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Abstract. Intersection sheaves are usually defined for a projective flat
surjective morphism of Noetherian schemes of relative dimension d and for d+1
invertible sheaves on the ambient scheme. In this article, the construction is
generalized to the case of the equi-dimensional projective surjective morphisms
to normal separated Noetherian schemes. Applications to the studies on family
of effective algebraic cycles and on polarized endomorphisms are also given.

Introduction.

Let π : X → Y be a flat projective surjective morphism of Noetherian schemes
of relative dimension d. For invertible sheaves L1, . . . ,Ld+1 on X, we can asso-
ciate an invertible sheaf I X/Y (L1, . . . ,Ld+1) on Y in a canonical way. Roughly
speaking, the invertible sheaf satisfies suitable conditions similar to those satisfied
by the fiber integral of Chern classes:

∫

π

c1(L1) ∧ · · · ∧ c1(Ld+1).

Especially, if π : X → Y is a morphism of algebraic k-schemes smooth over a field
k, then

c1

(
I X/Y (L1, . . . ,Ld+1)

)
= π∗

(
c1(L1) · · · c1(Ld+1)

)

in the Chow group CH1(Y ), where π∗ is the push-forward homomorphism
CHd+1(X) → CH1(Y ) of Chow groups, and c1 denotes the first Chern class in
CH1(X). In particular, I X/Y (L ) is the norm sheaf of L in case d = 0, and

2000 Mathematics Subject Classification. Primary 14C17, 14C20; Secondary 14C25, 14C35.

Key Words and Phrases. intersection sheaf, K-group, Chow variety, endomorphism.

This research was supported by Grant-in-Aid for Scientific Research (C) (No. 20540042),
Japan Society for the Promotion of Science.

http://dx.doi.org/10.2969/jmsj/06220487


488 N. Nakayama

I X/Y (L1, . . . ,Ld+1) ' I H/Y (L2|H , . . . ,Ld+1|H)

if L1 ' OX(H) for an effective relative Cartier divisor H on X with respect to π.
The sheaf I X/Y (L1, . . . ,Ld+1) is called the intersection sheaf, the intersection
bundle, or the Deligne pairing (when d = 1). For the Picard groups Pic(X)
and Pic(Y ), we have a homomorphism Symd+1 Pic(X) → Pic(Y ) by I X/Y . In
[6], Problème 2.1.2, Deligne posed a problem of constructing I X/Y as a functor
PIC (X)d+1

is → PIC (Y )is having natural properties on multi-additivity and base
change. Here PIC (X)is denotes the Picard category whose ‘objects’ are invertible
sheaves on X and whose ‘morphisms’ are isomorphisms of invertible sheaves. The
intersection sheaf I X/Y (L1, . . . ,Ld+1) can be defined a priori as a symmetric
difference of det Rπ∗(L ) for some invertible sheaves L (cf. Remark 2.11 below;
[7, p. 34]), but there is a problem of sign related to ‘det.’ The problem was solved
in [8], [10], [33], and [7] by several methods.

The flatness assumption is important for the functorial properties. In this ar-
ticle, we consider not the functoriality but the construction of intersection sheaves
for non-flat morphisms. More precisely, we shall construct intersection sheaves
for projective surjective equi-dimensional morphisms π : X → Y to normal sepa-
rated Noetherian schemes Y . The following is obtained mainly in Section 3 (cf.
Theorems 3.14 and 3.25; Propositions 2.15, 2.32, and 3.20):

Theorem. Let Y be a normal separated Noetherian integral scheme and
π : X → Y a projective equi-dimensional surjective morphism of relative dimension
d. Let U be a Zariski-open subset of Y such that codim(Y \ U) ≥ 2 and π is flat
over U . Then the intersection sheaf

I π−1(U)/U

(
L1|π−1(U), . . . ,Ld+1|π−1(U)

)

defined for invertible sheaves L1, . . . ,Ld+1 ∈ Pic(X), naturally extends to an in-
vertible sheaf I X/Y (L1, . . . ,Ld+1) on Y . In particular, I X/Y induces a natural
homomorphism Symd+1 Pic(X) → Pic(Y ). Moreover, it has the following proper-
ties:

(1) Suppose that, for any i, there exists a surjection π∗Gi → Li for a locally
free sheaf Gi on Y of finite rank. Then there is a surjection

Φ: Syme1(G1)⊗ · · · ⊗ Symed+1(Gd+1) → I X/Y (L1, . . . ,Ld+1),

where ei is the intersection number

iF /k(L1|F , . . . ,Li−1|F ,Li+1|F , . . . ,Ld+1|F ;F )
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for the generic fiber F of π and the function field k of Y (cf. Definition
1.11 below), and where Sym stands for the symmetric tensor product.

(2) Let g : Y ′ → Y be a dominant morphism of finite type from another normal
separated Noetherian scheme Y ′, π′ : X ′ = X ×Y Y ′ → Y ′ the pullback of
π, and g′ : X ′ → X the pullback of g. Then

I X′/Y ′
(
g′∗L1, . . . , g

′∗Ld+1

) ' g∗I X/Y

(
L1, . . . ,Ld+1

)
.

The sheaf I X/Y (L1, . . . ,Ld+1) is first defined as a reflexive sheaf (cf. Def-
inition 1.16 below; [23, Section 1]) of rank one, but after certain discussion, it is
shown to be invertible (cf. Section 3.2). By the invertibility, we can prove that, for
the equi-dimensional morphism π : X → Y , if X is normal and Q-factorial (i.e.,
every Weil divisor is Q-Cartier), then so is Y (cf. Theorem 3.18).

The surjection Φ above can be regarded as a homomorphism giving the resul-
tant: For sections vi ∈ H0(Y,Gi) and its images si ∈ H0(X, Li), Φ(ve1

1 ⊗· · ·⊗v
ed+1
d+1 )

is the resultant of sections s1, . . . , sd+1, up to unit. In particular, Φ(ve1
1 ⊗· · ·⊗v

ed+1
d+1 )

does not vanish at a point y ∈ Y if and only if div(s1)∩· · ·∩div(sd+1)∩π−1(y) = ∅.
The intersection number iX/k(L1,L2, . . . ,Ld;F ) is defined for invertible

sheaves Li (1 ≤ i ≤ d) and coherent sheaves F on projective varieties X defined
over a field k with d = dim SuppF (cf. Definition 1.11 below). As an analogy, we
can define the intersection sheaf I F/Y (L1, . . . ,Ld+1) by replacing X with a co-
herent sheaf F such that SuppF → Y is equi-dimensional and dim(SuppF )/Y =
d. Moreover, we can define I F/Y as a homomorphism Grd+1

F K•(X) → Pic(Y )
for the λ-filtration {F iK•(X)} of the Grothendieck K-group K•(X) = K0(X). A
similar result to the theorem above also holds for the intersection sheaves I F/Y (η)
for η ∈ Grd+1

F K•(X). For example, for a locally free sheaf E on X of rank r and
for a Chern polynomial P = P (x1, . . . , xr) of weighted degree d + 1, we have the
intersection sheaf I F/Y (P (E )) = I F/Y (P (c1(E ), . . . , cr(E ))). In Theorem 2.41
and Corollary 3.21 below, we prove that if E is generated by finitely many global
sections and if P is numerically positive for ample vector bundles (cf. Definition
2.38) in the sense of [14], then I F/Y (P (E )) is also generated by finitely many
global sections.

Suppose that π : X → Y is an equi-dimensional surjective morphism of nor-
mal projective varieties over a field such that d = dim X/Y . For invertible sheaves
L1, . . . ,Ld+1 on X, let M be the intersection sheaf I X/Y (L1, . . . ,Ld+1). If the
invertible sheaves Li are generated by global sections, then so is M . Similarly,
some numerical properties on the invertible sheaves Li descend to M . For exam-
ple, if Li are all ample (resp. nef and big), then so is M (cf. Corollary 4.6). For
a Chern polynomial P (x1, . . . , xr) of weighted degree d + 1 which is numerically
positive for ample vector bundles in the sense of [14], we prove in Theorem 4.7
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below that I X/Y (P (E )) is ample if E is an ample locally free sheaf of rank r. If
X ⊂ V × Y for a projective variety V and if Li are the pullbacks of very ample
invertible sheaves of V by the first projection X → V , then M is isomorphic to
the pullback of an ample invertible sheaf on T for the Stein factorization Y → T

of the morphism Y → Chow(V ) into the Chow variety of V , which associates a
general point y ∈ Y the algebraic cycle cyc(π−1(y)) of V for the fiber π−1(y)
(cf. Section 4.2). In particular, the base point free linear system |M⊗m| for some
m > 0 defines the Stein factorization of Y → Chow(V ). By the property, we
have the notion of Chow reduction (cf. Definition 4.15) for a dominant rational
map X ···→Y of normal projective varieties, and also the notion of special MRC
fibration (cf. Theorem 4.18) for uniruled complex projective varieties generalizing
the notion of maximal rationally connected (= MRC) fibration (cf. [4], [28], [16])
defined for smooth varieties. The following results on endomorphisms are proved
in Theorem 4.19 and Corollary 4.20:

( i ) If f : X → X is a finite surjective morphism for a normal complex uniruled
projective variety X, then f descends to an endomorphism h : Y → Y of
the base Y of the special MRC fibration X ···→Y .

( ii ) Here, if f is a polarized endomorphism, i.e., f∗A ' A ⊗q for some q > 0 and
an ample invertible sheaf A , then the endomorphism h is also polarized.

The motivation of this article is a question by D.-Q. Zhang on [43, Proposition
2.2.4], which is a similar result to above on the endomorphisms of complex normal
projective uniruled varieties and on the MRC fibration, where the intersection
sheaf is used for proving (ii), but the notion of intersection sheaf is defined only for
flat morphisms in the paper [43]. The results (i) and (ii) above solve the question.
The results in Section 4.3 are used in a joint paper [37] with D.-Q. Zhang.

It is hopeless to give a similar definition of the intersection sheaves I X/Y (η)
for a proper equi-dimensional surjective non-flat morphism X → Y to a non-
normal base scheme (cf. Remark 3.8). In order to extend the notion of intersection
sheaf to the non-normal case, we must add some additional data. For example,
[1] studies the ‘incidence divisors’ for analytic families of cycles parametrized by
a reduced complex analytic space, where the invertible sheaf associated with an
incidence divisor can be regarded as an intersection sheaf. However, the definition
of the analytic family requires more than the equi-dimensionality.

This article is organized as follows: After preparing basics on K-groups in
Section 1, we define and study the intersection sheaves I F/Y (η) in Section 2 for
Y -flat coherent sheaves F on X and η ∈ Grd+1

F K•(X) with d = (dimF )/Y for
a projective morphism π : X → Y , under a suitable assumption: Assumption 2.1.
We use essentially the same argument as in [8], [33], and the description of the
Hilbert-Chow correspondence in [32, Chapter 5]. In Section 3, we consider the
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case where Y is a normal separated Noetherian integral scheme. For a locally pro-
jective surjective morphism π : X → Y , we define the intersection sheaf I F/Y (η)
for a coherent sheaf F on X and η ∈ Grd+1

F K•(X) with dimSuppF ∩π−1(y) ≤ d

for any y ∈ Y . The invertibility of I F/Y (η) and some base change properties
are proved in Sections 3.2 and 3.3. We apply these fundamental results obtained
in Sections 2 and 3 to the equi-dimensional surjective morphisms of projective
varieties over a field in Section 4. We prove some numerical properties of the
intersection sheaves in Section 4.1, give a relation to morphisms into Chow vari-
eties in Section 4.2, and finally in Section 4.3 have some of results on polarized
endomorphisms of projective varieties answering the question of D.-Q. Zhang.

Acknowledgements. The author expresses his gratitude to Professor De-
Qi Zhang for the question on polarized endomorphisms and for continuous dis-
cussion during the preparation of this article. The author also thanks Professor
Yoshio Fujimoto for his encouragement.

1. Grothendieck K-groups.

We recall elementary properties of Grothendieck K-groups (cf. [22], [2]).
Even though all the assertions in this section are well-known for specialists, we
introduce here some notions, conventions, and terminologies, used for the main
part of this article. Some of definitions and basic properties are explained in
Section 1.1, and several pull-back and push-forward homomorphisms associated
to morphisms of schemes are explained in Section 1.2. In Section 1.3, the Chern
classes in the K-theory are discussed and an expression of the top Chern class of a
locally free sheaf is mentioned in Lemma 1.7. The notion of intersection numbers
is briefly explained in Section 1.4. In Section 1.5, the first two graded pieces of
the coniveau filtration, i.e., Gr0con and Gr1con, are discussed.

1.1. K-groups and filtrations.
Let X be a Noetherian scheme. Let K•(X) (resp. K•(X)) be the

Grothendieck group on the locally free sheaves (resp. coherent sheaves) on X.
For a locally free (resp. coherent) sheaf F , let cl•(F ) = cl•X(F ) (resp. cl•(F ) =
clX•(F )) denote the corresponding element in K•(X) (resp. K•(X)). Note that
K•(X) is the K0 group in the K-theory. The tensor products of locally free sheaves
give K•(X) a ring structure and give K•(X) a structure of K•(X)-module so that
the canonical homomorphism φ : K•(X) → K•(X), which is called the Cartan
homomorphism, is K•(X)-linear. Here, cl•(OX) is the unit element 1 of the ring
structure of K•(X), and φ : K•(X) → K•(X) is regarded as the multiplication
map by φ(1) = cl•(OX) ∈ K•(X). If X is a regular separated Noetherian scheme,
then φ : K•(X) → K•(X) is isomorphic by the existence of global locally free
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resolution for coherent sheaves (cf. [22, Exp. II, Proposition 2.2.3 and Exp. II,
Corollaire 2.2.7.1]).

The ring H0(X, Z) of locally constant Z-valued functions is a direct sum-
mand of K•(X), in which a projection ε : K•(X) → H0(X, Z), called the augmen-
tation map, is given by cl•(E ) 7→ rankE for locally free sheaves E . The λ-ring
structure (cf. [22, Exp. V], [27, Chapter I]) of K•(X) is introduced by setting
λp(cl•(E )) = cl•(

∧p E ) for locally free sheaves E : Note that the group homo-
morphisms λn : K•(X) → K•(X) for non-negative integers n satisfy λ0(x) = 1,
λ1(x) = x, and

λn(x + y) =
n∑

i=0

(
n

i

)
λn−i(x)λi(y)

for any x, y ∈ K•(X). In particular, λt(x + y) = λt(x)λt(y) for the formal power
series

λt(x) :=
∞∑

n=0

λn(x)tn ∈ K•(X)[[t]].

