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Abstract. The scaling limits for d-dimensional random walks perturbed
by an attractive force toward the origin are studied under the critical situation
that the rate functional of the corresponding large deviation principle admits
two minimizers. Our results extend those obtained by [2] from the mean-zero
Gaussian to non-Gaussian setting under the absence of the wall.

1. Introduction and main result.

It is a general principle in the study of various kinds of scaling limits that the
limit points, at least at the level of law of large numbers, can be characterized by
variational problems which minimize the rate functionals of the corresponding large
deviation principles. However, if the rate functional admits several minimizers,
the large deviation principle is not sufficient to give an appropriate answer. This
paper discusses such problem, especially for random walks on R? perturbed by
an attractive force toward the origin 0 € R?, motivated by certain models for
interfaces or directed polymers.

The mean-zero Gaussian random walks, perturbed by an attractive force to-
ward a subspace M of R? are studied in [2] under the presence or absence of a
wall located at the boundary of the upper half space of R?. The present paper
investigates the situation that M = {0} and the wall is absent. We extend the
class of transition probability densities p(x) of the random walks from mean-zero
Gaussian (i.e. p(z) = e~12/2/(27)4/2) to general functions satisfying Assumption
1.1 stated below.

1.1. Weakly pinned random walks.

This subsection introduces temporally inhomogeneous Markov chains called
the weakly pinned random walks. The macroscopic time parameter of the Markov
chains, observed after scaling, runs over the interval D = [0,1]. The range of
(microscopic) time for the Markov chains is Dy = NDNZ ={0,1,2,...,N}. The
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state space of the Markov chains is R?. The starting point of the (macroscopically
scaled) chains at t = 0 is always specified, while we will or will not specify the
arriving point at ¢t = 1. More precisely, for given a,b € R%, the starting point of
the Markov chains ¢ = (¢;)iep, is always aN € R? (i.e. ¢9 = aN), while, for the
arriving point at ¢ = N, we consider two cases: under conditioning ¢ as ¢ = bIN
(we call Dirichlet case) or without giving any condition on ¢ (we call free case).
The distributions of the Markov chains ¢ on (R%)N*+! with the strength ¢ > 0
of the pinning force toward the origin 0, imposing the Dirichlet or free conditions
at N, are described by the following two probability measures ug’e and ,uge on
(R)N+L | respectively:

N-1

N (do) = pZJ\;(bE an(dgo) T (260(des) + dey)dun (Ao ), (1.1)
N i=1
. N

pn(do) = Zape Sanv(dgo) [ (¢ 60(dey) + debi), (1.2)
i=1

where
N
pn () = HP(@' — $i-1),
i=1

with a measurable function p : RY — [0, 00) satisfying f ga P(7)dr =1, dp; denotes
the Lebesgue measure on R%, and Z%” and Z%™¢ are the normalizing constants,
respectively. Note that, if ¢ = 0, ¢ under u N is the random walk with the
transition probability p(y —x)dy, z,y € R? and its conditioning as ¢y = bN under
,uﬁ’o. We always assume the following conditions on the transition probability
density p:

ASsuMPTION 1.1.
(1) The function p satisfies sup,c s €¥*p(z) < oo for all A € R?, where \ -z =
Zi:l A*z® denotes the inner product of A = (A*)¢_, and x = (#*)¢_,; in R%. In
particular, the Cramér’s condition is satisfied:

A(N) = log /Rd e p(z)dr < oo, (1.3)

(2) The Legendre transform of A defined by



Scaling limit under pinning 1007

A (v) = ASEUII{)CL{A -v—A\)}, veRY (1.4)

is finite for all v € R?, and satisfies A* € C3(R?).

When d = 1, the Markov chain ¢ may be interpreted as the heights of inter-
faces located in a plane, so that the system is called (1 + 1)-dimensional interface
model with é-pinning at 0, see [8]. For general d > 1, ¢ can be interpreted as the
(1 + d)-dimensional directed polymers, see [11].

We will assume that a,b # 0, since the case a = 0 or b = 0 is similar or even
simpler.

1.2. Scaling limits and large deviation rate functionals.

Let h¥ = {hN(t);t € D} be the macroscopic path of the Markov chain
determined from the microscopic one ¢ under a proper scaling, namely, it is defined
through a polygonal approximation of (W (i/N) = ¢;/N),_, = so that

Nt] - Nt+1 Nt — [Nt]

[
hN(t) = N (Nt T+ Tﬁb[Nt]—Ha teD.

Then, the sample path large deviation principle holds for A" under uﬁ’s and ,ug’s,
respectively, on the space ¥ = C(D, R?) equipped with the uniform topology as
N — o0, see Theorem 5.1 below (or [4], [13] for uy° when & = 0). The speeds are
N and the unnormalized rate functionals are given by = and X, respectively,
both of which are of the form:

S(h) = /D A (h(t))dt — €|t € D: h(t) = 0}, (1.5)

for h € o/ €op = {h € &€;h(0) = a,h(1l) = b} in the Dirichlet case respectively
he€ d€C,r ={h € &€;h(0) = a} in the free case with certain non-negative
constants £5 = P or ¢, where A* is the Legendre transform of A defined by
(1.4), | - | stands for the Lebesgue measure on D and &/¢ = /€ (D, R?) is the
family of all absolutely continuous functions h € €. We define X (h) = 400 for h’s
outside of these spaces. The Cramér’s condition (1.3) implies that A € C*(R?)
(even real analytic) and strictly convex, and A* is also strictly convex on R? by
Assumption 1.1-(2), see Theorem VIL5.5 of [6].

Non-negative constants £°¢ and ¢ are determined by the thermodynamic
limits:

0,0,e

1
D,e . N
; m 1.
¢ J\}l—>oo NIOg ZJO\;O 7 (1.6)
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1 Z
Fe _ 1; N
e — I\}lm N log ZR}F , (1.7)

respectively, where the partition functions are given by taking a = b = 0 in the
Dirichlet case and a = 0 in the free case, and the denominators Z?V’O and Z?\;F
are defined without pinning effect and equal to their corresponding numerators
with & = 0. See (3.6) below for the explicit formula of Z%%¢ and (3.11) for 23
The constants £° in (1.5) are defined by ¢ = ¢P+¢ for the functional ¥ = ¥ and
& = e for BF | respectively.

Explicit formulae determining the free energies ¢7-° and &€ are found in
(3.9) and (3.13) below, respectively. Furthermore, we have the following result
which extends Theorem 1.1 of [2] to our setting. We denote the mean drift of p
by m = [pa xp(z)dx € R™.

THEOREM 1.1.

(1) The limits £P+ in (1.6) and £ in (1.7) exist for every e > 0.

(2) There ezist two critical values 0 < eP < b determined by (3.8) and (3.12)
below, respectively, such that €2 > 0 if and only if ¢ > €2 (therefore ¢P¢ =0
if and only if 0 < e < D) and €55 > 0 if and only if e > & (therefore £F5 =0
if and only if 0 < e <el).

(3) Ifd >3, el >0, while if d =1 and 2, e = 0.

(4) We have P = &I if and only if m = 0, and in this case £P¢ = ¢5°¢ holds for
alle > 0. If m # 0, we have e < el and 15 < ¢P holds for every e > P,

The last assertion of Theorem 1.1 can be interpreted as follows. In such a
case that the original unperturbed random walk has non-zero drift m # 0, if the
strength e of the pinning belongs to the range ¢ € (¢2,el"), the weakly pinned
random walk is transient (or delocalized) in the free case while it is recurrent (or
localized) in the Dirichlet case. This happens because the Dirichlet condition has
an effect to make the drift of the Markov chain vanish.

