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Abstract. By using the method of equivariant differential geometry, we
construct a new family of noncompact complete hypersurfaces with constant
positive scalar curvature in the Euclidean spaces. To do so we make a detailed
analysis of the nonlinear ODE of the constant scalar curvature equation.

1. Introduction.

Let M be a complete 2-dimensional surface in the Euclidean space E3 with
constant Gaussian curvature. Then it is well known that M is a sphere, a plane or
a cylinder. Generalizations of this result have been attempted by many authors.
The typical theorem is due to Thomas [16], saying that an Einstein hypersurface
of the Euclidean space is locally a flat hypersurface, or a part of the sphere.

If we relax the curvature condition to constant scalar curvature, there are
two well know results. The result by Chern [3] says that there are no complete
graph in En+1 with constant positive scalar curvature. Cheng and Yau [2] proved
that if Mn is a complete hypersurface in En+1 with constant scalar curvature and
nonnegative sectional curvature, then M is isometric to a sphere, a flat manifold
or a generalized cylinder Sp ×Rn−p.

In the famous problem section of the book [17], Yau asked whether compact
hypersurfaces in RN+1 which have constant scalar curvature are isometric to the
sphere or not. In 1988, Ros [13] solved this problem affirmatively under the
additional hypothesis that the hypersurfaces are embedded. So there remains the
case when the hypersurfaces are immersed. For the problem, there are several
partial answers ([1], [10]).

Now we consider noncompact complete hypersurfaces. Recently many new
results have been proved on constant mean curvature hypersurfaces. Compared
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with constant mean curvature hypersurfaces there are less results on constant
scalar curvature hypersurfaces. One reason, we think, is the complexity of the
scalar curvature equation, but the other reason is the lack of examples. The
known examples are flat hypersurfaces, spheres, generalized cylinders Sp ×Rn−p,
the rotational hypersurfaces constructed by Leite [8], the complete hypersurface
with constant negative scalar curvature constructed by us in [9] and the complete
hypersurfaces with 0 scalar curvature constructed by Palmas in [11] and by Sato
in [15].

The purpose of this paper is to construct a new family of noncompact complete
hypersurfaces in En+1 with constant positive scalar curvature by the method of
equivariant differential geometry.

Generalized rotational hypersurfaces were first used by Hsiang et al. [7] to
construct new examples of compact hypersurfaces with constant mean curvature
in the Euclidean space. To an isometric transformation group (G,En) with codi-
mension two principal orbit type, which is classified by Hsiang and Lawson in [6],
we can construct G-invariant hypersurfaces, which are called generalized rotational
hypersurfaces. The equation that the scalar curvature is constant is reduced to
an ordinary differential equation. In [10] we proved the formula of calculating the
scalar curvature of generalized rotational hypersurfaces from the volume function
of orbits.

In this paper we shall study generalized rotational hypersurfaces of O(p + 1)
×O(q + 1)-type. We will show that the ODE system (2.1) has global solutions.
The key idea is to compare the solution of (2.1) with that of (3.1) which has
the first integrals and approximates (2.1) asymptotically. This sort of comparison
technique has been used in [4] and [5].

The author would like to thank the referee for his careful reading and many
valuable suggestions.

2. Preliminaries.

We consider the standard action of O(p+1)×O(q+1) on Rp+1×Rq+1, where
we always assume that p and q are greater than one. It is easy to see that the orbit
space Rp+1×Rq+1/O(p+1)×O(q +1) can be parametrized by the first quadrant
R+ ×R+. Let γ = γ(s) = (x(s), y(s)) be a curve in the first quadrant R+ ×R+

parameterized by its arc-length s. Let Mγ be an O(p + 1) × O(q + 1)-invariant
hypersurface in Rp+q+2 generated by γ. Mγ is diffeomorphic to Sp×Sq×R. It is
easy to see that the principal curvatures of Mγ are x′y′′ − y′x′′, y′/x, −x′/y with
multiplicities 1, p and q, respectively. Therefore the scalar curvature S of Mγ is

S = 2(x′y′′ − y′x′′)
(

p
y′

x
− q

x′

y

)
+

(
p
y′

x
− q

x′

y

)2

− p
y′2

x2
− q

x′2

y2
.
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Assume that S is constant. Then the above equation is equivalent to the
following ODE system.

dx

ds
= cos α,

dy

ds
= sin α,

dα

ds
=

p(p− 1)
(

sinα

x

)2

− 2pq
sinα

x

cos α

y
+ q(q − 1)

(
cos α

y

)2

− S

2
(

q
cos α

y
− p

sinα

x

) ,

(2.1)

where α is the angle between the tangent vector (x′, y′) and the x-axis.

Our main theorems of this paper are the following:

Theorem 2.1. Suppose that 2 ≤ p ≤ q + 1 and S > 0. Let 0 < x0 ≤√
p(p− 1)/S and 0 < y0 <

√
q(q − 1)/S. Then the ODE system (2.1) has a global

solution γ(s) = (x(s), y(s)) ∈ R+ × R+ on (−∞,∞) for the initial conditions
x(0) = x0, y(0) = y0 and α(0) = 0 such that y =

√
q(q − 1)/S is the asymptotic

line of γ as s →∞ and x =
√

p(p− 1)/S is the asymptotic line of γ as s → −∞,
respectively.

Theorem 2.2. Suppose that p > q + 1 ≥ 3 and S > 0. Let 0 < x0 ≤√
(p− 1)(q − 1)/S and 0 < y0 <

√
q(q − 1)/S. Then the ODE system (2.1) has a

global solution γ(s) = (x(s), y(s)) ∈ R+×R+ on (−∞,∞) for the initial conditions
x(0) = x0, y(0) = y0 and α(0) = 0 such that y =

√
q(q − 1)/S is the asymptotic

line of γ as s →∞ and x =
√

p(p− 1)/S is the asymptotic line of γ as s → −∞,
respectively.

Remark. The solution with y0 =
√

q(q − 1)/S corresponds to the cylinder
Rp+1 × Sq(y0).

3. Existence of the solution on [0, ∞).

In this section, we show the following.

Theorem 3.1. Suppose that p and q are greater than one. Let x0 > 0 and
0 < y0 <

√
q(q − 1)/S. Then (2.1) has a global solution γ(s) = (x(s), y(s)) ∈

R+ ×R+ on [0,∞) for the initial conditions x(0) = x0, y(0) = y0 and α(0) = 0.

We prove this theorem by preparing several lemmas.
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Since it holds that

dα

ds
(0) =

q(q − 1)/y2
0 − S

2q/y0
> 0,

we have 0 < α(s) < π/2 and dα/ds > 0 near s = 0.

Lemma 3.2. Set ε = −1/y0 +
√

1/y0
2 + S. If α(s) satisfies the inequality

0 < α(s) < π/2 on 0 < s < s0 for some s0, then there holds

q
cos α(s)

y(s)
− p

sinα(s)
x(s)

> ε, s ∈ [0, s0).