The augmentation map ε is a λ-homomorphism with respect to the natural λ-
ring structure of H0(X, Z). The operator γp : K•(X) → K•(X) for an integer
p ≥ 0 associated with the λ-ring structure is defined by γp(x) = λp(x + p − 1)
for x ∈ K•(X), where the integer p − 1 is regarded as an element of K•(X) by
p−1 = (p−1)1 = (p−1) cl•(OX). The λ-filtration {F pK•(X)} of K•(X) is defined
as follows: F pK•(X) = K•(X) for p ≤ 0, F 1K•(X) = Ker(ε), and F pK•(X) for
p ≥ 2 is generated by

γk1(x1)γk2(x2) · · · γkl(xl)

with xi ∈ Ker(ε) and
∑

ki ≥ p. Then K•(X) is a filtered ring, i.e.,
F pK•(X)F qK•(X) ⊂ F p+qK•(X) for p, q ≥ 0. For Gri

F K•(X) =
F iK•(X)/F i+1K•(X), we have

Gr0F (X) ' H0(X, Z) and Gr1F (X) ' Pic(X),

by [22, Exp. X, Théorème 5.3.2], where Pic(X) denotes the Picard group of X.
On the other hand, K•(X) also has a natural filtration {F p

conK•(X)}, called
the coniveau filtration, which is defined as follows (cf. [22, Exp. X, Remarque
1.4 and Exp. X, Exemple 1.5], [15, Definition 32]): F p

conK•(X) is generated by
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cl•(F ) for coherent sheaves F with codim SuppF ≥ p. We have another natural
subgroup FpK•(X) ⊂ K•(X) for p ≥ 0, which is generated by cl•(F ) for the
coherent sheaves F with dimSuppF ≤ p. Note that K•(X) =

⋃
p≥0 FpK•(X)

does not hold unless dimX is bounded. If X is of finite type over a field and if X

is of pure dimension n, then F p
conK•(X) = Fn−pK•(X). The following properties

are known for the filtration FpK•(X) by [22, Exp. X, Corollaire 1.1.4 and Exp.
X, Théorème 1.3.2]:

( i ) GrF
p K•(X) = FpK•(X)/Fp−1K•(X) is generated by cl•(OZ) for the closed

integral subschemes Z of dimension p.
( ii ) F pK•(X)FqK•(X) ⊂ Fq−pK•(X) for any p, q ≥ 0. In particular, if

dimX ≤ n, then φ(F pK•(X)) ⊂ Fn−pK•(X).

Similar properties are also satisfied for the filtration F p
conK•(X):

(iii) Grp
Fcon

K•(X) = F p
conK•(X)/F p+1

con K•(X) is generated by cl•(OZ) for the
closed integral subschemes Z of codimension p.

(iv) F pK•(X)F q
conK•(X) ⊂ F p+q

con K•(X) for any p, q ≥ 0. In particular, we have
φ(F pK•(X)) ⊂ F p

conK•(X).

The property (iii) is proved by the same argument as in the proof of (i) in [22,
Exp. X, Corollaire 1.1.4]. The property (iv) is proved in Proposition 3.2 below.

Convention. For the sake of simplicity, we write

F p(X) = F pK•(X), F p
con(X) = F p

conK•(X), Fp(X) = FpK•(X),

Gp(X) = Grp
F K•(X), Gp

con(X) = Grp
Fcon

K•(X), Gp(X) = GrF
p K•(X),

G•(X) =
⊕

p≥0

Gp(X), G•con(X) =
⊕

p≥0

Gp
con(X), G•(X) =

⊕

p≥0

Gp(X).

Then, G•(X) is a graded ring, and G•con(X) and G•(X) have graded G•(X)-
module structures by Gp(X) ⊗ Gq

con(X) → Gp+q
con (X) and Gp(X) ⊗ Gq(X) →

Gq−p(X), respectively. We denote by G(φ) : Gp(X) → Gp
con(X) the homomor-

phism induced from the Cartan homomorphism φ : K•(X) → K•(X).

Remark. Suppose that X is an n-dimensional smooth algebraic variety
defined over a field. Then φ : K•(X) → K•(X) is isomorphic and F p

con(X) =
Fn−p(X) ⊂ K•(X). Moreover, K•(X) has a structure of filtered ring by
{F p

con(X)}, i.e., F p
con(X)F q

con(X) ⊂ F p+q
con (X) for any p, q ≥ 0 (cf. [22, Exp. 0,

App. II, Théorème 2.12, Corollaire 1]). Since φ(F p(X)) ⊂ F p
con(X), we have a

ring homomorphism G(φ) : G(X) → Gcon(X), which is not necessarily isomorphic
but G(φ) ⊗Q is an isomorphism (cf. [22, Exp. XIV, Section 4.5 and Exp. VII,
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Proposition 4.11]).

1.2. Pull-back and push-forward homomorphisms.
Let f : X → Y be a morphism of Noetherian schemes. We discuss several

homomorphisms between K-groups induced from f .
Firstly, we have the pullback homomorphism f? : K•(Y ) → K•(X) which is

a λ-ring homomorphism and which maps cl•Y (E ) to cl•X(f∗E ) for a locally free
sheaf E on Y : In order to avoid confusion with the sheaf pullback f∗, we use the
symbol f? instead. Here, f?F p(Y ) ⊂ F p(X), and hence G(f?) : Gp(Y ) → Gp(X)
is induced; sometimes G(f?) is denoted by f? for simplicity. For a morphism
g : Y → Z to another Noetherian scheme Z, we have (g ◦ f)? = f? ◦ g?. If f is an
immersion, then f?(η) is denoted by η|X for η ∈ K•(Y ) or for η ∈ G•(Y ).

Secondly, we have the push-forward homomorphism f? : K•(X) → K•(Y )
when f is proper, in which f? maps clX•(F ) to

∑
i≥0(−1)i clY •(Ri f∗F ) for

a coherent sheaf F : In order to avoid confusion with f∗ as the direct im-
age of sheaves, we use the symbol f? instead. Here, f?Fp(X) ⊂ Fp(Y ), since
dimSupp Ri f∗F ≤ dimSuppF for any i for any coherent sheaf F on X. In
particular, G(f?) : Gp(X) → Gp(Y ) is induced; sometimes G(f?) is denoted by
f? for simplicity. We have the following projection formula for x ∈ K•(X) and
y ∈ K•(Y ):

f?(x · f?y) = f?(x) · y. (1.1)

This follows from the usual projection formula Ri f∗(F ⊗ f∗E ) ' (Ri f∗F ) ⊗ E
for coherent sheaves F on X and locally free sheaves E on Y . As a result, we
infer that f? : K•(X) → K•(Y ) is K•(Y )-linear and G(f?) : G•(X) → G•(Y ) is
G•(Y )-linear. Note that (g ◦ f)? = g? ◦ f? as a homomorphism K•(X) → K•(Z)
for a proper morphism g : Y → Z to another Noetherian scheme Z.

Thirdly, we have another natural pullback homomorphism f? : K•(Y ) →
K•(X) when f is flat (cf. [22, Exp. IV, 2.12]). Here, f?(cl•(G )) = cl•(f∗G )
for a coherent sheaf G on Y . This is compatible with f? : K•(Y ) → K•(X) via
the Cartan homomorphisms φ. Here, f?F p

con(Y ) ⊂ F p
con(X) for any p, and hence

G(f?) : Gp
con(Y ) → Gp

con(X) is induced. If g : Z → Y is a proper morphism, then
for the fiber product W = Z ×Y X and for the natural projections p1 : W → Z

and p2 : W → X, we have the base change formula

f?(g?(z)) = p2?(p?
1(z)) (1.2)

for z ∈ K•(Z) (cf. [22, Exp. IV, Proposition 3.1.1]).
We add some remarks on f? and f?. If f is proper, flat, and of relative
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dimension d, then f?F p+d
con (X) ⊂ F p

con(Y ) for f? : K•(X) → K•(Y ) by the formula:

dimOX,x = dim OY,f(x) + dimOX,x ⊗OY,f(x) k(f(x)),

where k(y) denotes the residue field of OY,y. For an open immersion j : U ↪→ X

and for the closed immersion i : Z ↪→ X from the complement Z = X \U , we have
the following natural exact sequence (cf. [22, Exp. 0, App. II, Proposition 2.10]):

K•(Z) i?−→ K•(X)
j?

−→ K•(U) → 0. (1.3)

1.3. Algebraic cycles and Chern classes.
Let X be a Noetherian scheme. An algebraic cycle Z =

∑
niZi on X is

a finite linear combination of closed integral subschemes Zi of X with integral
coefficients ni. If the coefficients ni are all non-negative, then Z is called effective.
If dimZi = k (resp. codim Zi = k) for all i, then Z is called a cycle of dimension
k (resp. of codimension k). The group of algebraic cycles of dimension k (resp.
codimension k) is denoted by Zk(X) (resp. Z k(X)).

Definition 1.1. Let F be a coherent sheaf on X. For an irreducible com-
ponent W of SuppF , we define the length lW (F ) of F along W as the length
of the OX,x-module Fx for the generic point x of W . This is well-defined, since
OX,x is Artinian. We define an effective algebraic cycle by

cyc(F ) :=
∑

W⊂Supp F

lW (F )W,

where the summation is taken over all the irreducible components W of SuppF .
If dimSuppF ≤ k, then we set

cyck(F ) :=
∑

dim W=k, W⊂Supp F

lW (F )W ∈ Zk(X).

If codimSuppF ≥ k, then we set

cyck(F ) :=
∑

codim W=k, W⊂Supp F

lW (F )W ∈ Z k(X).

We write cyc(V ) = cyc(OV ) for closed subschemes V .
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We have natural homomorphisms cl• : Z k(X) → F k
con(X) ⊂ K•(X) and

cl• : Zk(X) → Fk(X) ⊂ K•(X) defined by cl•(Z) =
∑

ni cl•(OZi
), where

Z =
∑

niZi for closed integral subschemes Zi and ni ∈ Z. Then, cl•(cyck(F )) ≡
cl•(F ) mod F k+1

con (X) and cl•(cyck(G )) ≡ cl•(G ) mod Fk−1(X) for coherent
sheaves F and G with codimSuppF = dim SuppG = k.

Remark. Suppose that X is an n-dimensional smooth quasi-projective
variety over a field. The Chow group CHk(X) (resp. CHk(X)) is defined as
the quotient group of Zk(X) (resp. Z k(X)) by the rational equivalence rela-
tion. Here, CHi(X) ' CHn−i(X) for i ≥ 0, since Z i(X) = Zn−i(X). Then
CH(X) =

⊕n
i=0 CHi(X) has a graded ring structure by the intersection theory,

which is called the Chow ring of X. The map cl• : Z k(X) → F k
con(X) above in-

duces G(cl•) : CHk(X) → Gk
con(X) and a ring homomorphism G(cl•) : CH(X) →

G•con(X).

Definition 1.2 (Chern class, cf. [22, Exp. VI, (6.7.1)]). The p-th Chern
class of x ∈ K•(X) for p ≥ 0 in the K-theory is defined to be

cp(x) := γp(x− ε(x)) mod F p+1(X) ∈ Gp(X),

where ε is the augmentation map. For a locally free sheaf E , we write cp(E ) =
cp(cl•(E )).

Remark (cf. [22, Exp. 0, App. II, Section 5]). Suppose that X is an n-
dimensional smooth quasi-projective variety over a field. Then we have the map
of the i-th Chern class ci : K•(X) → CHi(X) for 0 ≤ i ≤ n. The Chern class ci(x)
and the Chern class ci(x) in the K-theory for x ∈ K•(X) are related by

G(cl•)(ci(x)) = G(φ)(ci(x)).

Definition 1.3. For an invertible sheaf L on X, we set

δ(L ) = δX(L ) := 1− cl•(L −1) ∈ F 1(X).

Furthermore, for invertible sheaves L1, . . . ,Ll on X, we set

δ(L1, . . . ,Ll) = δ
(l)
X (L1, . . . ,Ll) := δ(L1) δ(L2) · · · δ(Ll) ∈ F l(X).
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Remark 1.4.

(1) δ(L ⊗L ′) = δ(L ) + δ(L ′)− δ(L ,L ′) for two invertible sheaves L and
L ′.

(2) δ(L ) mod F 2(X) = c1(L ) ∈ G1(X) for an invertible sheaf L . In fact,

δ(L )− γ1(cl•(L )− 1) = 1− cl•(L −1)− (cl•(L )− 1)

= (cl•(L )− 1)(cl•(L −1)− 1)

= γ1(cl•(L )− 1)γ1(cl•(L −1)− 1) ∈ F 2(X).

In particular,

δ(L1, . . . ,Ll) mod F l+1(X) = c1(L1) · · · c1(Ll) = cl(L1 ⊕ · · · ⊕Ll).

(3) We have the following explicit expression:

δ(L1, . . . ,Ll) =
l∑

k=0

(−1)k
∑

1≤i1<···<ik≤l

cl•
( k⊗

j=1

L −1
ij

)

= 1−
l∑

i=1

cl•(L −1
i ) + · · ·+ (−1)l cl•(L −1

1 ⊗ · · · ⊗L −1
l ).

Remark 1.5. The determinant map det : K•(X) → Pic(X) is defined by
det(cl•(E )) = det E for locally free sheaves E . We note that

det(xy) ' det(x)⊗ε(y) ⊗ det(y)⊗ε(x)

for x, y ∈ K•(X). Since det is trivial on F 2(X) by [22, Exp. X, Lemma 5.3.4],
a homomorphism G1(X) → Pic(X) is induced by det. This is an isomorphism
and its inverse is the first Chern class map c1 : Pic(X) → G1(X), by [22, Exp. X,
Théorème 5.3.2].

Definition 1.6. Let F be a coherent sheaf and E a coherent locally free
sheaf on X. Let σ be a section of E and let σ∨ : E ∨ = H om(E ,OX) → OX denote
the dual of σ : OX → E .

(1) The zero subscheme V (σ) of the section σ is a closed subscheme defined by
Coker(σ∨) = OV (σ).

(2) σ is called F -regular, if, for any point P ∈ V (σ) and for a local trivialization
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EP ' O⊕r
P , the germ σP ∈ EP corresponds to an FP -regular sequence. In

other words, the natural Koszul complex

[
· · · →

p∧
(E ∨) →

p−1∧
(E ∨) → · · · → E ∨ σ∨−−→ OX → 0

]

defined by σ∨ induces an exact sequence

· · · → F ⊗
p∧

(E ∨) → F ⊗
p−1∧

(E ∨) →

· · · → F ⊗ E ∨ → F → F ⊗ OV (σ) → 0. (1.4)

(3) Suppose that E = L1⊕· · ·⊕Ll for invertible sheaves L1, . . . ,Ll and that σ

is given by sections σi of Li for 1 ≤ i ≤ l. Then, we define V (σ1, . . . , σl) :=
V (σ). Similarly, (σ1, . . . , σl) is called F -regular if so is σ.

