṽN

∥∥2
, (6.53)

for some constant CL > 0. First using (6.52) and |f | ≤ α, one can estimate the
RHS of (6.53) by

2eαδLψ/4h̃‖T ṽN‖2L2(Ω̃2)
+ 2eαδLψ/h̃‖T ṽN‖2L2(Ω̃3)

+ CLeαδLψ/h̃‖T ṽN‖2,

and next, by using (6.45), (6.43) and (6.46) (observing that (6.47) is satisfied with
x̃ = πx exp t̃Hp̃0 for all −δ−1 ≤ t̃ ≤ 0), by,

C ′L
(
e(α/4+N1/L)δL/h̃ + e(α−1/2)δL/h̃ + e(αδL−ε2/6)/h̃

)
.
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The LHS of (6.53) is estimated from below by

∥∥eδLψ/h̃T ṽN

∥∥2

L2(Ω̃1)
≥ ∥∥eδLψ/h̃T ṽN

∥∥2

L2(V (δ1))
≥ e(3/8)αδL/h̃‖T ṽN‖2L2(V (δ1))

,

if δ1 is so small that ψ ≥ 3/8 on V (δ1). Thus we obtain

‖T ṽN‖2L2(V (δ1))
≤ C ′L

(
e(−α/8+N1/L)δL/h̃ + e((5/8)α−1/2)δL/h̃ + e((5/8)αδL−ε2/6)/h̃

)
.

This implies (6.48), if one takes α and δ1 sufficiently small. ¤

On the other hand, if |x̃| ≤ δ′1 for small enough δ′1 and ξ̃ ∈ Rn\Vξ(δ1) (where
we set Vξ(δ1) = {ξ̃; (Nk)1/6|ξ̃′|+ |ξ̃n| ≤ δ1}), then,

p̃N

(
x̃, ξ̃

) ≥ c
(|ξ̃n|2 + (Nk)1/3|ξ̃′|2 + 1

)

for some positive constant c, and again, standard techniques of microlocal analytic
singularities (see, e.g., [Ma1, Theorem 4.2.2]) show, for any m ≥ 0, the existence
of some εm > 1 (still independent of N), such that (possibly by shrinking a little
bit δ1),

∥∥〈ξ̃〉mT1ṽN

∥∥
L2({|x̃|≤δ1}×Vξ(δ1)C)

= O
(
e−εm/h̃

)
. (6.54)

Gathering (6.48) and (6.54), we obtain,

∥∥〈ξ̃〉mT1ṽN

∥∥
L2({|x̃|≤δ1}×Rn)

= O
(
e−δ′1δL/h̃

)
.

In particular, using the fact that,

‖T1ṽN‖2L2({|x̃|≤δ1}×Rn)

= (2πh̃)nc2
1

∫

{|x̃|≤δ1}×Rn

e−(x̃−ỹ)2/h̃|ṽN (ỹ)|2dỹdx̃

≥ (πh̃)−n/2

∫

|x̃−ỹ|≤
√

h̃, |ỹ|≤(1/2)δ′1

e−(x̃−ỹ)2/h̃|ṽN (ỹ)|2dỹdx̃

≥ bn

e
π−n/2‖ṽN‖2L2({|x̃|≤(1/2)δ′1}),

(where bn stands for the volume of the unit ball of Rn), and turning back to the
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previous coordinates, we obtain,

‖vN‖L2({|x′|≤(1/2)δ′1(Nk)1/2,|xn|≤(1/2)δ′1(Nk)2/3}) = O
(
hδ′1L

)
.

In the same way, working with 〈ξ〉mT1ṽN instead of T1ṽN , we also find,

‖vN‖Hm({|x′|≤(1/2)δ′1(Nk)1/2,|xn|≤(1/2)δ′1(Nk)2/3}) = O
(
hδ′1L

)
,

for large enough L. Since L is arbitrarily large, (6.1) holds uniformly in W (tN , h)
by standard Sobolev estimates, and since x̂ ∈ ∂Ö was taken arbitrarily, Proposition
6.1 follows.