Proof. Put h(s) = q cos α(s)/y(s) − p sinα(s)/x(s), X(s) = sin α(s)/x(s)
and Y (s) = cos α(s)/y(s). We see that h(0) > ε. Suppose to the contrary that
there exists some s1 ∈ (0, s0) such that h(s) > ε for all 0 ≤ s < s1 and h(s1) = ε.
Then we have dh/ds(s1) ≤ 0. Since h(s1) = qY (s1)− pX(s1) = ε and X(s1) > 0,
we obtain

dα

ds
(s1) =

p(p− 1)X(s1)2 − 2pqX(s1)Y (s1) + q(q − 1)Y (s1)2 − S

2(qY (s1)− pX(s1))

=
−(p + p2/q)X(s1)2 − 2pε/qX(s1) + (q − 1)/qε2 − S

2ε

<
ε

2
− S

2ε
< 0.

Therefore from the assumption we get

dα

ds
(s1) + Y (s1) <

ε

2
− S

2ε
+

1
y0

= 0.

Hence we have

dX

ds
(s1) =

x(s1) cos α(s1)dα/ds(s1)− cos α(s1) sin α(s1)
x2

< 0,

dY

ds
(s1) = − sinα(s1)

y(s1)

(
dα

ds
(s1) + Y (s1)

)
> 0,

which implies
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dh

ds
(s1) = q

dY

ds
(s1)− p

dX

ds
(s1) > 0.

But this contradicts the inequality dh/ds(s1) ≤ 0 we mentioned earlier. ¤

From Lemma 3.2, if α(s) satisfies the inequality 0 ≤ α(s) < π/2 on [0, s0),
then it can be extended to s = s0. Thus (2.1) doesn’t have any singularity when
0 < α(s) < π/2.

Next we are going to analyze (2.1) by comparing it with the following ODE
system.

dx

ds
= cos α,

dy

ds
= sin α,

dα

ds
=

q(q − 1)
(

cos α

y

)2

− S

2q
cos α

y

.

(3.1)

Theorem 3.3. For any x0 > 0 and y0 satisfying 0 < y0 <
√

q(q − 1)/S,
(3.1) has a global solution with the initial conditions x(0) = x0, y(0) = y0 and
α(0) = 0 (see Figure 1), such that the curve (x(s), y(s)) is symmetric with respect
to the line parallel to the y-axis at the points where y takes critical values.

Proof. We rewrite (3.1) as

dx

dy
= cot α,

dα

dy
=

q(q − 1)
(

cos α

y

)2

− S

2q sinα
cos α

y

,

x(y0) = x0, α(y0) = 0.

(3.2)

The second equation of (3.2) is explicitly integrable. In fact, putting Y =
cos α(y)/y, we have

dY

dy
=

d

dy

(
cos α

y

)
=
−y sinα

dα

dy
− cos α

y2
= −q(q + 1)Y 2 − S

2qyY
.
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By integrating this equation we obtain

{
q(q + 1)

(
cos α

y

)2

− S

}
yq+1 =

{
q(q + 1)

1
(y0)2

− S

}
(y0)q+1 > 0. (3.3)

We set f(y) = {q(q + 1)/y2 − S}yq+1. f takes its maximum value at y∞ :=√
q(q − 1)/S. See Figure 5 for the graph of f(y). There is the unique point y1 > y0

which satisfies f(y1) = f(y0). It is easy to see that y1 > y∞. The solution curve
(x(s), y(s)) of (3.1) oscillates between the lines y = y0 and y = y1.

Next we are going to show the symmetric property of the solution. First, we
consider the solution of (3.1) with the initial conditions x(0) = 0, y(0) = y0 and
α(0) = 0. Set x̃(s) := −x(−s), ỹ(s) := y(−s), α̃(s) := −α(−s). Then it is easy
to see that x̃, ỹ and α̃ satisfy (3.1) with the same initial conditions. Therefore the
solution curve (x(s), y(s)) is symmetric with respect to the y-axis. In general, the
solution is symmetric with respect to the line parallel to the y-axis at the points
where y takes critical value y0 or y1. ¤

Figure 1.

For later use we prove the following two lemmas (see Figure 1).

Lemma 3.4. Let l1 = y∞ − y0 and l2 = y1 − y∞. Then we have l1 > l2.

Proof. We set g(t) = f(y∞ + t) where f(y) is defined earlier in the proof
of Theorem 3.3. We also set h(t) = g(−t)− g(t). If we can show that h(t) > 0 for
all t satisfying 0 < t < y∞, then we can conclude l1 > l2 (see Figure 5). Since we
have

g′(t) = −(q + 1)(y∞ + t)q−2(2Sy∞t + St2),

we get
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h′(t) = (q + 1)(y∞ + t)q−2St2 + (q + 1)(y∞ − t)q−2

+ 2(q + 1)Sy∞ · t{(y∞ + t)q−2 − (y∞ − t)q−2
}

> 0

when 0 < t < y∞. Since h(0) = 0, we get h(t) > 0 for all 0 < t < y∞. ¤

Let x, y and α be the solutions of (3.1) with the initial conditions x(0) = x0,
y(0) = y0 and α(0) = 0. Let s0 be the first s > 0 such that α(s) = 0, that
is, y(s0) = y1. Since α(s) satisfies 0 < α(s) < π/2 on s ∈ (0, s0), we have
dy/ds > 0 on the same interval. Let us take the inverse s = s(y) on y ∈ [y0, y1],
and abbreviate the function α(s(y)) as α(y), y ∈ [y0, y1] for simplicity. Under
these notations, we prove

Lemma 3.5. Let us denote the maximum of α(y), y ∈ [y0, y1], by α0. Then
we have

cos α0 =
y0

y∞

{
(q + 1)y2

∞
2y2

0

− q − 1
2

}1/(q+1)

.

Proof. For some y∗ ∈ [y0, y1], we have α0 = α(y∗). Substituting
dα/ds(α0) = 0 into (3.1), we have cos α0/y∗ = 1/y∞. Combining this with (3.3)
we get the conclusion. ¤

Let x, y, and α be the solutions of (2.1) with the initial conditions x(0) = x0,
y(0) = y0 and α(0) = 0. When α(s) satisfies 0 < α(s) < π/2 on (0, s1) for some
s1, we have dy/ds > 0 on the same interval. Hence, we have the inverse function
s = s(y) of y = y(s) on [0, s1). We abbreviate the function α(s(y)) as α(y) for
simplicity.

Lemma 3.6. Under the notations above, we have α(y) < α(y) for all y(> y0)
satisfying 0 < α(y) < π/2.

Proof. First we show that this inequality holds near y = y0.
We can rewrite (2.1) as

dx

dy
= cot α,

dα

dy
=

p(p− 1)
(

sinα

x

)2

− 2pq
sinα

x

cos α

y
+ q(q − 1)

(
cos α

y

)2

− S

2 sin α

(
q
cos α

y
− p

sinα

x

) .

(3.4)
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Since dα/dy(y0 + 0) = +∞, we rewrite (3.4) and (3.2) as follows:

dx

dα
=

2 cos α ·
(

q
cos α

y
− p

sinα

x

)

p(p− 1)
(

sinα

x

)2

− 2pq
sinα

x

cos α

y
+ q(q − 1)

(
cos α

y

)2

− S

,

dy

dα
=

2 sin α ·
(

q
cos α

y
− p

sinα

x

)

p(p− 1)
(

sinα

x

)2

− 2pq
sinα

x

cos α

y
+ q(q − 1)

(
cos α

y

)2

− S

.