Lemma 1.7 (cf. [17, Théorème 2]). Let E be a locally free sheaf of rank r

on X.

(1) For the formal power series λt(x) =
∑

p≥0 λp(x)tp ∈ K•(X)[[t]] for x ∈
K•(X),

λ−1(E ) := λ−1(cl•(E )) = λt(cl•(E ))|t=−1

is well-defined as an element of K•(X), and is equal to (−1)rγr(cl•(E )−r).
In particular, cr(E ) = λ−1(E ∨) mod F r+1(X).

(2) Let F be a coherent sheaf and σ an F -regular section of E . Then,

λ−1(E ∨) cl•(F ) = cl•(F ⊗ OV (σ)). (1.5)

In particular,

cr(E )
(
cl•(F ) mod F k+1

con (X)
)

= cl•(F ⊗ OV (σ)) mod F k+r+1
con (X), if codim F ≥ k,

cr(E )
(
cl•(F ) mod Fk−1(X)

)

= cl•(F ⊗ OV (σ)) mod Fk−r−1(X), if dimF ≤ k.

Proof. For x ∈ K•(X), formally, we have
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λ−1(x) = λt(x)|t=−1 =
∑

p≥0

(−1)pλp(x).

If x = cl•(E ), then λp(x) = cl•(
∧p E ) = 0 for p > r. Hence, λ−1(E ) is well-

defined. The formal power series γt(x) :=
∑

p≥0 γp(x)tp is related to λt(x) by
λt(x) = γt/(1+t)(x) and γt(x) = λt/(1−t)(x). Thus, the following equalities hold:

λt(x) = λt(x− r)λt(r) = γt/(1+t)(x− r)(1 + t)r =
∑

p≥0

γp(x− r)tp(1 + t)r−p,

(1.6)

γt(x− r) = γt(x)γt(r)−1 = λt/(1−t)(x)(1− t)r =
∑

p≥0

λp(x)tp(1− t)r−p. (1.7)

We have γp(cl•(E ) − r) = 0 for p > r by (1.7), since λp(cl•(E )) = 0 for p > r.
Therefore, substituting t = −1 in (1.6), we have the expected equality λ−1(E ) =
(−1)rγr(cl•(E ) − r). The other formula in the assertion (1) follows from the
equality cr(E ) = (−1)rcr(E ∨) (cf. Remark 1.8 below). The assertion (2) is
derived from the exact sequence (1.4). ¤

Remark 1.8. For a locally free sheaf E of rank r on X, suppose that there
is a flag 0 = E0 ⊂ E1 ⊂ · · · ⊂ Er = E of subbundles such that Li := Ei/Ei−1 is
an invertible sheaf for any 1 ≤ i ≤ r. Then cl•(E ) =

∑r
i=1 cl•(Li), cl•(E ∨) =∑r

i=1 cl•(L ∨
i ), and

γt(cl•(E ∨)− r) = γt

(
−

r∑

i=1

δ(Li)
)

=
r∏

i=1

γt(− δ(Li)) =
r∏

i=1

(1− δ(Li)t), (1.8)

where the last equality follows from (1.7): In fact, γt(x − 1) = (1 − t) + xt =
1 + (x − 1)t if λp(x) = 0 for any p > 1. Comparing the coefficient of tp in (1.8),
we have

(−1)pγp(cl•(E ∨)− r) =
∑

1≤i1<···<ip≤r

δ(Li1 , . . . ,Lip)

for 1 ≤ p ≤ r. In particular, λ−1(E ∨) = δ(L1, . . . ,Lr). Moreover,

(−1)pcp(E ∨) =
∑

1≤i1<···<ip≤r

c1(Li1) · · · c1(Lip) = cp(E ) ∈ Gp(X)
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from the equality above. Many equalities on the Chern classes related to E are
derived from the same argument on the pullback q∗(E ) for the flag scheme q : F →
X of E . Here, F is a universal scheme parametrizing the flags 0 = E0 ⊂ E1 ⊂ · · · ⊂
Er of subbundles of the pullback ET of E to an X-scheme T such that Ei/Ei−1 is
invertible for any 1 ≤ i ≤ r. Then, q : F → X is a composite of projective space
bundles, and K•(X) is a direct summand of K•(F ) by q? : K•(X) → K•(F ) and
F p(F ) ∩ K•(X) = F p(X) for any p ≥ 0 (cf. [22, Exp. VI, Proposition 3.1 and
Corollaire 5.5]). Hence, we can check some of equalities related to cp(E ) by pulling
back E to F . For example, the equality cp(E ∨) = (−1)pcp(E ) for general E is
proved by the argument.

Notation (Div). Let A be a local Noetherian ring of depthA = 1 and M

a finitely generated A-module. Assume that Mp = 0 for any associated prime p of
A and that M has finite Tor-dimension. Then, there is an exact sequence

0 → A⊕r h−→ A⊕r → M → 0

of A-modules for some r > 0, by a theorem of Auslander and Buchsbaum. The
determinant det(h) ∈ A defines an effective Cartier divisor on SpecA, which we
denote by DivA(M). Note that the divisor DivA(M) does not depend on the
choice of exact sequences above (cf. [32, Chapter 5, Section 3]).

Lemma 1.9. Let G • = [· · · → G i → G i+1 → · · · ] be a bounded complex of
locally free sheaves G i of finite rank on X. For the cohomology sheaves H i =
H i(G •), assume the following conditions:

• If depthOX,x = 0, then the stalk H i
x = 0 for any i ∈ Z.

• If depthOX,x = 1, then the stalk H i
x = 0 for any i 6= 0.

Then, there exists uniquely an effective Cartier divisor Div(G •) on X such that

det(G •) :=
⊗

i∈Z

(detG i)⊗(−i) ' OX(Div(G •)), and

Div(G •)|Spec OX,x
= Div(H 0(G •)x)

for any point x ∈ X with depthOX,x = 1. In particular,

cl•(G •) :=
∑

i∈Z

(−1)i cl•(G i) = δ
(
OX(Div(G •))

)
.
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Moreover, if another bounded complex G ′• = [· · · → G ′i → G ′i+1 → · · · ] of lo-
cally free sheaves of finite rank on X is quasi-isomorphic to G •, then Div(G •) =
Div(G ′•).

Proof. We follow the argument of [32, Chapter 5, Section 3]. Let Z 0 =
Z 0(G •) be the kernel of G 0 → G 1 and let B0 = B0(G •) be the image of G−1 →
G 0. Then, we have an exact sequence 0 → B0 → Z 0 → H 0 → 0. Let U ⊂ X be
the maximal open subset such that H i|U = 0 for any i 6= 0 and B0|U is locally
free. Then, B0|U → Z 0|U is an injection between locally free sheaves of the same
rank. Taking the determinant of the injection, we have an injection detB0|U →
detZ 0|U . Consequently, we have a global section sU of det Z 0|U⊗(detB0|U )−1 '
det(G •)|U . Since U contains all the point x ∈ X with depthOX,x ≤ 1, we have

H0(X, det(G •)) ' H0(U,det(G •)|U )

(cf. [9, Lemma 2.1]). Let s be the lift of sU as a global section of det(G •) on X.
Then, s defines an effective Cartier divisor Div(G •) on X satisfying the expected
condition. In order to show the uniqueness of Div(G •) up to quasi-isomorphism,
it is enough to check it locally at points x ∈ X of depthOX,x = 1. Then, the
uniqueness follows from that of Div(H 0(G •)x). ¤

Lemma 1.10. In the situation of Lemma 1.9, let f : Y → X be a morphism
from another Noetherian scheme Y and let G •Y be the complex [· · · → f∗G i →
f∗G i+1 → · · · ] on Y . Assume that

• if depthOY,y = 0, then H p(G •)f(y) = 0 for any p ∈ Z, and
• if depthOY,y = 1, then H p(G •)f(y) = H p(G •Y )y = 0 for any p 6= 0.

Then, G •Y satisfies the conditions of Lemma 1.9, and Div(G •Y ) = f∗Div(G •).

Proof. Let UY be the maximal open subset UY ⊂ Y such that
H i(G •Y )|UY

= 0 for any i 6= 0 and that B0(G •Y )|UY
is locally free. It is enough to

prove that the intersection U ′ := f−1(U) ∩ UY contains all the points y ∈ Y of
depthOY,y ≤ 1. In fact, if this is true, then G •Y satisfies the conditions of Lemma
1.9, and we have an isomorphism

0 // f∗B0(G •)|U ′ //

'
²²

f∗Z 0(G •)|U ′ //

'
²²

f∗H 0(G •)|U ′ //

'
²²

0

0 // B0(G •Y )|U ′ // Z 0(G •Y )|U ′ // H 0(G •Y )|U ′ // 0
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of exact sequences, which induces Div(G •Y ) = f∗Div(G •). If depthOY,y = 0,
then G • is exact at f(y); thus G •Y is also exact at y, and consequently, y ∈ U ′.
Hence, we may assume that depth OY,y = 1. We set A = OX,f(y), R = OY,y,
N = B0(G •)f(y), and M = Z 0(G •)f(y). It is enough to prove that N is a free
A-module. From the vanishings H i(G •)f(y) = H i(G •Y )y = 0 for any i 6= 0, we
infer that M is a free A-module of finite rank, N ⊗A R → M ⊗A R is injective,
and TorA

i (N, R) = 0 for any i > 0. Since depthR = 1 and (M/N)p = 0 for any
associated prime p of R, N ⊗A R is a free B-module of the same rank r as M , by a
theorem of Auslander and Buchsbaum. Since N ⊗A k(A) is r-dimensional for the
residue field k(A), we have a surjection A⊕r → N , in which the kernel K satisfies
K⊗A R = 0, since TorA

1 (N, R) = 0 and since the surjection (A⊕r)⊗A R → N⊗A R

of free R-modules of the same rank is an isomorphism. In particular, K⊗A k(A) =
0. Thus K = 0, and consequently, N is free. This completes the proof. ¤

1.4. Intersection numbers.

Definition 1.11 (intersection number). Assume that X is a scheme proper
over Spec k for a field k. For the structure morphism pX : X → Spec k, the
composition

K•(X)
pX?−−→ K•(Spec k) ' H0(Spec k,Z) = Z

maps cl•(F ) for a coherent sheaf F on X to the Euler characteristic

χk(X, F ) =
∑

i≥0

(−1)i dimk Hi(X, F )

over k. In particular, it induces a homomorphism deg0,X/k : G0(X) = F0(X) → Z,
which maps cl•(F ) to dimk H0(X, F ) for a skyscraper sheaf F . The intersection
number iX/k(η; ξ) ∈ Z for η ∈ Gl(X) and ξ ∈ Gl(X) is defined to be the image of
η ⊗ ξ by the natural homomorphism

Gl(X)⊗Gl(X) → G0(X)
deg0,X/k−−−−−−→ Z.

If η = c1(L1) · · · c1(Ll) for invertible sheaves L1, . . . ,Ll, then we write
iX/k(L1, . . . ,Ll; ξ) = iX/k(η; ξ). For a coherent sheaf F with dim SuppF = l

and a closed subscheme V of dimension l, we write

iX/k(η;F ) = iX/k(η; cl•(F )) and iX/k(η;V ) = iX/k(η; cl•(OV )).
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Remark. For L1, . . . ,Ll ∈ Pic(X) and ξ ∈ Gl(X), we have

iX/k(L1, . . . ,Ll; ξ) = deg0,X/k(δ(L1, . . . ,Ll)ξ)

by Remark 1.4. Using the equality, we can prove that, for a coherent sheaf F with
dimSuppF = l, iX/k(L1, . . . ,Ll;F ) is just the coefficient of x1x2 . . . xl of the
Snapper polynomial PF (x1, . . . , xl) ∈ Q[x1, . . . , xl] defined by

PF (m1, . . . , ml) = χk

(
X, L ⊗m1

1 ⊗ · · · ⊗L ⊗ml

l ⊗F
)

for m1, . . . , ml ∈ Z (cf. [22, Exp. X, Corollaire 4.3.3], [25, Chapter I, Section 2]).
In particular, if dimX = 1, then the degree degX/k(L ) of an invertible sheaf L

on X over k is nothing but iX/k(c1(L );X).

Lemma 1.12. In the situation of Definition 1.11, let τ : Y → X be a proper
morphism from another Noetherian scheme. Then,

iY/k(τ?η; ξ) = iX/k(η; τ?(ξ))

for any η ∈ Gl(X) and ξ ∈ Gl(Y ), where τ? and τ? stand for the induced homo-
morphisms Gl(X) → Gl(Y ) and G0(Y ) → G0(X), respectively. In particular, if τ

is a closed immersion and dimY = 1, then

iX/k(c1(L );Y ) = iY/k(c1(L )|Y ) = degY/k L |Y

for any invertible sheaf L on X.

Proof. The assertion follows from the projection formula τ?((τ?η)ξ) =
η(τ?ξ), which is derived from (1.1). ¤

Lemma 1.13. In the situation of Definition 1.11, let k′/k be a field exten-
sion. Let X ′ be the fiber product X ×Spec k Spec k′ and q : X ′ → X the induced
morphism. For η ∈ Gl(X) and ξ ∈ Gl(X), let η′ ∈ Gl(X ′) be the image of
G(q?) : Gl(X) → Gl(X ′) and let ξ′ be the image of G(q?) : Gl(X) → Gl(X ′) in-
duced from q? : K•(X) → K•(X ′) (which is defined since q is flat). Then

iX′/k′(η′; ξ′) = iX/k(η; ξ).

Proof. Let x ∈ Fl(X) and y ∈ F l(X) be representatives of ξ and η,
respectively. Then yx ∈ F0(X), and pX?(yx) ∈ K•(Spec k) ' Z corresponds
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to iX/k(η; ξ). Let h : Spec k′ → Spec k be the morphism associated with the
extension k′/k and let pX′ : X ′ → Spec k′ be the induced morphism. Then,
h? : K•(Spec k) → K•(Spec k′) is just the identity map. For the homomorphisms
q? : K•(X) → K•(X ′) and pX′? : K•(X ′) → K•(Spec k′), we have

pX′?(q?(yx)) = h?(pX?(yx))

by (1.2). Thus, the expected equality is obtained. ¤

Remark. In the situation of Definition 1.11, if k′′ is a subfield of k with
e = dimk′′ k < ∞, then deg0,X/k′′ = edeg0,X/k as a homomorphism G0(X) → Z;
hence iX/k′′(η; ξ) = e iX/k(η; ξ) for any η ∈ Gl(X) and ξ ∈ Gl(X).

1.5. First two filters of coniveau filtration.
We shall describe G0

con(X) and G1
con(X) for suitable Noetherian schemes X.

