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Abstract. In this paper we study eigenvalues of a clamped plate prob-
lem on a bounded domain in an n-dimensional complete Riemannian manifold.
By making use of Nash’s theorem and introducing k free constants, we derive
a universal bound for eigenvalues, which solves a problem proposed by Wang
and Xia [16].

1. Introduction.

Let Q be a bounded domain in an n-dimensional complete Riemannian man-
ifold M. The following is called a Dirichlet eigenvalue problem of Laplacian:

Au=—Xu in Q,

1.1
u=0 on 012, (L)

where A is the Laplacian on M. This eigenvalue problem has a real and discrete
spectrum:

0< A <A< <A< ooo — 00,

where each eigenvalue is repeated according to its multiplicity.
When M is a Euclidean space R™, namely, when 2 is a bounded domain in
R", Payne, Pélya and Weinberger [15] proved

.
Akl — A < — Ai- 1.2
k+1 RS 1 (1.2)
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Hile and Protter [11] generalized the above result to

k
A k
_ > 1.3
;Ak+1*)\i_ 4 (1.3)

In 1991, a much sharper inequality was obtained by Yang [17] (cf. [7]):

k 4 k

D ki1 = A)? < =) er — A, (1.4)

i=1 i=1

3

which is called Yang’s first inequality (see [1] and [2]). According to the inequality,
one can infer

1 4\ &
A1 < T <1 + n) Z:)\u (1.5)

which is called Yang’s second inequality.
For the Dirichlet eigenvalue problem on a complete Riemannian manifold M,
Chen and Cheng [3] and El Soufi, Harrell and Tlias [9] have proved, independently,

k k
4 2
D> (k1 = X)? < - > (kg1 = Ai) (Ai + ZHOQ)v (1.6)

i=1 i=1

where H? is an nonnegative constant which only depends on M and Q. When M
is the unit sphere, the above inequality is best possible, which has been obtained
in [5]. In particular, when M is an n-dimensional hypersurface in R"*!, Harrell
[10] has also proved the above inequality.

On the other hand, we consider an eigenvalue problem of the biharmonic
operator A? on a bounded domain in an n-dimensional complete Riemannian
manifold M, which is also called a clamped plate problem:

A2y=Tu inQ
(1.7)

u:g—gzo on 0,

where A2 denotes the biharmonic operator on M, and v is the outward unit normal
of 9N.

When © is a bounded domain in R", Payne, Pélya and Weinberger [15]
proved
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8(n+2) b
D1 — I < TZF (1.8)

Chen and Qian [4] and Hook [12], independently, extended the above inequality
to

k 1 k

n?k? :
8(n+2) = ZZ: T; ZFZ £. [13]). (1.9)

I
1kt T RS

Recently, answering a question of Ashbaugh [1], Cheng and Yang [6] have proved
the following remarkable estimate:

k Lok
S -1 < () S -k 0o

: n :
=1 =1

which is analogous to Yang’s first inequality.

In 2007, Wang and Xia ([16, p.336]) have proposed that for what kind of
M, there exists a universal bound on the (k + 1)'" eigenvalue in terms of the first
k eigenvalues of (1.7). When M is either a complete minimal submanifold in a
Euclidean space or the unit sphere, Wang and Xia [16] have solved this problem.
Namely, they have proved the following: when M is an n-dimensional minimal
submanifold in a Euclidean space,

r 8(n + 2) u
> (e —T9) Z Chgr — (1.11)
i=1 i=1
and when M is an n-dimensional unit sphere,
k 1k )
> (Thgr —T9)* < — Z Tipr — i) (n* + (2n + 4)F2)(n2 +4r7).  (112)

i=1

have been proved.
When M is a hyperbolic space H™(—1), Cheng and Yang [8] have also solved
this problem, that is, they have proved

k k 2 _1)2
> (Mrpr—Ti)? <24 ) (Tep —Pz‘){Ff - (n;D}{FJQ - (7161)} (1.13)

i,7=1 i,7=1
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In this paper, our purpose is to solve the problem proposed by Wang and Xia,
completely. We derive that, for any complete Riemannian manifold M, there exists
a universal bound on the (k + 1)* eigenvalue in terms of the first k eigenvalues
of (1.7). In order to prove our result, we make use of Nash’s theorem [14] to
construct trial functions and introduce k free constants to deal with the undesired
terms.