(3.5)

dx

dα
=

2 cos α · q cos α

y

q(q − 1)
(

cos α

y

)2

− S

,

dy

dα
=

2 sin α · q cos α

y

q(q − 1)
(

cos α

y

)2

− S

.

(3.6)

By a straightforward calculation we have

dy

dα
(0) =

dy

dα
(0) = 0,

d2y

dα2
(0) =

d2y

dα2
(0) =

2q/y0

q(q − 1)/y2
0 − S

,

d3y

dα3
(0) =

4
{q(q − 1)/y2

0 − S}2
p

x0

{
q(q + 1)

y2
0

+ S

}
> 0,

d3y

dα3
(0) = 0.

Therefore there exists an ε > 0 such that

y(α) < y(α) for all α satisfying 0 < α < ε.

So there exists an ε′ > 0 such that

α(y) < α(y) for all y satisfying y0 < y < y0 + ε′,
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hence Lemma 3.6 holds on the interval (y0, y0 + ε′).
Now suppose that there exists some y1 > y0 such that α(y1) = α(y1) < π/2

and α(y) < α(y) for all y with y0 < y < y1. We set

F (X, Y ) :=
p(p− 1)X2 − 2pqXY + q(q − 1)Y 2 − S

2(qY − pX)
.

When X, Y > 0, we have

∂F

∂X
= − p

2(qY − pX)2
{
p(p− 1)X2 − 2(p− 1)qXY + q(q + 1)Y 2 + S

}
< 0.

Therefore F (X, Y ) is monotone decreasing in X. Hence when 0 < α < π/2 and
x, y > 0, we have

F

(
sinα

x
,
cos α

y

)
< F

(
0,

cos α

y

)
.

Put α1 = α(y1) = α(y1). By using the inequality above we have

dα

dy
(y1) =

q(q − 1)
(

cos α1

y1

)2

− S

2q sinα1
cos α1

y1

=
1

sinα1
F

(
0,

cos α1

y1

)

>
1

sinα1
F

(
sinα1

x1
,
cos α1

y1

)

=
p(p− 1)

(
sinα1

x1

)2

− 2pq
sinα1

x1

cos α1

y1
+ q(q − 1)

(
cos α1

y1

)2

− S

2 sin α1

(
q
cos α1

y1
− p

sinα1

x1

)

=
dα

dy
(y1).

Therefore α(y) > α(y) for y near y1 and y > y1. Combining this inequality with
the above mentioned assumption we obtain α(y) ≥ α(y) near y1 and α(y1) = α(y1),
so we get dα/dy(y1) = dα/dy(y1). But this contradicts with the above inequality.

¤

Lemma 3.7. Denote the point y satisfying α(y) = 0 (y > y0) by y1. Then
there exists a point y1 satisfying y0 < y1 < y1 such that α(y1) = 0 (see Figure 2).
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Figure 2.

Proof. The graph of α = α(y) is in Figure 2. Suppose that there does
not exist such a y1. From Lemma 3.6 we have 0 < α(y) < α(y) for all y > y0

satisfying 0 < α(y) < π/2. Therefore y(s) is a monotone increasing function and
α(s) satisfies 0 < α(s) < α0 < π/2. By using Lemma 3.2, we see that there is no
singularity of our solution. Therefore we must have a global solution (x(s), y(s))
on [0,∞) and there exists y0 < ŷ1 < y1 such that y(s) < ŷ1 for all s > 0,
lims→∞ α = 0, lims→∞ y = ŷ1 and lims→∞ x = ∞. By (2.1), we easily conclude
that ŷ1 = y∞. To find a contradiction, we prove the following Claims 1, 2 and 3.

Claim 1. We can choose sufficiently large s1 so that α′(s) < 0 hold for all
s > s1.

Indeed, since we have 0 < α(s) < α0 < π/2 and lims→∞ α = 0, we can choose
s1 so that α′(s1) < 0. Since x(s) and y(s) are monotone increasing functions with
lims→∞ x = ∞ and lims→∞ y = ŷ1, we can also assume that, for all s > s1,

(
− p(p− 1)

x2
+

pq

y2

)
(s) > 0,

(
pq

x2
− q(q − 1)

y2

)
(s) < 0,

and

{
sinα0

x

(
− p(p− 1)

x2
+

pq

y2

)
+

cos α0

y

(
pq

x2
− q(q − 1)

y2

)}
(s) < 0. (3.7)

If there is no s2 > s1 such that α′(s2) = 0, then the claim is true. Suppose
to the contrary that there is an s2 > s1 such that α′(s2) = 0 and α′(s) < 0 for
all s1 ≤ s < s2. It is easy to see that α′′(s2) ≥ 0. On the other hand, since
X ′ = (sinα/x)′ = − sinα cos α/x2, Y ′ = (cos α/y)′ = − sinα cos α/y2 at s = s2,
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we easily obtain

α′′(s2) =

{
p(p− 1)X2 − 2pqXY + q(q − 1)Y 2 − S

}′
2(qY − pX)

(s2)

<
sinα cos α

qY − pX

{
sinα

x

(
− p(p− 1)

x2
+

pq

y2

)
+

cos α

y

(
pq

x2
− q(q − 1)

y2

)}
(s2)

<
sinα cos α

qY − pX

{
sinα0

x

(
− p(p− 1)

x2
+

pq

y2

)
+

cos α0

y

(
pq

x2
− q(q − 1)

y2

)}
(s2)

< 0, (3.8)

where at the last inequality we used (3.7). This contradicts the above inequality
α′′(s2) ≥ 0, proving Claim 1.

Since α(s) is decreasing and x(s) is increasing, we get sin α(s)/x(s) <

sinα(s1)/x(s1) for all s > s1. Set α(s1) = α1, x(s1) = x1 and y(s1) = y1. It
follows from FX < 0 that

F

(
sinα(s)

x(s)
,
cos α(s)

y(s)

)
> F

(
sinα1

x1
,
cos α(s)

y(s)

)
. (3.9)

We consider the following differential equations.

dx

ds
= cos α,

dy

ds
= sin α,

dα

ds
=

p(p− 1)
(

sinα1

x1

)2

− 2pq
sinα1

x1

cos α

y
+ q(q − 1)

(
cos α

y

)2

− S

2
(

q
cos α

y
− p

sinα1

x1

) .

(3.10)

Let x̂, ŷ and α̂ be the solutions of (3.10) for the initial conditions x(s1) = x1,
y(s1) = y1 and α(s1) = α1. It is easy to get the first integral of (3.10). In fact,
putting Y = cos α̂(ŷ)/ŷ and X1 = sin α1/x1, we have

dY

dŷ
= −p(p− 1)X2

1 − 2p(q + 1)X1Y + q(q + 1)Y 2 − S

2ŷ(qY − pX1)
.
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By integrating this equation we obtain

{
q(q + 1)

(
cos α̂

ŷ

)2

− 2p(q + 1)
sinα1

x1

cos α̂

ŷ
+ p(p− 1)

(
sinα1

x1

)2

− S

}
ŷq+1

=
{

q(q + 1)
(

cos α1

y1

)2

− 2p(q + 1)
sinα1

x1

cos α1

y1
+ p(p− 1)

(
sinα1

x1

)2

− S

}
yq+1
1 .