7. Asymptotics of the width.

We calculate the asymptotic expansion of Im ρ(h) using the formula (1.2) and
the results of the preceding sections.

Let Wσ ⊂ Rn be an N, h-dependent open domain containing Ö defined by

Wσ =
{
x; dist(x, Ö) < σ(Nk)2/3

}

for 1 < σ < 2.
The boundary ∂Wσ is in UN for 1 < σ < 2. Hence, replacing u by wCN in

the formula (1.2) by using Proposition 6.1, and noticing that ‖u‖L2(WN (h)) − 1 is
exponentially small, we have

Im ρ(h) = −h2 Im
∫

Wσ

∂wCN

∂n
wCNdS + O

(
h2Le−2S/h

)
. (7.1)

Moreover, the domain of integration ∂Wσ can be replaced by ∂Wσ ∩ UN,1 using
the facts (4.39) and Proposition 4.6 (i).

Then we can substitute the asymptotic formula (4.41) into the integrand of
(7.1); for any L large enough, there exist δL, cL(= 1/C ′L) > 0 such that for all
N > L/δL, one has

h2 ∂wCN

∂n
wCN = h1−n/2e−2(S+Re φ̃)/h

×




L+cLN | ln h|∑

j,k=0

(
∂φ̃

∂n
ãj ãk + h

∂ãj

∂n
ãk

)
hj+k + O(hL)



 .
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The vector field ∂ Im φ̃/∂x · ∂/∂x is transversal to the caustics C where Im φ̃ =
Im φ = 0. Let ι be the one-to-one map which associates to a point x in ∂Wσ∩UN,1

the point y = ι(x) on C such that the integral curve of ∂ Im φ̃/∂x ·∂/∂x emanating
from y passes by x.

Lemma 7.1. On ∂Wσ ∩UN,1, the function Re φ̃(x) reaches its (transversally
non-degenerate) minimum S at ι−1(Γ) modulo O(h∞). More precisely, one has,

Re φ̃(x) |∂Wσ∩UN,1= φ(ι(x)) + O(h∞).

Proof. This is a direct consequence of (4.9) and (4.28). ¤

Lemma 7.2. Let x ∈ ∂Wσ ∩ UN,1, and y = ι(x) ∈ C . There exists a
family of smooth functions {β′m(y, dist(x,C ))}∞m=0 defined in C × [0, 2(Nk)2/3),
with β′0(y, 0) > 0, such that, for any large L, there exist δL, cL > 0 such that for
all N > L/δL, one has,

−h2 Im
∂wCN

∂n
wCN = h1−n/2e−2(S+φ(y))/h

×




2L+2cLN | ln h|+1∑
m=0

β′m(y, δ(Nk)2/3)
(

N ln
1
h

)−m

+ O(hL)



 .

Proof. We know by (4.19) and (4.42) that

∂ Im φ̃

∂n
= O

(
dist(x,C )1/2

)
, ãj = O

(
dist(x,C )−3j/2−1/4

)
.

It follows that, for j + k = m,

∂ Im φ̃

∂n
ãj ãkhm ∼ dist(x,C )−3m/2hm = δ−3m/2

(
h

Nk

)m

,

∂ãj

∂n
ãkhm+1 ∼ dist(x,C )−3(m+1)/2hm+1 = δ−3(m+1)/2

(
h

Nk

)m+1

.

In particular, the principal term β′0(y, 0) is positive. In fact,

β′0(y, δ(Nk)2/3) =
∂φ̃

∂n
|ã0|2.
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In local coordinates as in Section 4, ∂/∂n = (O(|x|)∂/∂x′, (1 + O(|x|))∂/∂xn) by
(4.4), and

−∂ Im φ̃

∂x′
|ã0|2 = O(|x′|) + O(xn + b(x′)),

−∂ Im φ̃

∂xn
|ã0|2 =

πc0(x′, ξc
n(x′))2

ν1(x′, ξc
n(x′))

+ O
(√

xn + b(x′)
)
,

as xn + b(x′) tends to 0, by (4.38) and (4.19). ¤

Now expanding β′m in Taylor series with respect to dist(x,C ), we obtain

− Im ρ = h1−n/2e−2S/h

2L+2cLN | ln h|+1∑
m=0

(
N ln

1
h

)−m [3L/2]+1∑

j=0

δj−3m/2(Nk)2j/3

×
∫

C∩UN,1

e−2φ(y)/hβ′m,j(y)dy + O
(
hL+1−n/2e−2S/h

) ∫

C∩UN,1

e−2φ(y)/hdy.

