Nontrivial $\mathscr{P}(G)$-matched \mathfrak{S}-related pairs for finite gap Oliver groups

By Masaharu Morimoto

(Received Sep. 11, 2008)
(Revised Mar. 2, 2009)

Abstract

In this paper we construct nontrivial pairs of \mathfrak{S}-related (i.e. Smith equivalent) real G-modules for the group $G=P \Sigma L(2,27)$ and the small groups of order 864 and types 2666, 4666. This and a theorem of K. Pawałowski-R. Solomon together show that Laitinen's conjecture is affirmative for any finite nonsolvable gap group. That is, for a finite nonsolvable gap group G, there exists a nontrivial $\mathscr{P}(G)$-matched pair consisting of \mathfrak{S} related real G-modules if and only if the number of all real conjugacy classes of elements in G not of prime power order is greater than or equal to 2 .

1. Introduction.

Let G be a finite group. We denote by $\mathscr{S}(G)$ the set of all subgroups of G and by $\mathscr{P}(G)$ the set of all subgroups of G of prime power order. In this paper, a real G-representation space of finite dimension is referred to, briefly, as a real G-module, a smooth manifold as a manifold, and a smooth G-action on a manifold as a G-action on a manifold, unless otherwise stated. Real G-modules V and W are called \mathfrak{D}-related (resp. \mathfrak{S}-related) and written as $V \sim_{\mathfrak{D}} W$ (resp. $V \sim_{\mathfrak{S}} W$) if there exists a G-action on a manifold X diffeomorphic to a disk (resp. homotopy sphere) such that $X^{G}=\{a, b\}$ and the tangential G-representations $T_{a}(X)$ and $T_{b}(X)$ are isomorphic to V and W, respectively. If V and W are both \mathfrak{D}-related and \mathfrak{S}-related then they are called $\mathfrak{D S}$-related and written as $V \sim_{\mathfrak{D} \mathfrak{S}} W$. A homotopy sphere Σ with (smooth) G-action is called a 2 -fixed-point sphere, or $2 f p$ sphere, if $\left|\Sigma^{G}\right|=2$. If V and W are real G-modules and Σ is a 2 fp sphere such that $\Sigma^{G}=\{a, b\}, T_{a}(\Sigma) \cong V$ and $T_{b}(\Sigma) \cong W$ then we call Σ an \mathfrak{S}-realization of V and W.
M. Atiyah-R. Bott [1] and J. Milnor [19] showed that \mathfrak{S}-related real G modules V and W are isomorphic if the G-action of an \mathfrak{S}-realization of V and

[^0]W is semifree. In addition, C. Sanchez [44] showed that \mathfrak{S}-related real G-modules V and W are isomorphic if the order $|G|$ of G is an odd prime power. On the other hand, many researchers, e.g. T. Petrie, S. Cappell-J. Shaneson, K. H. Dovermann, D.Y. Suh, E. Laitinen-K. Pawałowski, K. Pawałowski-R. Solomon and etc. have found nontrivial pairs (V, W), i.e. $\quad V \neq W$, consisting of \mathfrak{S}-related G representations for various groups G. We note that their nontrivial pairs (V, W) satisfy $\operatorname{dim} V^{N}=\operatorname{dim} W^{N}$ whenever N is a normal subgroup of G with prime power index. In the present paper, we show the next theorem.

Theorem 1.1. If $G=P \Sigma L(2,27), S G(864,2666)$, or $S G(864,4666)$, then there exist $\mathfrak{D S}$-related pairs (V, W) satisfying the following conditions:
(1) $\operatorname{dim} V^{N}>0, \operatorname{dim} W^{N}=0$ for a normal subgroup N of G with index 3 , and
(2) $\operatorname{dim} V^{P}=\operatorname{dim} W^{P} \geq 6$ for every Sylow subgroup P of G.

In the above, $S G(m, n)$ denote the small group of order m and type n which is obtained as SmallGroup (m, n) in GAP [13]. We showed in $[\mathbf{2 2}]$ that if V and W are \mathfrak{S}-related and N is a normal subgroup of G with index 2 then $V^{N} \cong W^{N}$ as real G / N-modules. The theorem above shows that $V^{N} \cong W^{N}$ does not always hold if $|G / N|=2$ is replaced by $|G / N|=p$ with an odd prime p.

We recall (see [28]) that if there exists a G-action on a disk with exactly two G-fixed points then G is an Oliver group, that is G can acts on a disk without G-fixed points, which is also equivalent to that G is not a mod- \mathscr{P} hyperelementary group, namely G never admits a normal series $P \unlhd H \unlhd G$ such that P and G / H have both prime power order and H / P is cyclic. Let a_{G} denote the number of real conjugacy classes $(g)^{ \pm}=(g) \cup\left(g^{-1}\right)$ of G such that the order of g is not a prime power. In the paper [17], we read the following conjecture.

Conjecture (Laitinen's Conjecture). Let G be an Oliver group. Then there exists an \mathfrak{S}-realization Σ of G-modules V and W such that Σ^{g} is connected for every element $g \in G$ having order 2^{m} with $m \geq 3$, if and only if $a_{G} \geq 2$.

We have, however, seen in $[\mathbf{2 2}]$ and $[\mathbf{1 4}]$ that this conjecture fails for the groups $G=\operatorname{Aut}\left(A_{6}\right), S G(1176,220)$, and $S G(1176,221)$. In addition, K. PawałowskiT. Sumi [36] showed that the conjecture also fails for the groups $G=S G(72,44)$, $S G(288,1025), S G(432,734)$, and $S G(567,8654)$.

Let \mathscr{F} be a set of subgroups of G. A real G-module V is called \mathscr{F}-free if $V^{H}=0$ for all $H \in \mathscr{F}$. Real G-modules V and W are called \mathscr{F}-matched if $\operatorname{res}_{H}^{G} V \cong \operatorname{res}_{H}^{G} W$ for all $H \in \mathscr{F}$. An \mathscr{F}-matched pair (V, W) is said to be of type 1 if $\operatorname{dim} V^{G}=1$ and $\operatorname{dim} W^{G}=0$. Let $\mathscr{L}(G)$ be the smallest upper closed subset of $\mathscr{S}(G)$ containing all normal subgroups $N \unlhd G$ such that G / N is of prime power order. We say that V satisfies the gap condition if $\operatorname{dim} V^{P}>2 \operatorname{dim} V^{H}$ for all
subgroups $P \lesseqgtr H$ of G such that P is of prime power order. A real G-module V is called a gap module if V is $\mathscr{L}(G)$-free and satisfies the gap condition. A finite group G is called a gap group if there exists a gap real G-module. K. PawałowskiR. Solomon showed [$\mathbf{3 5}$, Theorem B3] that if G is a nonsolvable gap group and G is not isomorphic to $P \Sigma L(2,27)$ then Laitinen's conjecture is affirmative. Thus, our result for the group $G=P \Sigma L(2,27)$ stated above implies the next theorem.

Theorem 1.2. If G is a nonsolvable gap group then Laitinen's conjecture is affirmative for G.

Let $\operatorname{RO}(G)$ denote the real representation ring of G. Define

$$
\begin{aligned}
\operatorname{RO}(G, \mathfrak{D}) & =\left\{[V]-[W] \in \operatorname{RO}(G) \mid V \sim_{\mathfrak{D}} W\right\}, \\
\operatorname{RO}(G, \mathfrak{S}) & =\left\{[V]-[W] \in \operatorname{RO}(G) \mid V \sim_{\mathfrak{S}} W\right\}, \\
\operatorname{RO}(G, \mathfrak{D S}) & =\left\{[V]-[W] \in \operatorname{RO}(G) \mid V \sim_{\mathfrak{D S}} W\right\} .
\end{aligned}
$$

In this paper we will study $\operatorname{RO}(G, \mathfrak{D S})$.
For sets \mathscr{F} and \mathscr{G} of subgroups of G and $M \subseteq \mathrm{RO}(G)$, we define

$$
\begin{aligned}
& M_{\mathscr{F}}=\{[V]-[W] \in M \mid V \text { and } W \text { are } \mathscr{F} \text {-matched }\}, \\
& M^{\mathscr{G}}=\{[V]-[W] \in M \mid V \text { and } W \text { are } \mathscr{G} \text {-free }\}, \\
& M_{\mathscr{F}}^{\mathscr{F}}=M_{\mathscr{F}} \cap M^{\mathscr{G}} .
\end{aligned}
$$

B. Oliver [27] showed $\operatorname{RO}(G, \mathfrak{D})=\operatorname{RO}(G)_{\mathscr{P}(G)}^{\{G\}}$ for an arbitrary Oliver group G. In addition, E. Laitinen-K. Pawałowski [17] showed that $\operatorname{rank}_{\boldsymbol{Z}} \operatorname{RO}(G)_{\mathscr{P}(G)}^{\{G\}}=$ $\max \left(a_{G}-1,0\right)$, which also follows from B. Oliver [27]. We will show the equality $\operatorname{RO}(G, \mathfrak{D S})=\operatorname{RO}(G)_{\mathscr{P}(G)}^{\{G\}}$ in the cases $G=P \Sigma L(2,27), S G(864,2666)$, $S G(864,4666)$. This is stated in a slightly general form as the next theorem. In order to state it, we define, for a prime p, the Dress subgroup $G^{\{p\}} \leq G$ of type p, to be the smallest normal subgroup $N \unlhd G$ such that $|G / N|$ is a power of p (possibly $G=G^{\{p\}}$). Let $G^{\text {nil }}$ denote the smallest normal subgroup N of G such that G / N is nilpotent. Then the equality

$$
G^{\text {nil }}=\bigcap_{p: \text { prime }} G^{\{p\}}
$$

holds, cf. [15]. Let $D_{2 n}$ denote the dihedral group of order $2 n$:

$$
\left\langle a, b \mid a^{n}=e, b^{2}=e, b a b=a^{-1}\right\rangle .
$$

For a subset S of G, let $\overline{\mathscr{P}}(S)$ denote the set of all elements g of S such that the order of g is not a power of a prime. Here we regard $e \notin \overline{\mathscr{P}}(S)$ for the sake of convenience.

Theorem 1.3. Let G be an Oliver group satisfying Conditions (1)-(4) below. Here N stands for $G^{\text {nil }}$.
(1) N has a subquotient group isomorphic to $D_{2 q r}$ for distinct primes q and r.
(2) G / N is a nontrivial group of odd order.
(3) The set $G \backslash N$ contains an element not of prime power order.
(4) $|\overline{\mathscr{P}}(g N)|=\left|\overline{\mathscr{P}}\left(g^{\prime} N\right)\right|$ for all $g, g^{\prime} \in G \backslash N$.

Then there exists a $\mathscr{P}(G)$-matched pair $\left(U_{1}, U_{2}\right)$ of type 1 consisting of real G modules such that $U_{1}^{N}=\boldsymbol{R}[G / N]$ and $U_{2}^{N}=0$, and $\operatorname{RO}(G)_{\mathscr{P}(G)}^{\{G\}}$ contains a direct summand $\langle x\rangle_{\boldsymbol{Z}}$ generated by an element $x=\left[V_{1}\right]-\left[V_{2}\right]$ such that $V_{1}^{N}=(\boldsymbol{R}[G / N]-$ $\left.\boldsymbol{R}[G / N]^{G}\right)^{\oplus m}$ for some $m \geq 1$ and $V_{2}^{N}=0$. For the element x, the implication $\langle x\rangle_{\boldsymbol{Z}} \subseteq \operatorname{RO}(G, \mathfrak{D S})(\neq 0)$ holds and hence $\operatorname{RO}(G)_{\mathscr{P}(G)}^{\mathscr{L}(G)} \neq \operatorname{RO}(G, \mathfrak{D S})$. Moreover in the case $a_{G}=2$, the equality $\mathrm{RO}(G, \mathfrak{D S})=\operatorname{RO}(G)_{\mathscr{P}(G)}^{\{G\}}$ holds.

Remark 1.4. In the theorem above, if $|G / N|=3$ then Condition (4) is automatically satisfied.