The large deviation principle (Theorem 5.1) immediately implies the concen-
tration properties for uy = ,uﬁ’s and ALZ’E: for every § > 0 there exists ¢ > 0 such
that

pn (disto (RN, 52) > §) < e™N (1.8)

for large enough N, where # = {h*;minimizers of X} with ¥ = % and XF,
respectively, and dists, denotes the distance on % under the uniform norm || - ||so.

Let us now study the minimizers or their candidates of the rate functionals X.
Define two functions i_L,%b and iLa7b;91792 on D for 61,05 > 0 such that 6; + 62 < 1
by
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has(t) = (1 —t)a+tb, te D,

and

01—t)a
OGte e 0,6)),
ha,b;91,02 (t) =40, te [917 1-— 92]7

t+60;—1)b
(b e (1—6,,1],
respectively. For each v € R?\ {0} and ¢ > —A*(0), let s = s(v,c) > 0 be the
unique solution of the equation

sv - VA*(sv) — A*(sv) (= A(VA*(s0))) = ¢, (1.9)

where v - VA* = Zi:1 v*ON* JOv®. We define tP tD > 0 by tP = 1/s(—a, 05 —
A*(0)),tP = 1/s(b, 6P — A*(0)) and tI" > 0 by tI' = 1/s(—a, 55 — A¥(0)),
respectively; if such s does not exist, we set t¥ = oo etc. Denote the sets of the
minimizers of P and X by .#P and .#F, respectively.

If €0 =0 or £ = 0, the minimizer of £ or ¥ is unique and given by
P = Ba,b or bt = ﬁa’(wm for each functional. We therefore consider under the
condition € > P or e > ¢f'.

LEMMA 1.2.

(1) The solution s = s(v,c) of the equation (1.9) is unique.

(2) (Dirichlet case) If t? + 2 < 1, .#" is contained in {hP,hP}, where hP =
hapep i (i.e., 00 =10, 00 =t2). IftP + D > 1, then ./P = {hP}.

(3) (Free case)

(i) If €75 > A*(0) and tF' < 1, then AT is contained in {hF,hF}, where
WY = hy 00 o (ie., b= 0,00 =tf 65 = 0).

(i) If €8¢ = A*(0), tf < 1 and a = —ti'm, then A coincides with the
set {iLa,Hm;tf,G; 0 € [0,1—tf]}; note that hF = ﬁa,(lftf)m;tf,lftf in this
case.

(iii) In all other cases (i.e., if “¢F* > A*(0) and tf > 17 or “¢tFe =
A*(0),tF <1 anda # —tF'm” or “0 < ¢ < A*(0)”), then .#F = {hF}.

The graphs of the functions k2, P k¥ h¥ and Ba,@m;tf,@ in d = 1 are shown
below.

In the free case, under the condition ¢¥*¢ = A*(0), the minimizers Baﬁm;tf,&
starting at a are floated by the drift m without any cost and, once they hit 0, the
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Dirichlet case  a,b>0 a>0,b<0
7P 7P 70 7P
a a a a
b b
0 1 0 1 0 1 0 1
b b
Free case e > AY(0) e = AY(0)
ilF iLF haﬁm;tf,o

drift m atm

price A*(0) to stay there balances with the gain ¢ staying there so that they
can leave 0 at any time.

1.3. Main result.

Our concern is in the critical case where h and h are simultaneously the min-
imizers of ¥, and similar situations for ©¥. We will exclude the special case
appeared in Lemma 1.2-(3)-(ii), for which the set of the minimizers of % is con-
tinuously parameterized by 6. Otherwise, A" converges to the unique minimizer
of ¥ as N — oo in probability, recall (1.8). We therefore assume the following
conditions in each situation:

(C)p e>el P 4D <1 and XP(RP) = xP(hP),
(CO)r e>ell ¢Fe S A% 0), tF <1 and XF(RF) = ZF(RD).

We are now in a position to formulate our main result. We say that the limit
under gy is B* if limy o pn ([|RY —h*|l o < §) = 1 holds for every § > 0. We say
that two functions h and h coexist in the limit under py with probabilities A and
AEAX >0, A+ A =1 and imy oo gy ([N = hlloe < 6) = A, limpy oo pon (||BY —
hllso < &) = A hold for every 0 < & < |a| A |b].

THEOREM 1.3.

(1) (Dirichlet case) Under the condition (C)p, the limit under ug’s is hP ifd =1
and h? if d > 3. Ifd = 2, hP and hP coezist in the limit under uﬁ’s with
probabilities \P¢ and AP, respectively, given by (4.15).

(2) (Free case) Under the condition (C)p, if d =1, h¥ and h¥ coexist in the limit
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under ,uf,’s with probabilities N5 and S\F’E, respectively, given by (4.22). If
d > 2, the limit under ,ui,’e is h¥.

Section 2 proves Lemma 1.2. The proof of Theorem 1.3 will be given in
Section 4. In particular, this will imply the central limit theorem for the times
when the Markov chains first or last touch the origin 0, see Remark 4.1. The
conditions (C)p and (C)p guarantee that the leading exponential decay rates of
the probabilities of the neighborhoods of the two different minimizers balance with
each other. This enforces us to study their precise asymptotics, which are discussed
in Section 3. The proof of Theorem 1.1 is also given in Section 3. Section 5 is
for the sample path large deviation principles. Mogul’skii’s result [13] for the free
case without pinning is extended to the Dirichlet case. In Section 6, we study the
critical exponents for the free energies £° by establishing their asymptotic behavior
in € close to their critical values.

2. Proof of Lemma 1.2.

For each v € R%\ {0}, set f(s) = sv-VA*(sv) —A*(sv) for s > 0. Then, we see
that f/'(s) = sZiﬁ:l v P 92N JOv*OvP (sv) > 0 for s > 0 and f(0) = —A*(0),
and this proves the assertion (1).

To show (2) and (3), we first notice the following: For 0 < 57 < s3 <1 and
h € /€ ([s1,s2]) such that h(s1) = a and h(s2) = b, Jensen’s inequality implies

that
1 52 . 1 52, b—a
A* > A" = A*
— / (h(t)) dt > (5231 / h(t)dt) <8281),

in which the equality holds only when A(t) = (b—a)/(s2 — s1) because of the strict
convexity of A* on R?. Thus the minimizer h of the functional [ A*(h(t))dt
is linearly interpolating between a and b: h(t) = (b — a)(t — s1)/(s2 — 1) + a,
t € [s1,s2]. This means that the graph of any minimizer of ¥ must be a line

as long as it does not touch 0, therefore, the minimizers of ¥ are in the class of
functions {ha,b7 ha,b;91,92;917 0 > 0,01 + 05 < 1}
To find the minimizers of ¥ in the class of {hq .0, 6, }, We set

Fa,b(el; 92) = E(ﬁa,bﬁl,%)

Then, we have that
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a a a
) — A* _ _ . A* _ _ A* _¢€
90, (01,02) < 91>+ (91) \Y% ( 91> (A*(0) — €°),

o= (2)-(8) 5 (2) 001

If the minimizer of ©P is in the class of {Ba’b;91,92}7 then it satisfies OFy, /0601 =
OF,p/002 = 0, which is equivalent to 6; = tP and 6, = tP; note that ﬁa,b;gl,gz can
not be a minimizer if #; + #2 = 1 from the reason mentioned above. This proves
the assertion (2).