Lemma 1.14. Let X be a Noetherian scheme and let {Xi}i∈I be the set
of irreducible components of X. Then, for any i ∈ I, there exists uniquely a
homomorphism li : K•(X) → Z such that cl•(F ) is mapped to the length lXi(F )
of F along Xi (cf. Definition 1.1) for any coherent sheaf F on X. Moreover,∑

i∈I li : K•(X) → ⊕
I Z induces an isomorphism G0

con(X) ' ⊕
I Z.

Proof. If 0 → F1 → F2 → F3 → 0 is an exact sequence of coher-
ent sheaves, then lXi

(F2) = lXi
(F1) + lXi

(F3). Thus, lXi
defines uniquely

the expected homomorphism li : K•(X) → Z. If F is a coherent sheaf with
codim SuppF > 0, then lXi

(F ) = 0 for any i. Thus
∑

li induces a homomorphism
G0

con(X) → ⊕
I Z. We have a natural surjective homomorphism Z 0(X) cl•−−→

F 0
con(X) → G0

con(X) such that the composition with G0
con(X) → ⊕

I Z induces an
isomorphism Z 0(X) → ⊕

I Z. In fact, Z 0(X) is a free abelian group generated
by the cycles Xi of codimension zero, and lj(cl•(Xi)) = δi,j for any i, j ∈ I. Thus,
G0

con(X) ' ⊕
I Z. ¤

Definition 1.15. Let X be a Noetherian scheme with a morphism X → Y

to an integral scheme Y . For a coherent sheaf F of X, we denote by Ftor/Y the
unique maximal coherent subsheaf F ′ such that SuppF ′ does not dominate Y .
We denote by Ft.f./Y the quotient sheaf F/(Ftor/Y ). In case X = Y , then we
write Ftor = Ftor/Y and Ft.f. = Ft.f./Y . The sheaf Ftor is called the torsion part
of F . If Ftor = 0, then F is called torsion free. For a torsion free sheaf F , the
rank rk(F ) is defined as the length lX(F ).

Definition 1.16. Let X be a normal separated Noetherian scheme. A
coherent sheaf F is called reflexive if the double-dual F∨∨ := (F∨)∨ is canonically
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isomorphic to F , where F∨ = H omOX
(F ,OX) (cf. [23, Section 1]). The set

of reflexive sheaves of rank one on X has a natural abelian group structure by
(L1,L2) 7→ (L1 ⊗L2)∨∨. The group is denoted by Ref1(X).

Remark. Ref1(X) contains the Picard group Pic(X) as a subgroup. Fur-
thermore, Ref1(X) is isomorphic to the Weil divisor class group of X by D 7→
OX(D) for Weil divisors D. Here OX(D) is a subsheaf of the sheaf of germs of
rational functions on X defined by

ϕ ∈ H0(U,OX(D)) \ {0} ⇐⇒ div(ϕ) + D|U ≥ 0

for any open subset U , where div(ϕ) stands for the principal divisor associated to
a non-zero rational function ϕ.

Lemma 1.17. Suppose that X is a normal separated Noetherian scheme.
Then there is an isomorphism d̂et : G1

con(X) '−→ Ref1(X) with the natural commu-
tative diagram

G1(X) det //

G(φ)

²²

Pic(X)

²²
G1

con(X)
cdet // Ref1(X).

Proof. We may assume that X is integral. For a coherent sheaf F , we
can associate a reflexive sheaf D(F ) of rank one as follows:

• If F is a torsion sheaf, i.e., lX(F ) = 0, then D(F ) := OX(Div(F )) for the
Weil divisor

Div(F ) := cyc1(F ) =
∑

prime divisors Γ⊂Supp F

lΓ(F )Γ.

• If F is torsion free, then

D(F ) :=
( rk(F)∧

F

)∨∨
.

• For a general coherent sheaf F , we define

D(F ) :=
(
D(Ft.f.)⊗D(Ftor)

)∨∨
.
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We shall show D(F ) ' (D(G )⊗D(H ))∨∨ for any exact sequence 0 → G →
F → H → 0 of coherent sheaves: Let K be the kernel of Ft.f. → Ht.f. and C
the cokernel of Ftor → Htor; then we have an exact sequence 0 → Gt.f. → K →
C → 0. Thus, it is enough to show D(F ) ' (D(G )⊗D(H ))∨∨ in the case where
H is torsion and F is torsion free. For the generic point η of a prime divisor Γ,
Gη → Fη is written as a homomorphism h : O⊕r

X,η → O⊕r
X,η for r = rkF = rkG .

Thus, lΓ(H ) is just the length of OX,η/ det(h)OX,η for the determinant det(h).
Hence, D(F ) ' (D(G )⊗D(H ))∨∨.

Therefore, D gives rise to a homomorphism K•(X) → Ref1(X), in which
F 2

con(X) is contained in the kernel. Thus, a homomorphism d̂et : G1
con(X) →

Ref1(X) is induced from D . The homomorphism G(cl•) : Z 1(X) cl•−−→ F 1
con(X) →

G1
con(X) is surjective, and the composite d̂et ◦G(cl•) : Z 1(X) → Ref1(X) is the

canonical surjection which maps a Weil divisor D to OX(D). Hence, in order to
prove that d̂et is an isomorphism, it suffices to show that cl•(Z) = 0 ∈ F 1

con(X)
for any divisor Z with OX(Z) ' OX . This is shown as follows: For such a divisor
Z, let Z = Z1 − Z2 be the decomposition into effective divisors Z1, Z2 without
common prime components. From the equality cl•(OZi) = cl•(OX)−cl•(OX(−Zi))
for i = 1, 2, we have

cl•(Z) = cl•(OZ1)− cl•(OZ2) = φ
(
cl•(OX(−Z2))− cl•(OX(−Z1))

)
= 0.

Finally, we compare d̂et with the other isomorphism det : G1(X) → Pic(X).
For a locally free sheaf E of rank r, we have det(x) = det(E ) for x := cl•(E ) −
r mod F 2(X) ∈ G1(X) (cf. Remark 1.5). On the other hand, d̂et(G(φ)(x)) =
D(E ) ' det(E ). Thus, d̂et is compatible with det. ¤

Corollary 1.18. F 2(X) = 0 for any one-dimensional regular separated
Noetherian scheme X.

Proof. We have F 2
con(X) = 0, since dimX = 1. Lemma 1.17 implies that

F 2(X) = F 1(X) ∩ φ−1(F 2
con(X)), where φ : K•(X) → K•(X) is an isomorphism,

since X is regular. Thus, we are done. ¤

We discuss the vanishing result Fn+1(X) = 0 for n > dimX in Proposition
2.24 in Section 2.3.

2. Intersection sheaves for flat morphisms.

Let π : X → Y be a locally projective morphism of Noetherian schemes and
let F be a coherent sheaf on X which is flat over Y . Then, the relative dimension
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d := dim(SuppF )/Y = dim Supp(F ⊗ Oπ−1(y)) = dim(SuppF ∩ π−1(y))

for y ∈ Y is locally constant. We assume here that Y is connected; hence d

is constant. In this section, we shall define the intersection sheaf I F/Y (η) for
η ∈ Gd+1(X) under Assumption 2.1 below, and we shall study basic properties of
the intersection sheaves.

Assumption 2.1. π is a projective morphism in the sense that there is a
π-ample invertible sheaf (cf. [18, Définition 4.6.1]). Moreover, the following (A)
or (B) is satisfied:

(A) X is flat over Y .
(B) Y admits an ample invertible sheaf (cf. [18, Définition 4.5.3]).

Section 2 consists of four subsections. We first prepare a key push-forward
homomorphism πF

? : K•(X) → K•(Y ) in Section 2.1. Using the homomorphism,
the intersection sheaves I F/Y (L1, . . . ,Ld+1) for L1, . . . ,Ld+1 ∈ Pic(X) are de-
fined in Section 2.2 (cf. Definition 2.10). By Remark 2.11 or Lemma 2.19, we
infer that if F = OX , then I F/Y (L1, . . . ,Ld+1) is just the intersection sheaf
I X/Y (L1, . . . ,Ld+1) discussed in [8], [33], and [7]. By the idea of [8, Section
V], we shall define the intersection sheaves I F/Y (η) for η ∈ Gd+1(X) in Section
2.3 (cf. Definition 2.26). Propositions 2.15 and 2.32 seem to be important for the
theory of intersection sheaves, which are proved by the method of [32, Chapter
5, Sections 3–4]. In Section 2.4, we apply the propositions to prove Theorem 2.41
on the intersection sheaf I F/Y (P (c1(E ), . . . , cr(E ))) for a locally free sheaf E on
X of rank r and for a weighted homogeneous polynomial P (x1, . . . , xr) of degree
d + 1 which is numerically positive for ample vector bundles in the sense of [14].

2.1. A push-forward homomorphism.
We shall define a homomorphism πF

? : K•(X) → K•(Y ) under Assumption
2.1. The homomorphism is essential for defining the intersection sheaves. First of
all, we consider the set G(X, π, F ) of locally free sheaves G of finite rank on X

such that Rp π∗(F ⊗ G ) = 0 for any p > 0.

Remark 2.2. Let G be a locally free sheaf belonging to G(X, π, F ). Then
π∗(F ⊗ G ) is locally free. Moreover, it has the following base change properties
(cf. [19, Théorème 7.7.5]):

(1) For a morphism τ : Y ′ → Y of schemes, let p1 : X ′ → X and p2 : X ′ → Y ′

be the first and second projections from the fiber product X ′ = X ×Y Y ′.
Then, p∗1G ∈ G(X ′, p2, p

∗
1F ), and
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τ∗(π∗(F ⊗ G )) ' p2∗p∗1(F ⊗ G ).

(2) For a coherent sheaf M on Y ,

Rp π∗(F⊗G⊗π∗M ) ' Rp π∗(F⊗G )⊗M '
{

π∗(F ⊗ G )⊗M , if p = 0;

0, if p > 0.

Convention (“subbundle” and “strictly injective”).

• For a locally free sheaf E , a subsheaf E ′ ⊂ E is called a subbundle if E /E ′

is also locally free.
• A homomorphism E1 → E2 of locally free sheaves is called strictly injective

if it is injective and its cokernel is also locally free.

Lemma 2.3. Under Assumption 2.1, every locally free sheaf E of finite rank
on X is realized as a subbundle of certain G ∈ G(X, π, F ), i.e., there is a strict
injection E ↪→ G for some G ∈ G(X, π, F ).

Proof. We have a π-ample invertible sheaf A , since π is projective. Then,
there exists a positive integer k such that Rp π∗(F ⊗A ⊗k) = 0 for any p > 0 and
that the natural homomorphism

π∗π∗(E ∨ ⊗A ⊗k) → E ∨ ⊗A ⊗k (2.1)

is surjective. We shall construct E ↪→ G as follows.
First, we consider the case where π is flat. We can choose the integer k above

so that Rp π∗(E ∨ ⊗A ⊗k) = 0 for any p > 0. Then π∗(E ∨ ⊗A ⊗k) is locally free.
We set

G := π∗
(
π∗(E ∨ ⊗A ⊗k)∨

)⊗A ⊗k.

Then, G ∈ G(X, π, F ), since

Rp π∗(F ⊗ G ) ' π∗(E ∨ ⊗A ⊗k)∨ ⊗ Rp π∗(F ⊗A ⊗k) = 0

for any p > 0. Moreover, the surjection (2.1) above induces a strict injection
E ↪→ G .

Second, we consider the case where Y admits an ample invertible sheaf H .
Then, we have a surjection
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O⊕N
Y → π∗(E ∨ ⊗A ⊗k)⊗H ⊗l (2.2)

for some positive integers l, N . We set

G := π∗(H ⊗l)⊕N ⊗A ⊗k.

Then, G ∈ G(X, π, F ), since

Rp π∗(F ⊗ G ) ' (H ⊗l)⊕N ⊗ Rp π∗(F ⊗A ⊗k) = 0

for any p > 0. The surjections (2.1) and (2.2) above induce a strict injection
E ↪→ G . ¤

Lemma 2.4. Assume that every locally free sheaf E of finite rank on X is
realized as a subbundle of certain G ∈ G(X, π, F ). Then the following hold :

(1) For any locally free sheaf E of finite rank on X, there is an exact sequence

0 → E → G 0 → · · · → G d → 0

such that G i ∈ G(X, π, F ) for any 0 ≤ i ≤ d.
(2) Let E be a locally free sheaf of finite rank on X and let E ↪→ G be a strict

injection to a locally free sheaf G ∈ G(X, π, F ). Let E → E ′ be a homo-
morphism to a locally free sheaf E ′ of finite rank on X. Then there exist
a locally free sheaf G ′ ∈ G(X, π, F ), a strict injection E ′ ↪→ G ′, and a
homomorphism G → G ′ such that the diagram

E //

²²

G

²²
E ′ // G ′

is commutative and Cartesian. If E → E ′ is strictly injective, then G → G ′

is strictly injective, and moreover, E ′ ∩ G = E as a subsheaf of G ′, and
E ′ + G is a subbundle of G ′.

(3) Let E → E ′ be a homomorphism of locally free sheaves on X and let 0 →
E → G 0 → · · · → G d → 0 be an exact sequence such that G i ∈ G(X, π, F )
for any 0 ≤ i ≤ d. Then, there exists a commutative diagram
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0 // E //

²²

G 0 //

²²

· · · // G d //

²²

0

0 // E ′ // G ′0 // · · · // G ′d // 0

of exact sequences such that G ′i ∈ G(X, π, F ) for any 0 ≤ i ≤ d. If E → E ′

is strictly injective, then one can take G ′i so that G i → G ′i is also strictly
injective for any 0 ≤ i ≤ d.

(4) For an exact sequence 0 → E → G 0 → · · · → G d → 0 of locally free sheaves
such that G i ∈ G(X, π, F ) for any 0 ≤ i ≤ d, the element

πF
? (E ) :=

d∑

i=0

(−1)i cl•(π∗(F ⊗ G i))

of K•(Y ) depends only on cl•(E ) ∈ K•(X).
(5) The map πF

? : K•(X) → K•(Y ) defined by E 7→ πF
? (E ) is a homomorphism

of abelian groups.