To the integrals of the RHS, we apply the stationary phase method using Assump-
tion (A4), which means that the phase φ(y) attains its transversally non-degenerate
minimum on the whole submanifold Γ. For any large L, we obtain,

∫

C∩UN,1

e−2φ(y)/hβ′m,j(y)dy = h(n−1−nΓ)/2

{ L−1∑

l=0

dl,j,mhl + O(hL)
}

,

where {dl,j,m} is a family of real numbers with d0,0,0 > 0. Here nΓ = dim Γ. Hence
we have

− h−(1−nΓ)/2e2S/h Im ρ(h)

=
∑

(l,j,m)∈N

dl,j,mhlk2j/3

(
ln

1
h

)−m

(N2/3δ)j−3m/2 + O(hL), (7.2)

where

N =
{

(l, j,m) ∈ N3; l ≤ L− 1, j ≤
[
3L

2

]
+ 1, m ≤ 2(L + cLN | lnh|) + 1

}
.

Lemma 7.3. Let (l, j, m) ∈ N . The real number dl,j,m vanishes if j −
3m/2 6= 0.
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Proof. Observing that h ¿ k2/3 ¿ | lnh|−1, we introduce an order rela-
tion in the set N . We write (l, j,m) < (l′, j′,m′) if one of the following three
conditions holds:

(i) l < l′, (ii) l = l′ and j < j′, (iii) l = l′, j = j′, and m < m′.

Suppose there exists dl,j,m 6= 0 with j − 3m/2 6= 0 and let (l0, j0,m0) be the
smallest among such (l, m, j)’s. Then the RHS of (7.2) becomes

∑

(l,j,m)<(l0,j0,m0)

dl,j,mhl+m + dl0,j0,m0h
l0k2j0/3

(
ln

1
h

)−m0

(N2/3δ)j0−3m0/2

+ o

(
hl0k2j0/3

(
ln

1
h

)−m0
)

.

Here, δ is an arbitrary number varying between 1 and 2 and dl,j,m are indepen-
dent of δ. On the other hand, the LHS of (7.2) is independent of δ. This is a
contradiction and we have proved Lemma 7.3. ¤

Then the proof of Theorem 2.3 follows from (7.2) and this Lemma 7.3, since
for j − 3m/2 = 0, one has

(
ln

1
h

)−m

k2j/3 = hm.

8. Appendix.

8.1. Holomorphic δ-approximation.
Let f = f(x) be a smooth function on Rn uniformly bounded together with

all its derivatives. A function f̃(x, y) on R2n is said to be an almost-analytic
extension of f if,

f̃(x, 0) = f(x),

and, for all α ∈ Z2n
+ ,

∂α

(
∂

∂x
+ i

∂

∂y

)
f̃(x, y) = O(|y|∞), (8.1)

as |y| → 0+, uniformly with respect to x. We can construct an almost-analytic
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extension (see, e.g., [MeSj]) by setting,

f̃(x, y) =
∑

α∈Nn

(iy)α

α!
∂αf(x)

(
1− χ

(
εα

|y|
))

, (8.2)

where χ ∈ C∞0 (R) is a fixed cutoff function that is equal to 1 near 0, and (εα)α∈Nn

is a decreasing sequence of positive numbers converging to 0 sufficiently rapidly.
More precisely, we choose εα such that, for any β ≤ α, one has,

|y| sup
∣∣∣∣
(

1− χ

(
εα

|y|
))

∂α+βf

∣∣∣∣ ≤ α!.

Then, the corresponding almost-analytic extension have the following elementary
properties:

Lemma 8.1. Let f be as above.