In each case $G=P \Sigma L(2,27), S G(864,2666), S G(864,4666)$, it is easy to see that $a_{G}=2,\left|G / G^{\{3\}}\right|=3, G^{\text {nil }}=G^{\{3\}}, G^{\{3\}} \supset D_{2 q r}(q$ and r are distinct primes), $\operatorname{RO}(G)_{\mathscr{P}(G)}^{\{G\}} \cong \boldsymbol{Z}, \operatorname{RO}(G)_{\mathscr{P}(G)}^{\mathscr{L}(G)}=0$, and $G \backslash G^{\text {nil }}$ contains an element not of prime power order. Thus Theorem 1.1 follows from Theorem 1.3.

The readers familiar with [35] would see the next.
Theorem 1.5. Let G be a gap Oliver group. Then the implication $\operatorname{RO}(G)_{\mathscr{P}(G)}^{\mathscr{L}(G)} \subseteq \operatorname{RO}(G, \mathfrak{D S})$ holds. If $G^{\text {nil }}$ contains distinct two real conjugacy classes of elements not of prime power order, then $\operatorname{RO}(G)_{\mathscr{P}(G)}^{\mathscr{L}(G)} \neq 0$ and hence $\mathrm{RO}(G, \mathfrak{D S}) \neq 0$.

The rest of this paper is organized as follows. We prepare basic facts concerned with $\mathscr{P}(G)$-matched real G-modules in Section 2. A key to proving Theorem 1.3 is observation of the tangent bundle of the real projective space $P(V)$ associated with a real G-module V. In Section 3, we exhibit basic results related to the tangent space. In Section 4 we claim several lemmas showing an outline of the proof of Theorem 1.3, and in Section 5 we explain known facts which are used to prove the lemmas. These lemmas are proved in Sections 6-9. Finally, Theorems 1.3 and 1.5 are proved in Section 10.

The author wishes to express his gratitude to the referee for his carefully
reading the manuscript, pointing out errors in it, and giving invaluable comments.

Notation.

$$
\begin{aligned}
\mathscr{S}(G) & =\text { the set of all subgroups of } G \\
\mathscr{P}(G) & =\{P \in \mathscr{S}(G) \mid P \text { is of prime power order }\} \\
\mathscr{L}(G) & =\left\{H \in \mathscr{S}(G) \mid H \supseteq G^{\{p\}} \text { for some prime } p\right\} \\
\mathscr{M}(G) & =\mathscr{S}(G) \backslash \mathscr{L}(G) \\
\mathscr{N}_{2}(G) & =\{N \in \mathscr{S}(G)|N \unlhd G,|G: N| \leq 2\} \\
\mathscr{P} \mathscr{C}(G) & =\{H \in \mathscr{S}(G) \mid \exists P \in \mathscr{P}(G) \text { such that } P \unlhd H \text { and } H / P \text { is cyclic }\} \\
X^{\times m} & =X \times \cdots \times X \quad \text { (the } m \text {-fold cartesian product of } X \text {) } \\
V^{\oplus m} & =V \oplus \cdots \oplus V \quad \text { (the } m \text {-fold direct (Whitney) sum of } V \text {) }
\end{aligned}
$$

2. Preliminary on real G-modules.

Let G be a finite group and V a real G-module. If H is a subgroup of G then the H-fixed point set V^{H} is a real $N_{G}(H)$-module. Let V_{H} denote the orthogonal complement of V^{H} in V with respect to a G-invariant inner product. V_{H} is uniquely determined up to $N_{G}(H)$-isomorphisms independently of the choice of a G-invariant inner product on V. Thus we have the direct sum decomposition

$$
V=V^{H} \oplus V_{H} \quad \text { as real } N_{G}(H) \text {-modules. }
$$

If $x \in \mathrm{RO}(G)$ has the form $x=[V]-[W]$ with real G-modules V and W, then x^{H} stands for the element $\left[V^{H}\right]-\left[W^{H}\right]$ in $\operatorname{RO}\left(N_{G}(H) / H\right)$ as well as $\operatorname{RO}\left(N_{G}(H)\right)$. In the same situation, $\operatorname{dim} x^{H}$ stands for the integer $\operatorname{dim} V^{H}-\operatorname{dim} W^{H}$. Let $V^{\mathscr{L}}$ denote the G-subspace of V spanned by all elements in V^{L}, where L ranges over $\mathscr{L}(G)$. Namely

$$
V^{\mathscr{L}}=\sum_{q: \text { prime }} V^{G^{\{q\}}}=V^{G} \oplus \bigoplus_{q: \text { prime }}\left(V^{G^{\{q\}}}-V^{G}\right)
$$

It induces a direct sum decomposition

$$
V=V^{\mathscr{L}} \oplus V_{\mathscr{L}} \text { as real } G \text {-modules. }
$$

If $G=G^{\{2\}}$ then $V(G)=\boldsymbol{R}[G]_{\mathscr{L}}$ is a gap G-module, cf. Lemma 5.2, and hence G is a gap group.

Each element $x=[V]-[W] \in \operatorname{RO}(G)$ determines the character (function) $\chi_{x}=\chi_{V}-\chi_{W}$. We can regard $\mathrm{RO}(G)$ as a set of functions $G \rightarrow \boldsymbol{R}$ taking a same value on a real conjugacy class. Note that for $g \in N_{G}(H)$,

$$
\chi_{x^{H}}(g)=\frac{1}{|H|} \sum_{h \in H} \chi_{x}(g h) .
$$

Thus, for a real conjugacy class function $f: G \rightarrow \boldsymbol{R}$, we define $f^{H}: N_{G}(H) \rightarrow \boldsymbol{R}$ by

$$
f^{H}(g)=\frac{1}{|H|} \sum_{h \in H} f(g h) .
$$

If $g \in G$ then let $f_{(g)^{ \pm}}: G \rightarrow \boldsymbol{Z}$ denote the class function defined by

$$
f_{(g)^{ \pm}}(h)= \begin{cases}\frac{|G|}{\left|(g)^{ \pm}\right|} & \text {if } h \in(g)^{ \pm} \\ 0 & \text { otherwise } .\end{cases}
$$

Lemma 2.1. Let g_{1}, g_{2} be elements not of prime power order of G. Then the class function φ defined by

$$
\varphi=f_{\left(g_{1}\right)^{ \pm}}-f_{\left(g_{2}\right)^{ \pm}}
$$

belongs to $\operatorname{RO}(G)_{\mathscr{P}(G)} \otimes_{\boldsymbol{Z}} \boldsymbol{R}$. Clearly, if $\left(g_{1}\right)^{ \pm} \neq\left(g_{2}\right)^{ \pm}$then $\varphi \neq 0$. If N is a normal subgroup of G and $g_{1}, g_{2} \in N$ then $\varphi^{N}=0$.

Proof. By the character theory, the class function φ above belongs to $\operatorname{RO}(G) \otimes_{\boldsymbol{Z}} \boldsymbol{R}$. Since $\varphi(a)=0$ holds for all $a \in G$ of prime power order, $\varphi \in$ $\operatorname{RO}(G)_{\mathscr{P}(G)} \otimes_{\boldsymbol{Z}} \boldsymbol{R}$. Suppose $N \unlhd G$ and $g_{1}, g_{2} \in N$. Then for $g \in G$,

$$
\begin{aligned}
\varphi^{N}(g) & =\frac{1}{|N|} \sum_{a \in N} \varphi(g a) \\
& = \begin{cases}\frac{1}{|N|} \sum_{h \in N} \varphi(h) & \text { if } g \in N \\
0 & \text { if } g \notin N\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& = \begin{cases}\frac{1}{|N|}\left(\left|\left(g_{1}\right)^{ \pm}\right| \frac{|G|}{\mid\left(g_{1}\right)^{ \pm \mid}}-\left|\left(g_{2}\right)^{ \pm}\right| \frac{|G|}{\mid\left(g_{2}\right)^{ \pm \mid}}\right) & \text {if } g \in N \\
0 & \text { if } g \notin N\end{cases} \\
& =0 .
\end{aligned}
$$

We have checked $\varphi^{N}=0$.
The lemma above immediately implies the next.
Corollary 2.2. Let g_{1} and g_{2} be elements not of prime power order in G. Suppose $\left(g_{1}\right)^{ \pm} \neq\left(g_{2}\right)^{ \pm}$and $g_{1}, g_{2} \in G^{\text {nil }}$. Then $\mathrm{RO}(G)_{\mathscr{P}(G)}^{\mathscr{L}(G)}$ is a nontrivial direct summand of $\mathrm{RO}(G)$. In particular, rank $\operatorname{RO}(G)_{\mathscr{P}(G)}^{\mathscr{L}(G)} \geq 1$.

On the other hand, we are also interested in the case where $\operatorname{RO}(G)_{\mathscr{P}(G)}^{\mathscr{L}(G)}=0$ and $\operatorname{RO}(G)_{\mathscr{P}(G)}^{\{G\}} \neq 0$, e.g. $G=P \Sigma L(2,27), S G(864,2666), S G(864,4666)$. The next follows from straightforward computation using the character table.

Proposition 2.3. Let G be one of $P \Sigma L(2,27), \quad S G(864,2666)$, or $S G(864,4666)$ and $N=G^{\{3\}}\left(=G^{\text {nil }}\right)$. Then there exist $\mathscr{P}(G)$-matched pairs $\left(U_{1}, U_{2}\right)$ and $\left(V_{1}, V_{2}\right)$ such that $U_{1}^{N}=\boldsymbol{R}[G / N], U_{2}^{N}=0, V_{1}=\left(U_{1}-U_{1}^{G}\right)^{\oplus 3} \oplus W$ for some real G-module W with $W^{N}=0$, and $V_{2}^{N}=0$, and moreover $\operatorname{RO}(G)_{\mathscr{P}(G)}^{\{G\}}$ coincides with $\left\langle\left[V_{1}\right]-\left[V_{2}\right]\right\rangle_{\boldsymbol{Z}}$, the submodule generated by the element $\left[V_{1}\right]-\left[V_{2}\right]$ in $\mathrm{RO}(G)$.

Let N be a normal subgroup of G. Suppose

$$
|\overline{\mathscr{P}}(g N)|=\left|\overline{\mathscr{P}}\left(g^{\prime} N\right)\right|>0 \text { for all } g, g^{\prime} \in G \backslash N .
$$

Set $C=\left|\overline{\mathscr{P}}\left(g_{0} N\right)\right|$ for an element $g_{0} \in G \backslash N$ and define a function $\phi: G \rightarrow \boldsymbol{Q}$ by

$$
\phi=\frac{|N|}{C} \sum_{(g)^{ \pm}: g \in \overline{\mathscr{P}}(G \backslash N)} \delta_{(g)^{ \pm}}
$$

where

$$
\delta_{(g)^{ \pm}}(a)= \begin{cases}1 & \left(a \in(g)^{ \pm}\right) \\ 0 & \left(a \notin(g)^{ \pm}\right)\end{cases}
$$

for $a \in G$. Then for $a \in G \backslash N$, we have

$$
\begin{aligned}
\phi^{N}(a) & =\frac{1}{|N|} \sum_{h \in N} \frac{|N|}{C} \sum_{(g)^{ \pm: g \in \overline{\mathscr{P}}(G \backslash N)}} \delta_{(g)^{ \pm}}(a h) \\
& =\frac{1}{|N|} \frac{|N|}{C} C \\
& =1 .
\end{aligned}
$$

If $a \in N$ then $\phi^{N}(a)=0$. Thus $|G / N| \phi^{N}=|G / N| \chi_{\boldsymbol{Q}[G / G]}-\chi_{\boldsymbol{Q}[G / N]}$ as \boldsymbol{Q} valued functions on G / N. The function $|G / N| \phi: G \rightarrow \boldsymbol{Q}$ takes a same value on each rationally conjugate class of G. The \boldsymbol{Q}-module consisting of all rationally conjugate class functions $G \rightarrow \boldsymbol{Q}$ is canonically isomorphic to $\mathrm{R}(G, \boldsymbol{Q}) \otimes_{\boldsymbol{Z}} \boldsymbol{Q}$, where $\mathrm{R}(G, \boldsymbol{Q})$ is the rational representation ring. Thus, for some positive integer $m, m|G / N| \phi$ lies in $\mathrm{RO}(G)$, namely $m|G / N| \phi=\chi_{V}-\chi_{W}$ for some real G-modules V and W, and $\left[V^{N}\right]-\left[W^{N}\right]=m|G / N|[\boldsymbol{R}]-m[\boldsymbol{R}[G / N]]$.