Let us consider the minimizer of ¥ in the class of {hape,.9,}. Now,
b € R? also moves as a parameter. The function F,4(61,62), as a function of
b, is minimized at /02 = m (recall A*(m) = 0), and it becomes F,(61,60) =
Fo0,m(01,02) = 1A% (—a/01) + (1 — 61 — 62) (A*(0) — £°). The function F,(61,62),
as a function of 6o, is minimized at 63 = 0 if £ > A*(0) (which proves the assertion
(3)-(i)), at O =1 — 67 if & < A*(0) and at all 85 € [0,1 — ;] if &£ = A*(0). In
case £ < A*(0), 2 = 1 — 0; means that Bayb;gl_h actually touch 0 only at ¢t = 6,
(note that we are concerned with the case m # 0, since m = 0 implies A*(0) =0
so that £ < A*(0) can not happen), and therefore the minimizer of ¥ must be
hE. In case & = A*(0), for all 3 € [0,1 — 64], we have F,(61,02) = 0:A*(—a/0;)
which is minimized at 6; = t{", so that the candidates of the minimizers are of the
form iLa,OQm;tfﬂg?e? € 0,1 — tI]. Comparing its energy with that of the another
candidate hf: LF(hF) = 0, it must hold F,(t{",03) = 0, which is satisfied only
when —a/t!" = m. This proves the assertion (3)-(ii). The proof of Lemma 1.2 is
thus concluded.

REMARK 2.1. The condition (1.9) is known as the Young’s relation, which
prescribes the free boundary points ¢, 0 and tf.

3. Precise asymptotics for the partition functions.

This section establishes the precise asymptotic behavior of the ratios of par-
tition functions associated with the Markov chains in R? with pinning at 0 and
starting at 0 (and reaching 0 in the Dirichlet case), which were mentioned in Sec-
tion 1.2 to determine £°¢ and £%¢. In particular, these will imply the statements
in Theorem 1.1. A similar result is obtained by [2].

We introduce several notation; see Section 5.5 of [8] when d = 1. For A € R,
we define the Cramér transform py of p by

pa(z) = e’\"”_A(’\)p(:c), z e R
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Note that, under Assumption 1.1, the function A is in C>°(R?) and strictly convex,
since its Hesse matrix (02A(X)/OA*ON?)1<a p<a is equal to the covariance matrix
2(N) = (¢ (X\))1<a,p<da Of px, which is strictly positive definite. Here, ¢ (\) =
Jra(z® = v*(N) (2 — vP(X))pa(z)de and v*(N) = [ma *pa(x)dz; in particular,
m = v(0). Two functions v = v(\) : R — R% and A = A\(v) : R? — R? are
defined by

v=1v()) = VA(A)( = /R ) xm(ﬂd”f)’ re R (3.1)

A= A):=VA*(v), ve R

Note that A = A(v) is the inverse function of v = v(A): A = A(v) & v = v(A)
under Assumption 1.1 and the supremum in the right hand side of (1.4) for A*(v)
is attained at A = A(v):

A (v) = A(v) - v — AA(v)), (3.2)

cf. Theorem VIL5.5 of [6] and Lemma 2.2.31 (b) of [4]. See also Exercise 2.2.24
of [4] for A* € C*°(R) when d = 1.

3.1. Dirichlet case.

For 0 < j < k £ N, we denote by M?;S the probability measure on
(R k) = {ng = (¢s)j<i<k; ®i € Rd} without pinning under the Dirichlet
conditions ¢; = aN and ¢, = bIV:

k—1
) = B (o) T o ), 653)
gk i=j+1

where p; (¢) = Hf:jﬂ p(¢i — ¢i—1) and ZZ’IS = Z,‘jf’j (= ZZf;N) is the normal-

izing constant. Then, we have the following lemma. A similar result for random
walks on Z? can be found in Proposition B.2 of [3]. Recall that the matrices 2(\)
are strictly positive definite for all A € R? from the definition.

LEMMA 3.1. Asn — oo by keeping n/N — r € (0,1], we have

Zob ~ L exp { —nA* ((b—a)N) },
(2mn)/2, [det Q(22) n

where ~ means that the ratio of both sides tends to 1 and Q(v) := 2(A(v)) is the
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covariance matriv of px() for v € R?; recall that py is the Cramér transform of p
and the function \(v) is defined by (3.1). In particular, we have

1 »
ZO,O ~ —nA*(0) 3.4
" (27rn)d/2\/deth ’ (3:4)

as n — oo, where Q := Q(0) is the covariance matriz of px()-

PRrOOF. From its definition, the normalizing constant Z%® can be rewritten
as Z%* = p™*((b — a)N) in terms of the n-fold convolution p™* of p. However, by
a simple computation recalling (3.2), we can rewrite p™*(x) as

P (@) = e ™M (paymy) ™ (@) (35)
Define the probability densities p, and gy, , for v € R? by p,(x) = Pa(w) (z+v) and
Gn.o(r) = nd/? (ﬁv)n*(\/ﬁx), respectively. Note that the mean of p, is 0 and its
covariance matrix is Q(v) (i.e., same as that of py(,)) and gy, is the distribution
density of n=1/23"" | X where {X{"}7_, is an i.i.d. sequence with distribution
densities p,. Since Assumption 1.1-(1) implies sup, < Supega Po(z) < 0o for
every K > 0, the local limit theorem, which holds uniformly in v and formulated
in Lemma 3.2 below applied for p(*) = p,,, proves

1

@nw(0) — (2)4/2 /det Q(v)

lim sup

This shows
<7 ‘(PAw))"*(”v) - 1 =o(n™"),
lo| <K (2n)4/2\/det Q(v)
as n — 00, since (Py)™*(x) = (Pr@))™ (x + nv). Therefore, in particular by

taking v = (b — a)N/n which runs over a certain bounded set of R? as long as
n/N — r > 0, the identity (3.5) with z = (b — a)N shows that

p"*((b—a)N)

- ((27Tn)d/2 1det Q(=2) ' O(n_d/2)> eXp{ - ((b_na)N) }

Thus, the proof of the lemma is concluded. O
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We need to extend Theorem 19.1 of [1] in the following form, in which the
random variables depend on an extra parameter v running over a certain set ©
and the local limit theorem is established uniformly in v. The proof is essentially
the same so that it is omitted.

LEMMA 3.2. For each v € ©, let an R%-valued i.i.d. sequence {Xr(f)}ff’:1
be given. We assume that E[XT(LU)] =0, COV(XT(LU)) = V@ which is a symmetric
positive definite matriz, and the distribution of Xff) has a density p(”)(m). Then,
if SUP e SUPLepe P (z) < 00 and if I < VW) < ol hold for all v € © with
some constants 0 < ¢1 < ca < 00 and the d X d identity matrixz I, the distribution
of nTY231 X(v) has a density a )( ) and it holds that

lim sup sup |q x) — ¢o,v<v>($)| =0,
=0 ye0 zcRe

where ¢y () stands for the density of the Gaussian distribution on R® with mean
0 and covariance V.