( i ) If f̃(x, y) and f̂(x, y) are both almost-analytic extensions of f(x), then, for
any δ > 0, one has

f̃(x, y)− f̂(x, y) = O(|y|∞);

sup
|y|≤δ

|f̃(x, y)| ≤ min{sup |f |+ 2, sup |f |+ δ(1 + sup |∇f |)}.

( ii ) Let f̃ be an almost-analytic extension of f and let I1, . . . , In ⊂ R be bounded
open intervals. Then, for any δ > 0 there exists a function fδ, holomorphic
in Γδ := {z ∈ Cn; dist(zj , Ij) < δ, j = 1, . . . , n}, such that, for all α ∈ Z2n

+ ,
β ∈ Zn

+, and N ≥ 1, there exists C(α, N) > 0, such that,

sup
x+iy∈Γδ

∣∣∂α
(
fδ(x + iy)− f̃(x, y)

)∣∣ ≤ C(α, N)δN ; (8.3)

sup
z∈Γδ

∣∣∂β
z fδ

∣∣ ≤ sup
x+iy∈Γ2δ

∣∣f̃(x, y)
∣∣δ−|β|β!, (8.4)

uniformly as δ → 0+. (Such a function fδ will be called a holomorphic
δ-approximation of f on I1 × · · · × In.)

(iii) Suppose n = 1 and f(x) is real valued. If f ′(x0) 6= 0, then any almost-
analytic extension f̃(x, y) is one to one in a neighborhood of (x, y) = (x0, 0)
and the inverse f̃−1(u, v) defined in a neighborhood of (u, v) = (f(x0), 0) is
an almost-analytic extension of f−1(u).
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Proof. The proof of (i) is easy and we proceed with that of (ii). We denote
by γ(δ) the (positively oriented) n-contour,

γ(δ) :=
{
ζ ∈ Cn; dist(ζj , Ij) = 2δ, j = 1, . . . , n

}
,

and, for z ∈ γ(δ), we set,

fδ(z) =
1

(2iπ)n

∫

γ(δ)

f̃(Re ζ, Im ζ)
(z1 − ζ1) · · · (zn − ζn)

dζ1 · · · dζn.

Then, fδ is clearly holomorphic in Γδ, and since |zj − ζj | ≥ δ for ζ ∈ γ(δ) and
z ∈ Γδ, (8.4) is obtained in a standard way by differentiating under the integral-
sign. Moreover, for z = x + iy ∈ Γδ, we have,

fδ(z)− f̃(x, y) =
1

(2iπ)n

∫

γ(δ)

f̃(Re ζ, Im ζ)− f̃(x, y)
(z1 − ζ1) · · · (zn − ζn)

dζ1 · · · dζn,

and, using the notations ∂z = (1/2)(∂x − i∂y) and ∂z = (1/2)(∂x + i∂y), we see
that,

f̃(Re ζ, Im ζ)− f̃(x, y)

= (ζ − z)
∫ 1

0

(
∂z f̃

)
(tζ + (1− t)z)dt +

(
ζ − z

) ∫ 1

0

(
∂z f̃

)
(tζ + (1− t)z)dt,

where ∂z f̃(z) stands for ∂z f̃(x, y), and similarly for ∂z f̃(z). Therefore, since f̃ is
almost-analytic, and | Im z|+ | Im ζ| = O(δ), we obtain,

fδ(z)− f̃(x, y) =
n∑

j=1

∫

γ(δ)

Fj(z, ζ)∏
` 6=j(z` − ζ`)

dζ1 · · · dζn + r(x, y),

with Fj(z, ζ) :=
∫ 1

0
(∂zj f̃)(tζ + (1 − t)z)dt, and ∂αr = O(δ∞) uniformly. Thus,

since Fj(z, ζ)
∏

` 6=j(z` − ζ`)−1 depends smoothly on ζj in the domain Aj :=
{ζj ; dist(ζj , Ij) ≤ 2δ}, by the Stokes formula, we obtain,

fδ(z)− f̃(x, y) = −i
n∑

j=1

∫

γj(δ)

∂ζj
Fj(z, ζ)∏

` 6=j(z` − ζ`)
dζ1 · · · dζn ∧ dζj + r(x, y),
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with γj(δ) := {ζj ∈ Aj , dist(ζ`, I`) = 2δ, ` 6= j}. Then, (8.3) follows from the fact
that ∂ζj Fj = O(δ∞) together with all its derivatives.