THEOREM. Let Q2 be a bounded domain in an n-dimensional complete Rie-
mannian manifold M. Assume that T'; is the i eigenvalue of the clamped plate
problem (1.7). Then, there exists a constant Hy, which only depends on M and 2
such that

k
S (s =T ni Z (Dasr — D) (n2H2 + (2n+ 977 ) (n2HE + 4T7). (1.14)

holds.

REMARK 1. For a complete minimal submanifold M in a Euclidean space,
we can infer Hy = 0. For an n-dimensional unit sphere M = S™(1), which can be
considered as a hypersurface in R*t! with the mean curvature H = 1, we have
H,y = 1. Hence, the results of Wang and Xia [16] are simple consequences of our

result.
When M is the unit sphere S™(1) and Q tends to S™(1), we know that I'y
tends to zero and I';, for i = 2,...,n+1, tends to n?. Therefore, fork =1,2,...,n

our inequality (1.13) becomes equality.

Since our inequality (1.13) is a quadratic inequality of I'yy1, it is not difficult
to derive an upper bound on 'y according to the first k eigenvalues and H3.

COROLLARY 1.  Under the assumptions of the theorem, we have

Tipy1 < Ay + 1/ A} — By, (1.15)

where

k k
1 1 1
= k{ 21: Lit 53 2 (n2H2 + (2n + 4)T?) (n2H2 + 4T? )}

and
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k k
B, = IIC{ oIy %ZFi(nQHg +(2n + 407 (n2H3 +4F})}.
i=1

=1

Since k is an any integer, we know that (1.13) also holds if we replace k + 1
with k, that is, we have

k—1 k—1
1 1 1
> (Me—T)?< = (D% —Ty)(n*Hg + (2n + Ar? )(n*H§ + 4r§).
n
i=1 i=1
Therefore, we infer
k 1k . L
» (T —Ti)? < — > T L) (n?Hg + (2n + 4)T7?) (n®Hg +417).
i=1 i=1

Namely, I'y, also satisfies the same quadratic inequality. We derive

I'x ZAk_\/Ai_Bk-

Thus, we can obtain an estimate on I'y ;1 — 'y, as following:

COROLLARY 2.  Under the assumptions of the theorem, we have

T1 — T < 21/A2 — By, (1.16)

where Ay, and By are given in the Corollary 1.

2. Proof of Theorem.

In order to prove our theorem, the following Nash’s theorem plays an impor-
tant role.

NASH’S THEOREM ([14]).  Each complete Riemannian manifold M can be
isometrically immersed into a Euclidean space RN .

Let M be an n-dimensional isometrically immersed submanifold in RY. For
an arbitrary point p € M, let (z!,...,2™) be an arbitrary coordinate system in a
neighborhood U of p € M. Let y be the position vector of p € M which is defined
by
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Since M is isometrically immersed in RY,

o 0 ol oy Y. oy oy~
gij_g(aaci’(ﬁh:j>_< axzay Bzaxjayﬂ> 2oian Y

where g denotes the induced metric of M from R and {, ) is the standard inner
product in RY. The following lemma of [3] is necessary for proving our theorem.
For reader’s convenience, we will give its proof.

LEMMA (Chen and Cheng [3]). For any function u € C*°(M),

N
Z (Vy®,Vu))” = |Vul?, (2.2)
a=1
N N
D a(Vyr,Vyt) = > VY (2.3)
a=1 a=1
N
D (Ay)? =n*HP, (2.4)
a=1
N
Z Ay*Vy* =0, (2.5)
a=1

where V denotes the gradient operator on M, and |H| is the mean curvature of
M.