Proof. (1): By assumption, E is realized as a subbundle of some G 0 ∈
G(X, π, F ). The cokernel G 0/E is also realized in a subbundle of some G 1 ∈
G(X, π, F ). Thus, we have an exact sequence 0 → E → G 0 → G 1. Once we
have an exact sequence 0 → E → G 0 → G 1 → · · · → G k for a number k with
G i ∈ G(X, π, F ) for any 0 ≤ i ≤ k, we can extend one more by adding G k → G k+1

for a locally free sheaf G k+1 ∈ G(X, π, F ) containing the cokernel of G k−1 → G k

as a subbundle. In this way, we have an exact sequence 0 → E → G 0 → · · · →
G d−1. Let G d be the cokernel of the last homomorphism G d−2 → G d−1. Then,
G d ∈ G(X, π, F ). In fact, we have

Rp π∗(F ⊗ G d) ' Rp+d π∗(F ⊗ E ) = 0

for p > 0, since d = dim(SuppF )/Y .
(2): Let V be the cokernel of the injection E → E ′ ⊕ G sending x ∈ E to

(x,−x). Then we have a commutative diagram

0 // E //

²²

G //

²²

G /E //

'
²²

0

0 // E ′ // V // V /E ′ // 0
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of exact sequences of locally free sheaves on X. In particular, V contains E ′ as
a subbundle, and the square consisting of E , E ′, G , and V is Cartesian. By
assumption, we have a strict injection from V to some G ′ ∈ G(X, π, F ). Then
the induced homomorphisms E ′ → V → G ′ and G → V → G ′ make an expected
Cartesian diagram. If E → E ′ is strictly injective, then so are G → V and G → G ′;
hence, E ′ ∩ G = E by the Cartesian property and E ′ + G = V is a subbundle of
G ′.

(3): We shall construct inductively a commutative diagram

(∗)k :

0 // E //

²²

G 0 //

²²

· · · // G k

²²
0 // E ′ // G ′0 // · · · // G ′k

of exact sequences for any 0 ≤ k ≤ d such that G ′i ∈ G(X, π, F ) for any 0 ≤ i ≤ k.
For the first diagram (∗)0, we apply (2) to the homomorphism E → E ′ and the
strict injection E ↪→ G 0. Then we obtain a locally free sheaf G ′0 ∈ G(X, π, F )
together with a homomorphism G → G ′ and a strict injection E ′ ↪→ G ′0 which
make a commutative diagram (∗)0. Suppose that we are given a commutative
diagram (∗)k−1 for an integer 1 ≤ k ≤ d. Let E k and E ′k be the cokernels of
G k−2 → G k−1 and G ′k−2 → G ′k−1, respectively. If k = d, then E d ' G d, and
E ′d ∈ G(X, π, F ) by the argument in the proof of (1); thus we are done in this case
by setting G ′d = E ′d. In case k < d, applying (2) to the induced homomorphism
E k → E ′k and the induced strict injection E k ↪→ G k, we have a locally free sheaf
G ′k ∈ G(X, π, F ) together with a homomorphism G k → G ′k and a strict injection
E ′k ↪→ G k, which make the next diagram (∗)k. In this way, we have finally the
diagram (∗)d satisfying the required condition. If E → E ′ is strictly injective,
then, by (2) and by the construction above, G i → G ′i are all strictly injective.

(4) and (5): In the first step, we shall prove that πF
? (E ) depends only on the

isomorphism class of E . By setting Bi := π∗(F ⊗ G i), we have a complex B• :
0 → B0 → · · · → Bd → 0 of locally free sheaves on Y which is quasi-isomorphic
to Rπ∗(F ⊗ E ). Let 0 → E → G ′0 → · · · → G ′d → 0 be another exact sequence
such that G ′i ∈ G(X, π, F ) for any 0 ≤ i ≤ d. Then, we have a similar complex
B′• by setting B′i := π∗(F ⊗ G ′i). We denote cl•(K •) :=

∑
(−1)i cl•(K i) for

a bounded complex K • = [· · · → K i−1 → K i → K i+1 → · · · ] of locally free
sheaves. For the first step, it suffices to prove: cl•(B•) = cl•(B′•).

In order to compare G i and G ′i, we shall construct another exact sequences
0 → E → G̃ 0 → · · · → G̃ d → 0 with G̃ i ∈ G(X, π, F ) connecting the sequences of
G i and G ′i in some sense. Applying (3) to strict injections E ↪→ G 0 and E ↪→ G ′0,
we have a locally free sheaf G̃ 0 ∈ G(X, π, F ) which contains E , G 0, and G ′0 as
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subbundles in such a way that G 0∩G ′0 = E in G̃ 0 and G 0+G ′0 is also a subbundle
of G̃ 0. Let E 1, E ′1, and Ẽ 1 be the cokernels of E → G 0, E → G ′0, and E → G̃ 0,
respectively. There is a commutative diagram

0 // E ⊕ E //

²²

G 0 ⊕ G ′0 //

²²

E 1 ⊕ E ′1 //

²²

0

0 // E // G̃ 0 // Ẽ 1 // 0

of exact sequences, where the left vertical homomorphism maps (x, x′) to x + x′.
Then, considering the kernel and the cokernel of the middle vertical homomor-
phism, we infer that the right vertical homomorphism is strictly injective. We can
apply (3) to the exact sequence

0 → E 1 ⊕ E ′1 → G 1 ⊕ G ′1 → G 2 ⊕ G ′2 → · · · → G d ⊕ G ′d → 0

and to the strict injection E 1 ⊕ E ′1 → Ẽ 1. As a result, we have a commutative
diagram

0 // E ⊕ E //

²²

G 0 ⊕ G ′0 //

²²

· · · // G d ⊕ G ′d //

²²

0

0 // E // G̃ 0 // · · · // G̃ d // 0

of exact sequences of locally free sheaves such that the induced homomorphisms
G i → G i ⊕ G ′i → G̃ i and G ′i → G i ⊕ G ′i → G̃ i are strictly injective for any
0 ≤ i ≤ d.

Let B̃• be the complex of locally free sheaves on Y defined by B̃i = π∗(F⊗G̃ i)
as above. The homomorphisms F ⊗ G i → F ⊗ G̃ i define a morphism B• → B̃•

of complexes. Here, Bi → B̃i is strictly injective; in fact, V i := G̃ i/G i is a locally
free sheaf contained in G(X, π, F ) and B̃i/Bi ' π∗(F ⊗ V i) for any 0 ≤ i ≤ d.
Moreover, the induced complex

B̃•/B• =
[ · · · → 0 → π∗(F⊗V 0) → π∗(F⊗V 1) → · · · → π∗(F⊗V d) → 0 → · · · ]

is an exact sequence. This implies that cl•(B•) = cl•(B̃•). Replacing G i with
G ′i, we also have cl•(B′•) = cl•(B̃•).

In the second step, we shall prove the following assertion: Let 0 → E1 → E2 →
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E3 → 0 be an arbitrary exact sequence of locally free sheaves of finite rank on X.
Then, πF

? (E2) = πF
? (E1) + πF

? (E3). This proves (4) and (5), by a property of the
K-group K•(X) associated with the locally free sheaves on X. By (1) and (3), we
have a commutative diagram

0 // E1
//

²²

G 0
1

//

²²

· · · // G d
1

//

²²

0

0 // E2
// G 0

2
// · · · // G d

2
// 0

of exact sequences such that G i
1 , G i

2 ∈ G(X, π, F ), and G i → G ′i is strictly injective
for any 0 ≤ i ≤ d. This induces an exact sequence 0 → E3 → G 0

3 → · · · → G d
3 → 0

for G i
3 := G i

2/G i
1 ∈ G(X, π, F ). Since 0 → π∗(F ⊗ G i

1) → π∗(F ⊗ G i
2) → π∗(F ⊗

G i
3) → 0 is exact for any i, we have the equality πF

? (E2) = πF
? (E1) + πF

? (E3).
Thus, we have finished the proof of Lemma 2.4. ¤

Definition (πF
? ). Let π : X → Y be a projective morphism satisfying

Assumption 2.1 and let F be a coherent sheaf on X flat over Y . We define a
homomorphism πF

? : K•(X) → K•(Y ) by the property that it maps cl•(G ) to
cl•(π∗(F ⊗ G )) for any locally free sheaf G belonging to G(X, π, F ). This is
well-defined by Lemmas 2.3 and 2.4.

Remark 2.5. Let X ′ ⊂ X be a closed subscheme such that F is defined over
X ′, i.e., F is an OX′ -module. Assume that the morphism π′ := π|X′ : X ′ → Y also
satisfies Assumption 2.1. Then, πF

? (x) = π′F? (x|X′) for any x ∈ K•(X). In fact,
if x = cl•(E ) for a locally free sheaf E on X and if 0 → E → G 0 → · · · → G d → 0
is exact with G i ∈ G(X, π, F ), then 0 → E |X′ → G 0|X′ → · · · → G d|X′ → 0 is
exact with G i|X′ ∈ G(X ′, π, F ) and π∗(F ⊗ G i) ' π′∗(F ⊗ (G i|X′)) for any i,
since F ⊗OX

G ' F ⊗OX′ (G |X′) for any coherent sheaves G on X. Thus, we
have πF

? (E ) = π′F? (E |X′) by Lemma 2.4, (4).

In what follows in Section 2, we assume that π : X → Y and F satisfy
Assumption 2.1 unless otherwise stated. The lemma below is proved immediately
from Lemma 2.4.

Lemma 2.6.

(1) For any x ∈ K•(X), one has

φ
(
πF

? (x)
)

= π?(x cl•(F ))
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for π? : K•(X) → K•(Y ) and the Cartan homomorphism φ : K•(Y ) →
K•(Y ). In particular, when F = OX , one has a commutative diagram

K•(X)
π

OX
? //

φ

²²

K•(Y )

φ

²²
K•(X)

π? // K•(Y ).

(2) If Y = Spec k for a field k, then,

ε
(
πF

? (x)
)

= iX/k(η;F )

for any x ∈ F d(X) and η = x mod F d+1(X) ∈ Gd(X), where ε : K•(Y ) '−→
Z is the augmentation map and iX/k denotes the intersection number (cf.
Definition 1.11).

(3) If F is a locally free sheaf on X, then, for any x ∈ K•(X), one has

πF
? (x) = πOX

? (x cl•(F )).

Proof. The assertions (1) and (3) follow from Lemma 2.4, (4). The asser-
tion (2) is a consequence of (1). ¤

Remark 2.7. Since F is flat over Y , even if Assumption 2.1 is not satisfied,
we know that Rπ∗F is a perfect complex, i.e., locally on Y , it is quasi-isomorphic
to a bounded complex L• = [· · · → Li → Li+1 → · · · ] of sheaves such that Li are
locally free for any i (cf. [31, Chapter II, Section 5], [22, Exp. III, Proposition
4.8]). Let D(Y )perf be the category of perfect complexes on Y and let K•(Y )perf

be the associated K-group; for the definition, see [22, Exp. IV, Section 2], where,
however, K•(Y )perf is denoted by K•(Y ), and K•(Y ) is denoted by K•(Y )näıf.
Then, we have a similar homomorphism πF ,perf

? : K•(X) → K•(Y )perf which maps
cl•(E ) to the class of Rπ∗(F ⊗ E ) for a locally free sheaf E of finite rank on X.
When π satisfies Assumption 2.1, πF ,perf

? is just the composition of πF
? and the

canonical homomorphism K•(Y ) → K•(Y )perf . Note that the canonical homo-
morphism K•(Y ) → K•(Y )perf is isomorphic if the Noetherian scheme Y admits
an ample invertible sheaf (cf. [22, Exp. IV, Section 2.9]). If F = OX and π is pro-
jective, then Assumption 2.1 is satisfied. In this case, πOX

? : K•(X) → K•(Y )perf

is just the composition of the natural homomorphism K•(X) → K•(X)perf and
the homomorphism π? : K•(X)perf → K•(Y )perf defined in [22, Exp. IV, (2.12.3)].
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Notation (πF
? , π?). The homomorphism πF ,perf

? : K•(X) → K•(Y )perf in
Remark 2.7 is written as πF

? : K•(X) → K•(Y )perf by abuse of notation. When
F = OX , we denote πOX

? simply by π? if it causes no confusion with π? : K•(X) →
K•(Y ) (cf. Lemma 2.6, (1)).

Lemma 2.8. Let h : Y ′ → Y be a morphism from another Noetherian scheme
Y ′, X ′ = X ×Y Y ′, and let q1 : X ′ → X and q2 : X ′ → Y ′ be natural projections.
Then F ′ = q∗1F is flat over Y ′ and the equality

(q2)F ′
?

(
q?
1 (x) · q?

2 (y′)
)

= (q2)F ′
?

(
q?
1 (x)

) · y′ = h?
(
πF

? (x)
) · y′

holds in K•(Y ′)perf for x ∈ K•(X) and y′ ∈ K•(Y ′), even if π does not satisfy
Assumption 2.1. If π is flat or if Y and Y ′ admit ample invertible sheaves, then
the same equality holds in K•(Y ′).

Proof. The first equality itself is not so related to the base change; indeed,
this follows from the following projection formula in K•(Y )perf (resp. in K•(Y )
when π satisfies Assumption 2.1) for x ∈ K•(X) and y ∈ K•(Y ):

πF
? (x · π?(y)) = πF

? (x) · y. (2.3)

In order to prove it, we may assume that x = cl•(E ) and y = cl•(G ) for locally
free sheaves E and G on X and Y , respectively. Then, (2.3) is derived from the
quasi-isomorphism

Rπ∗(F ⊗ E )⊗L G 'qis Rπ∗(F ⊗ E ⊗ π∗G ).

When π satisfies Assumption 2.1, by Lemmas 2.3 and 2.4, we may assume that
E ∈ G(X, π, F ), and hence, (2.3) is just derived from the usual projection formula:

π∗(F ⊗ E )⊗ G ' π∗(F ⊗ E ⊗ π∗G ).

For the second equality of Lemma 2.8, we may assume that y′ = 1. Since F is flat
over Y , F ′ = q∗1F is also flat over Y ′ and is quasi-isomorphic to Lq∗1F . There is
a natural base change morphism

Θ: Lh∗Rπ∗(F ⊗ E ) → Rq2∗(Lq∗1(F ⊗ E )) 'qis Rq2∗
(
F ′ ⊗ q∗1E

)

for a locally free sheaf E on X. It is enough to prove that Θ is a quasi-isomorphism.
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If E ∈ G(X, π, F ), then Θ is a quasi-isomorphism by Remark 2.2. Hence, by
Lemmas 2.3 and 2.4, Θ is a quasi-isomorphism for any locally free sheaf E if π

is flat or if Y and Y ′ admit ample invertible sheaves. There exist open coverings
{Yα} of Y and {Y ′

α} of Y ′, respectively, such that Y ′
α ⊂ h−1(Yα) and that Yα and

Y ′
α admit ample invertible sheaves. Thus, Θ restricted to the derived category of

Y ′
α is a quasi-isomorphism for any α. Hence, Θ itself is also a quasi-isomorphism.

¤

Lemma 2.9. Let f : Z → X be a projective flat morphism. Then, for any
z ∈ K•(Z),

(π ◦ f)f∗F
? (z) = πF

? (f?(z)).

Proof. We may assume that z = cl•(E ) for a locally free sheaf E on Z of
finite rank. Note that f∗F is also flat over Y and that π ◦f also satisfies Assump-
tion 2.1. The expected equality essentially follows from the quasi-isomorphism

Rπ∗
(
F ⊗L Rf∗E

) 'qis R(π ◦ f)∗(f∗F ⊗ E ).