From this we easily see that the solutions x̂, ŷ and α̂ exist on (−∞,∞) and the
curve (x̂(s), ŷ(s)) has the x̂-translational invariance like the solutions of (3.1).

Claim 2. Set ŷ2 = maxR ŷ(s). If we choose s1 sufficiently large, then
ŷ2 > y∞ and α̂(y) > 0 for all y satisfying y1 < y < ŷ2. In particular, α̂(y∞) > 0.

We prove Claim 2 as follows: Since α̂ = 0 at the point where ŷ = ŷ2, we
obtain

{
q(q + 1)

(
1
ŷ2

)2

− 2p(q + 1)
sinα1

x1

1
ŷ2

+ p(p− 1)
(

sinα1

x1

)2

− S

}
ŷq+1
2

=
{

q(q + 1)
(

cos α1

y1

)2

− 2p(q + 1)
sinα1

x1

cos α1

y1
+ p(p− 1)

(
sinα1

x1

)2

− S

}
yq+1
1 .

ŷ2 depends only on p, q, α1, x1, y1 and S. If we let α1 → 0, x1 →∞ and y1 → y∞,
then ŷ2 →

√
q(q + 1)/S > y∞ from the above equation. Thus if we choose s1

sufficiently large, then we have ŷ2 > y∞. It is easy to see that α̂(y) > 0 for all
y1 < y < ŷ2, proving Claim 2.

We have the following comparison inequality similar to Lemma 3.6.

Claim 3. If we choose s1 sufficiently large, then α(y) > α̂(y) holds for all
y satisfying y1 < y < y∞.

The proof of Claim 3 is almost the same as that of Lemma 3.6. Indeed first
we show this inequality for all s near s1. We compute

dy

dα
(α1) =

dŷ

dα
(α1) =

sinα1

F

(
sinα1

x1
,
cos α1

y1

) , (3.11)

and
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d2y

dα2
(α1) =

cos α1

F

(
sinα1

x1
,
cos α1

y1

)

− sinα1

F

(
sinα1

x1
,
cos α1

y1

)2 FX

(
sinα1

x1
,
cos α1

y1

)
x1 cos α1 − sinα1 cos α1

x2
1

+
sinα1

F

(
sinα1

x1
,
cos α1

y1

)2 FY

(
sinα1

x1
,
cos α1

y1

)
y1 sinα1 + sinα1 cos α1

y2
1

>
cos α1

F

(
sinα1

x1
,
cos α1

y1

)

+
sinα1

F

(
sinα1

x1
,
cos α1

y1

)2 FY

(
sinα1

x1
,
cos α1

y1

)
y1 sinα1 + sinα1 cos α1

y2
1

=
d2ŷ

dα2
(α1),

where we used the fact that x1 is large and α1 > 0 is small if s1 is sufficiently
large.

Therefore there exists an ε > 0 such that

ŷ(α) < y(α) for all α satisfying α1 − ε < α < α1.

Hence there exists an ε′ > 0 such that

α(y) > α̂(y) for all y satisfying y1 < y < y1 + ε′.

Now we are going to show the inequality α(y) > α̂(y) for all y satisfying y1 <

y < y∞. Suppose to the contrary that there exists y2 > y1 such that there holds
α(y) > α̂(y) for all y satisfying y1 < y < y2 and α(y2) = α̂(y2). Set x2 = x(y2)
and α2 = α(y2). Then we get from (3.9)

dα

dy
(y2) =

1
sinα2

F

(
sinα2

x2
,
cos α2

y2

)
>

1
sinα2

F

(
sinα1

x1
,
cos α2

y2

)

=
dα̂

dy
(y2).
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Thus there exists an ε such that

α(y) > α̂(y) for all y satisfying y2 < y < y2 + ε.

Combining this inequality and the assumptions α(y) > α̂(y), y ∈ (y1, y2), and
α(y2) = α̂(y2), we obtain dα̂/dy(y2) = dα/dy(y2) which contradicts the above
inequality. Therefore Claim 3 is proved.

From Claim 2, Claim 3 and limy→y∞−0 α(y) = 0, we get a contradiction,
which proves Lemma 3.7. ¤

From Lemma 3.7 we see that the solutions x(s), y(s) and α(s) exist on the
interval [0, s1] such that 0 < α(s) < π/2, dx/ds > 0 and dy/ds > 0 for s ∈ (0, s1)
and α(s1) = 0. We have y(s1) = y1 and set x(s1) = x1.

Lemma 3.8. y1 > y∞ =
√

q(q − 1)/S.

Proof. First, suppose that y1 < y∞. Then

dα

ds
(s1) =

y1

2q

{
q(q − 1)

y2
1

− S

}
> 0.

Therefore we have α(s) > 0 for all s1 < s < s1 < s + ε for some ε. On the
other hand, we have α(s) > 0 for all s1 − ε < s < s1 and α(s1) = 0. So we
get dα/ds(s1) = 0, which contradicts the above inequality. Next, suppose that
y1 = y∞. Then the solution of (2.1) with the initial conditions x(s1) = x1,
y(s1) = y1 and α(s1) = 0 is y(s) ≡ y1. This is a contradiction. ¤

Therefore we have the following Figure (see Figure 3).

Figure 3.
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Since

dα

ds
(s1) =

y1

2q

{
q(q − 1)

y2
1

− S

}
< 0,

we have α(s) < 0 for all s1 < s < s1 + ε for some ε > 0. We are going to show that
there exists an s2 satisfying s1 < s2 < ∞ such that 0 < α(s) < π/2, dx/ds > 0
and dy/ds < 0 for s ∈ (s1, s2) and α(s2) = 0. To do so, we denote the solutions of
(3.1) with the initial conditions x(s1) = x1, y(s1) = y1 and α(s1) = 0 as x̃(s), ỹ(s)
and α̃(s). Similar to the proof of Theorem 3.3, we can show that the solutions
x̃, ỹ and α̃ exist on (−∞,∞) and the curve (x̃(s), ỹ(s)) has the x̃-translational
invariance. Set ỹ2 = minR ỹ2(s) and denote the first s > s1 satisfying ỹ(s) = ỹ2

as s̃2. It is easy to see that y0 < ỹ2 < y∞. We have −π/2 < α̃(s) < 0, dx̃/ds > 0
and dỹ/ds < 0 for s ∈ (s1, s̃2) and α(s̃2) = 0. We set x̃(s̃2) = x̃2. Let us take
the inverse s = s(ỹ) on ỹ ∈ [ỹ2, y1], and abbreviate the function α̃(s(ỹ)) as α̃(ỹ),
ỹ ∈ [ỹ2, y1] for simplicity.

When α(s) satisfies −π/2 < α(s) < 0 on (s1, s2) for some s2, we have dy/ds <

0 on the same interval. Hence, we have the inverse function s = s(y) of y = y(s)
on [s1, s2). We abbreviate the function α(s(y)) as α(y) for simplicity.