The partition function Z3"° is determined by
N-1
700 _ / #)0o(do) [ (do(dey) + doi)do(den),  (3.6)
(Rd)N+1 i

and Z3° = Z3%°, i.e. € = 0. Let us define the function g : [0,00) — [0, 00] by

oo
x) =Y a"Z0°. (3.7)
n=1

Note that g is increasing, g(0) = 0, g(x) < oo if and only if 2 € [0,e? ()] when
d >3 and g(x) < oo if and only if x € [0,e”(?)) when d = 1,2 by (3.4). Set

1
D _
E. = W (38)

In particular, e > 0 if d > 3 and P = 0 if d = 1,2. For each ¢ > &2, we
determine z = z° € (0,2 (9)) as the unique solution of g(x) = 1/¢ and introduce
two positive constants:

(2m)4/2\/det Q

D, __ A* D, __
€7 =A"(0) —logz® and C”°= e g

(3.9)
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PROPOSITION 3.3.  For each ¢ > €2, we have the precise asymptotics as
N — oo for the ratio of two partition functions:

0,0,e
ZN
0,0
ZN

~ D Nd/2 NEDE

Proor. We first note the renewal equation for ZR,’O’E, N > 2 with Z)%¢ =
zM0 =1

N-1
Z30T =230 e Y 20230, (3.10)

i=1

see Lemma 2.1 in [2]. Then, in a very similar manner to the proof of Proposition
2.2 in [2] (remind that the partition functions in [2] in the Gaussian case have an
extra factor (27)%"/2 because p is unnormalized there), taking ug = ag = by = 0
and u, = (2°)"Z%%¢ a, = e(2%)"Z%° b, = (z°)"Z0 for n > 1 in the present
setting and noting that >~ a,, = 1, the renewal theory applied for the equation
for {u,} obtained from (3.10) shows that

> obn 1
lim (:va)"Zg’O’E = Zo'o’:() = .
n—o0 Yomgnay  €2xfg’ ()
The conclusion is shown by combining this with (3.4). O

The free energy ¢P+¢ defined by (1.6) is, if exists, non-negative and non-
decreasing in e, since Z20¢ is increasing in €. Therefore, since (3.9) implies
lim,|.p ¢P# =0, we see that ¢P¢ =0 for 0 <e <eP

3.2. Free case.

We next consider the case with the free condition at ¢ = 1 (or microscopically

0,F,e
ZN

at i = N). The partition function is determined by

N
207 — / 9)00(do) [ (8o(do) + desy), (3.11)
Ry i=1

and we have Z%" (= Z3"%) = 1. Recall the function g defined by (3.7) and set

1
ef=—_. (3.12)
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We see that ef” > P from A*(0) > 0 and &’ = P is equivalent to A*(0) = 0,

namely, m = fRd xp(z)dz = 0. For each & > &, we define two positive constants:

1
exs(1—a°)g' ()

¢ = —loga® and CF* = (3.13)

PROPOSITION 3.4.  For each ¢ > €&, we have the precise asymptotics as
N — oo:

0,F.,e
ZN

0,F
Zy

F,e
~ CF,seN§ .

PrROOF. We first note the renewal equation for Z?V’F’E, N > 1 with Zg’F’E =

N
0,F.e _ 0,F 0,0 ~0,F.e
AN T =25 —|—€E Z; LN,
=1

see Lemma 2.4 in [2]. Then, in a similar manner to Proposition 2.5 in [2], taking

up = by = l,ap = 0 and u,, = (z°)"2%0F¢ a, = e(z*)"220, b, = (2°)"20F =

(z°)™ for n > 1 in the present setting, an application of the renewal theory shows
that

1
lim (z%)

nZO,F,e_
s (=g )

Note that the limit is finite only if Y07 by, = Y oo ()™ < oo, that is 2° < 1,

n=0
i.e., e > el’. The conclusion is now shown by recalling Z?V’F =1. (I

Since (3.13) implies lim, | r ¢Fe =0, we see that ¢ = 0 for 0 < e < &l for
the free energy £°¢ defined by (1.7).
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4. Proof of Theorem 1.3.

In this section, we give the proof of Theorem 1.3 under the conditions (C)p
and (C)p. Recall the definition (3.3) of the probability measure ,u?”,i’ on (R4 k}

a,b,e

for 0 < j < k < N. The corresponding measure with pinning is denoted by p ik

4.1. Proof of Theorem 1.3-(1).

Under the measure “?ﬁ?v the macroscopic path determined from (¢;);<i<k
concentrates on the straight line gé’;Mk/N] (t) between (j/N,a) and (k/N,b), in
particular, gﬁ)’,bl] = hP. More precisely, by the large deviation principle (cf. Propo-
sition 5.2 below), we have the following lemma.

LEMMA 4.1.  For any &' > 0, there exists c(§’) > 0 and No(8') € N such
that for any a,b€ R*, 0 <j <k < N :

i ap i / —¢(8")N
N e\ )20 ) S

a,b
for N > Ny(¢').

We write
Vin(0) = w e (180 wyn = bty o < 6)s

where h = AP in this subsection, and f, . is the restriction of a function f :

[0,1] — R to the subinterval [u,v] of [0,1]. The probability 7;17’,5’5(5) is similarly

defined with pinning, i.e., under u;’,i”s. We sometimes write Us(hy,,,]) for the d-

neighborhood with respect to || - ||« in the space of functions on [u,v] of fz[u’v];
when the subscript [u, v] is dropped, it is considered on [0, 1]. We similarly write
Us(h) for h = hP.

To complete the proof of Theorem 1.3-(1), it suffices to evaluate the limit

oy PN (WN € Us(h))
N=oo p® (BN € Us(h))

for arbitrarily small 6 > 0; recall the concentration property (1.8) or (4.14) below.

Let ¢y and ¢, be the times when the Markov chains ¢ first respectively last
touch 0, namely, iy = min{i € Dy;¢; = 0} and i, = max{i € Dy; ¢; = 0}, where
we define min) = N (in the Dirichlet case), = N + 1 (in the free case discussed
later) and max ) = 0. An expansion of the product measure HfV:II(E(SO(dd)Z-) +do;)
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in (1.1) by specifying i, and 4, gives rise to

b Za,b,e b N )
Ry = ]\flb /LN’g(h € Ug(h))
Zy

0,b
= ’yg,N + Z E'_'NJ j’yO J )’yj,N((S)

—_ s b
+ Y B O ()N (9)

0<j<k<N
= Iy + 1% + I3}, (4.1)
where
29200028,
BNk = -4 =) R (4.2)

a,b
ZN

for 0 < j <k < N. In fact, Izlv covers all paths without touching 0: iy = N,4, =0
and I% is for those touching 0 once: 0 < iy = i,.(= j) < N, while I3 is for those
touching 0 at least twice: 0 < ig(= j) < ir(= k) < N. We set Zg">* =1 to define
Ey ;- 1f 6 is chosen small enough, we have from Lemma 4.1

IN+ I} <e N (4.3)

for N sufficiently large, with ¢ > 0.
By Lemma 3.1, the ratio of the partition functions in (4.2) has the asymptotics
for j <k as N — oo:

~ 0,0,e
7Nf(51,52) k_] (4.4)

0,0 °
Zkfj

E}:V,j,k ~ ozNJ',ke
where s1 = j/N, so = (N — k)/N,

f(s1,82) := s1A" ( - 8"1) + s9A* (i) + (1 =51 — $2)A*(0) — A*(b—a), (4.5)

and
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LI S r”[ det Qb — o) v
W= Gy [jE - IV =R [detQ(— £) detQ aet Q(Z)

In the part I3;, we decompose the summation in j and k into the part over
A= {(,k);lj = Nti| < N¥/P, [k = N(1 — t)] < N*/%}, (4.6)

and over its complement, where t; = tP and t, = t£ are determined by the Young’s
relation (1.9). We always assume that N is large enough so that Nt; + N3/5 <
N(1 —ty) — N3/5, Using Proposition 3.3, we get

D B O () (9)
(J,k)EA

< Z vk <C Z aNijk(k,j)d/Qe*Nf(Sl,&)’
(4:F)EA (4.k)¢A

for some C' > 0, where

F(s1,52) = f(s1,82) — €75 (1 — 51 — 59). (4.7)

However, since the third condition in (C)p is equivalent to f(t1,t2) = 0 and the
Young’s relation (1.9) implies 0f/0s1(t1,t2) = 0f/0sa(t1,t2) = 0, the Taylor’s
theorem gives the expansion of f(s1, $2):

fs1,82) = i(fl -V)2A* ( - f) (s1—t1)* + L(b -V)2A* (f) (s2 —t2)?

o288 1 23 9
+O0(|s1 — ta]* + [s2 — ta*), (4.8)
for s7 and ss close to t; and to, respectively; we use the condition A* € 03(Rd)
required in Assumption 1.1-(2). Therefore, since f(s1,s2) > 0 except (s1,s2) =