Immediately, we get the next lemma.
Lemma 2.4. Let G be a finite group with a normal subgroup N satisfying $|\overline{\mathscr{P}}(g N)|=\left|\overline{\mathscr{P}}\left(g^{\prime} N\right)\right|>0$ for all $g, g^{\prime} \in G \backslash N$. Then there exists $x \in \operatorname{RO}(G)_{\mathscr{P}(G)}$ such that $x^{N}=m|G / N|[\boldsymbol{R}]-m[\boldsymbol{R}[G / N]]$ for some positive integer m.

3. Real projective spaces and their tangent bundles.

Let V be a real G-module and let M denote the real projective space $P(V)$ and γ_{M} the canonical line bundle over M. In particular, the total space of γ_{M} is

$$
\left\{(\{ \pm x\}, v) \mid x \in S(V), v \in V \text { with } v \in L_{ \pm x}\right\}
$$

where $L_{ \pm x}$ is the straight line in V containing the points x and $-x$. We often abuse the notation γ_{M} to denote the total space. The total space has the induced G action and γ_{M} is a real G-vector bundle over M. Let γ_{M}^{\perp} denote the complementary G-vector bundle of γ_{M} in the product bundle $\varepsilon_{M}(V)$ with fiber V. Thus $\varepsilon_{M}(V)=$ $\gamma_{M} \oplus \gamma_{M}^{\perp}$. Let $T(X)$ denote the tangent bundle of X. Then we have the next basic lemma.

Lemma 3.1. The following equalities hold up to G-vector bundle isomorphisms.
(1) $\operatorname{Hom}\left(\gamma_{M}, \gamma_{M}\right)=\varepsilon_{M}(\boldsymbol{R})$.
(2) $\operatorname{Hom}\left(\gamma_{M}, \varepsilon_{M}(\boldsymbol{R})\right)=\gamma_{M}$.
(3) $T(M)=\operatorname{Hom}\left(\gamma_{M}, \gamma_{M}^{\perp}\right)$.
(4) $T(M) \oplus \varepsilon_{M}(\boldsymbol{R})=\operatorname{Hom}\left(\gamma_{M}, \varepsilon_{M}(V)\right)$.
(5) $\operatorname{Hom}\left(\gamma_{M}, \varepsilon_{M}(V)\right)=\gamma_{M} \otimes V$.

Proof. The equalities (1)-(4) above follow from the proof of $[\mathbf{2 0}$, Lemma 4.4]. The equality (5) follows from

$$
\operatorname{Hom}\left(\gamma_{M}, \varepsilon_{M}(V)\right)=\operatorname{Hom}\left(\gamma_{M}, \varepsilon_{M}(\boldsymbol{R})\right) \otimes V=\gamma_{M} \otimes V
$$

The lemma says that the tangent bundle $T(M)$ is stably isomorphic to $\gamma_{M} \otimes$ $V-\varepsilon_{M}(\boldsymbol{R})$. By this, we immediately get the next lemma which is a key to constructing an \mathfrak{S}-realization of nonisomorphic real G-modules.

Lemma 3.2. Let G be a finite group and set $K=G^{\text {nil }}$. Let $\left(U_{1}, U_{2}\right)$ be a $\mathscr{P}(G)$-matched pair of real G-modules such that $U_{1}^{N}=\boldsymbol{R}$ for all $N \in \mathscr{N}_{2}(G)$, and $U_{2}^{K}=0$. Then the real projective space $M=P\left(U_{1}^{K}\right)$ and the real G-vector bundle $\xi_{M}=\left(\gamma_{M} \otimes U_{1}\right) \oplus\left(\gamma_{M}^{\perp} \otimes U_{2}\right)$, where $\gamma_{M} \oplus \gamma_{M}^{\perp}=\varepsilon_{M}\left(U_{1}^{K}\right)$, have the following properties,
(1) $M^{G}=\left\{x_{0}\right\}$ and $M^{=N}=M^{N} \backslash\left\{x_{0}\right\}$ is a closed manifold (possibly the empty set) for any $N \in \mathscr{N}_{2}(G)$.
(2) $T(M) \oplus \varepsilon_{M}(\boldsymbol{R}) \cong \gamma_{M} \otimes U_{1}^{K}$.
(3) $T_{x_{0}}(M) \cong U_{1}^{K}{ }_{G}\left(=U_{1}^{K}-U_{1}^{G}\right)$.
(4) $\left.\xi_{M}\right|_{x_{0}} \cong T_{x_{0}}(M) \oplus \boldsymbol{R} \oplus U_{1 K} \oplus\left(U_{1}^{K}{ }_{G} \otimes U_{2}\right)$.
(5) $T(M)^{K} \oplus \varepsilon_{M}(\boldsymbol{R})^{K} \cong \xi_{M}{ }^{K}$ as real G-vector bundles.
(6) ξ_{M} is $\mathscr{P}(G)$-matched to $\varepsilon_{M}\left(U_{1}^{K} \otimes U_{2}\right)$, i.e. $\operatorname{res}_{P}^{G} \xi_{M} \cong \operatorname{res}_{P}^{G} \varepsilon_{M}\left(U_{1}^{K} \otimes U_{2}\right)$ for all $P \in \mathscr{P}(G)$.

4. Steps to construct \mathfrak{S}-realizations.

In this section, we give the outline of our construction of \mathfrak{S}-realizations of two real G-modules by describing lemmas in a step by step way.

Let $\mathscr{S}(G) /$ conj denote the set of all conjugacy classes of subgroups of G. Let $\mathscr{K}=\left\{K_{1}, \ldots, K_{c}\right\}$ be a complete set of representatives of the conjugacy classes of proper subgroups of G, i.e. $K_{i} \neq G$. Thus, $\mathscr{S}(G) /$ conj $=\left\{(G),\left(K_{1}\right), \ldots,\left(K_{c}\right)\right\}$ with $c+1=\mid \mathscr{S}(G) /$ conj \mid. As usual, we arrange \mathscr{K} so that if $\left(K_{i}\right) \geq\left(K_{j}\right)$, namely K_{j} is subconjugate to K_{i}, then $i \leq j$. By this convention, we have $K_{c}=\{e\}$. Define a finite G-CW complex R by

$$
R=\coprod_{i=1}^{c} G / K_{i}
$$

and refer to R as the set of reference points.
If $|G|=p_{1}^{a_{1}} \cdots p_{n}^{a_{n}}$, where p_{1}, \ldots, p_{n} are distinct primes and $a_{1}, \ldots, a_{n} \geq 1$,
then we denote by $\operatorname{pow}(G)$ the maximum in the set $\left\{a_{1}, \ldots, a_{n}\right\}$.
The first step is constructing a finite contractible G-CW complex Y including a given G-manifold M.

Lemma 4.1. Let G be an Oliver group and M a compact G-manifold with $x_{0} \in M^{G}$. Then there exist a finite contractible G - $C W$ complex Y and G subcomplexes N_{Y} and Q_{Y} having the following properties.
(1) $Y^{G}=M^{G}$.
(2) $\chi\left(Y^{H}\right)=1$ for all $H \in \mathscr{M}(G)$.
(3) $N_{Y} \cap Q_{Y}=\emptyset$ and $Q_{Y} \supset R$.
(4) $\chi\left(N_{Y}^{H} \amalg Q_{Y}^{H}\right)=1$ for all $H \in \mathscr{M}(G)$.
(5) Each G-connected component of $Q_{Y} \backslash R$ is G-diffeomorphic to $G / K \times T$ for some $K \in \mathscr{M}(G)$ and a connected closed orientable 2-dimensional manifold T with the trivial G-action, or to G / K_{j} for some $K_{j} \in \mathscr{K}$.
(6) $N_{Y}=M \amalg N_{1} \amalg \cdots \amalg N_{s}$ such that each N_{i} is G-diffeomorphic to $G / K_{j(i)} \times M$ for some $K_{j(i)} \in \mathscr{K}$.
(7) $\operatorname{Iso}\left(G, Y \backslash\left(N_{Y} \cup Q_{Y}\right)\right)=\mathscr{P}(G)$.
(8) For each $P \in \mathscr{P}(G), Y^{P}$ is simply connected.
(9) $\operatorname{dim} Y^{P}>\operatorname{dim} Y^{P^{\prime}}$ for all $P, P^{\prime} \in \mathscr{P}(G)$ with $P \subsetneq P^{\prime}$.
(10) $\operatorname{dim} Y=\max (\operatorname{dim} M, 2)+\operatorname{pow}(G)+1$.

The second step is constructing a finite contractible G-CW complex Z with prescribed G-fixed point set and a real G-vector bundle η_{Z} over Z which will play like a stable tangent bundle of Z.

Lemma 4.2. Let G be an Oliver group, M a compact G-manifold with $x_{0} \in$ $M^{G}, \xi_{M}=\tau_{M} \oplus \nu_{M}$ a real G-vector bundle over M, and U a real G-module satisfying the following conditions.
(i) $T(M) \oplus \varepsilon_{M}\left(\boldsymbol{R}^{k}\right) \cong \tau_{M}$.
(ii) $\nu_{M}^{L} \cong \varepsilon_{M^{L}}(0)$ for all Dress subgroups $L=G^{\{q\}}$.
(iii) ξ_{M} is $\mathscr{P}(G)$-matched to $\varepsilon_{M}\left(\left.\xi_{M}\right|_{x_{0}}\right)$.
(iv) U is $\mathscr{P}(G)$-matched to $T_{x_{0}}(M)$.

Then there exist a finite contractible G - $C W$ complex Z, G-subcomplexes N_{Z}, Q_{Z}, and a real G-vector bundle η_{Z} over Z having the following properties.
(1) $Z^{G}=M^{G}$.
(2) $\chi\left(Z^{K}\right)=1$ for all $K \in \mathscr{M}(G)$.
(3) $N_{Z} \cap Q_{Z}=\emptyset$ and $Q_{Z} \supset R$.
(4) $\chi\left(N_{Z}^{H} \amalg Q_{Z}^{H}\right)=1$ for all $H \in \mathscr{M}(G)$.
(5) Each G-connected component of $Q_{Z} \backslash R$ is G-diffeomorphic to $G / K \times T$ for
some $K \in \mathscr{M}(G)$ and a connected closed orientable 2-dimensional manifold T with the trivial G-action, or to G / K_{j} for some $K_{j} \in \mathscr{K}$.
(6) $N_{Z}=M \amalg N_{1} \amalg \cdots \amalg N_{s}$ with G-diffeomorphisms $f_{i}: N_{i} \rightarrow G / K_{j(i)} \times M$ for some $K_{j(i)} \in \mathscr{K}, i=1, \ldots, s$.
(7) $\operatorname{Iso}\left(G, Z \backslash\left(N_{Z} \cup Q_{Z}\right)\right)=\mathscr{P}(G)$.
(8) $\left.T\left(Z^{L} \backslash Q_{Z}\right) \cong \eta_{Z}^{L}\right|_{Z^{L} \backslash Q_{Z}}$ for all Dress subgroups $L=G^{\{q\}}$.
(9) $\left.\eta_{Z}\right|_{M} \cong T(M) \oplus \nu_{M} \oplus \varepsilon_{M}\left(\boldsymbol{R}[G]_{\mathscr{L}}^{\oplus \operatorname{dim} Z}\right)$.
(10) For each N_{i} above, $\left.\eta_{Z}\right|_{N_{i}} \cong f_{i}^{*}\left(G / K_{j(i)} \times\left(T(M) \oplus \nu_{M}\right)\right) \oplus \varepsilon_{N_{i}}\left(\boldsymbol{R}[G]_{\mathscr{L}}^{\oplus \operatorname{dim} Z}\right)$.
(11) $\left.\eta_{Z}\right|_{Q_{Z}} \cong \varepsilon_{Q_{Z}}\left(\left.U \oplus \nu_{M}\right|_{x_{0}} \oplus \boldsymbol{R}[G]_{\mathscr{L}}^{\oplus \operatorname{dim} Z}\right)$.
(12) For each $P \in \mathscr{P}(G), \pi_{1}\left(Z^{P}\right)$ is a finite abelian group of order prime to $|P|$.
(13) $\operatorname{dim} Z=\max (\operatorname{dim} M, 2)+\operatorname{pow}(G)+2$.

The third step is constructing a G-manifold D diffeomophic to a disk by equivariantly thickening Z with respect to η_{Z}.