Lemma 3.9. Under these notations above, we have α̃(y) < α(y) < 0 for all
y < y1 satisfying −π/2 < α(y) < 0.

Proof. The proof is similar to that of Lemma 3.6. First we show that this
inequality holds near y = y1. We rewrite (3.1) as

dx̃

dỹ
= cot α̃,

dα̃

dỹ
=

q(q − 1)
(

cos α̃

ỹ

)2

− S

2q sin α̃
cos α̃

ỹ

,

x̃(y1) = x1, α̃(y1) = 0.

(3.12)

Since dα̃/dỹ(y1 − 0) = −∞, we rewrite this equation as follows.

dx̃

dα
=

2 cos α · q cos α

ỹ

q(q − 1)
(

cos α

ỹ

)2

− S

,
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dỹ

dα
=

2 sin α · q cos α

ỹ

q(q − 1)
(

cos α

ỹ

)2

− S

, (3.13)

x̃(0) = x1, ỹ(0) = y1,

where we have changed the variable α̃ to α.
Similar to the calculation in the proof of Lemma 3.6, we obtain

dy

dα
(0) =

dỹ

dα
(0) = 0,

d2y

dα2
(0) =

d2ỹ

dα2
(0) =

2q/y1

q(q − 1)/y2
1 − S

,

d3y

dα3
(0) = 4

{
− p/x1

q(q − 1)/y2
1 − S

− q/y1

{q(q − 1)/y2
1 − S}2

(
− 2pq

x1y1

)}
> 0,

d3ỹ

dα3
(0) = 0.

Therefore there exists an ε > 0 such that

ỹ(α) > y(α) for all α satisfying −ε < α < 0.

Thus there exists an ε′ > 0 such that

α̃(y) < α(y) for all y satisfying y1 − ε′ < y < y1.

Now suppose that there exists some y2 < y1 such that −π/2 < α̃(y2) = α(y2) < 0
and α̃(y) < α(y) for all y2 < y < y1. Set α2 = α(y2) (= α̃(y2)) and x2 =
x(y2). Since −π/2 < α2 < 0 and F (X, Y ) is monotone decreasing in X, we have
F (0, cos α2/y2) < F (sinα2/x2, cos α2/y2). Then

dα̃

dy
(y2) =

F

(
0,

cos α2

y2

)

sinα2
>

F

(
sinα2

x2
,
cos α2

y2

)

sinα2

=
dα

dy
(y2).

Therefore α̃(y) < α(y) for y near y2 and y < y2. On the other hand we have
α̃(y) < α(y) for all y2 < y < y2 + ε and α̃(y2) = α(y2). Therefore we get
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dα̃/dy(y2) = dα/dy(y2), which contradicts the above inequality. ¤

Lemma 3.10. There exists a point y2 satisfying ỹ2 < y2 < y1 such that
α(y2) = 0.

Proof. When −π/2 < α(s) < 0 we have q cos α(s)/y(s)−p sinα(s)/x(s) >

0. Lemma 3.9 yields y(s) > ỹ2 > 0. Therefore the numerator of the expression
of dα/ds in (2.1) is bounded. Thus we don’t have any singularity of the solutions
x(s), y(s) and α(s) while −π/2 < α(s) < 0. Suppose that there does not exist
y < y1 with α(y) = 0. Then we have global solutions on [s1,∞) and there exists
y2 < y1 such that lims→∞ α = 0, lims→∞ y = y2 and lims→∞ x = ∞. It is easy to
see that y2 = y∞. From the similar argument as in the proof of Lemma 3.7, we
get a contradiction. ¤

Lemma 3.11. y2 < y∞.

Proof. We omit the proof, because all arguments follow almost verbatim
the corresponding arguments of Lemma 3.8. ¤

Now we can prove the main theorem, Theorem 3.1, of this section. In fact,
applying Lemmas 3.7, 3.8, 3.10 and 3.11 repeatedly, we easily get global solutions
x(s), y(s) and α(s) on [0,∞).

Next we analyze the shape of the solution curve (x(s), y(s)) obtained in The-
orem 3.1.

Figure 4.
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Theorem 3.12. The solutions in Theorem 3.1 satisfy the followings (see
Figure 4 for the definitions of ak, bk and ck).

1) ak > bk for all k ∈ N .
2) a1 > a2 > · · · and b1 > b2 > · · · .
3) There exists a constant M(y0, q, S) > 0 such that ck ≥ M(y0, q, S) for all

k ∈ N .

Proof.

1) follows from Lemma 3.4.
2) From Lemmas 3.7 and 3.10 we have y∞ < y1 < y1 and y0 < ỹ2 < y2 < y∞.

Set y2 = y(s2), x2 = x(s2). Let x, y and α be the solutions of (3.1) for the initial
conditions x(0) = x2, y(0) = y2 and α(0) = 0. Set y3 = maxR y. It is easy to see
that y3 < y1. From Lemma 3.7 there exists an s3 > s2 such that α(s3) = 0 and
y3 < y3, where y3 = y(s3). Let x̃, ỹ and α̃ be the solutions of (3.1) for the initial
conditions x̃(0) = x3, ỹ(0) = y3 and α̃(0) = 0. Set ỹ4 = minR ỹ. It is easy to see
that ỹ2 < ỹ4. From Lemma 3.10 there exists an s4 > s3 such that α(s4) = 0 and
y4 > ỹ4, where y4 = y(s4). We can repeat this process inductively and this proves
2).

3) For the odd natural number k we have ck =
∫ y∞

yk−1
cot α(y)dy. We are going

to estimate c1. From Lemmas 3.5 and 3.6 we have 0 ≤ α(y) < α(y) ≤ α0, which
implies

c1 ≥
∫ y∞

y0

cot α(y)dy ≥ (y∞ − y0) cot α0.

We set a(t) = {(q + 1)y2
∞/2t2 − (q − 1)/2}1/(q+1). From Lemma 3.5 we obtain

cos α0 = y0/y∞a(y0) and it is easy to see that

lim
y0→y∞

a(y0) = 1,

lim
y0→y∞

a′(y0) = − 1
y∞

,

lim
y0→y∞

a′′(y0) =
3− q

y2∞
.

Thus by using l’Hospital’s rule and limy0→y∞ cos α0 = 1 we get

lim
y0→y∞

(y∞ − y0)2 cot2 α0

= lim
y0→y∞

(y∞ − y0)2

1− y2
0/y2∞ · a(y0)2
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= −y2
∞ lim

y0→y∞

y0 − y∞
y0 · a(y0)2 + y2

0 · a(y0) · a′(y0)

= −y2
∞ lim

y0→y∞

{
a(y0)2 + 4y0 · a(y0) · a′(y0)

+ y2
0 · (a′(y0))2 + y2

0 · a(y0) · a′′(y0)
}−1

=
q

S
.

So we get limy0→y∞ c1 ≥
√

q/S. We can repeat the same argument for other ck

with odd k. Thus we can conclude that there exists a constant M(y0, q, S) > 0
such that ck ≥ M(y0, q, S) holds for all odd integer k ∈ N . Similar argument can
be applied to ck for even integer k, so we omit the proof. ¤

Figure 5.

Following the idea of [4] we are going to show that limn→∞ an = limn→∞ bn =
0. First we need two lemmas.