(t1,t2), we have

Nf(sl, 82) Z CNl/S,

on the complement A¢ with some C' > 0 and thus

> S e (4.9)

(4,k)EA
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for some ¢ > 0, and large enough N.
For (j,k) € A, the expansion (4.8) shows

Fs1,82) = ea(s1 — 11)? + ca(sz — t2)? + O(N /%),
where

1 2 a 1 2 b
= — (a-V)'A* = — = —(b-V)°A* = ). 4.1
“ Qt? (a ) ( 11 ) r 2t§ (b ) (tg) ( O)

Furthermore, the straight lines gﬁj’zl] and g?l’[is are within distance 6/2 to the

2,1]
restrictions of hjg 5, and hj;_g, 17, respectively, if IV is large enough, and therefore,
using Lemma 4.1 and Theorem 5.1 below (in fact, Proposition 5.7 is sufficient),

we get
— _ —_ ,0 0,0, 0,b
Yo Evgal—e™) < Y B 05 @750 (N (9)
(4,k)€A (j,k)EA

< Z E?\/,j,kv (4.11)

(5,k)EA
for some ¢ > 0. It therefore suffices to estimate >_; ;)4 E ;- By using (4.4),

Proposition 3.3 and substituting j — [Nt1] and k — [N(1 — t2)] into j and k, we
have by a Riemann sum approximation

e Y =~ ONT2 N e—c1G/VN)? 3 o—ca(k/VN)?

(GkeA j1<N3/s k| <N3/5
NclNl_d/2/ e—clmz d.T/ 6—0212 da
C
__m N1-d/2, (4.12)

4/ C1C2

as N — oo, with

6QCVD,E detQ(bfa) 1/2
(4m2t1t2) /2 [det Q( — £) det Q det Q(L)]

1=

where CP¢ is the constant given in (3.9).
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Summarizing, we get from (4.1), (4.3), (4.9) and (4.12), for sufficiently large
N

C T . 1/5
D _ 1 1-d/2/q1 _ —cN —cN —cN
Ry ClCQN (1-0(eM)+0(e )+ 0(e=N)
Cim 14
~ ——_N'7d/2, 4.13
B (4.13)

On the other hand, the definition (1.1) of ¢ implies for every 0 < § < |a|A|b|
that

Za,b,s B B
Zl\fl,b pn (BN € Us(h)) = uy® (WY € Us(h)) ~ 1,
N

where h = h”. Comparing with (4.13), we have the conclusion of Theorem 1.3-(1)
by recalling that (1.8) implies

lim {uy® (WY € Us(h)) + puy® (WY € Us(h))} = 1. (4.14)

N—o0

In particular, if d = 2, the coexistence of h and h occurs in the limit with
probabilities

_ . 1 Cy
ADe \DPe) .= 4.1
( ) ) <1 T 02 ' T 02 >a ( 5)

where Cy = Cy7/ /c1ca > 0.
4.2. Proof of Theorem 1.3-(2).

Let ,u?\;F(: yg’o) be the measure defined on (R%)P~ without pinning and
having the normalizing constant ZX,’F(: ZK;F’O):
N
a pn (9
" (a6) = 2D 5, o) [ o (4.16)
N i=1

For 0 < j < k < N, one can define the measure /1?_’5’6 on (Rd){j"“7k} with pinning,
the condition ¢; = 0 at j, and the free condition (no specific condition) at k,

having the normalizing constant Zg’_i?s. The expansion of the product measure

1Y, (60(dg;) + dgi) in (1.2) by specifying 0 < ig < N + 1 leads to
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" Za JFie N .
Ry = ZaF ,uN °(h" € Us(h))

= ugy" (BN € Us(h))
—F, 0 7 0,F, j
+ Z€~N€JN8] [0,5/N] € U5(h[0’j/N]))'uj,NE(hf}[/N,l] € Us(hyj/np))
= Iy" + 15", (4.17)

where h = h¥ in this subsection and

a,0 ~0,F,e
—re _ Zi 2N

—N,j a,F
’ Z5
N

for 1 < j < N. Noting that Z&¥ = Z%F = 1 and recalling Lemma 3.1 for Za 0
we see that

=2 ()42 ( d a\\ Y nien INSs
En; ~ (2m)) < etQ<—81)> e 'Z%fj’
where s; = j/N and f(s1) = s1A*(—a/s1).
We put here
A= {j;]j = Nta| < N7},
where t; = tI", and arrive in the same way as in Section 4.1, using the large

deviation estimate for y’ ' 9 and ﬂ?ﬁa (cf. Theorem 5.1 below), to

RE =Y ERE(1-0(e M) +0(e=N'"") 4 0(e=N), (4.18)
JEA

for some ¢ > 0. Furthermore, we get by Proposition 3.4,

~1/2
c Eﬁ,z NECF’E(27T)d/2(detQ( :)) Z(]\[Sl)fd/QefoF(81)7

jEA 1 jeA

where CF*¢ is the constant given in (3.13) and fF(s) = f(s) — (1 — s). By the



1024 T. FuNAKI and T. OTOBE

final condition in (C')p, the Young’s relation (1.9) and the Taylor’s theorem, we
have the expansion of f¥':

1

fF(Sl) = Q—t?(a . V)2A* ( - Z) (81 — t1)2 + O(‘Sl — tl‘g), (419)

for s1 close to t;. This finally proves, recalling (4.18), that

R ~ C3N~—4/2 Z e—cs(i/VN)?

|j|<N3/5
~ Oy N1=4)/2 /Oo e~ gy = Oy, | L NA-D/2, (4.20)
oo C3
as N — oo, with
cre 1
Cs = : and c3 = —z(a-V)’A* ( - a). (4.21)
(2mt1)4/2, [det Q( — &) 2ty t

On the other hand, for every 0 < § < |a|, we have that

a,F.e
ZN

T s (BN € Us(h)) = pi® (BN € Us(h)) ~ 1,
N

where h = h¥'. Comparing this with (4.20), and recalling (1.8), the conclusion
of Theorem 1.3-(2) is proved. In particular, if d = 1, the coexistence of h and h
occurs in the limit with probabilities

YFe (Fe 1 Cy
’ )= —— 4.22
(NP2, AF9) (1+C4,1+C4 , (4.22)

where Cy = C5y/7/c3 > 0.

REMARK 4.1. Consider the times iy and i, when the Markov chains first
respectively last touch 0 under the scaling: X = (iy — t;N)/v/N and Y = (i, —
(1 —1t2)N)/ V/N. Then, the following central limit theorem can be shown in a
similar manner to [2] based on the computations leading to (4.12), (4.13), (4.20)
and others: Under pg’s, conditioned on the event {i; < N — 1} if d > 2, the pair
of random variables (X,Y") weakly converges to (U, Us) as N — oo, where Uy
N(0,1/2¢1) and Uy = N(0,1/2¢2) are mutually independent centered Gaussian
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random variables, and ¢; and ¢y are given by (4.10), while under ,uf,’a conditioned
on the event {i; < N}, X weakly converges to U = N(0,1/2¢3) as N — oo, where
cs is given by (4.21).

5. Large deviation principle.

The goal of this section is to show the sample path large deviation principle
(LDP). Here we do not require the conditions (C')p nor (C)p.

5.1. Formulation of results.

THEOREM 5.1.  The LDP holds for hN = {h™ (t);t € D} distributed under
UN = ug’g and yg’g on the space € as N — oo with the speed N and the good
rate functionals I = IP and IT of the form:

(5.1)

Y(h)—inf ¥, ifhe dE,
B = AC
+00, otherwise,

with ¥ = P and X given by (1.5), where € = o€ o1 and FCq r, respec-
tively, and inf 4z X is taken over the space /€. Namely, for every open set O
and closed set € of € equipped with the uniform topology, we have that

CE— 1 N :
— >
1}\rfn inf N log ,uN(h S D) }%nf I(h),

: 1 N .
<

in each of two situations.