Lemma 4.3. Let G be an Oliver group, M a compact G-manifold with $x_{0} \in$ $M^{G}, \xi_{M}=\tau_{M} \oplus \nu_{M}$ a real G-vector bundle over M, and U a real G-module satisfying Conditions (i)-(iv) in Lemma 4.2. Let $Z, N_{Z}=M \amalg N_{1} \amalg \cdots \amalg N_{s}$, and $Q_{Z} \supset R$ be the $G-C W$ complexes described in Lemma 4.2. Then there exists a disk D with a smooth G-action having the following properties.
(1) $D^{G}=M^{G}$.
(2) $D \supset N_{Z} \cup\left(Q_{Z}^{(0)} \times D(U)\right)$, where $Q_{Z}^{(0)}$ is the union of 0-dimensional connected components of Q_{Z}.
(3) $D^{L}=N_{Z}^{L} \cup\left(Q_{Z}^{(0)} \times D(U)\right)^{L}$ for all Dress subgroups $L=G^{\{q\}}$.
(4) $\left.T(D)\right|_{M}=T(M) \oplus \nu_{M} \oplus \varepsilon_{M}\left(\boldsymbol{R}[G]_{\mathscr{L}}^{\oplus(\operatorname{dim} Z+1)}\right)$.
(5) For each $P \in \mathscr{P}(G), \pi_{1}\left(D^{P}\right)$ is a finite abelian group of order prime to $|P|$ and the inclusion induced map $j_{\#}: \pi_{1}\left(\partial D^{P}\right) \rightarrow \pi_{1}\left(D^{P}\right)$ is an isomorphism.

Let $\left(V_{1}, V_{2}\right)$ be a $\mathscr{P}(G)$-matched pair of real G-modules, $y_{1}=0 \in V_{1}$, and $y_{2}=0 \in V_{2}$. Applying the lemma above to the case $M=D\left(V_{1}\right) \amalg D\left(V_{2}\right)$, $\xi_{M}=\tau_{M}=T(M), \nu_{M}=\varepsilon_{M}(0)$, and $U=V_{1}$, we immediately obtain the next corollary.

Corollary 4.4. Let G be an Oliver group and $\left(V_{1}, V_{2}\right)$ be a $\mathscr{P}(G)$-matched pair of real G-modules such that $V_{1}^{G}=0$ and $V_{2}^{G}=0$. Then there exists a disk $D\left(V_{1}, V_{2}\right)$ with a smooth G-action such that
(1) $D\left(V_{1}, V_{2}\right) \supset D\left(V_{1}\right) \amalg D\left(V_{2}\right)$,
(2) $D\left(V_{1}, V_{2}\right)^{G}=\left\{y_{1}, y_{2}\right\}$, and
(3) $\left.T\left(D\left(V_{1}, V_{2}\right)\right)\right|_{D\left(V_{1}\right) \amalg D\left(V_{2}\right)} \cong\left(\varepsilon_{D\left(V_{1}\right)}\left(V_{1}\right) \amalg \varepsilon_{D\left(V_{2}\right)}\left(V_{2}\right)\right) \oplus \varepsilon_{D\left(V_{1}\right) \amalg D\left(V_{2}\right)}$ $\left(\boldsymbol{R}[G]_{\mathscr{L}}^{\oplus(d+1)}\right)$, where $d=\max \left(\operatorname{dim} V_{1}, 2\right)+\operatorname{pow}(G)+2$.
(4) For each $P \in \mathscr{P}(G), \pi_{1}\left(D\left(V_{1}, V_{2}\right)^{P}\right)$ is a finite abelian group of order prime to $|P|$ and the inclusion induced map $j_{\#}: \pi_{1}\left(\partial D\left(V_{1}, V_{2}\right)^{P}\right) \rightarrow$ $\pi_{1}\left(D\left(V_{1}, V_{2}\right)^{P}\right)$ is an isomorphism.

Let M be a closed G-manifold and D a G-manifold diffeomorphic to a disk such that $D^{G}=M^{G}$. Let D^{\prime} denote the m-fold cartesian product $D^{\times m}$ of D, where m is a positive integer. The fourth step is constructing a G-manifold $D^{\prime \prime}$ diffeomorphic to a disk such that $D^{\prime \prime G}=\emptyset$ and $\partial\left(D^{\prime \prime}\right)=\partial\left(D^{\prime}\right)$ by a deleting theorem of G-fixed point sets. The union of D^{\prime} and $D^{\prime \prime}$ glued along the boundary is a homotopy sphere Σ having the property $\Sigma^{G}=M^{\times m^{G}}$.

Lemma 4.5. Let G be a gap Oliver group, V a gap G-module, and m a positive integer. Let M be a closed G-manifold (hence, $\partial M=\emptyset$) with $x_{0} \in M^{G}$, $\xi_{M}=\tau_{M} \oplus \nu_{M}$, and U a real G-module satisfying Conditions (i)-(iv) in Lemma 4.2. Let D be a disk with a smooth G-action satisfying the following conditions.
(v) $D \supset M$ as a G-submanifold and $D^{G}=M^{G}$.
(vi) For each $L=G^{\{p\}}, D^{L} \backslash M^{L}$ is a closed subset of D.
(vii) $\left.T(D)\right|_{M}=T(M) \oplus \nu_{M} \oplus \varepsilon_{M}(E)$, for an $\mathscr{L}(G)$-free real G-module E.

Let W be an $\mathscr{L}(G)$-free real G-module. Then for any integers $a \geq m \operatorname{dim} D+$ $\operatorname{dim} W+3$ and $b \geq 3$, there exists a homotopy sphere Σ with a smooth G-action having the following properties.
(1) $\Sigma \supset M^{\times m}$ as a G-submanifold.
(2) $\Sigma^{G}=M^{\times m}{ }^{G}$.
(3) $\left.T(\Sigma)\right|_{M \times m}=\left(T(M) \oplus \nu_{M} \oplus \varepsilon_{M}(E)\right)^{\times m} \oplus \varepsilon_{M \times m}\left(W \oplus V^{\oplus a} \oplus \boldsymbol{R}[G]_{\mathscr{L}}^{\oplus b}\right)$.

Using the lemma above, we construct an \mathfrak{S}-realization of an appropriately given $\mathscr{P}(G)$-matched pair $\left(V_{1}, V_{3}\right)$.

Lemma 4.6. Let G be an Oliver group and V a gap real G-module. Set $K=G^{\text {nil }}$. Let $\left(U_{1}, U_{2}\right),\left(U_{3}, U_{4}\right)$ and $\left(V_{1}, V_{3}\right)$ be $\mathscr{P}(G)$-matched pairs of real G modules such that $U_{1}^{N}=\boldsymbol{R}$ and $U_{3}^{N}=\boldsymbol{R}$ for all $N \in \mathscr{N}_{2}(G), U_{2}^{K}=0=U_{4}^{K}$, $V_{1}=\left(U_{1}-\boldsymbol{R}\right)^{\oplus m_{1}} \oplus W_{1}$, and $V_{3}=\left(U_{3}-\boldsymbol{R}\right)^{\oplus m_{3}} \oplus W_{3}$, where m_{1} and m_{3} are nonnegative integers and W_{1} and W_{3} are $\mathscr{L}(G)$-free real G-modules. Then there exist positive integers N_{1} and N_{2} such that for any integers $a \geq N_{1}$ and $b \geq N_{2}$, one has a smooth G-action on a standard sphere S having the following properties.
(1) $S^{G}=\left\{y_{1}, y_{3}\right\}$.
(2) $T_{y_{1}}(S) \cong V_{1} \oplus V^{\oplus a} \oplus \boldsymbol{R}[G]_{\mathscr{L}}^{\oplus b}$.
(3) $T_{y_{3}}(S) \cong V_{3} \oplus V^{\oplus a} \oplus \boldsymbol{R}[G]_{\mathscr{L}}^{\oplus b}$.
(4) $\operatorname{dim} S^{H} \geq 6$ for all $H \in \mathscr{M}(G)$.

In the special case where $\left(U_{3}, U_{4}\right)=\left(U_{1}, U_{2}\right)$ and $m_{3}=0$, we have the next corollary.

Corollary 4.7. Let G be a gap Oliver group and V a gap real G-module. Set $K=G^{\text {nil }}$. Let $\left(U_{1}, U_{2}\right)$ and $\left(V_{1}, V_{3}\right)$ be $\mathscr{P}(G)$-matched pairs of real G-modules such that $U_{1}^{N}=\boldsymbol{R}$ for all $N \in \mathscr{N}_{2}(G), V_{1}=\left(U_{1}-\boldsymbol{R}\right)^{\oplus m_{1}} \oplus W_{1}, U_{2}^{K}=0$, and V_{3} and W_{1} are $\mathscr{L}(G)$-free, where m_{1} is a nonnegative integer. Then there exist positive integers N_{1} and N_{2} such that for arbitrary integers $a \geq N_{1}$ and $b \geq N_{2}$, one has a smooth G-action on a standard sphere S satisfying the following conditions.
(1) $S^{G}=\left\{y_{1}, y_{3}\right\}$.
(2) $T_{y_{1}}(S) \cong V_{1} \oplus V^{\oplus a} \oplus \boldsymbol{R}[G]_{\mathscr{L}}^{\oplus b}$.
(3) $T_{y_{3}}(S) \cong V_{3} \oplus V^{\oplus a} \oplus \boldsymbol{R}[G]_{\mathscr{L}}^{\oplus b}$.
(4) $\operatorname{dim} S^{H} \geq 6$ for all $H \in \mathscr{M}(G)$.

The corollary above implies the next result.
Theorem 4.8. Let G be a gap Oliver group and set $K=G^{\text {nil }}$. Let $\left(U_{1}, U_{2}\right)$ be a $\mathscr{P}(G)$-matched pair of real G-modules such that $U_{1}^{N}=\boldsymbol{R}$ for any $N \in \mathscr{N}_{2}(G)$ and $U_{2}^{K}=0$. Then for $x=\left[U_{1}\right]-\left[U_{2}\right]$, the implication

$$
\left(\left\langle x-x^{G}\right\rangle_{\boldsymbol{z}}+\operatorname{RO}(G)^{\mathscr{L}(G)}\right)_{\mathscr{P}(G)} \subseteq \mathrm{RO}(G, \mathfrak{D S})
$$

holds.
We remark that the last implication formula also holds for $x=0$ if G is a gap Oliver group.

5. Known basic facts.

As was seen in the previous section, our proof of Theorem 4.8 is based on certain knowledge of transformation group theory. For reader's convenience, we recall basic results on the real G-module $V(G)=\boldsymbol{R}[G]_{\mathscr{L}}$, a bundle subtraction lemma, an equivariant thickening theorem, and a deleting theorem of G-fixed point sets.

Lemma 5.1. A real G-module V is $\mathscr{L}(G)$-free if and only if V is isomorphic to a submodule of $\boldsymbol{R}[G]_{\mathscr{L}}^{\oplus m}$ for some integer m.

Proof. This immediately follows from the fact that an arbitrary irreducible real G-module is isomorphic to a submodule of $\boldsymbol{R}[G]$.

Lemma 5.2 ([15, Theorem 2.3]). Let G be a finite group not of prime power order. Then the following properties hold.
(1) $\boldsymbol{R}[G]_{\mathscr{L}}{ }^{H} \neq 0$ if and only if $H \in \mathscr{M}(G)$.
(2) $\operatorname{dim} \boldsymbol{R}[G]_{\mathscr{L}}{ }^{H} \geq|K: H| \operatorname{dim} \boldsymbol{R}[G]_{\mathscr{L}}{ }^{K}$ if $H \leq K \in \mathscr{S}(G)$.
(3) Let $H, K \in \mathscr{M}(G)$ with $H \leq K$. Then $\operatorname{dim} \boldsymbol{R}[G]_{\mathscr{L}}{ }^{H}=2 \operatorname{dim} \boldsymbol{R}[G]_{\mathscr{L}}{ }^{K}$ if and only if $|K: H|=2,\left|K G^{\{2\}}: H G^{\{2\}}\right|=2$, and $H G^{\{p\}}=G$ for all odd primes p.