Lemma 3.13. We set J(s) = q(q + 1)y(s)q−1 cos2 α(s)− Sy(s)q+1.

(1) J is a monotone increasing function of s which satisfies x(s) ≥ q(p−1)/Sy0.
(2) Set J∞ = 2q{q(q − 1)/S}(q−1)/2. Then we have J(s) ≤ J∞.
(3) lims→∞ J(s) = J∞ holds if and only if lims→∞ y(s) = y∞ and

lims→∞ α(s) = 0.

Proof.

(1) Straightforward calculation shows
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dJ

ds
=

p(q + 1)yq−2 sin2 α

x

(
q
cos α

y
− p

sinα

x

)
{

q(q + 1) cos2 α + Sy2 − q(p− 1)y cos α sinα

x

}

≥ p(q + 1)yq−1 sin2 α

x

(
q
cos α

y
− p

sinα

x

)
{

Sy0 − q(p− 1)
x

}
≥ 0.

(2) Since J ≤ q(q + 1)yq−1 − Syq+1 and the right hand side of this inequality
attains its maximum at y = y∞, (2) follows.
(3) We omit the proof, since it is easily shown from (1) and (2). ¤

Lemma 3.14. Let x0 > 0, s0 > 0 and y0, y1 be the constants satisfying y0 <

y1 < y∞. We consider the solutions of (2.1) for the initial conditions x(s0) = x0,
y(s0) = y0, and α(s0) = 0. We choose s1 > s0 such that y(s1) = y1. If x0 is
sufficiently large, then there exists a constant k0 depending only on y0, y1, p, q, S

such that x(s1)− x(s0) ≤ k0.

Proof. We denote the solutions of the following equations with the initial
conditions x(s0) = x0, y = y0, α = 0 as x(s), y(s) and α(s).

dx

ds
= cos α,

dy

ds
= sin α,

dα

ds
=

p(p− 1)ε2 − 2pqε
cos α

y
+ q(q − 1)

(
cos α

y

)2

− S

2
(

q
cos α

y
− pε

) .

(3.14)

The equations have the following first integral.

{
q(q + 1)

(
cos α

y

)2

− 2p(q + 1)ε
(

cos α

y

)
+ p(p− 1)ε2 − S

}
yq+1 = c,

where c is a constant. We choose ε such that

ε <
pq/y0 −

√
(pq/y0)2 − p(p− 1){q(q − 1)/y2

0 − S}
p(p− 1)

.
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Then dα/ds(s0) > 0. The curve γ(s) = (x(s), y(s)) can be given by a periodic
function y = f(x), f(x + T0) = f(x) for some T0 > 0. When ε → 0, γ converges to
the solution of (3.2). Hence it is easy to see that we can choose ε sufficiently small so
that the maximum value of y is greater than y1. Let x0 ≥ 1/ε, then we can compare
α(y) with α(y). Since dy/dα(0) = dy/dα(0) = 0 and d2y/dα2(0) < d2y/dα2(0),
similar argument as in the proof of Lemma 3.6 shows that α(y) > α(y) for y > y0.
Hence x(y) < x(y) (see Figure 6). Therefore x(s1)−x(s0) = x(y1)−x0 < x(y1)−x0.
We put k0 = x(y1)− x0. It is easy to see that k0 depends only on y0, y1, p, q and
S. ¤

Figure 6.

Theorem 3.15. Under the same notations used in Theorem 3.12, we have

lim
n→∞

an = lim
n→∞

bn = 0,

that is, the line y = y∞ is the asymptotic line of our solution curve γ(s) =
(x(s), y(s)) as s →∞.

Proof. It is easy to see from Figure 5 that limn→∞ an = 0 implies
limn→∞ bn = 0, or vise versa. Suppose that we don’t have limn→∞ an =
limn→∞ bn = 0. Then, putting a = limn→∞ an and b = limn→∞ bn, we have a > 0
and b > 0. From Theorem 3.12, there holds, y(s) ≤ y∞− a or y(s) ≥ y∞+ b when
α(s) = 0 (see Figure 7). Also there exist constants a and b satisfying a < a < y∞
and b < b such that y∞ − a < y(s) < y∞ + b holds for all s > 0. By Lemma
3.13 J is an increasing function of s with an upper bound J∞. Hence there exists
lims→∞ J . From Lemma 3.13 we have lims→∞ J = c < J∞. We denote the posi-
tive solutions of the equation f(y) = q(q +1)yq−1−Syq+1 = (J∞+ c)/2 as y∞− δ

and y∞ + δ. From the definition we have y∞ − a < y∞ − δ < y∞ + δ < y∞ + b.
If y(s) satisfies the inequality y∞ − δ ≤ y(s) ≤ y∞ + δ, then it follows from J < c
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that

q(q + 1)(y∞ + b)
q−1

sin2 α(s) ≥ q(q + 1)y(s)q−1 sin2 α(s)

> q(q + 1)y(s)q−1 − Sy(s)q+1 − c

= f(y(s))− c >
J∞ − c

2
> 0.

That is, there exists a positive constant k0 depending only on q, b, c, S such that

| sinα(s)| ≥ k0, y(s) ∈ [y∞ − δ, y∞ + δ]. (3.15)

Hereafter k0, k1, . . . denote positive constants depending only on p, q, a, b, c, a, b and
S. Let s0 be a point satisfying α(s0) = 0 with y taking the local minimum. We
set s1, s2 as the first point satisfying s > s0 and y(s1) = y∞ − δ, y(s2) = y∞ + δ,
respectively. We set s3 as the first point satisfying s > s0 with y taking the local
maximum, and set s4 as the first point satisfying s > s0 with y(s4) taking the
local minimum (see Figure 7).

Figure 7.

From Lemma 3.14 we have x(s1) − x(s0) ≤ k1. Similar argument shows
x(s3)− x(s2) ≤ k2. We also have

k3 ≥ y(s2)− y(s1) =
∫ s2

s1

sinα ds ≥ k0(s2 − s1)

≥ k0

∫ s2

s1

cos α ds = k0(x(s2)− x(s1)).
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Combining these inequalities we obtain x(s3) − x(s0) ≤ k4. Similar argument
shows x(s4) − x(s3) ≤ k5. Therefore we obtain x(s4) − x(s0) ≤ k6. Set T = k6.
Now we have

J(s4)− J(s0) ≥
∫ s2

s1

dJ

ds
ds ≥

∫ s2

s1

k7
sin2 α

x
ds ≥ k8

x(s0) + T
.

Let s8 < s12 < · · · < s4m < · · · be the points satisfying α(s4m) = 0 with y taking
the local minimum. Then by the similar argument as above we have

J(s4(m+1))− J(s4m) ≥ k8

x(s0) + (m + 1)T
, (m ∈ N).

From this inequality we get

lim
s→∞

(J(s)− J(s0)) ≥ k8

∞∑
m=0

1
x(s0) + (m + 1)T

= ∞.

This contradicts the assumption J ≤ c. ¤

Remark. It seems that a1 > b1 > a2 > b2 > · · · , but at the moment we
cannot prove this inequality.

4. Existence of the solution on (−∞,0].

In this section we prove the following theorems.