5.2. The LDP without pinning.
We will show the LDP for {1V} y distributed under %" = 5%, The LDP for

,ui}F, i.e., the case with the free condition at the right end point, was established
by Mogul’skii [13]; see also Section 5.1 of [4].

5.2.1. Results.
Let 6, be the family of all h € € such that h(0) = a and h(1) = b. We set

A*(h(t))dt, if he ACqs,
oty — [ oA e . 0
+o0, if he (ga,b\d(ga,b;

and
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Io(h) = Z()(h) — g{l(Iéf . Eo.

PROPOSITION 5.2.  The family of macroscopic paths {h™N'}x distributed un-
der u‘f\}b = uﬁ’o satisfies the LDP on the space 6, with speed N and the good rate
functional In(h), namely, for every open set O and closed set € of 6,, we have

the lower and upper bounds (5.2) for ,u?\;b and Iy in place of uny and I, respectively.

REMARK 5.1. Deuschel, Giacomin and Ioffe [5] proved the LDP for ,u‘}\}b
in the L?-topology, even for the Markov fields rather than the Markov chains
discussed in this paper, under the log-concavity condition on p. Such condition was
needed to characterize all (infinite-volume) Gibbs measures for the corresponding
gradient fields, which are simply the superpositions of certain product measures in
our setting. Therefore, their method would work also in our setting. To improve
the topology, one may show the exponential tightness which is actually easy; see
Corollary 4.2.6 of [4].

We will follow the method used by Guo, Papanicolaou and Varadhan [12]
to show the equivalence of ensemble for a sequence of canonical (conditional)
probability measures, with an external field depending on ¢. This will be applied
to show the law of large numbers (LLN) for the perturbed measure. Then, we will
use the Cramér’s trick to prove Proposition 5.2.

5.2.2. LLN for a perturbed measure.
For a step function A on D, we introduce the perturbed measure ,u}l\}f)A by

a,b o pN(¢) - X(%)'(tbi—@—l) ped .
py(dg) = [Ie 11 de:,
i=1

under the boundary conditions ¢g = alN, ¢ = DN.
Let h € €4, be a polygon with corners at t = k/m, 0 <k <m, m e N. We
assume that N is divisible by m for simplicity. We define the step function Ap by

An(t) = A(h(t)),t € D.
PROPOSITION 5.3.  For the polygon h, we have that

dim 3 (1Y =Rl 2 6) =0

for every § > 0.
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Proor.

Step 1: The exponential tightness of the distributions on the space €, of
{h™} under ,u?\}f’/\ will be shown later, see Lemma 5.6 below. Then, the conclusion
follows by showing the convergence of (hV,.J) to (h,.J) in probability as N — oo
for every test function J € C*(D, R%). To this end, it suffices to show that
(hN|J) converges to (h,.J) in probability for every test function .J.

Step 2: Note that
1 .
= N Z’?i - Ji,
i=1

where 1; = ¢; — ¢;_ 1,1<z<NandJ—Nfl/N J(t) dt.
We define the probability measure vy, on (R )N by

N

1 i
valdn) = 5 — Lo K, o= ), € (R
NA =1

The conditional probability measure of vy x on the hyperplane {77|% Zi\il n =
b — a} is denoted by l/?v_’;

N
Y 1
VJbV,/\(') = VN,/\<' 'N E ni = b—a).
i=1

Let fn.a(z) be the probability density of % Zi\; 7; under the distribution

VN, i.e.,

N
1
Ina(x)de = vy a (N ;m € dx), z € R%.

The following lemma is an extension of Theorem 3.4 of [12] to the case with
non-constant external field A:

LEMMA 5.4.  We have that
1
Jim Slog fya(y) =~ min —Z{A ze) = A~ @+ AN},

ml,...,zméRd s.t
(@14 +om)=y
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uniformly in y on every compact subset of R, where Ay is the value of the step
function A(t) on the Lth interval Dy = (£ —1)/m,€/m], 1 <€ < m.

PROOF. Let X, be the average of  over the domain Dy := ND, N Z =
(L=1)N/m,¢{N/m|N Z:

m
—NZ%

ieﬁe

and let f](\f}m))\(xg), x; € R® be the probability density of X, under vnx. Then,
noting the independence of {Xi,...,X,,} under vy x, we see that fy x(z)dz is
nothing but the distribution of %(ml + -+ + x,,) under the product probability
measure

m

HfN/mA xp) dxy.

This implies that

fualy) =m P (my = (@1 4+ + 2 1))
(Rd)m 1
H Nma (@) dze, y € RY. (5.3)

In fact, taking any test function ¢ € C§°(R?), one can rewrite the integral
Jra ¢(y) fna(y) dy by change of variables and obtains (5.3). However, from The-

orem 3.4 in [12] applied for f](\f/)m , (we take —logp(x) — A¢ - 2 + A(X\¢) as the
potential ¢(x) in [12]), we see that

lim Tlog £7),, () = —(41) (@),

uniformly in = on every compact subset of R?, where

(AO) = sup {A-v— AN+ Ag) + AN}
AER?

=A(v) — Ag-v+ A(Ng). (5.4)

Now, the combination of (5.3) and (5.4) proves the conclusion. O
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We now return to the proof of Proposition 5.3. Our goal is to show that

+ Zi\; n; - Ji converges to (h, J) in probability under v ¢ with A = Aj,. To show
this, we estimate by the exponential Chebyshev’s inequality

Nlogy (‘Nz;”i'Ji_ <h,J>‘ > 5)
< %1 0 {/ew{; R

4 /e—NG{% SN i di— (b, J)+6} dyfv;] (5.5)

for every 6 > 0. For the first integral on the right hand side, we have that

0N miJi
05 medi g pa _ J LA S mean© = duw
e N — 1 N
VN,A(N dim1Mi € dl")

z=b—a

The denominator is equal to fn x(x)dx, while the numerator is equal to

Z%r o
TNA gt (2)da.
ZN)\ N,

Here fﬁ,’ y is the probability density of % Zivzl 1; under the distribution

N
0 A5 )i 0T
vy a(d H v T dy.

If J is a step function on D, which takes constant-value J; on each subinterval
Dy, 1 < ¢ < m, we can apply Lemma 5.4 also for fzev,)\ by taking Ay + 6J; in place
of Ay and have that

) 1
Jim < log f (1)

= - min — AN (xg) — (Mo +0Jp) - xp+ AN+ 6Jp) },
o oo R st mZ{ é ¢ E) 14 ( ¥4 @)}
;(xl"!‘ +Tm)=y

uniformly in y on every compact subset of R?. On the other hand, we have
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1 ZJOV A 1 oSN =
— log =—2 = — log E¥N:X |e Zizl ni-Ji
N8 Zyy N 8 [ ]
1 1 [Hzn_l(eA(AHer))N/m} 1 il eA+070)
= —log e - gl
N [ToL, (AR )N/m m3 eM(Ae)

These computations are summarized into

lim %log/eezz{\’zlm-i—N&(h,J)—NGé dy?v—,:\z

N—oo

1 m

= — min — A (xg) — (N +0Jp) - x

o e 2 AT @0 = O+ 000) e}
L(z14+zm)=b—a -

1 .
M 11,‘..,£1€an st. M Z{ (1132) £ I‘g} < ’ > ( )
#(Il+"'+fﬂm):b—a

We prepare the following lemma to prove that the right hand side of (5.6) is
negative if 6 > 0 is sufficiently small.