ProoOF. For any point p, we define 5 = (7',...,7") by y — y(p) = 7A such
that (a%l)p’ ce (%)p span T, M and g(a%, 8?]) 5,], where A = (a3) € O(N)

is an orthogonal matrix. For any function u € C*°(M), at p,
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> (L yuimoe)

n

_Z ay dy® du Ou
N < oy' oy’ oy’ oy’

=1 a=

= |Vul?. (2.6)

This completes the proof of (2.2).

By definition,

N n
> 9(Vy, Vy) Z Z (a;;z gzj V=3 "gijg7 =n. (2.7)
a=1 9,7

a=1 i,j

Since y is the position vector of M, we have
Ay =nH. (2.8)

Thus we can derive

N
S (Ay*)? = n?|HP. (2.9)

Since Vy is tangent to M, we have

N
> Ay =0. (2.10)
a=1
Therefore,
N
> Ay*Vy* =0. (2.11)
= O

PROOF OF THEOREM. Since M is a complete Riemannian manifold, Nash’s
theorem implies that there exists an isometric immersion from M into a Euclidean
space RY. Thus, M can be considered as an n-dimensional complete isometrically
immersed submanifold in RY. We denote, by y = (y®), the position vector of M
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in RY. Let u; be an eigenfunction corresponding to the eigenvalue I'; such that

A?y; =Ty, in Q
up =54 =0 on 99 (2.12)
Jouiu; = 0i5 (1,5 =1,2,...).

Fori=1,...,k,and a=1,..., N, we define
k

& =y — Y iy, (2.13)
j=1

where 1 = fQ y“u;u;. By a simple calculation, we obtain

/ujgb?:()a Za]:Lak (214)
Q
From the Rayleigh-Ritz inequality, we have

a A2 ho

Iy <
Since
k
/qﬁ?Azqﬁf‘:/(b?AQ(yaui—Zr%uj)
Q Q j=1

= [ A% 2V (A Vs 2807 A
Q
+ 2A(Vy* - Vug) + 2Vy® - V(Au,) + Tiy®u; b, (2.16)

we infer from (2.14), (2.15) and (2.16)

k
(Cher — T 621 < /Q o =i — S rese, (2.17)
j=1

where
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P = A%y - u; + 2V(Ay®) - Vu,; + 28y~ Au,; + 2A(Vy® - V) + 2Vy® - V(Au,),

a a a a,
sij_/piuj’ w; —/pz-y Uj.
Q Q

From Stokes’ theorem, we infer
2/ y*u; V(Ay®) - Vu; = / {ZUiAyo‘Vui SVy® 4 ui(Ay*)? — yo‘quQy“},
Q Q
2/ Yy u; A(Vy® - Vuy)
Q
/ {2u; Ay*Vy* - Vu; + 4(Vy “ L Vuy)? 4 2y Au Vy© - Vu;},
2/ Yy u; Vy* - V(Au,)
Q
= —2/ (IVy* Pus Au; + y* Au; Vy® - Vu; + y* Ay®u; Au;).
Q
Thus, we obtain
/ {(Ay*)*uf +4(Vy* - Vu;)® = 2| Vy*[Pu; Au; + 4u; Ay Vy® - Vu, }. (2.18)
Since
2/ Au;Vy* - Vu; — Au; Vy© - Vu;
Q
=y =Ty)rd — / u; Au; Ay® +/ uj Au; Ay,
Q Q
we can infer

s = (F] — Fi)'f'q-. (219)

) )

Then (2.17) can be written as

(Chrr — Ta)ll6¢)1> < wit +Z ) (r)’. (2.20)
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On the other hand, defining