Lemma 5.3 ([25, Proposition 1.9]). Let G be a finite group not of prime power order and $H \in \mathscr{M}(G)$.
(1) If $|G: H|=p_{1}^{a_{1}} \cdots p_{n}^{a_{n}}, n \geq 2$, for distinct primes p_{1}, \ldots, p_{n}, and $a_{1}, \ldots, a_{n} \geq 1$, then

$$
\operatorname{dim} \boldsymbol{R}[G]_{\mathscr{L}}{ }^{H} \geq\left(p_{1}^{a_{1}}-1\right) \cdots\left(p_{n}^{a_{n}}-1\right)
$$

(2) If $|G: H|$ is a power of a prime p then $\operatorname{dim} \boldsymbol{R}[G]_{\mathscr{L}}{ }^{H} \geq p-1$, and furthermore, in the case $p=2, \operatorname{dim} \boldsymbol{R}[G]_{\mathscr{L}}{ }^{H}>2$.

Lemma 5.4 ([25, Proposition 2.3]). Let G be a finite group not of prime power order. Then for each $H \in \mathscr{M}(G)$, any irreducible real H-module is isomorphic to a submodule of $\operatorname{res}_{H}^{G} \boldsymbol{R}[G]_{\mathscr{L}}$.

Lemma 5.5 (Bundle Subtraction Lemma). Let G be a finite group, V a real G-module, and W a real G-module such that for any $H \in \mathscr{M}(G)$, each irreducible component of $\operatorname{res}_{H}^{G} V$ is isomorphic to a submodule of $\operatorname{res}_{H}^{G} W$. Let (Z, X) be a finite G-CW pair $(Z \supseteq X)$ such that $\operatorname{Iso}(G, Z \backslash X) \subseteq \mathscr{M}(G)$ and let ℓ be an integer such that $\ell \geq \operatorname{dim} Z$. Let η_{Z} and ξ_{X} be real G-vector bundles over Z and X, respectively, such that
(i) $\left.\eta_{Z}\right|_{X}=\xi_{X} \oplus \varepsilon_{X}\left(V \oplus W^{\oplus \ell}\right)$, and
(ii) $\left.\eta_{Z}\right|_{x} \supset \operatorname{res}_{G_{x}}^{G} V$ (as real G_{x}-modules) for all $x \in Z$.

Then there exist a G-subbundle θ_{Z} of η_{Z} and a complementary G-subbundle ν_{Z} to θ_{Z} in η_{Z}, i.e. $\eta_{Z}=\theta_{Z} \oplus \nu_{Z}$, satisfying the following properties.
(1) $\theta_{Z} \cong \varepsilon_{Z}(V)$.
(2) $\left.\theta_{Z}\right|_{X}=\varepsilon_{X}(V)$.
(3) $\left.\nu_{Z}\right|_{X}=\xi_{X} \oplus \varepsilon_{X}\left(W^{\oplus \ell}\right)$.

Proof. This follows from Proof of Theorem 2.2 in [25].

Theorem 5.6 (Equivariant Thickening Theorem). Let G be a finite group. Let X be a compact G-manifold, and ν_{X} a real G-vector bundle over X such that $\nu_{X}^{L}=\varepsilon_{X^{L}}(0)$ for all Dress subgroups $L=G^{\{p\}}$. Let Z be a finite G - $C W$ complex such that $X \subset Z$ and $\operatorname{Iso}(G, Z \backslash X) \subseteq \mathscr{M}(G)$, and η_{Z} a real G-vector bundle over Z such that $\left.\eta_{Z}\right|_{X}=T(X) \oplus \nu_{X} \oplus \varepsilon_{X}(W)$ for an $\mathscr{L}(G)$-free real G-module W. If the dimension conditions
(a) $\left.\operatorname{dim} \eta_{Z}\right|_{x} ^{H}>2 \operatorname{dim} Z^{H}$ for all $H \in \mathscr{M}(G)$ and $x \in Z^{H}$,
(b) $\operatorname{dim} \eta_{Z}{ }_{x}^{H}-\left.\operatorname{dim} \eta_{Z}\right|_{x} ^{>H}>\operatorname{dim} Z^{H}$ for all $H \in \mathscr{M}(G)$ and $x \in Z^{H}$, and
(c) $\operatorname{dim} \eta_{Z}{ }_{x}^{P}>\operatorname{dim} Z^{P}+2$ for all $P \in \mathscr{P}(G)$ and $x \in Z^{P}$
are satisfied, then there exist a compact G-manifold $N \supset X$ and a strong G deformation retraction $f: N \rightarrow Z$ having the following properties.
(1) N contains Z as a G-subcomplex.
(2) N contains X as a G-submanifold.
(3) $\operatorname{Iso}(G, N \backslash X)=\mathscr{M}(G)$.
(4) $T(N) \cong f^{*} \eta_{Z}$ (hence, $\left.T(N)\right|_{Z} \cong \eta_{Z}$ and $\left.\left.T(N)\right|_{X} \cong T(X) \oplus \nu_{X} \oplus \varepsilon_{X}(W)\right)$.
(5) $\pi_{0}\left(\partial N^{P}\right)=\pi_{0}\left(N^{P}\right)$ and $\pi_{1}\left(\partial N^{P}, x\right)=\pi_{1}\left(N^{P}, x\right)$ for all $P \in \mathscr{P}(G)$ and $x \in \partial N^{P}$.

Proof. See Proof of Theorem 3.1 in [25].
Theorem 5.7 (Deleting Theorem). Let G be an Oliver group and Y a smooth G-manifold diffeomorphic to a disk with exactly s G-fixed points y_{1}, \ldots, y_{s}, where $s \geq 1$. Suppose the following conditions.
(1) $\operatorname{dim} Y^{P}>2\left(\operatorname{dim} Y^{H}+1\right)$ for any $P \in \mathscr{P}(G), H \in \mathscr{S}(G)$ with $P \subsetneq H$.
(2) $\operatorname{dim} Y^{=H} \geq 3$ for any $H \in \mathscr{P} \mathscr{C}(G)$, where $Y^{=H}$ denotes the set of all points y in Y with $G_{y}=H$.
(3) $\operatorname{dim} Y^{P} \geq 5$ for any $P \in \mathscr{P}(G)$.
(4) $\pi_{1}\left(Y^{P}\right)$ is a finite group of order prime to $|P|$ for each $P \in \mathscr{P}(G)$.
(5) The inclusion induced map $\pi_{1}\left(\partial Y^{P}\right) \rightarrow \pi_{1}\left(Y^{P}\right)$ is an isomorphism for each $P \in \mathscr{P}(G)$.
(6) The connected component Y_{i}^{L} of Y^{L} containing y_{i} is a closed manifold for each $L \in \mathscr{L}(G)$ and each i with $1 \leq i \leq s$.

Then there exists a smooth G-manifold X diffeomorphic to the disk such that $X^{G}=\emptyset$ and ∂X is G-diffeomorphic to ∂Y.

Proof. This follows from Theorem 1.3 of [23].

6. Proof of Lemma 4.1.

For a finite G-CW complex X, define $\bar{\chi}(X)$ to be the number $\chi(X)-1$, where $\chi(X)$ is the Euler characteristic of X. If H is a subgroup of G then $\chi_{H}(X)$ and $\bar{\chi}_{H}(X)$ denote the numbers $\chi\left(X^{H}\right)$ and $\chi\left(X^{H}\right)-1$, respectively. Let $\Omega(G)$ denote the Burnside ring, cf. [8], [21]. Each element $x \in \Omega(G)$ has the form $\left[X_{1}\right]-\left[X_{2}\right]$ with finite G-CW complexes (or finite G-sets) X_{1} and X_{2}. For each subgroup H of G, we define the homomorphism $\chi_{H}: \Omega(G) \rightarrow \boldsymbol{Z}$ using the Euler characteristic: $\chi_{H}(x)=\chi\left(X_{1}^{H}\right)-\chi\left(X_{2}^{H}\right)$. By definition, $\left[X_{1}\right]-\left[X_{2}\right]=\left[Y_{1}\right]-\left[Y_{2}\right]$ holds if and only if $\chi_{H}\left(X_{1}\right)-\chi_{H}\left(X_{2}\right)=\chi_{H}\left(Y_{1}\right)-\chi_{H}\left(Y_{2}\right)$ for all subgroups H of G. By Theorem 1.3 of [15], we have the next lemma.

Lemma 6.1. If G is a finite group, then there exists an element $\beta \in \Omega(G)$ such that $\chi_{G}(\beta)=0$ and $\chi_{H}(\beta)=1$ whenever $H \in \mathscr{M}(G)$.

Let G be an Oliver group and let $\beta=\sum_{i=1}^{c} b_{i}\left[G / K_{i}\right]$ be an element given in Lemma 6.1. Then take an element $(-\beta)^{\%}=\sum_{i=1}^{c} b_{i}^{\prime}\left[G / K_{i}\right]$ in $\Omega(G)$ such that $b_{i}^{\prime} \geq 0$ and

$$
b_{i}^{\prime} \equiv-b_{i} \quad \bmod 2|G|\left|\widetilde{K}_{0}(\boldsymbol{Z}[G])\right| .
$$

For finite G-CW complexes X and Y with reference points x_{0} and y_{0}, respectively, having a same isotropy subgroup H, let $X \vee_{G / H} Y$ denote the equivariant wedge sum, namely the union of X and Y identified $g x_{0}$ with $g y_{0}$ for each $g \in G$. If X has the reference point x_{0} of isotropy subgroup H then we regard $\left(e H, x_{0}\right)$ as the reference point of the G-space $G / H \times X$ with the diagonal G action. Then the isotropy subgroup of $\left(e H, x_{0}\right)$ is H. Take the equivariant wedge sum $X \vee_{G / H}(G / H \times X)$ and denote this space by $([G / G]+[G / H]) \circ X$ for the sake of convenience. It holds that

$$
\bar{\chi}_{H}\left(X \vee_{G / K}((G / K) \times X)\right)=\bar{\chi}_{H}(X)+\left|(G / K)^{H}\right| \bar{\chi}_{H}(X) .
$$

If $X \supset R\left(=\coprod_{i=1}^{c} G / K_{i}\right)$, the set of reference points, then we denote by $([G / G]+$ $\left.(-\beta)^{\%}\right) \circ X$ the space obtained by iterating wedge sum operation on X associated with $(-\beta)^{\%}$. Then we have

$$
\begin{aligned}
\bar{\chi}_{H}\left(\left([G / G]+(-\beta)^{\%}\right) \circ X\right) & =\left(1+\chi_{H}\left((-\beta)^{\%}\right)\right) \bar{\chi}_{H}(X) \\
& \equiv\left(1-\chi_{H}(\beta)\right) \bar{\chi}_{H}(X) \bmod 2|G| .
\end{aligned}
$$