Theorem 4.1. Suppose that 2 ≤ p ≤ q + 1 and S > 0. Let 0 < x0 ≤√
p(p− 1)/S and 0 < y0 <

√
q(q − 1)/S. Then the ODE (2.1) has a global

solution γ(s) = (x(s), y(s)) on (−∞, 0] for the initial conditions x(0) = x0, y(0) =
y0 and α(0) = 0.

Theorem 4.2. Suppose that p > q + 1 ≥ 3 and S > 0. Let 0 < x0 ≤√
(p− 1)(q − 1)/S and 0 < y0 <

√
q(q − 1)/S. Then the ODE (2.1) has a global

solution γ(s) = (x(s), y(s)) on (−∞, 0] for the initial conditions x(0) = x0, y(0) =
y0 and α(0) = 0.

For the convenience of treatment we interchange the role of x and y, and we
prove the following theorems which are equivalent to Theorem 4.1 and Theorem
4.2.

Theorem 4.3. Suppose that p ≥ q − 1 ≥ 1 and S > 0. Let 0 < x0 <√
p(p− 1)/S and 0 < y0 ≤

√
q(q − 1)/S. Then the ODE (2.1) has a global
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solution γ(s) = (x(s), y(s)) on [0,∞) for the initial conditions x(0) = x0, y(0) = y0

and α(0) = −π/2.

Theorem 4.4. Suppose that 2 ≤ p < q − 1 and S > 0. Let 0 < x0 <√
p(p− 1)/S and 0 < y0 ≤

√
(p− 1)(q − 1)/S. Then the ODE (2.1) has a global

solution γ(s) = (x(s), y(s)) on [0,∞) for the initial conditions x(0) = x0, y(0) = y0

and α(0) = −π/2.

We consider the solutions of (2.1) with the initial conditions x(0) = x0 <√
p(p− 1)/S, y(0) = y0 > 0 and α(0) = −π/2. Set γ(s) = (x(s), y(s)). Then

α′(0) =
x0

2p

{
p(p− 1)

x2
0

− S

}
> 0.

Lemma 4.5. We put x∞ =
√

p(p− 1)/S and y∞ =
√

q(q − 1)/S. Set
Ω1 = {(x, y) | 0 < x ≤ x∞, 0 < y ≤ y∞}. Then when −π/2 < α(s) < 0 and
γ(s) ∈ Ω1, we have α′(s) > 0.

Proof. Since 0 < x < x∞, 0 < y < y∞ and −π/2 < α(s) < 0, we have

dα

ds
>

p(p− 1)
(

sinα

x

)2

+ q(q − 1)
(

cos α

y

)2

− S

2
(

q
cos α

y
− p

sinα

x

)

≥ S(cos2 α + sin2 α− 1)

2
(

q
cos α

y
− p

sinα

x

) = 0. ¤

Set D = {(x, y) | 0 < x, 0 < y ≤
√

(q − 1)/p x} (see Figure 8).

Figure 8.
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Lemma 4.6. If there exist s0 > 0 and ε > 0 such that −π/2 < α(s) < 0,
α′(s) > 0 and γ(s) ∈ D for all s ∈ (s0 − ε, s0), then α′(s0) > 0.

Proof. The argument is similar to the proof of Claim 1 in Lemma 3.7.
Suppose, to the contrary, that α′(s0) = 0. When γ(s0) ∈ D, we have p/x(s0)2 −
(q − 1)/y(s0)2 ≤ 0 and −(p− 1)/x(s0)2 + q/y(s0)2 > 0. Then we have from (3.8)

d2α

ds2
(s0) =

sinα cos α

qY − pX

{
p sinα

x

(
− p− 1

x2
+

q

y2

)
+

q cos α

y

(
p

x2
− q − 1

y2

)}
(s0)

> 0. (4.1)

Therefore we have α′(s) > 0 for all s satisfying s0 < s < s0 + ε′ for some ε′. By
combining with the assumptions α′(s) > 0 on (s0 − ε, s0) and α′(s0) = 0, we get
d2α/ds2(s0) = 0. But this contradicts the above inequality. ¤

Lemma 4.7. Suppose that p ≥ q + 1 ≥ 3. Let 0 < x0 <
√

p(p− 1)/S and
0 < y0 ≤

√
q(q − 1)/S. Let γ(s) be the solution of (2.1) for the initial conditions

x(0) = x0, y(0) = y0 and α(0) = −π/2. Then there exists an s1 > 0 such that
α(s1) = 0, x(s1) > x0 and 0 < y(s1) < y0.

Proof. Since p ≥ q + 1, when there holds −π/2 < α(s) < 0, 0 < s < s0,
for some s0, the solution γ(s) is contained in Ω1 ∪D. From Lemmas 4.5 and 4.6,
we have α′(s) > 0. Suppose, to the contrary, that there is no s1 with α(s1) = 0.
Then by using Lemma 3.9 and Lemma 4.6 we have the following three possible
cases.

Case 1: The solution exists on [0,∞) and there exists 0 < y′∞ < y0 such that
α(s) ↗ 0, y(s) ↘ y′∞ and x(s) →∞ as s →∞.

In this case we have X(s) = sinα(s)/x(s) → 0 and Y (s) = cos α(s)/y(s) →
1/y′∞ > 1/y∞ as s →∞, which implies

dα

ds
→

{
q(q − 1)
(y′∞)2

− S

}
y′∞
2q

> 0 as s →∞.

So there exists some s > 0 such that α(s) = 0 getting a contradiction.

Case 2: The solution exists on [0,∞) and α(s) ↗ 0, y(s) ↘ 0 and x(s) →∞
as s →∞.

In this case we have X(s) → 0 and Y (s) → ∞ as s → ∞. Then we get
dα/ds ↗∞, which contradicts α(s) ↗ 0.
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Case 3: There exists s1, α1 and x1 such that 0 < s1 < ∞, −π/2 < α1 ≤ 0,
0 < x1 < ∞, and α(s) ↗ α1, y(s) ↘ 0, x(s) ↗ x1 as s → s1 − 0.

In this case, it is easy to see that x(s), y(s) and α(s) are continuous on [0, s1].
We know Y (s) ↗ ∞ as s → s1 − 0. Therefore dα/ds → ∞ as s → s1 − 0. So we
can rewrite α = α(s) as s = s(α) near s = s1. Then (2.1) becomes (3.5). Consider
the solutions of (3.5) with the initial conditions x(α1) = x1 and y(α1) = y1. Then
the functions x(α), y(α) defined by x(α) = x1, y(α) = 0 become the solutions of
(3.5). This contradicts the uniqueness of solutions. ¤

Now we consider the case p ≤ q. We set

Ω2 =
{

(x, y)
∣∣∣∣
√

p(p− 1)
S

< x <

√
pq

S
,

√
q − 1

p
x < y <

√
q(q − 1)

S

}
.

Lemma 4.8. Let p = q or p = q−1 with p, q ≥ 2. Let 0 < x0 <
√

p(p− 1)/S

and 0 < y0 ≤
√

q(q − 1)/S. Let γ(s) be the solution of (2.1) for the initial
conditions x(0) = x0, y(0) = y0 and α(0) = −π/2. If there exist s0 > 0 and
ε > 0 such that −π/2 < α(s) < 0, α′(s) > 0 and γ(s) ∈ Ω2 for all s0− ε < s < s0,
then α′(s0) > 0.