LEMMA 5.5. For a step function \ satisfying fol v(A(t))dt = b — a, the
minimizer of the variational problem

1 m

min — E {A*($z> — A - a)‘g}
Z1,..,xmER? s.t. M =

E(zi++zm)=b—a

is given by T = {Z¢ = v(Ae)} 2.

PROOF. At the minimal point z = {x¢}}*,, VA*(2¢) — A\, = ¢ should be
satisfied with a constant ¢ € R? chosen as L 37" v(A¢ + ¢) = b — a. But this is
fulfilled by ¢ = 0. O

Lemma 5.5 can be applied for the first variational problem in the right hand
side of (5.6) as well. In fact, choosing c(§) € R? in such a way that fol v(A(t) +
0J(t) + c¢(0)) dt = b — a, we can rewrite the first variational problem into

L(z1++zm)=b—a
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which is equal to
% Z {A*(U()\z +0Jo+c(0)))— ()\e +0J, +C(9)) -’U()\e +0J, +C(9))} +c(0)- (b—a),
=1

by Lemma 5.5. We expand this formula in . Then, since ¢(0) = 0, the main term
(the first order term) coincides with the second term in the right hand side of (5.6)
by noting Lemma 5.5 again. The second order term (the term of order 8 in the
expansion) is given by

% Y AVA () - Vo) (Je + ¢ (0)) = (Je +¢(0)) - w(Ae)
(=1

— X Vo(Ag)(Je +(0) } +6¢(0) - (b—a)

S v(h) = =0k ),

(=1

1
m

recall that VA*(v(Ar)) = e, = >°)%; v(A\¢) = b — a and note that Vo()) defines
a d x d matrix. This exactly cancels with the term —6(h,.J) appearing in (5.6)
and we have proved that the right hand side of (5.6) is strictly negative if 8 > 0 is
sufficiently small.

We can treat the second integral in the right hand side of (5.5) in a similar
manner, and this completes the proof of Proposition 5.3. O

The final task of this subsection is to establish the exponential tightness of
the distributions on the space %, of {h"} under u‘}\}b)\. In fact, once the next
lemma is shown, this follows in a similar manner to the proof of Lemma 5.1.7 in
[4].

LEMMA 5.6. Let A be a step function on D as in Lemma 5.4. Then, for
every 6 < 1, we have that

1 a, .
lim sup 5 log EHNA [6525\’:1 A (¢i*¢i—1)] < 0.

N—o0

PrOOF. For § < 1, let p(®(z) be the probability density defined by

1 ‘(x
P(é)(x) = ﬁp(x)etm ( ),
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where 209 = [, p(x)e? @) dr < 0o if § < 1 from Lemma 5.1.14 in [4]. Then,
9 satisfies the Cramér’s condition:

AD(N) = 1og/ e *p¥(z) dz < co. (5.7)
R4

Indeed, by applying Lemma 5.1.14 in [4] for the Cramér transform p; of p, we see
that

/ A" @)y (1) da < o0, (5.8)
Rd
for all § < 1 and A € R, where
As (V) = log / A (@) de = A+ ) — A(Y)
R4

and (Ayx)* is its Legendre transform

(A5)*(v) = sup {\-v— A (\)} = A*(v) — XA -v+ A(N).
AeRA

Inserting this into (5.8), we see that

/ e(l_é)S"Ip(‘s) () dz < o0,
Rd

which implies (5.7) by taking A = \/(1 — §) for each A € R.
Let I/J(\i))\ be the probability measure vy, ) defined by taking p9 in place of p,
that is,

1 ERY
VJ(\(IS,)/\(dn) - Z(9) Hp(é)(m)e/\<1\’) T dn;,

with the normalizing constant Z](\?,)/\ and let f ](\f)/\(:z:) be the probability density of
% Zf\]:1 7; under the distribution I/J(\(;’)A. Then, since p(®) satisfies the Cramér’s
condition, Lemma 5.4 can be applied for p(®) and we obtain that



Scaling limit under pinning 1033

1 (6) 5) 6
lim <1 = - m = § A®)y - A AP (X
N1—>oo N o8 fN’)\(y) T1,.. ,ImlEnR s.t. T { et ( Z)}
(x4 ta,)=y

m

(5.9)
which is finite for each y € R?.
We now rewrite the expectation in the statement of the lemma as
SN, AT ()
E“‘}l\f,bk [652?7:1 A (pi—i— 1)] f 1{N i WLEdw}e ! dVN A
vna(w Zi:l 1; € da) r=b—a

(8 g
CONZYL | INAb—a)
ZN,,\ Ina(b— a)

However, it is easy to see that

m

N .
1. @ _ 1 OYSVER N TS @)
NIOgZN’)‘_N;A A N _m;A

This holds also for 3 log Zn.; take § = 0. Thus, (5.9) together with this formula
taken ¢ = 0 (for fy (b — a)) completes the proof of the lemma recalling that
209 < 0. g

5.2.3. Proof of the lower bound in Proposition 5.2.
Let h be the polygon considered in Proposition 5.3 and denote A = A\;. Then,
for every § > 0, we have

Zu,b .
ui}b(HhN —hlleo <9) = ZN,Z‘ EFNA [e” S M) (9 9i=1) ||WN = h|s < 5].

" (5.10)

Here,

i=1 i=1 po=aN,pn=bN

N

:/Hp(m)e (%),

i=1

~ Zf\;l ni=b—a
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S e mean TS pOn)eX(F) 7,
o dx

= Znafna(b—a),

and Z%" = Znofno(b — a). Since it holds that

( ) — bi1) N/ At dt‘<2N5|)\|L1(D

on the event {||hY —

hlleo < 6}, we have from (5.10) that

| b
l}ggofﬁlog/ﬁ\} (1Y = hllss < 6)

1 fN )\(b — a)
= + hm — log =—~————=
T N—oo N ZN,O N—oo N & fN,()(b — (l)

[ 2@ et = 25Ny + Jim - Tom i (10 Al < 6).

(5.11)

However, by the computations made in the last subsection, the first term in the
right hand side of (5.11) is equal to

while the second in (5.11) is equal to

1 m
min — A (zp) — Xo - o + AN
11,...7w.mERd CRA z_:{ ( Z) ‘ ‘ ( Z)}
L (@14 o) =be

...,mmeRd s.t.

1 m

+ min — E A" (zy).

L m=
=(z1++zm)=b—a

Proposition 5.3 implies that the last term in (5.11) is 0. Thus, we have that
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. . 1 a,b
lim inf = log p1i” (|2 = hfloe < 9)

1 m
> — min — AN(zp) =g
- Z1,.ZmEeRY s.t. Z—Zl{ ( 4) ¢ Z}
L@+ +am)=b—a -
1 & ! :
+ min — AN (z —/)\t~htdt—25)\
e A = [0 de 251

L(z14++am)=b—a
1 .
> —/ A* (1)) dt + inf S0 — 28] A s
0
= —1Io(h) — 20|\l (p)- (5.12)

Here, the second inequality follows from

1
min — E {A*(zg) — Ae - 24}
T1,...,.t;m ERY s.t. TN =
L@+ +am)=b—a -

1 — 1
= D AN (W) = A v(A)} = —/ A1) dt
(=1 0

by Lemma 5.5 and (3.2),

1 — 1
min — AN (zp) = inf / A (g(t))dt > inf X
T1,.tmER st TN ;_:1 (we) g: polygons s.t. Jq (9(t)) dt = 0
ﬁ(mlJr---erm):bfa - g(0)=a,g(1)=b

and A(t) - h(t) = A*(h(t)) + A(A(t)) by (3.2).