If $H \in \mathscr{S}(G)$ then $(G / K \times X)^{H}=(G / K)^{H} \times X^{H}$, and hence if $(H)>(K)$ then
$(G / K \times X)^{H}=\emptyset$.
Let M be a compact G-manifold. Set

$$
Y_{0}=\left([G / G]+(-\beta)^{\%}\right) \circ(M \amalg R) .
$$

Let $Q_{Y_{0}}$ denote the subset of Y_{0} obtained as $\left([G / G]+(-\beta)^{\%}\right) \circ R$. Let $N_{Y_{0}}=$ $Y_{0} \backslash Q_{Y_{0}}$. If i is the smallest integer such that $K_{i} \in \mathscr{M}(G)$ and $\bar{\chi}_{K_{i}}\left(Y_{0}\right) \neq 0$ then $\bar{\chi}_{K_{i}}\left(Y_{0}\right)$ is divisible by $2|G|$, and hence by $2\left|N_{G}\left(K_{i}\right) / K_{i}\right|$. Thus there exists a finite G-CW complex Y_{1} such that $Y_{1}=Y_{0} \amalg\left(G / K_{i} \times T\right) \amalg \cdots \amalg\left(G / K_{i} \times T\right)$ for some connected closed orientable 2-dimensional manifold T (with the trivial G-action) and $\bar{\chi}_{K_{i}}\left(Y_{1}\right)=0$. We set $Q_{Y_{1}}=Q_{Y_{0}} \amalg\left(Y_{1} \backslash Y_{0}\right)$ and $N_{Y_{1}}=N_{Y_{0}}$. Performing subsequently this procedure, we obtain a finite G-CW complex $Y_{2}=N_{Y_{2}} \amalg Q_{Y_{2}}$ satisfying the following conditions.
(1) $Y_{2}^{G}=M^{G}$.
(2) $\bar{\chi}_{H}\left(Y_{2}\right)=0$ for all $H \in \mathscr{M}(G)$.
(3) $Q_{Y_{2}} \supset R$.
(4) Each G-connected component of $Q_{Y_{2}}$ is G-diffeomorphic to $G / K \times T$ for some $K \in \mathscr{M}(G)$ and a connected closed orientable 2-dimensional manifold T with the trivial G-action, or to G / K_{j} for some $K_{j} \in \mathscr{K}$.
(5) $N_{Y_{2}}=M \amalg N_{1} \amalg \cdots \amalg N_{\ell}$ such that for each $i, N_{i} \cong{ }_{G} G / K_{j(i)} \times M$ for some $j(i)$.
By the same argument as in [28] (alternatively [30]), we can obtain a finite G-CW complex Y_{3} containing Y_{2} such that $\operatorname{Iso}\left(G, Y_{3} \backslash Y_{2}\right) \subseteq \mathscr{P}(G)$, and Y_{3}^{P} is simply connected as well as \boldsymbol{Z}_{p}-acyclic for every $P \in \mathscr{P}(G)$ with $P \neq\{e\}$, where p is the prime dividing $|P|$. We can also obtain a finite G-CW complex Y_{4} containing Y_{3} such that $Y_{4} \backslash Y_{3}$ consists of free cells, namely the isotropy type is $\{e\}, Y_{4}$ is 1-connected, $\operatorname{dim} Y_{4} \geq 2$, and $H_{i}\left(Y_{4},\left\{x_{0}\right\} ; \boldsymbol{Z}\right)=0$ for all $i<\operatorname{dim} Y_{4}$. Set $n=\operatorname{dim} Y_{4}$. Then by Nakayama's theorem, $H_{n}\left(Y_{4} ; \boldsymbol{Z}\right)$ is a projective module over $\boldsymbol{Z}[G]$. For $Y_{5}=\left([G / G]+(-\beta)^{\%}\right) \circ Y_{4}, H_{n}\left(Y_{5} ; \boldsymbol{Z}\right)$ is a stably free module over $\boldsymbol{Z}[G]$. Hence by attaching free cells of dimension n and $n+1$ to Y_{5}, we can obtain a finite contractible G-CW complex Y. Set $Q_{Y}=\left([G / G]+(-\beta)^{\%}\right) \circ Q_{Y_{2}}$. Define N_{Y} to be the G-manifold contained in Y_{5} which is generated by $N_{Y_{2}}$ via the wedge sum operation on Y_{4} associated with $[G / G]+(-\beta)^{\%}$. Then these Y, N_{Y}, Q_{Y} satisfy the desired conditions.

7. Proof of Lemma 4.2.

Let $G, M, \xi_{M}=\tau_{M} \oplus \nu_{M}, x_{0} \in M^{G}$ be as in Lemma 4.2. Clearly, we have $\left.\xi_{M}\right|_{x_{0}}=\left.\left.\tau_{M}\right|_{x_{0}} \oplus \nu_{M}\right|_{x_{0}}$. Let $Y, R=\coprod_{i=1}^{c} G / K_{i}, Q_{Y}$ and N_{Y} be as in

Lemma 4.1. For each $N_{i}, 1 \leq i \leq s$, define a real G-vector bundle $\xi_{N_{i}}$ by $\xi_{N_{i}}=$ $G / K \times \xi_{M}$ using K such that $N_{i} \cong G / K \times M$. Set $\xi_{N_{Y}}=\xi_{M} \cup \bigcup_{i=1}^{s} \xi_{N_{i}}$, $\xi_{Q_{Y}}=\varepsilon_{Q_{Y}}\left(\left.U \oplus \boldsymbol{R}^{k} \oplus \nu_{M}\right|_{x_{0}}\right)$, and $X=N_{Y} \cup Q_{Y}$. Then the real G-vector bundle $\xi_{X}=\xi_{N_{Y}} \cup \xi_{Q_{Y}}$ over X has the following properties.
(a) ξ_{X} has the form $\xi_{X}^{\prime} \oplus \varepsilon_{X}\left(\boldsymbol{R}^{k}\right)$.
(b) $\operatorname{res}_{P}^{G} \xi_{X}=0$ in $\widetilde{K O}_{P}(X)$ for all $P \in \mathscr{P}(G)$.
(c) $\chi\left(X^{H}\right)=\chi\left(Y^{H}\right)$ for all $H \in \mathscr{S}(G)$.
(d) $\chi\left(X^{H}\right)=\chi\left(Y^{H}\right)=1$ for all $H \in \mathscr{M}(G)$.

Let $B_{G} O$ and $B_{G}^{*} O$ be the G-spaces and $L_{G}: B_{G} O \rightarrow B_{G}^{*} O$ be the G-map defined in [27]. Let $f_{X}: X \rightarrow B_{G} O$ denote the classifying map of ξ_{X}. Then $g_{X}=L_{G} \circ f_{X}$ is G-homotopic to a constant map. Thus g_{X} extends to a G-map $g_{Y}: Y \rightarrow B_{G}^{*} O$ which is G-homotopic to a constant map.

We wish to lift g_{Y} to a G-map $Y \rightarrow B_{G} O$, although it is impossible in general. Hence we need some modification. Observe the G-homotopically commutative diagram

Diagram (D1)
By Proposition 2.3 of [27], Diagram (D1) extends to a G-homotopically commutative diagram

Diagram (D2)
where Z is a finite contractible G-CW complex containing X with $\operatorname{Iso}(G, Z \backslash X) \subseteq$ $\mathscr{P}(G)$, and f_{Z} and φ_{Z} are extensions of f_{X} and φ_{X}, respectively. Furthermore, we can obtain Z so that $\pi_{1}\left(Z^{P}\right)$ is a finite abelian group of order prime to $|P|$ for each $P \in \mathscr{P}(G)$. This fact follows from that $\pi_{1}\left(Y^{P}\right)$ is trivial and $\operatorname{Ker}\left(\pi_{1}\left(\beta \alpha_{1}\right)\right)$ appearing in Proof, Finite Case of [27, Lemma 2.2] is finite abelian of order prime to p (see Proof, Finite Case, Step 1 of [27, Proposition 2.3], too). Here we can
choose Z so that $\operatorname{dim} Z=\operatorname{dim} Y+1$. Define N_{Z} and Q_{Z} by $N_{Z}=N_{Y}$ and $Q_{Z}=Q_{Y}$.

Let ω_{Z} be a real G-vector bundle over Z associated with f_{Z}. By Lemma 5.1, each $\mathscr{L}(G)$-free irreducible real G-module is isomorphic to a submodule of $\boldsymbol{R}[G]_{\mathscr{L}}$. We can take ω_{Z} so that

$$
\left.\omega_{Z}\right|_{X}=\xi_{X} \oplus \varepsilon_{X}\left(V \oplus \boldsymbol{R}[G]_{\mathscr{L}}^{\oplus \ell}\right)
$$

for some real G-module V and some integer ℓ. Here we may suppose $\ell \geq \operatorname{dim} Z$. Since Iso $(G, Z \backslash X) \subseteq \mathscr{P}(G)$ and Z^{P} is connected for every $P \in \mathscr{P}(G)$, we see

$$
\left.\omega_{Z}\right|_{x} \supseteq \operatorname{res}_{G_{x}}^{G}\left(\boldsymbol{R}^{k} \oplus V \oplus \boldsymbol{R}[G]_{\mathscr{L}}^{\oplus(\ell-\operatorname{dim} Z)}\right)
$$

for all $x \in Z$. By Bundle Subtraction Lemma (Lemma 5.5), there exists an actual G-subbundle θ_{Z} of ω_{Z} such that $\theta_{Z} \cong \varepsilon_{Z}\left(\boldsymbol{R}^{k} \oplus V \oplus \boldsymbol{R}[G]_{\mathscr{L}}^{\oplus(\ell-\operatorname{dim} Z)}\right)$ and

$$
\begin{equation*}
\left.\eta_{Z}\right|_{X} \cong \xi_{X}^{\prime} \oplus \varepsilon_{X}\left(\boldsymbol{R}[G]_{\mathscr{L}}^{\oplus \operatorname{dim} Z}\right) \tag{7.1}
\end{equation*}
$$

where η_{Z} is the complementary bundle of θ_{Z} in ω_{Z}, i.e. $\omega_{Z}=\theta_{Z} \oplus \eta_{Z}$, These Z, N_{Z}, Q_{Z} and η_{Z} are desired ones in Lemma 4.2.

8. Proofs of Lemmas 4.3 and 4.5.

Let G be an Oliver group, M a compact G-manifold with $x_{0} \in M^{G}, \xi_{M}=$ $\tau_{M} \oplus \nu_{M}$ a real G-vector bundle over M, and U a real G-module satisfying (i)-(iv) in Lemma 4.2. Let $Z, N_{Z}=M \amalg N_{1} \amalg \cdots \amalg N_{s}, Q_{Z} \supset R$ and η_{Z} be those stated in Lemma 4.2. Set

$$
\eta_{Z}^{\prime}=\eta_{Z} \oplus \varepsilon_{Z}\left(\boldsymbol{R}[G]_{\mathscr{L}}\right)
$$

Using Lemmas 5.2 and 5.3 , we can check that η_{Z}^{\prime} satisfies the dimension condition (a)-(c) in Theorem 5.6 for η_{Z} replaced by η_{Z}^{\prime}.

Proof of Lemma 4.3. Set $X=N_{Z} \amalg\left(Q_{Z}^{(0)} \times D(U)\right)$. Note that X equivariantly simply collapses to $N_{Z} \amalg Q_{Z}^{(0)}$. In addition, $\left.\eta_{Z}\right|_{N_{Z} \cup Q_{Z}^{(0)}} ^{L}=T\left(N_{Z}^{L}\right) \amalg$ $\left.T\left(\left(Q_{Z}^{(0)}\right)^{L} \times D(U)^{L}\right)\right|_{\left(Q_{Z}^{(0)}\right)^{L}}$ for all Dress subgroups $L=G^{\{p\}}$. Now use Equivariant Thickening Theorem (Theorem 5.6) for the initial manifold X and the real G-vector bundle η_{Z}^{\prime} over Z, instead of η_{Z}, and obtain a disk D as stated in Lemma 4.3.

Proof of Lemma 4.5. Let D be the disk with a G-action, V the gap G module, E and W the real G-modules, and a and b integers stated in Lemma 4.5. Then the disk $D_{1}=D^{\times m} \times D\left(W \oplus V^{\oplus a}\right)$ satisfies the strong gap condition

$$
\operatorname{dim} D_{1}^{P}>2\left(\operatorname{dim} D_{1}^{H}+1\right)
$$

for all $P \in \mathscr{P}(G), H \in \mathscr{S}(G)$ with $P \subsetneq H$. Thus $D_{2}=D^{\times m} \times D\left(W \oplus V^{\oplus a} \oplus\right.$ $\left.\boldsymbol{R}[G]_{\mathscr{L}}^{\oplus b}\right)$ satisfies the following conditions:
(1) $\operatorname{dim} D_{2}^{H} \geq 6$ for all $H \in \mathscr{M}(G)$.
(2) $\operatorname{dim} D_{2}^{P}>2\left(\operatorname{dim} D_{2}^{H}+1\right)$ for all $P \in \mathscr{P}(G), H \in \mathscr{S}(G)$ with $P \subsetneq H$.
(3) $D_{2} \supseteq M^{\times m} \supset M^{\times m} \ni x_{1}=\left(x_{0}, \ldots, x_{0}\right)$.
(4) $\left.T\left(D_{2}\right)\right|_{M \times m} \cong\left(T(M) \oplus \nu_{M} \oplus \varepsilon_{M}(E)\right)^{\times m} \oplus \varepsilon_{M \times m}\left(W \oplus V^{\oplus a} \oplus \boldsymbol{R}[G]_{\mathscr{L}}^{\oplus b}\right)$.

Now we are ready to use Deleting Theorem (Theorem 5.7). We can use D_{2} as Y of Deleting Theorem to obtain a smooth G-action on a disk D_{3} such that $D_{3}^{G}=\emptyset$ and $\partial D_{3}=\partial D_{2}$. The union $\Sigma=D_{2} \cup_{\partial} D_{3}$ glued along the boundary is a homotopy sphere.