Now, we prove (iii). Let us use the coordinates (z, z̄) = (x + iy, x − iy),
(ζ, ζ̄) = (u + iv, u− iv) and regard f̃ and g ≡ f̃−1 as functions of (z, z̄) and (ζ, ζ̄)
respectively. Then

f̃
(
g(ζ, ζ̄), g(ζ, ζ̄)

)
= ζ.

Differentiating by ζ̄, one gets

∂z f̃ ∂̄ζg + ∂̄z f̃ ∂̄ζ ḡ = 0,

where ∂z = (1/2)(∂/∂x − i(∂/∂y)), ∂̄z = (1/2)(∂/∂x + i(∂/∂y)) and ∂ζ =
(1/2)(∂/∂u− i(∂/∂v)), ∂̄ζ = (1/2)(∂/∂u + i(∂/∂v)).

Since ∂z f̃ does not vanish near x0 by assumption, we can conclude that ∂̄ζg =
O(|v|∞), i.e. g is an almost-analytic extension of f−1(u) if ∂̄z f̃ is, as function of
(u, v), of O(|v|∞) as v → 0.

First, ∂̄z f̃ = O(|y|∞) since f̃ is almost-analytic. On the other hand, since
f(x) is real-valued, we see from (8.2) that v = f ′(x)y + O(y3) as y → 0, and since
f ′(x0) 6= 0, we also see that y = O(v) as v → 0. Hence ∂̄z f̃ = O(|v|∞). ¤

8.2. A priori estimates.
We recall some a priori estimates. The first is the so-called Agmon estimate

(see for example [HeSj2], [Ma1]):

Lemma 8.2. For any h > 0, V ∈ L∞(Rn) real-valued, E ∈ R, f ∈ H1(Rn),
and ϕ real-valued and Lipshitz on Rn, one has

Re
〈
eϕ/h(−h2∆ + V − E)f, eϕ/hf

〉

=
∥∥h∇(eϕ/hf)

∥∥2 +
〈
(V − E − |∇ϕ(x)|2)eϕ/hf, eϕ/hf

〉
.

The second is a microlocal estimate originated by one of the authors ([Ma2]).
For u(x, h) ∈ S′(Rn) and µ > 0, we define the so-called FBI-Bargmann transform
Tµ by the formula,

Tµu(x, ξ, h) = cµ

∫

Rn

ei(x−y)·ξ/h−µ(x−y)2/2hu(y, h)dy, (8.5)

where cµ = µn/42−n/2(πh)−3n/4. The operator Tµ is unitary from L2(Rn) to
L2(R2n), and eξ2/2µhTµu(x, ξ) is an entire function of zµ := x− iξ/µ.
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Proposition 8.3. Let m ∈ S2n(1), d ≥ 0, p ∈ S2n(〈ξ〉2d), and denote
by pa(x, ξ;h) an almost-analytic extension of p. Let also k := h ln(1/h), ρ ∈
[−1/3, 1/3] and ψ ∈ C∞(R2n;R), possibly h-dependent, and verifying,

∂α
x ∂β

ξ ψ = O
(
k−(a|α|+(1−a)|β|)), (8.6)

for any α, β ∈ Zn
+, with,

1
3
−min(ρ, 0) ≤ a ≤ 2

3
−max(ρ, 0). (8.7)

Then, taking µ = Ckρ (with C > 0 constant arbitrary), for u, v ∈ L2(Rn), one
has,

〈
mh−ψTµPu, h−ψTµv

〉
=

〈
p̃(x, ξ;h)h−ψTµu, h−ψTµv

〉

+ O

(
h

ln 1
h

∥∥〈ξ〉dh−ψTµu
∥∥ ·

∥∥〈ξ〉dh−ψTµv
∥∥
)

, (8.8)

with,

p̃(x, ξ;h) = m(x, ξ)pa

(
x− 2kµ−1∂zµψ, ξ + 2ik∂zµψ

)

+ h∂zµ

[
m(x, ξ)

(
1
µ

∂pa

∂ Re x
− i

∂pa

∂ Re ξ

)(
x− 2kµ−1∂zµ

ψ, ξ + 2ik∂zµ
ψ

)]
,

where we have set ∂zµ
= (∂x + iµ∂ξ)/2.