By the proof of Lemma 2.3, there is a strict injection E ↪→ G into a locally
free sheaf G belonging to G(Z, π ◦ f, f∗F ) and also to G(P, f,OZ). Thus, by
the same argument as in the proof of Lemma 2.4, we may assume that E ∈
G(Z, π ◦ f, f∗F ) ∩G(Z, f,OZ). Then,

Rp f∗(f∗F ⊗ E ) '
{

F ⊗ f∗E , if p = 0;

0, if p > 0,

by Remark 2.2, since E ∈ G(Z, f,OZ). Hence, we have

0 = Rq(π ◦ f)∗(f∗F ⊗ E ) ' Rq π∗(F ⊗ f∗E )

for q > 0 by the degeneration of Leray’s spectral sequence, since E ∈ G(Z, π ◦
f, f∗F ). As a consequence, f∗E ∈ G(X, π, F ). Then, by Lemma 2.4, we have

(π ◦ f)f∗F
? (E ) = cl•(π∗(F ⊗ f∗E )) = πF

? (f?(cl•(E )),

and the expected equality follows. ¤
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2.2. Primitive definition of intersection sheaves.
Definition 2.10. Let L1, . . . ,Lk be invertible sheaves on X, where k ≥

d + 1. Under Assumption 2.1, we define

iF/Y (L1, . . . ,Lk) := ε
(
πF

?

(
δ

(k)
X (L1, . . . ,Lk)

)) ∈ H0(Y,Z) = Z for k ≥ d,

I F/Y (L1, . . . ,Lk) := det
(
πF

?

(
δ

(k)
X (L1, . . . ,Lk)

)) ∈ Pic(Y ) for k ≥ d + 1,

where ε : K•(Y ) → H0(Y, Z) = Z is the augmentation map, det : K•(Y ) →
Pic(Y ) is the determinant map, and δ

(k)
X (L ) is defined in Definition 1.3 for

L = (L1, . . . ,Lk). We call iF/Y (L ) the relative intersection number and
I F/Y (L ) the intersection sheaf. If F = OX , then we write iX/Y = iF/Y and
I X/Y = I F/Y .

Remark 2.11. By Remark 1.4, we can write

I X/Y (L1, . . . ,Ld+1) =
⊗

I⊂{1,...,d+1}

(
det(Rπ∗L −1

I )
)(−1)]I

,

where LI = Li1 ⊗ · · · ⊗Lik
for I = {i1, . . . , ik} with ]I = k > 0, and LI = OX

for the empty set I = ∅. A similar but different formula is written in [7, p. 34] (cf.
[8, Section IV.1]).

Remark. There exist also the augmentation map ε : K•(Y )perf → H0(Y,Z)
and the determinant map det : K•(Y )perf → Pic(Y ), which are lifts of the same
maps from K•(Y ), respectively. In fact, ε is defined by the ranks of locally free
sheaves, and the existence of det is proved by Knudsen–Mumford [26]. Therefore,
even if π is only a locally projective morphism, one can define the relative inter-
section number iF/Y (L ) and the intersection sheaf I F/Y (L ) by using ε and det
from K•(Y )perf and by the homomorphism πF

? : K•(X) → K•(Y )perf in Remark
2.7.

Lemma 2.12. Assuming that π is only a locally projective morphism, let
πF

? : K•(X) → K•(Y )perf and ε : K•(Y )perf → H0(Y,Z) = Z be the homo-
morphisms as above. Then, ε(πF

? (x)) = 0 for any x ∈ F d+1(X). In particu-
lar, iF/Y gives rise to a homomorphism Gd(X) → Z. Furthermore, iF/Y (η) =
iF /k(η|F ;F ⊗ OF ) for any η ∈ Gd(X) and for any fiber F = π−1(y) of π with k

as the residue field k(y).

Proof. Let y ∈ Y be a point and F the fiber π−1(y). For the canonical
morphisms h : y → Y and q2 : F → y, we have
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ε
(
πF

? (x)
)

= ε
(
h?(πF

? (x))
)

= ε
(
(q2)F⊗OF

? (x|F )
)

= iF /k(η|F ;F ⊗ OF )

for any x ∈ F d(X) and η = xmodF d+1(X) ∈ Gd(X), where k = k(y), by Lemma
2.8 and by Lemma 2.6, (2). Thus, ε(πF

? (x)) = 0 for any x ∈ F d+1(X). ¤

Lemma 2.13. Let L1, . . . ,Lk be invertible sheaves on X for k ≥ d + 1 and
let σi be a section of Li on X for 1 ≤ i ≤ k such that σ = (σ1, . . . , σk) is F -
regular. For the zero subscheme V := V (σ) = V (σ1, . . . , σk) (cf. Definition 1.6),
assume that if depthOY,y = 0 (resp. = 1), then SuppF ∩ V ∩ π−1(y) is empty
(resp. finite). Then, there exists uniquely an effective Cartier divisor D(σ) on Y

with SuppD(σ) ⊂ π(SuppV ) satisfying the following properties:

I F/Y (L1, . . . ,Lk) ' OY (D(σ)), and D(σ)|Spec OY,y
= DivOY,y

(π∗(F ⊗ OV ))

for any point y ∈ Y with depthOY,y = 1.

Proof. We set E :=
⊕k

i=1 Li. Then σ is regarded as an F -regular section
of E . Let us consider the exact sequence (1.4) obtained from the Koszul com-
plex defined by σ. By Lemma 2.4, we have a double-complex C •,• satisfying the
following conditions:

• C i,j ∈ G(X, π, F ) for any i, j ∈ Z.
• If C i,j 6= 0, then 0 ≤ j ≤ d and i ≤ 0.
• For any p ≥ 0, H 0(C−p,•) ' ∧p E ∨, and H j(C−p,•) = 0 for j 6= 0.
• The homomorphism

∧p E ∨ → ∧p−1 E ∨ in the Koszul complex defined by
σ is isomorphic to H 0(C−p,•) → H 0(C−(p−1),•) for any p ≥ 1.

Then, F⊗OV is quasi-isomorphic to F⊗C • = [· · · → F⊗C i → F⊗C i+1 → · · · ]
for the total complex C • of C •,•, where C m =

⊕
m=i+j C i,j . Therefore, Rπ∗(F⊗

OV ) is quasi-isomorphic to the bounded complex V • = [· · · → V i → V i+1 → · · · ]
for the locally free sheaves V i = π∗(F ⊗ C i) of finite rank (cf. Remark 2.2). In
particular,

πF
? (δ(L1, . . . ,Lk)) =

∑

i∈Z

(−1)i cl•(V i).

By our assumption, the cohomology sheaves H i(V •) ' Ri π∗(F ⊗ OV ) satisfy
the conditions of Lemma 1.9. Hence, as a consequence of Lemma 1.9, we have an
effective Cartier divisor D = Div(V •) = Div(Rπ∗(F ⊗OV )) on Y with SuppD ⊂
π(SuppF ∩ V ), which is unique by the following properties:
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OX(D) ' det(V •) ' det
(
πF

? (δ(L1, . . . ,Lk))
) ' I F/Y (L1, . . . ,Lk), and

D|Spec OY,y
= DivOY,y

(H 0(V •)) = DivOY,y
(π∗(F ⊗ OV ))

for any point y ∈ Y with depthOY,y = 1. Thus, we are done. ¤

Lemma 2.14. Let h : Y ′ → Y be a morphism from another Noetherian
scheme Y ′ and let q : X ′ → X be the first projection from the fiber product
X ′ = X ×Y Y ′. Then,

I q∗(F)/Y ′(q∗L1, . . . , q
∗Lk) ' h∗I F/Y (L1, . . . ,Lk)

for any invertible sheaves L1, . . . ,Lk on X. Let σ = (σ1, . . . , σk) be as in Lemma
2.13. Then, q∗σ := (q∗σ1, . . . , q

∗σk) is q∗(F )-regular for the sections q∗σi of q∗Li.
Assume that if depthOY ′,y′ = 0 (resp. = 1), then SuppF ∩ V (σ) ∩ π−1(h(y′))
is empty (resp. finite). Then, V (q∗σ) = V (σ) ×Y Y ′ satisfies the required con-
dition in Lemma 2.13 for the existence of D(q∗σ) with respect to q∗(F )/Y ′ and
(q∗L1, . . . , q

∗Lk). Moreover, h∗D(σ) = D(q∗σ).

Proof. The first isomorphism follows from Lemma 2.8. Let π′ : X ′ → Y ′

be the second projection from the fiber product X ′. Since F is flat over Y , the
pullback

· · · → q∗
(

F ⊗
p∧

(E ∨)
)
→ · · · → q∗(F ) → q∗(F ⊗ OV (σ)) → 0

of the exact sequence (1.4) by q∗ is also exact, where E =
⊕k

i=1 Li as in the proof
of Lemma 2.13. Hence, q∗σ is a q∗(F )-regular section of q∗(E ). Let C •,• be the
double-complex in the proof of Lemma 2.13 and let C • = [· · · → C i → C i+1 → · · · ]
be the total complex. Since C i ∈ G(X, π, F ), we have

h∗
(
π∗(F ⊗ C i)

) ' π′∗
(
q∗(F ⊗ C i)

) ' π′∗
(
q∗(F )⊗ q∗(C i)

)

and q∗(C i) ∈ G(X ′, π′, q∗(F )), by Remark 2.2. Note that the complex V • on
Y given by V i = π∗(F ⊗ C i) is quasi-isomorphic to Rπ∗(F ⊗ OV (σ)), and the
complex V ′• on Y ′ given by V ′i = π′∗(q

∗(F ) ⊗ q∗(C i)) is quasi-isomorphic to
Rπ′∗(q

∗(F ) ⊗ OV (q∗σ)). Thus, D(σ) = Div(V •) and D(q∗σ) = Div(V ′•). Since
q∗V i ' V ′i, it is enough to check the following conditions by Lemma 1.10:

• If depthOY ′,y′ = 0, then H i(V •)h(y′) = 0 for any i ∈ Z.
• If depthOY ′,y′ = 1, then H i(V •)h(y′) = H i(V ′•)y′ = 0 for any i 6= 0.
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Since Rπ∗(F ⊗OV (σ)) 'qis V • and Supp q∗(F )∩V (q∗σ) = q−1(SuppF ∩V (σ)),
these conditions are satisfied by our assumption on the set SuppF ∩ V (σ) ∩
π−1(h(y)). Thus, we are done. ¤

Proposition 2.15. Let L1, . . . ,Lk be invertible sheaves on X with surjec-
tive homomorphisms π∗Gi → Li for locally free sheaves Gi of finite rank on Y . If
k ≥ d +2, then I F/Y (L1, . . . ,Lk) ' OX . If k = d +1, then there is a surjection

Φ: Syme1(G1)⊗ · · · ⊗ Symed+1(Gd+1) → I F/Y (L1, . . . ,Ld+1),

where ei = iF/Y (L1, . . . ,Li−1,Li+1, . . . ,Ld+1) for 1 ≤ i ≤ d + 1.

Proof. We may assume that k ≥ d + 1. Let q(i) : P
(i)
Y := PY (G ∨i ) → Y

be the projective space bundle associated to G ∨i , P
(i)
X := X ×Y P

(i)
Y , and let

p
(i)
1 : P

(i)
X → X and p

(i)
2 : P

(i)
X → P

(i)
Y be natural projections. For the tautological

line bundle O(1) of P
(i)
Y with respect to G ∨i , we have a natural homomorphism

p
(i)∗
1 L ∨

i → p
(i)∗
1 π∗G ∨i = p

(i)∗
2 q(i)∗G ∨i → p

(i)∗
2 O(1),

and thus a global section σ(i) of p
(i)∗
1 Li ⊗ p

(i)∗
2 O(1), which defines an effective

Cartier divisor B(i) = div(σ(i)) on P
(i)
X . Then B(i) → X is a projective space

bundle isomorphic to PX(K ∨
i ) for the kernel Ki of π∗Gi → Li. Thus we have a

diagram

B(i) PX(K ∨
i ) ⊂ // P (i)

X

p
(i)
1 //

p
(i)
2

²²

X

π

²²
PY (G ∨i ) P

(i)
Y

q(i)
// Y.

Let q : PY → Y be the fiber product PY = P
(1)
Y ×Y · · · ×Y P

(k)
Y of the

projective space bundles over Y , PX := X ×Y PY ' P
(1)
X ×X · · · ×X P

(k)
X , and

let p1 : PX → X, p2 : PX → PY , and π(i) : PX → P
(i)
X for 1 ≤ i ≤ k be natural

projections. Then

V :=
k⋂

i=1

π(i)−1
(B(i)) ' B(1) ×X · · · ×X B(k)
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and we have a diagram:

V B(1) ×X · · · ×X B(k)
⊂ // PX

p1 //

p2

²²

X

π

²²
P

(1)
Y ×Y · · · ×Y P

(k)
Y

PY
q // Y.

The sections σ(i) give rise to a global section σ of the locally free sheaf

E :=
k⊕

i=1

p∗1Li ⊗ p∗2
(
O(1)(i)

)
,

where O(1)(i) is the pullback of O(1) by PY → P
(i)
Y . Furthermore, V coincides

with the zero subscheme V (σ) of σ. Since V is smooth over X, we infer that
σ is a regular section of E . Moreover, σ is p∗1F -regular, since V → X is flat.
Hence, by Lemma 1.7, we have φ(λ−1(E ∨)) = cl•(OV ) and λ−1(E ∨) cl•(p∗1F ) =
cl•(p∗1F ⊗ OV ), where

λ−1(E ∨) = δ
(k)
PX

(
p∗1L1 ⊗ p∗2(O(1)(1)), . . . , p∗1Lk ⊗ p∗2(O(1)(k))

)
. (2.4)

Thus, we may define cl•(OV ) := λ−1(E ∨) ∈ K•(PX). Note that the equalities

(p2)
p∗1F
?

(
p?
1x · p?

2y′
)

=
(
(p2)

p∗1F
? (p?

1x)
) · y′ =

(
q?πF

? (x)
) · y′

hold for x ∈ K•(X) and y′ ∈ K•(PY ) by Lemma 2.8. Applying the equalities and
using Remark 1.4, (1), we have the following from (2.4):

(p2)
p∗1F
? (cl•(OV ))− q?

(
πF

? δ
(k)
X (L1, . . . ,Lk)

)

≡
k∑

i=1

q?
(
πF

? δ
(k−1)
X (L1, . . . ,Li−1,Li+1, . . . ,Lk)

) · δ(O(1)(i))

+ q?
(
πF

? δ
(k)
X (L1, . . . ,Lk)

) ·
k∑

i=1

δ(O(1)(i)) mod F 2(PY )

≡
k∑

i=1

iF/Y (L1, . . . ,Li−1,Li+1, . . . ,Lk) δ(O(1)(i)) mod F 2(PY ),
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where πF
? δ

(k)
X (L1, . . . ,Lk) ≡ 0 mod F 1(Y ) by Lemma 2.12, since k ≥ d + 1.