We close this section with the next proposition.
Proposition 8.1. The homotopy sphere Σ above can be converted to the standard sphere having the desired properties in Lemma 4.5.

Proof. Let Σ be as above. Note for each Sylow subgroup P of G with $|P|=q^{a}>1$, the set $\Sigma^{=P}$ is a connected open dense subset of the \boldsymbol{Z}_{q}-homology sphere Σ^{P} of dimension ≥ 6. By [$\mathbf{1 6}$, Proposition 2.1], taking an equivariant connected sum of copies of Σ, we obtain a smooth G-action on the sphere S such that $\operatorname{dim} S=\operatorname{dim} \Sigma, S^{G}=\Sigma^{G}$, and the normal bundle $\nu\left(S^{G}, S\right)$ is G-isomorphic to the normal bundle $\nu\left(\Sigma^{G}, \Sigma\right)$. This S satisfies the properties required in Lemma 4.5 in place of Σ.

9. Proof of Lemma 4.6.

Let G be an Oliver group with a gap G-module V. Let $\left(U_{1}, U_{2}\right),\left(U_{3}, U_{4}\right)$ and $\left(V_{1}, V_{3}\right)$ be the real $\mathscr{P}(G)$-matched pairs described in Lemma 4.6. We note that the dimension of each of these G-modules is greater than or equal to 3 .

For each $i=1,3$, let $M_{i}=P\left(U_{i}^{K}\right), \tau_{M_{i}}=\gamma_{M_{i}} \otimes U_{i}^{K}, \nu_{M_{i}}=\left(\gamma_{M_{i}} \otimes U_{i K}\right) \oplus$ $\left(\gamma_{M_{i}}^{\perp} \otimes U_{i+1}\right)$, where $\gamma_{M_{i}} \oplus \gamma_{M_{i}}^{\perp}=\varepsilon_{M_{i}}\left(U_{i}^{K}\right)$, and $\xi_{M_{i}}=\tau_{M_{i}} \oplus \nu_{M_{i}}$. Since U_{i+1} is $\mathscr{L}(G)$-free, we have $\boldsymbol{R}[G]_{\mathscr{L}}^{\oplus n_{i}}=\left(U_{i}^{K}{ }_{G} \otimes U_{i+1}\right) \oplus A_{i+1}$ for some positive integer n_{i} and an $\mathscr{L}(G)$-free real G-module A_{i+1}. By Lemma 3.2, $T\left(M_{i}\right) \oplus \varepsilon_{M_{i}}(\boldsymbol{R}) \cong \tau_{M_{i}}$. Using these data, we obtain a finite contractible G-CW complex $Z_{i}\left(\supset M_{i}\right)$ such
that $\operatorname{dim} Z_{i}=d_{i}+\operatorname{pow}(G)+2$ with $d_{i}=\operatorname{dim} U_{i}$, and a real G-vector bundle $\eta_{Z_{i}}$ described in Lemma 4.2. Apply Lemma 4.3 for these $Z_{i}, \eta_{Z_{i}}$ and $U=U_{i}^{K}{ }_{G}$ to obtain a disk $D_{i}\left(\supset M_{i}\right)$ with a G-action having Properties (1)-(5) in Lemma 4.3. In particular,

$$
\left.T\left(D_{i}\right)\right|_{M_{i}}=T\left(M_{i}\right) \oplus\left(\gamma_{M_{i}} \otimes U_{i K}\right) \oplus\left(\gamma_{M_{i}}^{\perp} \otimes U_{i+1}\right) \oplus \varepsilon_{M_{i}}\left(E_{i}\right),
$$

where

$$
E_{i}=\boldsymbol{R}[G]_{\mathscr{L}}^{\oplus\left(d_{i}+\operatorname{pow}(G)+3\right)} .
$$

Apply Lemma 4.5 for the disk D_{i} and the integer m_{i} to obtain a homotopy sphere $\Sigma_{i}\left(\supset M_{i}^{\times m_{i}}\right)$ with a G-action stated in Lemma 4.5 such that

$$
\begin{aligned}
\left.T\left(\Sigma_{i}\right)\right|_{M_{i}^{\times m_{i}}}= & \left(T\left(M_{i}\right) \oplus\left(\gamma_{M_{i}} \otimes U_{i K}\right) \oplus\left(\gamma_{M_{i}}^{\perp} \otimes U_{i+1}\right) \oplus \varepsilon_{M_{i}}\left(E_{i}\right)\right)^{\times m_{i}} \\
& \oplus \varepsilon_{M_{i} \times m_{i}}\left(A_{i+1}^{\oplus m_{i}} \oplus W_{i} \oplus V^{\oplus a_{i}} \oplus \boldsymbol{R}[G]_{\mathscr{L}}^{\oplus b_{i}}\right),
\end{aligned}
$$

where $a_{i} \geq m_{i}\left(d_{i}-1+n_{i} r\right)+m_{i} r\left(d_{i}+\operatorname{pow}(G)+3\right)+\operatorname{dim} W_{i}+3$ with $r=\operatorname{dim} \boldsymbol{R}[G]_{\mathscr{L}}$ and $b_{i} \geq 3$ can be arbitrarily chosen. Let $x_{i}(i=1,3)$ be the unique G-fixed point of Σ_{i}. Then we have

$$
T_{x_{i}}\left(\Sigma_{i}\right) \cong V_{i} \oplus E_{i}^{\oplus m_{i}} \oplus V^{\oplus a_{i}} \oplus \boldsymbol{R}[G]_{\mathscr{L}}^{\oplus\left(m_{i} n_{i}+b_{i}\right)}
$$

Thus there exist positive integers N_{1} and N_{2} such that for arbitrary $a \geq N_{1}$, $b \geq N_{2}$, we have one-fixed-point G-actions on spheres Σ_{1} and Σ_{3} such that

$$
T_{x_{i}}\left(\Sigma_{i}\right) \cong V_{i} \oplus V^{\oplus a} \oplus \boldsymbol{R}[G]_{\mathscr{L}}^{\oplus b}
$$

Let $M_{1}^{\prime}=D\left(V_{1}\right), M_{3}^{\prime}=D\left(V_{3}\right), M^{\prime}=M_{1}^{\prime} \amalg M_{3}^{\prime}, \tau_{M_{1}^{\prime}}=\varepsilon_{M_{1}^{\prime}}\left(V_{1}\right), \tau_{M_{3}^{\prime}}=$ $\varepsilon_{M_{3}^{\prime}}\left(V_{3}\right), \tau_{M^{\prime}}=\tau_{M_{1}^{\prime}} \amalg \tau_{M_{3}^{\prime}}, \nu_{M^{\prime}}=\varepsilon_{M^{\prime}}(0)$, and $\xi_{M^{\prime}}=\tau_{M^{\prime}}$. Then there exists a G-action on a disk $D\left(V_{1}, V_{3}\right)$ described in Corollary 4.4. Let y_{1} and y_{3} denote origins in V_{1} and V_{3}, respectively. The G-fixed points of $D\left(V_{1}, V_{3}\right)$ are y_{1} and y_{3}. It holds that

$$
\left.T\left(D\left(V_{1}, V_{3}\right)\right)\right|_{M_{1}^{\prime} \amalg M_{3}^{\prime}} \cong\left(\varepsilon_{M_{1}^{\prime}}\left(V_{1}\right) \amalg \varepsilon_{M_{3}^{\prime}}\left(V_{3}\right)\right) \oplus \varepsilon_{M_{1}^{\prime} \amalg M_{3}^{\prime}}\left(\boldsymbol{R}[G]_{\mathscr{L}}^{\oplus(d+1)}\right)
$$

with $d=\max \left(\operatorname{dim} V_{1}, 2\right)+\operatorname{pow}(G)+2$.
We may assume $N_{2} \geq d+1$. Then let

$$
\Delta=D\left(V_{1}, V_{3}\right) \times D\left(V^{\oplus a} \oplus \boldsymbol{R}[G]_{\mathscr{L}}^{\oplus(b-d-1)}\right)
$$

and take the double $\Sigma_{5}=\Delta \cup_{\partial} \Delta^{\prime}$ (a sphere) of Δ, where Δ^{\prime} is a copy of Δ. Obviously, we have $\Sigma_{5}^{G}=\left\{y_{1}, y_{3}, y_{1}^{\prime}, y_{3}^{\prime}\right\}, T_{y_{1}}\left(\Sigma_{5}\right) \cong T_{y_{1}^{\prime}}\left(\Sigma_{5}\right) \cong T_{x_{1}}\left(\Sigma_{1}\right), T_{y_{3}}\left(\Sigma_{5}\right) \cong$ $T_{y_{3}^{\prime}}\left(\Sigma_{5}\right) \cong T_{x_{3}}\left(\Sigma_{3}\right)$. Thus we can construct the G-connected sum Σ of Σ_{5} with the spheres Σ_{1} and Σ_{3} at the point data $\left(y_{1}^{\prime}, x_{1}\right)$ and $\left(y_{3}^{\prime}, x_{3}\right)$. Then $\Sigma^{G}=\left\{y_{1}, y_{3}\right\}$. By [16, Proposition 1.3], the homotopy sphere Σ can be modified to a G-manifold diffeomorphic to the standard sphere, without changing the local data around y_{1} and y_{3}. The sphere S has the desired properties.

10. Proofs of Theorems 1.3 and 1.5.

Now we are ready to prove our main theorem.
Proof of Theorem 1.3. Let G be a finite group satisfying the hypotheses in Theorem 1.3. Set $N=G^{\text {nil }}$. Since $|G / N|$ is odd, $\boldsymbol{R}[G]_{\mathscr{L}}$ is a gap G-module. For N has a subquotient group isomorphic to $D_{2 q r}$, there exists a $\mathscr{P}(N)$-matched pair (W_{1}, W_{2}) of type 1 consisting of real N-modules. Let $U_{1}=\operatorname{ind}_{N}^{G} W_{1}$ and $U_{2}=\operatorname{ind}_{N}^{G} W_{2}$. Then $\left(U_{1}, U_{2}\right)$ is a $\mathscr{P}(G)$-matched pair of type $1, U_{1}^{N}=\boldsymbol{R}[G / N]$, and $U_{2}^{N}=0$. By Lemma 2.4, there exists a $\mathscr{P}(G)$-matched pair $\left(M_{1}, M_{2}\right)$ such that $\left[M_{1}^{N}\right]-\left[M_{2}^{N}\right]=m[\boldsymbol{R}[G / N]]-m|G / N|[\boldsymbol{R}]$ for some positive integer m. Then

$$
\begin{aligned}
& \left(\left[M_{1}^{N}\right]-\left[M_{2}^{N}\right]\right)+(m|G / N|-m)\left(\left[U_{1}^{N}\right]-\left[U_{2}^{N}\right]\right) \\
& \quad=m[\boldsymbol{R}[G / N]]-m|G / N|[\boldsymbol{R}]+(m|G / N|-m)[\boldsymbol{R}[G / N]] \\
& \quad=m|G / N|([\boldsymbol{R}[G / N]]-[\boldsymbol{R}]) \\
& \quad=m|G / N|\left[\boldsymbol{R}[G / N]-\boldsymbol{R}[G / N]^{G}\right] .
\end{aligned}
$$

Thus there exists a $\mathscr{P}(G)$-matched pair $\left(V_{1}, V_{2}\right)$ such that $V_{1}^{N}=(\boldsymbol{R}[G / N]-$ $\left.\boldsymbol{R}[G / N]^{G}\right)^{\oplus n}$ and $V_{2}^{N}=0$, where n is a positive integer. Set $x=\left[V_{1}\right]-\left[V_{2}\right]$. Replacing $\left(V_{1}, V_{2}\right)$ if necessary, we may suppose that if $y \in \operatorname{RO}(G)_{\mathscr{P}(G)}^{\{G\}}$ satisfies $k y=x$ for an integer k then $k=1$ or -1 . Namely the element x is a basis element of $\operatorname{RO}(G)_{\mathscr{P}(G)}^{\{G\}}$. By Theorem 4.8, we have $\langle x\rangle_{\boldsymbol{Z}} \subseteq \operatorname{RO}(G, \mathfrak{D S})$. If additionally $a_{G}=2$, then $\operatorname{RO}(G)_{\mathscr{P}(G)}^{\{G\}}=\langle x\rangle_{\boldsymbol{Z}}$. Since $\operatorname{RO}(G, \mathfrak{D S}) \subseteq \operatorname{RO}(G)_{\mathscr{P}(G)}^{\{G\}}$, we conclude $\operatorname{RO}(G, \mathfrak{D S})=\operatorname{RO}(G)_{\mathscr{P}(G)}^{\{G\}}$.