In particular, if p is real-valued, one obtains,

Im
〈
h−ψTµPu, h−ψTµu

〉

= k
〈
(Hpψ + qψ(x, ξ;h))h−ψTµu, h−ψTµu

〉
+ O(h)

∥∥〈ξ〉dh−ψTµu
∥∥2

, (8.9)

with,

qψ(x, ξ;h) := hµ
n∑

j,`=1

(
∂ξj

∂ξ`
p
)
∂ξj

∂x`
ψ

+
∑

α∈N2n

2≤|α|≤3

2|α|k|α|−1

α!
∂αp(x, ξ) Im

[
(−µ−1∂zµ

ψ, i∂zµ
ψ)α

]
.
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Proof. We follow the proof of [Ma2, Proposition 3.1] (see also [BoMi,
Theorem 3]), and we do it for d = 0 only (the general case d ≥ 0 can be done
along the same lines and is left to the reader). We have,

I :=
〈
mh−ψTµPu, h−ψTµv

〉

=
c2
µ

(2πh)n

∫
eΦ/hm(x, ξ)p

(
y + x′

2
, η

)
u(x′)v(y′)d(x′, η, y, y′, x, ξ), (8.10)

where the integral runs over R6n, and where we have set,

Φ = 2kψ(x, ξ) + i(y′ − y)ξ − µ

2
(x− y)2 − µ

2
(x− y′)2 + i(y − x′)η. (8.11)

Then we observe that, by construction of pa, for all Y = (y, η) ∈ R2n and X =
(x− 2kµ−1∂zµ

ψ(x, ξ), ξ +2ik∂zµ
ψ(x, ξ)) ∈ C2n (and setting Xs := sY +(1− s)X,

0 ≤ s ≤ 1), we have,

p(Y )− pa(X) =
∫ 1

0

(
(Y − Re X)

∂pa

∂Re X
(Xs)− Im X

∂pa

∂Im X
(Xs)

)
ds

=
∫ 1

0

(
(Y −X)

∂pa

∂Re X
(Xs) + 2i Im X

∂pa

∂X
(Xs)

)
ds

= (X − Y ) · b1(x, ξ, Y ) + r1(x, ξ, Y ), (8.12)

where b1 and r1 are C∞ on R4n and verify,

∂α
x ∂β

ξ ∂γ
Y b1 = O

(
1 + kτ−a|α|−(1−a)|β|);

∂α
x ∂β

ξ ∂γ
Y r1 = O

(
(1 + kτ−a|α|−(1−a)|β|)| Im X|∞)

= O(h∞),
(8.13)

for all α, β ∈ (Z+)n, γ ∈ (Z+)2n, uniformly on R4n, and with τ := min(1− a, 1−
a− ρ, a, a + ρ). (The last estimate comes from the fact that | Im X| = O(k1/3).)

In the same way, one also has,

b1(x, ξ, Y ) = b1(x, ξ, X) + B2(x, ξ, Y )(X − Y ) + r2(x, ξ, Y ), (8.14)

with,

b1(x, ξ, X) =
∂pa

∂Re X
(X);
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∂α
x ∂β

ξ ∂γ
Y B2 = O

(
1 + kτ−a|α|−(1−a)|β|); (8.15)

∂α
x ∂β

ξ ∂γ
Y r2 = O(h∞).