Therefore, we have an isomorphism

I p∗1F/PY

(
p∗1L1 ⊗ p∗2(O(1)(1)), . . . , p∗1Lk ⊗ p∗2(O(1)(k))

)

' det
(
(p2)

p∗1F
? (cl•(OV ))

) ' q∗
(
I F/Y (L1, . . . ,Lk)

)⊗
k⊗

i=1

(O(1)(i))⊗ei (2.5)

for ei = iF/Y (L1, . . . ,Li−1,Li+1, . . . ,Lk), since det : K•(PY ) → Pic(PY ) is triv-
ial on F 2(PY ). In order to describe the left hand side of (2.5), we want to define
the divisor D(σ) on PY as in Lemma 2.13. Note that

dim(Supp p∗1F ∩ V )/Y = dim(Supp p∗1F ∩ V )/ SuppF + d

= dim PY /Y − k + d. (2.6)

Since k ≥ d+1, p2(Supp p∗1F∩V ) 6= PY and moreover, p2(Supp p∗1F∩V ) does not
contain any fiber of q : PY → Y . Let w ∈ PY be a point with depthOPY ,w ≤ 1.
Note that the fiber F = q−1(q(w)) is a product of projective spaces and that we
have the formula

depthOPY ,w = depthOY,q(w) + depthOF ,w = depthOY,q(w) + dimOF ,w,

since q : PY → Y is flat and F is Cohen-Macaulay. Hence, w is a generic point
of F or the generic point of a prime divisor on F . In the former case, w 6∈
p2(Supp p∗1F ∩ V ), and in the latter case, p−1

2 (w) ∩ Supp p∗1F ∩ V is a finite set,
by (2.6). Thus, V = V (σ) satisfies the condition of Lemma 2.13. As a consequence
of Lemma 2.13, we have an effective Cartier divisor D = D(σ) on PY such that
SuppD ⊂ p2(Supp p∗1F ∩ V )) and

OPY
(D) ' det

(
(p2)

p∗1F
? (cl•(OV ))

)
. (2.7)

Here, D is a relative Cartier divisor with respect to q : PY → Y , since
dim(SuppD ∩ q−1(y)) < dimPY /Y for any y ∈ Y by (2.6).

If k > d + 1, then D = 0, and consequently, I F/Y (L1, . . . ,Lk) ' OY by
(2.5) and (2.7), since ei = iF/Y (L1, . . . ,Li−1,Li+1, . . . ,Lk) = 0 for any i by
Lemma 2.12.

Assume that k = d + 1. Then (2.5) and (2.7) imply that
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q∗
(
I F/Y (L1, . . . ,Ld+1)

)⊗
d+1⊗

i=1

(
O(1)(i)

)⊗ei

has a non-zero global section defining the divisor D. The section induces a section
of

I F/Y (L1, . . . ,Ld+1)⊗
d+1⊗

i=1

Symei(G ∨i ),

and, equivalently, a homomorphism

Φ:
d+1⊗

i=1

Symei(Gi) → I F/Y (L1, . . . ,Ld+1).

It remains to show the surjectivity of Φ. The composition of a natural injection

k⊗

i=1

O(−1)(i) → q∗
( d+1⊗

i=1

Symei(Gi)
)

with q∗Φ gives an injection between invertible sheaves whose cokernel defines D.
In particular, q∗Φ is surjective on PY \ SuppD. Since SuppD does not contain
any fiber of q, we conclude that Φ is surjective. ¤

Lemma 2.16. Let h : Y ′ → Y be a morphism from a Noetherian scheme Y ′

and let ϕ : X ′ → X be the first projection from the fiber product X ′ = X ×Y Y ′.
In the situation of Proposition 2.15, assume that k = d + 1 and let

Φ′ : Syme1(h∗G1)⊗ Symed+1(h∗Gd+1) → I ϕ∗F/Y ′(ϕ∗L1, . . . , ϕ
∗Ld+1)

be the surjection on Y ′ obtained by the same method as in the proof of Proposition
2.15. Then, Φ′ and h∗(Φ) are isomorphic to each other.

Proof. We set F ′ = ϕ∗F , and let q′ : PY ′ → Y ′, p′1 : PX′ → X ′,
p′2 : PX′ → PY ′ , and π′ : X ′ → Y ′, respectively, be the pullbacks of q, p1, p2,
and π by the base change of h : Y ′ → Y . Then we have two commutative Carte-
sian diagrams
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PX′
p′2 //

µ

²²

PY ′
q′ //

ν

²²

Y ′

h

²²
PX

p2 // PY
q // Y,

PX′
p′1 //

µ

²²

X ′ π′ //

ϕ

²²

Y ′

h

²²
PX

p1 // X
π // Y,

for the induced morphisms ν : PY ′ → PY and µ : PX′ → PX . Let σ be the
section of E in the proof of Proposition 2.15, and let µ∗σ be the pullback of σ

as a section of µ∗E . By the argument of the proof of Proposition 2.15, Φ and Φ′

are determined by the divisors D(σ) and D(µ∗σ), respectively; thus it is enough
to prove: D(µ∗σ) = ν∗D(σ). By Lemma 2.14, the equality holds if the following
conditions are satisfied: If depthOPY ′ ,w′ = 0 (resp. = 1) for a point w′ ∈ PY ′ ,
then Supp p∗1F ∩ V (σ) ∩ p−1

2 (ν(w′)) is empty (resp. finite).
We shall check this condition. Let w′ be a point of PY ′ with depthOPY ′ ,w′ ≤

1. We set w = ν(w′). As in the proof of Proposition 2.15, we know that w′ is the
generic point of the fiber F ′ = q′−1q′(w′) or the generic point of a prime divisor
on F ′. In the former case, w is the generic point of the fiber F = q−1q(w), and
thus Supp p∗1F ∩V (σ)∩p−1

2 (w) = ∅. In the latter case, w is the generic point of a
prime divisor on F , and thus Supp p∗1F ∩V (σ)∩ p−1

2 (w) is finite by (2.6). Hence,
the condition is satisfied. Thus, we are done. ¤

Remark 2.17. Let D = DF ,L be the effective Cartier divisor on PY =
P (G ∨1 ) ×Y · · · ×Y P (G ∨d+1) in the proof of Proposition 2.15. By Lemma 2.16, we
infer that, for a point y ∈ Y , the effective divisor Dy := D|q−1(y) is characterized
by the following two conditions:

(1) For 1 ≤ i ≤ d, let O(1)(i) be the pullback to PY of the tautological invertible
sheaf of PY (G ∨i ) with respect to G ∨i . Then

Oq−1(y)(Dy) '
d+1⊗

i=1

(O(1)(i)|q−1(y))⊗ei .

(2) Let vi be a non-zero element of Gi ⊗ k(y) for 1 ≤ i ≤ d + 1. For v =
(v1, . . . , vd+1), let [v] be a point of q−1(y) corresponding to the surjections
v∨i : G ∨i ⊗ k(y) → k(y). Let vX

i be the global section of Li ⊗ Oπ−1(y)

defined by π∗Gi → Li, and set vX := (vX
1 , . . . , vX

d+1) as a global section of
(L1 ⊕ · · · ⊕Ld+1) ⊗ Oπ−1(y). Then [v] 6∈ SuppDy if and only if V (vX) ∩
SuppF = ∅ for the zero subscheme V (vX) ⊂ π−1(y).

Remark. Assume that Y = Spec A for a ring A, X = P d
A, F = OX , and

Li = OP N (mi) for some mi > 0. Then, for Gi = H0(X, Li) ' Symmi(A⊕(d+1)),
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the homomorphism Φ in Proposition 2.15 defines the resultants: An element vi ∈
Gi is regarded as a homogeneous polynomial of degree mi with coefficients in A.
Then

Φ
(
ve1
1 ⊗ · · · ⊗ v

ed+1
d+1

)

is the resultant of v1, . . . , vd+1 up to unit (cf. [7, Section 6.1]).

Lemma 2.18. If k > d+1, then I F/Y (L1, . . . ,Lk) ' OY for any invertible
sheaves L1, . . . ,Lk on X.

Proof. By Proposition 2.15, this is true if all Li satisfy the following con-
dition (†) on invertible sheaves L on X:

(†) There exist a locally free sheaf G on Y and a surjection π∗G → L .

It is enough to prove the following assertion: For any invertible sheaf L on X,
there exist invertible sheaves M1 and M2 satisfying (†) and L ' M1 ⊗M−1

2 . In
fact, by the assertion, we can write Li ' Mi,1⊗M−1

i,2 for invertible sheaves Mi,1,
Mi,2 satisfying (†). Then, by Remark 1.4, I F/Y (L1, . . . ,Lk) is expressed as a
tensor product of invertible sheaves I F/Y (N1, . . . ,Nl)⊗(±1) with l ≥ k such that
all Ni satisfy (†): This implies that I F/Y (L1, . . . ,Lk) ' OY if k > d + 1.

The assertion above is shown as follows. Since π is projective, we have a
π-ample invertible sheaf A on X. Then, there is a positive integer n such that
the natural homomorphisms

π∗π∗(L ⊗A ⊗n) → L ⊗A ⊗n and π∗π∗(A ⊗n) → A ⊗n

are surjective and that

Ri π∗(L ⊗A ⊗n) = Ri π∗(A ⊗n) = 0

for any i > 0. We set M1 = L ⊗A ⊗n and M2 = A ⊗n. Then, L ' M1 ⊗M−1
2 .

If π is flat, then, by Remark 2.2, G1 = π∗(M1) and G2 = π∗(M2) are locally free
sheaves of finite rank; thus M1 and M2 satisfy (†). Assume that π is not flat.
Then, by Assumption 2.1, Y admits an ample invertible sheaf H . There is a
positive integer m such that π∗(M1)⊗H ⊗m and π∗(M2)⊗H ⊗m are generated
by finitely many global sections. Hence, for each i = 1, 2, we have a surjection

π∗
(
O⊕Ni

Y ⊗H ⊗(−m)
) → π∗π∗(Mi) → Mi
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for some Ni > 0. Thus, M1 and M2 satisfy (†). This completes the proof. ¤

Lemma 2.19 (cf. [8, Section III]). The following hold for invertible sheaves
L1, . . . ,Ld+1 on X:

(1) For any permutation τ of {1, . . . , d + 1}, one has an isomorphism

I F/Y (Lτ(1), . . . ,Lτ(d+1)) ' I F/Y (L1, . . . ,Ld+1).

(2) If L ′
1 is another invertible sheaf, then

I F/Y

(
L1 ⊗L ′

1,L2, . . . ,Ld+1

)

' I F/Y (L1,L2, . . . ,Ld+1)⊗I F/Y

(
L ′

1,L2, . . . ,Ld+1

)
.

(3) If σ1 is an F -regular section of L1 and if F ⊗ OB1 is flat over Y for
B1 = V (σ1), then

I F/Y (L1, . . . ,Ld+1) ' I F⊗OB1/Y (L2|B1 , . . . ,Ld+1|B1).

(4) If d = 0 and F = OX , then I X/Y (L ) is the norm sheaf of an invertible
sheaf L on X, i.e.,

I X/Y (L ) ' det(π∗OX)⊗ det(π∗L −1)−1 ' det(π∗L )⊗ det(π∗OX)−1.

Proof. (1) follows from Definition 1.3, and (2) from Remark 1.4 and
Lemma 2.18.

(3): It is enough to show the following equality for any x ∈ K•(X):

π
F⊗OB1
? (x|B1) = πF

? (x)−πF
?

(
x cl•(L −1

1 )
)

= πF
?

(
(1−cl•(L −1

1 ))x
)

= πF
? (δ(L1)x).

In fact, the expected isomorphism are derived from the equality by substituting
x = δ(L2, . . . ,Ld+1) and by taking det. The section σ1 induces an exact sequence

0 → F ⊗L −1
1 → F → F ⊗ OB1 → 0.

If x = cl•(G ) for a locally free sheaf G on X belonging to G(X, π, F )∩G(X, π, F⊗
L −1

1 ), then the equality holds, since

0 → π∗
(
F ⊗L −1

1 ⊗ G
) → π∗(F ⊗ G ) → π∗(F ⊗ OB1 ⊗ G ) → 0
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is exact. We may assume that x = cl•(E ) for a locally free sheaf E of finite rank on
X. Then, there is a strict injection E → G for some G ∈ G(X, π, F )∩G(X, π, F⊗
L −1

1 ) by Lemma 2.3. Thus, by the proof of Lemma 2.4, we have an exact sequence
0 → E → G 0 → · · · → G d → 0 with G i ∈ G(X, π, F ) ∩ G(X, π, F ⊗ L −1

1 ).
Therefore, the equality holds for any x.

(4): Since d = 0 and F = OX , π is a finite flat morphism. Thus, L ∈
G(X, π, F ), and we have the expected isomorphisms by Remark 1.4, (2). ¤

2.3. Refined definition of intersection sheaves.
We recall the following well-known result on Segre classes (cf. [8, Section V]):

Lemma 2.20. Suppose that X = PY (E ) for a locally free sheaf E of rank r

on Y . For an integer p ≥ −(r − 1), let us define

σp(E ) := π?

(
δ(O(1))r+p−1

) ∈ K•(Y ),

where O(1) denotes the tautological invertible sheaf on X with respect to E and
π? = πOX

? : K•(X) → K•(Y ). Then, σp(E ) = 1 for any p ≤ 0 and σ1(E ) =
δ(detE ). Moreover,

r∑

k=0

γk(cl•(E ∨)− r) · σi+1−k(E ) = 0 (2.8)

for any i ≥ 0. In particular, the following hold :

(1) σp(E ) ∈ F p(Y ) for any p ≥ 0.
(2) For a non-negative integer m, let bm be the sum

m∑

k=0

γm−k(cl•(E ∨)− r) σk(E ).

Then, b0 = 1, bm ∈ Fm+1(X) for any m > 0, and bm = 0 for any m ≥ r.
(3) For any 0 ≤ p ≤ r, there is a polynomial P (x1, . . . , xr, y) ∈ Z[x1, . . . , xr, y

±]
such that

γp(cl•(E ∨)− r) = P (σ1(E ), . . . ,σr(E ), cl•(detE ))

and that any monomial in P has weighted degree at least p with respect to
the weight w such that w(y) = 0 and w(xi) = i for any 1 ≤ i ≤ r.
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Proof. If Rq π∗O(−i) 6= 0 for integers 0 ≤ i ≤ r and q ≥ 0, then (i, q) =
(0, 0) or (i, q) = (r, r− 1). Here, R0 π∗OX ' OY and Rr−1 π∗O(−r) ' detE ∨. We
know

δ(O(1))p =
l∑

i=0

(−1)i

(
p

i

)
cl•(O(−i))

for p ≥ 0 by Remark 1.4, (3). Therefore,

σp(E ) = π?