Now take an arbitrary open set O of €, . Then, since {||hYY — h||o < 8} C
{hN € O} for every polygon h € O and every sufficiently small § > 0, we see from
(5.12) that

.. abp N .
- * > .
1}\1711 inf —loguy (A € O) heo:ggygons Iy(h)

However, the (local Lipschitz) continuity of A* implies that

figlfj Io (h) - heD:ggygons Io(h)
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and this completes the proof of the lower bound in the proposition.

5.2.4. Proof of the upper bound in Proposition 5.2.
For the upper bound, it is enough to show the following estimate for every
g € ﬂ%a’bi

1
lim sup ~ log u%"(|WY = glloo < &) < —Io(g) + 0, (5.13)

N—oc0

for every # > 0 with some 6 > 0 (depending on ), see the remark below (5.15).
The exponential tightness for ,u?\;b follows from Lemma 5.6.

For every g € &/ €4, since Assumption 1.1-(1) implies sup,¢ g« p(z) < o0,
by Lemma 3.1, we have

. 1 a
lim sup - log piy" (|h™ — gloo < 9)
N—)DO
: 1 a i}
< limsup — log,u]\}fjl(HhN = llso,j0,1-1/8) < ) + A*(b—a).
Neooo IV
By the relation
a,F N
151 (1Y = gllso j0.1-1/87 < 6)

N N -1 N
_ o aF N—-1 _ .
(- ()L < v )

and the continuity of g, we can get

. 1 a
hmsupﬁlogﬂl\}il(HhN = 9lloo,j0,1—1/N] < (5)

N—o0

1
< lim sup i log u%" (RN 71 = glleo < 20).

N—oo

Finally, by the LD upper bound for LL(;\}F7 the relation A*(b—a) = inf 4, , ¥ and
the lower semi-continuity of ¥y(h), we have

. 1 a
lim sup N IOgMJ\}b(||hN = gllos <9)
N—oo
< — Eo(h) + inf EO < —Io(g) + 97

inf
he{llh—gllec <26} A Cap
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for every 6 > 0 with some § > 0 (depending on 6).

5.3. Proof of Theorem 5.1.
For the proof of Theorem 5.1 for ,uf,’e, it is enough to show the following two
estimates for every g € &€ p:

1
liminf — log uy*(|hY — gl < 8) > —I"(g), (5.14)
N—oco N
for every § > 0, and

1
lim sup N log i (1N = gllee < 8) < —IP(g) + 6, (5.15)

N—o0

for every 6 > 0 with some § > 0 (depending on ), where I” is defined by (5.1)
with ¥ = %P and &/¢ = &/ €, . This step of reduction is standard, for instance,
see (6.6) and the estimate just above (6.11) in [10].

The proof of the lower bound (5.14) is similar to Section 4.3.1 of [2]. The
only difference is that we should replace ¥g(a, b;t1,tX) in Lemma 4.6 of [2] by

b
st ) () s ().
t ty

In fact, from (4.4), Proposition 3.3 and the formula (4.5) for f(s1,s2), one can
show that

a,b
Zy = —%o(hP) + inf %(h). (5.16)

) 1
lim —log —=—
Z]a\/; € %Cga,b

N—oo N

The equality (1) in Lemma 4.6 of [2] follows from (5.16) and Proposition 3.3
recalling Lemma 3.1. Another inequality (2) in that lemma is a consequence of
Propositions 5.2 and 5.7 stated below. All other arguments are exactly the same.

PROPOSITION 5.7.  For every § > 0, there exist C,c > 0 such that

v ([ [l > 0) < Ce™™

e _ 0,0, 0,F.,e
for psy = " and py .

This proposition is shown in Proposition 4.3 of [2] or Proposition 2.1 of [9]
for the Gaussian case. The general case can be proved from Proposition 5.2 by
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tracing the method used in Section 2.2 of [9], which is based on a renewal theory.
The proof of the upper bound (5.15) is also similar to Section 4.3.2 of [2]. We
should replace fD\I |g(t)|? dt/2 with fD\I A*(g(t)) dt in the statement of Lemma

4.7 in [2] and the estimate on I% (8) in its proof with

1,(5) < exp {N( - /0 A*(§(t))dt + sA* < - Z) + 9> }

Otherwise, all arguments are the same.
For the proof of Theorem 5.1 for ,ui,’s, we may modify some arguments in the

€

proof for u5'¢ as indicated in Section 4.4 of [2].

6. Critical exponents for the free energies.

This section studies the asymptotic behavior of the free energies ¢P¢ and
€% near the critical values €2 and £, respectively; recall (3.8), (3.9), (3.12) and
(3.13) for the definition of these quantities. The results are summarized in the
following proposition.

PROPOSITION 6.1.
(1) (Dirichlet case) As e | 2, we have that

c
Ca(e—P)’,
e—2mVATQ/e

o C4(67€CD)
log(e—e2)?

Ca(e —€P),

§D,€ ~

Q8 Q. a
V2R ||
ot =~ DO

where C1 =1/(2det Q), Cs = 21 det Q/(e2)*, Cs = 47> /det Q/(e2)? and Cy =
1/((eP)? 3202, nem 0 Z00) for d > 5.

(2) (Free case)

(i) If m =0, £¢ behaves ezactly in the same way as V5.
(i) If m #0, as € | €X', we have that

c
¢~ G (e — &),

for every d > 1, where CY =1/((eF)? Y07 | nz80).

For the proof of the proposition, we prepare a lemma which establishes the
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asymptotic behavior of the function:
qa(z) = (27r)d/2 deth(eA*(O)x), 0<z<1,
as x 1 1, where g(z) = gq(x) is the function defined by (3.7). We only consider
the case 1 < d < 4, since the case d > 5 is easy.
LEMMA 6.2. Asx T 1, we have that

ﬁ(l - x)—l/Q, d=1,
(@) ~ —log(1 — x), d=2,

and

2\/77.(1_1,)1/2’ d=3,

qd(].) - qd(x) ~ {(1 _ x) log(l - x), d=4.

PrOOF. Let fy(x) =307 2"/n%2, 0 < x <1, be the function defined by
(A.1) of [2], whose asymptotics as « T 1 can be found in Lemma A.3 there. Then,
we have that

o0

Z d/2{ (2mn ‘1/2\/deth"A 0)ZOO }
n

However, since (3.4) in Lemma 3.1 shows that the difference in the braces in the
right hand side tends to 0 as n — oo, one can show that, for every § > 0, there
exists Cs > 0 such that

|ga(z) — fa(z)| < 0 fa(x) + Cs.
If d = 1,2, since fq(x) — oo as T 1, this implies that the asymptotics of g4 are

the same as fy. To show the asymptotics of g4(1) — g4(x) for d = 3,4, we see that,
for every § > 0, there exists Cs > 0 such that

|2qa(x) — fa—2(2)| < 6f4-2(x) + Cs.

This can be proved similarly as above. Since fy_s(x) — 0o as z T 1, this shows
the asymptotics for d = 3,4, cf. the proof of Lemma A.3. O
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PROOF OF PROPOSITION 6.1. The assertion (1) for 1 < d < 4 follows from
Lemma 6.2 in a similar manner to the proof of Proposition A.1 of [2] recalling that
qd(e’ED’E) = (2m)%2\/det Q/e. The proof of the assertion (1) for d > 5 is easy

from

g N O) g oy = L1

eb ¢

Indeed, the left hand side is asymptotically equivalent to fD’EeA*(O)g'(eA*(O)—) =
gDy ne™ (07200 while the right hand side behaves as (e —e2)/(eP)?; note

c C

that the series appeared above converges. The proof of the assertion (2) is imme-
diate, since we have ££°¢ = ¢P+¢ and e’ = ¢D if m = 0. The proof of the assertion
(3) is similar as above by noting that

g(1) —g(e¢™) = 5 — - O

€
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