Inserting (8.12) and (8.14) into (8.10), we obtain,

I =
〈
mpa(X)h−ψTµu, h−ψTµv

〉
+ R1 + R2 + R3 (8.16)

with,

R1 =
c2
µ

(2πh)n

∫
eΦ/h

(
X −

(
y + x′

2
, η

))
∂pa

∂Re X
(X)u(x′)v(y′)

×m(x, ξ)d(x′, η, y, y′, x, ξ), (8.17)

R2 =
c2
µ

(2πh)n

∫
eΦ/h

〈
B ·

(
X −

(
y + x′

2
, η

))
, X −

(
y + x′

2
, η

)〉
u(x′)

× v(y′)m(x, ξ)d(x′, η, y, y′, x, ξ), (8.18)

where we have set,

B := B2

(
x, ξ,

y + x′

2
, η

)
,

and,

R3 =
c2
µ

(2πh)n

∫
eΦ/hr

(
x, ξ,

y + x′

2
, η

)
u(x′)v(y′)

×m(x, ξ)d(x′, η, y, y′, x, ξ), (8.19)

where,

r(x, ξ, Y ) := (X − Y ) · r2(x, ξ, Y ) + r1(x, ξ, Y ).

Then, as in [Ma2], [BoMi], we observe that Φ verifies,

L(Φ) = X −
(

y + x′

2
, η

)
,
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with L := (1/2)(−µ−1∂x − i∂ξ − i∂η, i∂x − µ∂ξ + 2i∂y). As a consequence,

eΦ/h

(
X −

(
y + x′

2
, η

))
= hL(eΦ/h),

and

〈
B ·

(
X −

(
y + x′

2
, η

))
, X −

(
y + x′

2
, η

)〉
eΦ/h = h2〈B ·L,L〉eΦ/h =: h2AeΦ/h.

Thus, making an integration by parts in (8.17), we obtain,

R1 = h
〈
p1(x, ξ)h−ψTµu, h−ψTµv

〉
, (8.20)

with

p1(x, ξ;h) := tL

(
m(x, ξ)

∂pa

∂Re X
(X)

)

= ∂zµ

[
m(x, ξ)

(
1
µ

∂pa

∂ Re x
(X)− i

∂pa

∂ Re ξ
(X)

)]
,

(here tL stands for the transposed operator of L). In the same way, making two
integrations by parts in (8.18), we obtain,

R2 = h2
〈
h−ψTµ,fu, h−ψTµv

〉
,

where we have set,

f

(
x, ξ,

y + x′

2
, η

)
= tA · (m(x, ξ)), (8.21)

and,

Tµ,fu(x, ξ) := cµ

∫
ei(x−y)ξ/h−µ(x−y)2/2hOpW

h (f(x, ξ, ·))u(y)dy.

In particular, by (8.15) and (8.7), we see that,

∂α
x ∂β

ξ ∂γ
Y f = O

(
k−1−a|α|−(1−a)|β|). (8.22)
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With the same notations, we also have,

R3 =
〈
h−ψTµ,mru, h−ψTµv

〉
.

Now, for g ∈ {f,mr}, we observe,

Tµ,gu(x, ξ) =
[
TµOpW

h

(
g(x′, ξ′, ·))u(x, ξ)

]∣∣∣
x′=x
ξ′=ξ

,

and thus, applying a slight generalization of [Ma1, Proposition 3.3.1] to the case
µ 6= 1, we easily obtain,

Tµ,gu(x, ξ) = Oph(g̃)Tµu(x, ξ), (8.23)

where Oph(g̃) stands for the semiclassical pseudodifferential operator with symbol,

g̃
(
x, x′, ξ, ξ′, x∗, ξ∗

)
:= g

(
x, ξ,

x + x′

2
− ξ∗, x∗

)
.

Here, x∗ and ξ∗ stand for the dual variables of x and ξ, respectively. Then, writing,

ψ(x, ξ)− ψ(x′, ξ′) = (x− x′)φ1 + (ξ − ξ′)φ2,

(with φj = φj(x, x′, ξ, ξ′;h) smooth), applying Stokes formula and, in the expres-
sion of h−ψOph(g̃)hψ, performing the change of contour,