Remark 10.1. By a little further work, we can see the following. Let G be a gap Oliver group containing a subgroup K with the following properties. Set $N=K^{\text {nil }}$.
(1) K is an Oliver group
(2) N has a subquotient group isomorphic to a dihedral group $D_{2 q r}$ of order $2 p q$ with distinct primes q and r.
(3) K / N is a nontrivial group of odd order.
(4) $K \backslash N$ contains an element not of prime power order, i.e. $|\overline{\mathscr{P}}(K \backslash N)|>0$.
(5) $|\overline{\mathscr{P}}(g N)|=\left|\overline{\mathscr{P}}\left(g^{\prime} N\right)\right|$ for all $g, g^{\prime} \in K \backslash N$.

Then $\operatorname{RO}(G, \mathfrak{D S})$ contains an element $x=[V]-[W]$ such that $\operatorname{dim} V^{N} \neq \operatorname{dim} W^{N}$, and hence $\operatorname{RO}(G, \mathfrak{D S}) \neq 0$.

Proof of Theorem 1.5. Let x be an element in $\operatorname{RO}(G)_{\mathscr{P}(G)}^{\mathscr{L}(G)}$. We have a $\mathscr{P}(G)$-matched pair $\left(V_{1}, V_{2}\right)$ such that $x=\left[V_{1}\right]-\left[V_{2}\right]$ and V_{1} and V_{2} are $\mathscr{L}(G)$-free. By hypothesis, G has a gap real G-module V. By Lemma 5.4, any irreducible real H-module, where $H \in \mathscr{M}(G)$, is isomorphic to a submodule of $\operatorname{res}_{H}^{G} \boldsymbol{R}[G]_{\mathscr{L}}$. By [35, Theorem 4.1] or Corollary 4.4, $V_{1} \oplus\left(V \oplus \boldsymbol{R}[G]_{\mathscr{L}}\right)^{\oplus h}$ and $V_{2} \oplus\left(V \oplus \boldsymbol{R}[G]_{\mathscr{L}}\right)^{\oplus h}$ are \mathfrak{D}-related whenever h is sufficiently large. Moreover, by [35, Theorem 4.3], the real G-modules $V_{1} \oplus\left(V \oplus \boldsymbol{R}[G]_{\mathscr{L}}\right)^{\oplus k}$ and $V_{2} \oplus\left(V \oplus \boldsymbol{R}[G]_{\mathscr{L}}\right)^{\oplus k}$ are \mathfrak{S}-related whenever k is sufficiently large. Thus the real G-modules $V_{1} \oplus\left(V \oplus \boldsymbol{R}[G]_{\mathscr{L}}\right)^{\oplus \ell}$ and $V_{2} \oplus\left(V \oplus \boldsymbol{R}[G]_{\mathscr{L}}\right)^{\oplus \ell}$ are \mathfrak{D} S-related whenever ℓ is sufficiently large.

If $G^{\text {nil }}$ contains distinct two real conjugacy classes of elements not of prime power order, then by Lemma 2.1 we have the nontriviality $\operatorname{RO}(G)_{\mathscr{P}(G)}^{\mathscr{L}(G)} \neq 0$.

References

[1] M. F. Atiyah and R. Bott, A Lefshetz fixed point formula for elliptic complexes: II. Applications, Ann. of Math., 88 (1968), 451-491.
[2] G. E. Bredon, Representations at fixed points of smooth actions of compact groups, Ann. of Math., 89 (1969), 515-532.
[3] S. E. Cappell and J. L. Shaneson, Fixed points of periodic maps, Proc. Nat. Acad. Sci. USA, 77 (1980), 5052-5054.
[4] S. E. Cappell and J. L. Shaneson, Fixed points of periodic differentiable maps, Invent. Math., 68 (1982), 1-19.
[5] S. E. Cappell and J. L. Shaneson, Representations at fixed points, Group Actions on Manifolds, (ed. R. Schultz), Contemp. Math., 36 (1985), 151-158.
[6] E. C. Cho, Smith related representations of generalized quaternion groups, Group Actions on Manifolds, (ed. R. Schultz), Contemp. Math., 36 (1985), 317-322.
[7] E. C. Cho, s-Smith related representations of dihedral groups, Pacific J. Math., 135 (1988), 17-28.
[8] T. tom Dieck, Transformation Groups and Representation Theory, Lecture Notes in Math., 766, Springer Verlag, Berlin-Heidelberg-New York, 1979.
[9] K. H. Dovermann and T. Petrie, Smith equivalence of representations for odd order cyclic groups, Topology, 24 (1985), 283-305.
[10] K. H. Dovermann, T. Petrie and R. Schultz, Transformation groups and fixed point data, Group Actions on Manifolds, (ed. R. Schultz), Contemp. Math., 36 (1985), 159-189.
[11] K. H. Dovermann and D. Y. Suh, Smith equivalence for finite abelian groups, Pacific J.

Math., 152 (1992), 41-78.
[12] K. H. Dovermann and L. D. Washington, Relations between cyclotomic units and Smith equivalence of representations, Topology, 28 (1989), 81-89.
[13] GAP, Groups, Algorithms, Programming, a System for Computational Discrete Algebra, Release 4.3, 06 May 2002, URL: http://www.gap-system.org
[14] A. Koto, M. Morimoto and Y. Qi, The Smith sets of finite groups with normal Sylow 2-subgroups and small nilquotients, J. Math. Kyoto Univ., 48 (2008), 219-227.
[15] E. Laitinen and M. Morimoto, Finite groups with smooth one fixed point actions on spheres, Forum Math., 10 (1998), 479-520.
[16] E. Laitinen, M. Morimoto and K. Pawałowski, Deleting-inserting theorem for smooth actions of finite solvable groups on spheres, Comment. Math. Helv., 70 (1995), 10-38.
[17] E. Laitinen and K. Pawałowski, Smith equivalence of representations for finite perfect groups, Proc. Amer. Math. Soc., 127 (1999), 297-307.
[18] M. Masuda and T. Petrie, Lectures on transformation groups and Smith equivalence, Group Actions on Manifolds, (ed. R. Schultz), Contemp. Math., 36 (1985), 191-242.
[19] J. W. Milnor, Whitehead torsion, Bull. Amer. Math. Soc., 72 (1966), 358-426.
[20] J. W. Milnor and J. D. Stasheff, Characteristic Classes, Ann. Math. Stud., 76, Princeton Univ. Press, Princeton, New Jersey, 1974.
[21] M. Morimoto, The Burnside ring revisited, Current Trends in Transformation Groups, (eds. A. Bak, M. Morimoto and F. Ushitaki), K-Monographs in Math., 7, Kluwer Academic Publ., Dordrecht-Boston, 2002, pp. 129-145.
[22] M. Morimoto, Smith equivalent $\operatorname{Aut}\left(A_{6}\right)$-representations are isomorphic, Proc. Amer. Math. Soc., 136 (2008), 3683-3688.
[23] M. Morimoto, Fixed-point sets of smooth actions on spheres, J. K-Theory, 1 (2008), 95-128.
[24] M. Morimoto and K. Pawałowski, Equivariant wedge sum construction of finite contractible G-CW complexes with G-vector bundles, Osaka J. Math., 36 (1999), 767-781.
[25] M. Morimoto and K. Pawałowski, The equivariant bundle subtraction theorem and its applications, Fund. Math., 161 (1999), 279-303.
[26] M. Morimoto and K. Pawałowski, Smooth actions of Oliver groups on spheres, Topology, 42 (2003), 395-421.
[27] B. Oliver, Fixed point sets and tangent bundles of actions on disks and Euclidean spaces, Topology, 35 (1996), 583-615.
[28] R. Oliver, Fixed point sets of groups on finite acyclic complexes, Comment. Math. Helv., 50 (1975), 155-177.
[29] R. Oliver, Smooth compact Lie group actions on disks, Math. Z., 149 (1976), 79-96.
[30] R. Oliver and T. Petrie, G-CW surgery and $K(\boldsymbol{Z}[G])$, Math. Z., 179 (1982), 11-42.
[31] K. Pawałowski, Equivariant thickening for compact Lie group actions, Mathmatica Gottingensis, Heft 71 (1986).
[32] K. Pawałowski, Fixed point sets of smooth group actions on disks and Euclidean spaces, Topology, 28 (1989), 273-289.
[33] K. Pawałowski, Smith equivalence of group modules and the Laitinen conjecture, A survey, Geometry and Topology: Aarhus (1998), ed. K. Grove, I. H. Madsen, E. K. Pedersen, Contemp. Math., 258 (2000), 343-350.
[34] K. Pawałowski, Manifolds as fixed point sets of smooth compact Lie group actions, Current Trends in Transformation Groups, (eds. A. Bak, M. Morimoto and F. Ushitaki), KMonographs in Math., 7, Kluwer Acad. Publ., 2002, pp. 79-104.
[35] K. Pawałowski and R. Solomon, Smith equivalence and finite Oliver groups with Laitinen number 0 or 1, Algebr. Geom. Topol., 2 (2002), 843-895.
[36] K. Pawałowski and T. Sumi, The Laitinen Conjecture for finite solvable Oliver groups, Proc. Amer. Math. Soc., 137 (2009), 2147-2156.
[37] T. Petrie, G surgery, I, A survey, Algebraic and Geometric Topology, Santa Barbara, Calif., 1977, Lecture Notes in Math., 664, Springer Verlag, Berlin-Heidelberg-New York, 1978, pp. 197-233.
[38] T. Petrie, Pseudoequivalences of G-manifolds, Algebraic and Geometric Topology, Proc. Symp. in Pure Math., 32, 1978, pp. 169-210.
[39] T. Petrie, Three theorems in transformation groups, Algebraic Topology, Aarhus 1978, Lecture Notes in Math., 763, Springer Verlag, Berlin-Heidelberg-New York, 1979, pp. 549572.
[40] T. Petrie, The equivariant J homomorphism and Smith equivalence of representations, Current Trends in Algebraic Topology, (eds. M. Kane, S. O. Kochman, P. S. Serik and V. P. Snaith), CMS Conference Proc., 2, Part 2, 1982, pp. 223-233.
[41] T. Petrie, Smith equivalence of representations, Math. Proc. Cambridge Philos. Soc., 94 (1983), 61-99.
[42] T. Petrie and J. Randall, Transformation Groups on Manifolds, Marcel Dekker, Inc., New York and Basel, 1984.
[43] T. Petrie and J. Randall, Spherical isotropy representations, Publ. Math. IHES, 62 (1985), 5-40.
[44] C. U. Sanchez, Actions of groups of odd order on compact orientable manifolds, Proc. Amer. Math. Soc., 54 (1976), 445-448.
[45] R. Schultz, Problems submitted to the A.M.S. Summer Research Conference on Group Actions, Collected and edited by R. Schultz, Group Actions on Manifolds, (ed. R. Schultz), Contemp. Math., 36 (1985), 513-568.
[46] P. A. Smith, New results and old problems in finite transformation groups, Bull. Amer. Math. Soc., 66 (1960), 401-415.
[47] D. Y. Suh, s-Smith related representations of finite abelian groups, Group Actions on Manifolds, (ed. R. Schultz), Contemp. Math., 36 (1985), 323-329.
[48] T. Sumi, Finite groups possessing Smith equivalent, nonisomorphic representations, RIMS Kokyuroku 1569 (2007), Res. Inst. Math. Sci., Kyoto Univ., pp. 170-179.

Masaharu Morimoto

Graduate School of Natural Science and Technology Okayama University
Tsushimanaka 3-1-1
Okayama 700-8530, Japan
E-mail: morimoto@ems.okayama-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 57S25; Secondary 55M35, 57S17, 20C15.
 Key Words and Phrases. Smith equivalence, Laitinen's conjecture, tangent space, representation, gap condition.

 Partially supported by Grant-in-Aid for Scientific Research (KAKENHI) (No. 18540086), Japan Society for the Promotion of Science.