Ay
v?=—2/yaui<vw-w+“l z )
Q 2

and

then it follows that

a (e uiAy®
/9—2@. (vy Vi + = ) = —1—227"” o (2.21)
Multiplying (2.21) by (Tx+1 — I';)?, we obtain, from (2.20),
(Try1 — (v +2 er ”>
u; Ay® k
= (Fk+1 — Fz)z /Q 2¢;x{ (Vyo‘ . Vui + ki 9 > — Zt%u]}
j=1
3 « 2 Fk+1 « - & ’
< 0i(Prvr — o) llof 17 + 57 Ty - Vg + & =Dty
i j=1
30 a2 Fk:-‘rl -T; o usza 2 : a2
= 8,0~ TP+ P oy g+ ->)
7 j=1
k 2
< 8T~ T fup + 20 -1)05)° )
j=1
r u; Ay® .
+’““{HVy -V + ——2— y Z } (2.22)

where ¢; is a positive constant. By the Stokes’ theorem and the Schwarz’s inequal-

ity, we have
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1
/ |V’U4l|2 < Ff.
Q

From (2.18) and the lemma, we have

N
Soup =t [ HP+nr ) [ [Fuip
a=1 Q Q
1
<n?sup |H|* + (2n + 4)T7 (2.23)
Q
and

u; Ay® 2

Vy® - Vu,; + H <

1 1
—n?sup |H|*> +T7. (2.24)
4 9

N
a=1

By a simple calculation, we derive

N N
va‘ = Z/ |Vy*|2u? = n. (2.25)
a=1 a=179

Summing on ¢ from 1 to k for (2.22), we have

k
Z(Fk+1 ;= 22 Py — = Lj)ri;ts;
i=1
K u; Ay®
Z i(Trgr — D) 2w + Z (Crtr = T9)||Vy* - Vu; + — 5
k . F
2 « a2
+ ;(Si(rlﬁl =TT = Ty)(rf)” — ; E(PkJrl -T)(5)° (2.26)
Putting
0 . o
6; = -, 0 is a positive constant,

n?supq |H|?> + (2n + 4)T'?

then, we have
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k ) k
— Z 61-(Fk+1 - FZ)Q(FZ - F])<TZ) - Z 6i(Fk+1 - Fz)(Fl - Fj)2 (’I“iaj)
i, ,J
a2
=— 25 Tpp1 =) (Trpr = T)(0s = T5) (r5y)

:_72 (Ch1 = T) (D1 — 1y )(Fi_rj)((si_&j)(rgjy
o (2.27)

It is clear that

k k
=Y 6T =TT = T5)%(r)* =) 5 (Fre1 = L) ()
. . 7
[ 2,7
k
< =2 (Cpyr — Do) (T = Tj)ristss. (2.28)
Therefore, it follows that
k
Z(Fk-i-l L) v
=1
b u; Ay®
Z (Tpp1 — i) + Z (Tpsr — T)||Vy® - Yy + L2Y (2.29)

Summing on « from 1 to N for (2.29), we infer, from (2.23), (2.24) and (2.25),

k
Z (Trt1 — 2(71 sup|H|2 (2n+4)1“f)

1 1
+Z§ (Tgg1 — Ty )(4n sup|H|2+F2>
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k

=0 (Tpyr —Ty)°

i=1

O«z\H

k
Z (Try1 — ( n sup|H|2-|—F )(n2supH|2 (2n+4)I‘?>.
= Q

(2.30)

Putting

1
2

Zf_l(FkH —T;)(3n?supg |H|> +T2) (n®supq |H|? + (2n + 4)T'7)

0= = - ,
D ic1 (Tepr —T4)2
we obtain

k
> (Tps1 —T)

=1

1 ¢ 2 3N\ 2 2 3
< EZ Ty — T (n bup|H| +(2n+4)T?)(n sup |H> +4T7). (2.31)

Since the spectrum of the clamped plate problem is an invariant of isometries, we
know that the above inequality holds for any isometric immersion from M into a
Euclidean space.

Now we define ) as

¥ := {¢p; ¢ is an isometric immersion from M into a Euclidean space}.

Putting
HZ := inf sup |H|?
0 [ZSIEN ) ’
We infer (1.13). This completes the proof of the theorem. O
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