R2n 3 (x∗, ξ∗) 7→ (x∗, ξ∗) + ik(φ1, φ2),

we see that h−ψOph(g̃)hψ is an h-admissible operator with symbol,

gψ

(
x, x′, ξ, ξ′, x∗, ξ∗

)
:= ga

(
x, ξ,

x + x′

2
− ξ∗ − ikφ2, x

∗ + ikφ1

)
,

where ga is an almost-analytic extension of g. Moreover, by (8.6), we see that φ1

and φ2 verify,

∂α
x,x′∂

β
ξ,ξ′φ1 = O

(
k−(a+a|α|+(1−a)|β|));

∂α
x,x′∂

β
ξ,ξ′φ2 = O

(
k−(1−a+a|α|+(1−a)|β|)),



Shape resonances for non globally analytic potentials 75

and thus, using (8.15), (8.22), the fact that k ≥ h, and the Calderón-Vaillancourt
theorem (see, e.g., [Ma1, Chapter 2, Exercise 15]), we obtain,

∥∥h−ψOph(f̃)hψ
∥∥ = O(k−1);

∥∥h−ψOph(m̃r)hψ
∥∥ = O(h∞),

and therefore,

R2 = O
(
h2k−1‖h−ψTµu‖ · ‖h−ψTµv‖);

R3 = O
(
h∞‖h−ψTµu‖ · ‖h−ψTµv‖),

so that, by (8.16) and (8.20), (8.8) follows.
To prove (8.9), we first observe, that, by a Taylor expansion, we have,

pa

(
x− 2kµ−1∂zµ

ψ, ξ + 2ik∂zµ
ψ

)

=
(
p− kµ−1∇xp∇xψ − kµ∇ξp∇ξψ

)
(x, ξ) + ikHpψ(x, ξ)

+
∑

α∈N2n

2≤|α|≤3

(2k)|α|

α!
∂αp(x, ξ)

(− µ−1∂zµψ, i∂zµψ
)α + O(k4/3),

and thus, in particular (since k4/3 = O(h)),

Im pa

(
x− 2kµ−1∂zµ

ψ, ξ + 2ik∂zµ
ψ

)

= kHpψ(x, ξ) +
∑

α∈N2n

2≤|α|≤3

(2k)|α|

α!
∂αp(x, ξ) Im

[
(−µ−1∂zµ

ψ, i∂zµ
ψ)α

]
+ O(h).

(8.24)

Moreover, using (8.6), we also see that,

(
1
µ

∂pa

∂ Re x
− i

∂pa

∂ Re ξ

)(
x− 2kµ−1∂zµψ, ξ + 2ik∂zµψ

)

= µ−1∂xp(x, ξ)− i∂ξp(x, ξ) + 2kM(x, ξ)∂zµ
ψ(x, ξ) + O(k2/3),

where M is the n× n-matrix-valued function,
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M = −µ−2(∇x ⊗∇x)p + iµ−1(∇ξ ⊗∇x +∇x ⊗∇ξ)p + (∇ξ ⊗∇ξ)p

= (∇ξ ⊗∇ξ)p + O(k1/3).

(Here, we have used the notation ∇x ⊗∇ξ = (∂xj
∂ξ`

)1≤j,`≤n.)
Since applying ∂zµ

makes lose at most k−2/3, one also easily obtains,

∂zµ

[(
1
µ

∂pa

∂ Re x
− i

∂pa

∂ Re ξ

)(
x− 2kµ−1∂zµψ, ξ + 2ik∂zµψ

)]

=
µ

2
∆ξp + 2k

n∑

j,`=1

(
∂ξj ∂ξ`

p
)
∂zj

µ
∂z`

µ
ψ(x, ξ) + O(1),

and thus, if p is real-valued, one finds,

Im ∂zµ

[(
1
µ

∂pa

∂ Re x
− i

∂pa

∂ Re ξ

)(
x− 2kµ−1∂zµψ, ξ + 2ik∂zµψ

)]

=
k

2

n∑

j,`=1

µ
(
∂ξj ∂ξ`

p
)(

∂ξj ∂x`
ψ + ∂xj ∂ξ`

ψ
)

+ O(1)

= kµ
n∑

j,`=1

(
∂ξj

∂ξ`
p
)(

∂xj
∂ξ`

ψ
)

+ O(1). (8.25)

Then, (8.9) immediately follows from (8.24)–(8.25). ¤
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