Proof. Suppose, to the contrary, that α′(s0) = 0. From (4.1) we have

d2α

ds2
(s0) =

sinα cos α

qY − pX

{
p sinα

x

(
− p− 1

x2
+

q

y2

)
+

q cos α

y

(
p

x2
− q − 1

y2

)}
. (4.2)

We are going to show that the right hand side of (4.2) is positive. If this is proved,
then we get a contradiction from the similar argument as in the proof of Lemma
4.6.

Set x̂ = 1/x and ŷ = 1/y. Then (4.2) is changed to

d2α

ds2
(s0) =

sinα cos α

q cos α · ŷ − p sinα · x̂ x̂3 cos α · p{−(p− 1) + qt2}

·
{

tanα +
q

p
· pt− (q − 1)t3

−(p− 1) + qt2

}
(s0), (4.3)

where t = ŷ/x̂. The domain Ω2 is transformed to

Ω̂2 =
{

(x̂, ŷ)
∣∣∣∣

√
S

pq
< x̂ <

√
S

p(p− 1)
,

√
S

q(q − 1)
< ŷ <

√
p

q − 1
x̂

}
.
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The condition α′(s0) = 0 is equivalent to

p(p− 1) sin2 α(s0)x̂(s0)2 − 2pq sinα(s0) cos α(s0)x̂(s0)ŷ(s0)

+ q(q − 1) cos2 α(s0)ŷ(s0)2 − S = 0.

Put

h(u) = p(p− 1) sin2 α(s0)u2 − 2pq sinα(s0) cos α(s0)ŷ(s0)u

+ q(q − 1) cos2 α(s0)ŷ(s0)2 − S.

From −π/2 < α(s0) < 0 and
√

S/q(q − 1) < ŷ(s0) we have

h

(√
S

p(p− 1)

)
> S sin2 α(s0) + S cos2 α(s0)− S = 0.

Since
√

(q − 1)/pŷ(s0) < x̂(s0) <
√

S/p(p− 1) and h(x̂(s0)) = 0, we must have
h(

√
(q − 1)/pŷ(s0)) < 0. This implies

(q − p + 1)(q − 1)
2

cos 2α(s0)− q
√

p(q − 1) sin 2α(s0)

<
S

ŷ(s0)2
− (p + q − 1)(q − 1)

2
.

Combining with ŷ(s0) >
√

S/q(q − 1), we obtain

(q − p + 1)(q − 1)
2

(cos 2α(s0)− 1)− q
√

p(q − 1) sin 2α(s0) < 0. (4.4)

From −π < 2α(s0) < 0 and (4.4), we obtain −π/2 < α(s0) < α2, where
α2 < 0 is defined by

tanα2 = − 2
√

pq

(q − p + 1)
√

q − 1
.

Now we estimate the right hand side of (4.3). From p ≥ q− 1 we have −(p− 1) +
qt2 > 0.

Let p = q. Then from 1 < t <
√

p/(p− 1) we get
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pt− (p− 1)t3

−(p− 1) + pt2
<

√
p

p− 1
.

Thus we have

tanα(s0) +
{

pt− (p− 1)t3

−(p− 1) + pt2

}
(s0) < − 2

√
pp√

p− 1
+

√
p

p− 1
< 0,

which yields α′′(s0) > 0.
Now let p = q − 1. We have

√
(p− 1)/(p + 1) < t < 1. Then

tanα +
p + 1

p
· pt− pt3

−(p− 1) + (p + 1)t2

≤ −(p + 1) + (p + 1)
{

1− (p− 1)/(p + 1)
−(p− 1) + (p + 1)(p− 1)

}
< 0,

which yields α′′(s0) > 0. ¤

Lemma 4.9. Let p = q or p = q − 1 with p, q ≥ 2. Suppose that S > 0. Let
0 < x0 <

√
p(p− 1)/S and 0 < y0 ≤

√
q(q − 1)/S. Let x(s), y(s) and α(s) be the

solutions of (2.1) for the initial conditions x(0) = x0, y(0) = y0 and α(0) = −π/2.
Then there exists a positive s1 such that α(s1) = 0, x(s1) > 0 and 0 < y(s1) < y0.

Proof. When there holds −π/2 < α(s) < 0, s ∈ (0, s0), for some s0, then
the solution γ(s) is contained in Ω1 ∪ Ω2 ∪D. From Lemmas 4.5, 4.6 and 4.8 we
have α′(s) > 0. The rest of the proof is the same as the proof of Lemma 4.7, so
we shall omit it. ¤

Proof of Theorem 4.3. From Lemma 4.7 and Lemma 4.9 there exists
0 < s1 < ∞ such that α(s1) = 0, x(s1) > x0 and 0 < y(s1) < y0. Once we have
α(s1) = 0, then we can apply Theorem 3.1 to get a global solution on [0,∞). ¤

Proof of Theorem 2.1. Combining Theorem 3.1, Theorem 3.17 and
Theorem 4.1 we easily get the conclusion. ¤

Finally we treat the case 2 ≤ p < q − 1.

Lemma 4.10. Suppose that 2 ≤ p < q−1, S > 0. Let 0 < x0 <
√

p(p− 1)/S

and 0 < y0 ≤
√

(p− 1)(q − 1)/S. Let x(s), y(s) and α(s) be the solutions of (2.1)
for the initial conditions x(0) = x0, y(0) = y0 and α(0) = −π/2. Then there exists
a positive s1 such that α(s1) = 0, x(s1) > 0 and 0 < y(s1) < y0.
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Proof. If we start from (x0, y0) at s = 0, then when there holds −π/2 <

α(s) < 0, s ∈ (0, s0) for some s0, we have (x(s), y(s)) ∈ Ω1 ∪D. Therefore from
Lemma 4.5 and Lemma 4.6 we have α′(s) > 0. Similar argument as in the proof
of Lemma 4.7 shows that there exists s1 > 0 such that α(s1) = 0. ¤

Proof of Theorem 4.4. Using Lemma 4.10 and Theorem 3.1 we get the
conclusion. ¤

Proof of Theorem 2.2. Combining Theorem 3.1, Theorem 3.17 and
Theorem 4.4 we get the conclusion. ¤

Our solution curve is like Figure 9.

Figure 9.

Remarks.

1. Since these solution curves are not congruent in general, we have infinitely many
non congruent complete hypersurfaces with constant scalar curvature 1 for all
p, q ≥ 2.

2. For the other isometric transformation groups (G,En) of cohomogeneity 2 we
can give the constant scalar curvature equations [10] by using Reilly’s formula
(see [12] and [14]). Those equations are more complicated than the one treated
in this paper, but it seems that there are many complete hypersurfaces with
constant scalar curvature. These problems are treated in the near future.

3. In Theorem 2.2 we need a stronger condition 0 < x0 ≤
√

(p− 1)(q − 1)/S than
that of Theorem 2.1. But from numerical computations it seems that even if
p > q +1 there exist global solutions for the same initial conditions as Theorem
2.1. This is an open problem.
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