(
δ(O(1))r+p−1

)
= 1 for − (r − 1) ≤ p ≤ 0, and

σ1(E ) = π?

(
δ(O(1))r

)
= 1− cl•(detE ∨) = δ(detE ).

Let G be the cokernel of the natural injection O(−1) → π∗E ∨. Then

γt(cl•(G )− (r − 1)) = γt(cl•(π∗E ∨)− r)γt(cl•(O(−1))− 1)−1

= γt(cl•(π∗E ∨)− r)(1− δ(O(1))t)−1. (2.9)

The left hand side of (2.9) equals the polynomial

λt/(1−t)(cl
•(G )− (r − 1)) =

r−1∑
p=0

λp(G )tp(1− t)r−1−p

of degree r − 1 (cf. (1.7)). The right hand side of (2.9) equals

( r∑

i=0

γi(π?(cl•(E ∨))− r)ti
)( ∑

j≥0

δ(O(1))jtj
)

,

so the coefficient of tr+i for i ≥ 0 equals

0 =
r∑

k=0

γk(π?(cl•(E ∨))− r) δ(O(1))i+r−k.

By taking π?, we have the expected equality (2.8) by applying (2.3). Rewriting
the equality (2.8) to
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σi+1(E ) = −
r∑

k=1

γk(cl•(E ∨)− r) σi+1−k(E ),

we infer that σp(E ) ∈ F p(Y ) for any p ≥ 0 by induction on p. Thus, (1) is proved.
If m ≥ r, then bm in (2) equals

r∑

k=m−r

γm−k(cl•(E ∨)− r) σk(E ) =
r∑

k=0

γk(cl•(E ∨)− r) σr−k(E ) = 0

by (2.8), since γi(cl•(E ∨)− r) = 0 for i > r. If 0 < m < r, then, by (2.8), we have

bm =
m∑

k=0

γk(cl•(E ∨)− r) σm−k(E ) = −
r∑

k=m+1

γk(cl•(E ∨)− r) σm−k(E )

= −
r∑

k=m+1

γk(cl•(E ∨)− r) ∈ Fm+1(X).

Since b0 = γ0(cl•(E ∨)− r)σ0(E ) = 1, we have proved (2). Finally, we shall prove
(3) by induction on p. If p = 0, then it is enough to take P = 1. If p > r, then
γp(cl•(E ∨) − r) = 0. Thus, we may assume that 0 < p ≤ r. Considering the
difference of the equalities (2.8) for i = p and for i = p− 1, we have

0 =
r∑

k=0

γk(cl•(E ∨)− r)(σp+1−k(E )− σp−k(E ))

=
p−1∑

k=0

γk(cl•(E ∨)− r)(σp+1−k(E )− σp−k(E ))− γp(cl•(E ∨)− r) cl•(detE ∨).

Therefore, γp(cl•(E ∨) − r) is expressed as a polynomial of γk(cl•(E ∨) − r) for
k < p, σ1(E ), . . . ,σp+1(E ), and cl•(detE ) = cl•(detE ∨)−1. Thus, by induction,
we can prove (3) for p < r. For p = r, we consider (2.8) for i = r − 1. Then,

γr(cl•(E ∨)− r) = −
r−1∑

k=0

γk(cl•(E ∨)− r) σr−k(E ).

Hence, (3) holds also for p = r. Thus, we are done. ¤
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Remark. In Lemma 2.20 above, the element sp(E ) := σp(E ) mod
F p+1(Y ) ∈ Gp(Y ) for p ≥ 0 can be regarded as the p-th Segre class of E (the
p-th Segre class of E ∨ in the sense of [12]), by the property Lemma 2.20, (2). In
fact, we have

m∑

k=0

cm−k(E ∨)sk(E ) =

{
1 ∈ G0(Y ), if m = 0;

0 ∈ Gm(Y ), if m > 0.

Fact 2.21. In the situation of Lemma 2.20, the following further properties
are known (cf. [22, Exp. VI]):

(1) (cf. [22, Exp. VI, Théorème 1.1 and Remarque 1.13]): K•(X) is a free
K•(Y )-module of rank r − 1 and has the decomposition

K•(X) =
r−1⊕

k=0

π?(K•(Y )) δ(O(1))k

with a relation

δ(O(1))r = −
r−1∑

k=0

γr−k(π?(cl•(E ∨))− 1) δ(O(1))k.

(2) (cf. [22, Exp. VI, Proposition 5.3]): For p ≥ 0, we have

F p(X) =
r−1⊕

k=0

π?(F p−k(Y )) δ(O(1))k.

(3) (cf. [22, Exp. VI, Corollaire 5.8]): π?(F r+i−1(X)) ⊂ F i(Y ) for any i ≥ 0,
for the homomorphism π? = πOX

? : K•(X) → K•(Y ).

Note that (3) is derived from (2), by the projection formula (2.3) and by Lemma
2.20, (2).

Remark 2.22. In the situation of Lemma 2.20, π? : K•(X) → K•(Y )
induces a homomorphism Gr+i−1(X) → Gi(Y ) for i ≥ 0, by Fact 2.21, (3).
Adding the zero maps from Gj(X) for j < r − 1, we have a homomorphism
G(π?) : G•(X) → G•(Y ), which is denoted by π? : G•(X) → G•(Y ) for simplicity
if it causes no confusion with π? : K•(X) → K•(Y ). Let G(π?) : G•(Y ) → G•(X)
be the homomorphism induced from π? : K•(Y ) → K•(X). Then the projection



Intersection sheaves over normal schemes 531

formula

G(π?)(x̄ ·G(π?)(ȳ)) = G(π?)(x̄) · ȳ
(or π?(x̄ · π?(ȳ)) = π?(x̄) · ȳ for simplicity) (2.10)

holds, where x̄ ∈ G•(X) and ȳ ∈ G•(Y ). This is derived from the decomposition
in Fact 2.21, (2), and from the projection formula (2.3). We note further that

G(π?)(cr−1(G )) = 1 ∈ G0(Y ) (2.11)

for the cokernel G of O(−1) → π∗(E ∨). In fact, comparing the coefficient of tr−1

of the both sides of (2.9), we have

γr−1(cl•(G )− (r − 1)) =
r−1∑

k=0

γk(π?(cl•(E ∨))− r) δ(O(1))r−k−1.

Applying π?, we have the equality (2.11) by (2.3) and by Lemma 2.20 with (2.8)
for i = 0, since

π?(γr−1(cl•(G )− (r − 1)))

= 1 +
r−1∑

k=1

γk(cl•(E ∨)− r) = 1 +
r−1∑

k=1

γk(cl•(E ∨)− r) σ1−k(E )

= 1− γr(cl•(E ∨)− r)− σ1(E ) ≡ 1 mod F 1(Y ).

As an application of Lemma 2.20, we have:

Lemma 2.23 (cf. [8, Section V]). Let X be a connected Noetherian
scheme. Then, for any k ≥ 0, F k(X) is generated by elements of the form
σj1(E1) · · ·σjl(El) for locally free sheaves Ei on X of rank ri, where ji are positive
integers such that

∑l
i=1 ji ≥ k. In other words, F k(Y ) is generated by elements

of the form

p?

(
δ(O(1)(1))r1+j1−1 · · · δ(O(1)(l))rl+jl−1

)

for the fiber product p : P = P (E1)×X · · ·×XP (Er) → X of projective space bundles
PX(Ei) → X associated with the locally free sheaves Ei, where p? = pOP

? : K•(P ) →
K•(X), and O(1)(i) denotes the pullback to P of the tautological invertible sheaves
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O(1) on PX(Ei) with respect to Ei.

Proof. By definition, F k(X) is generated by elements of the form
γm1(x1) · · · γmn(xn) for positive integers mi with m1 + · · · + mn ≥ k, where
xi = cl•(Gi)−ri for a locally free sheaf Gi of rank ri. By Lemma 2.20, (3), γmi(xi)
is expressed as a linear combination of certain products of σm(G ∨i ) for m ≥ 0 and
σ1(Gi) = δ(detG ∨i ). Thus, by Lemma 2.20, F k(X) is generated by elements of the
form σj1(E1) · · ·σjl(El) for positive integers ji with j1+· · ·+jl ≥ k, where Ei is a lo-
cally free sheaf of rank ri. For the morphism p : P = PX(E1)×X · · ·×XPX(El) → Y

above, we have

σj1(E1) · · ·σjl(El) = p?

(
δ(O(1)(1))r1+j1−1 · · · δ(O(1)(l))rl+jl−1

)

by applying Lemma 2.8 successively. Thus, we are done. ¤

Applying Lemma 2.23, we shall prove the following well-known:

Proposition 2.24 ([22, Exp. VI, Théorème 6.9], [13, Chapter V, Corollary
3.10]). Let X be a Noetherian scheme of dimension at most n admitting ample
invertible sheaves. Then, Fn+1(X) = 0.

Proof. By Lemma 2.23, it is enough to prove that p?(x) = 0 for a fiber
product p : P = PX(E1)×X · · ·×X PX(El) → X of projective space bundles PX(Ei)
associated with a locally free sheaf of rank ri and for

x = δ(O(1)(1))r1+j1−1 · · · δ(O(1)(l))rl+jl−1,

where O(1)(i) is the pullback to P of the tautological invertible sheaf O(1) on
PX(Ei) with respect to Ei and ji are positive integers with

∑l
i=1 ji ≥ n + 1. Now,

P has also an ample invertible sheaf, since p is a projective morphism. Since
dimP ≤ n+dim P/X = n+

∑l
i=1(ri−1), we have

∑l
i=1(ri + ji−1) ≥ dimP +1.

It is enough to show that x = 0 in K•(P ). Therefore, we are reduced to proving
the assertion that

δ(L1, . . . ,Ln+1) = δ(L1) · · · δ(Ln+1) = 0 ∈ K•(X)

for any invertible sheaves Li on X. Since X has an ample invertible sheaf, any
invertible sheaf is written as a difference of ample invertible sheaves. In fact,
for an invertible sheaf L and for an ample invertible sheaf A on X, there is a
positive integer b such that L ⊗A ⊗b is ample. Hence, L ' (L ⊗A ⊗b)⊗A ⊗(−b).
Thus, by Remark 1.4, we may assume that Li are all ample. Moreover, by taking
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b above too large, we may assume that there is a section σ1 ∈ H0(X, L1) such
that σ1 does not vanish at any associated prime of X (cf. [22, Exp. VI, Lemma
6.8]). In particular, σ∨1 : L ∨

1 → OX is injective and the Cartier divisor V (σ1) has
codimension at least one. Similarly, we may assume that there exists a section
σ2 ∈ H0(X, L2) such that

σ∨2 |V (σ1) : L ∨
2 |V (σ1) → OV (σ1)

is injective. Continuing the same reduction, we may assume finally that there
exist sections σi ∈ H0(X, Li) for 1 ≤ i ≤ n + 1 such that σ = (σ1, . . . , σn+1) is
a regular section of E := L1 ⊕ · · · ⊕ Ln+1. Here, V (σ) = ∅, since dim V (σ) =
dimX − (n + 1) < 0. Hence, δ(L1, . . . ,Ln+1) = λ−1(E ∨) = 0 by the exact
sequence (1.4) for E and F = OX . Thus, we are done. ¤

By Lemmas 2.18 and 2.23, we have the following result related to Fact 2.21,
(3).

Proposition 2.25.

πF
? (F d+2(X)) ⊂ F 2(Y ).

In particular, I F/Y (x) := det(πF
? (x)) gives rise to a homomorphism Gd+1(X) →

G1(Y ) ' Pic(Y ).

Proof. It is enough to prove that πF
? (x) ∈ F 2(Y ) for x ∈ F d+2(X) of the

form

x = p?

(
δ(O(1)(1))r1+j1−1 · · · δ(O(1)(l))rl+jl−1

)

as in Lemma 2.23, where j1 + · · · + jl ≥ d + 2. Here p∗F is flat over Y , and
π ◦ p : P → Y is a projective morphism satisfying Assumption 2.1. Then, by
Lemma 2.9, we have

I p∗F/Y (z) = det
(
(π ◦ p)p∗F

? (z)
)

= det
(
πF

? (p?(z))
)

= det πF
? (x)

for z = δ(O(1)(1))r1+j1−1 · · · δ(O(1)(l))rl+jl−1. Note that
∑l

i=1(ri + ji − 1) ≥
dimP/X + d + 2 ≥ dim(Supp p∗F )/Y + 2. Hence, I p∗F/Y (z) ' OY by Lemma
2.18. Thus, we are done. ¤

Definition 2.26. Let π : X → Y be a locally projective morphism of
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Noetherian schemes and let F be a coherent sheaf on X which is flat over Y .
Assume that the relative dimension d := dim(SuppF )/Y is constant. We define
the intersection sheaf I perf

F/Y (x) for x ∈ F d+1(X) by

I perf
F/Y := det ◦πF

? : K•(X) → K•(Y )perf → Pic(Y ).

If π satisfies Assumption 2.1, then we define I F/Y (η) for η ∈ Gd+1(X) as in
Proposition 2.25.

By Proposition 2.25, we infer that if π satisfies Assumption 2.1, then

I perf
F/Y (x) ' I F/Y (η)

for x ∈ F d+1(X) and η = x mod F d+2(X) ∈ Gd+1(X).

Lemma 2.27. Let h : Y ′ → Y be a morphism from a Noetherian scheme Y ′,
X ′ = X ×Y Y ′, and F ′ = q∗1F for the first projection q1 : X ′ → X. Then

h∗I perf
F/Y (x) ' I perf

F ′/Y ′(q
?
1x)

for any x ∈ F d+1(X) even if π is only a locally projective morphism. If π and the
second projection q2 : X ′ → Y ′ satisfy Assumption 2.1, then

h∗I F/Y (η) ' I F ′/Y ′(q?
1η)

for any η ∈ Gd+1(X).

Proof. It is enough to prove the first isomorphism. By Lemmas 2.8 and
2.12, we have

(q2)F ′
? (q?

1x) = h?
(
πF

? (x)
) ∈ Ker(ε : K•(Y )perf → Z)

for any x ∈ F d+1(X). This induces the first isomorphism by Definition 2.26. ¤

Lemma 2.28. Assume that Y is a projective scheme defined over a field k

with dimY = 1. Then, for any η ∈ Gd+1(X),

degY/k I F/Y (η) = iX/k(η;F ).



Intersection sheaves over normal schemes 535

Proof. Let x ∈ F d+1(X) be a representative of η ∈ Gd+1(X). We
have πF

? (x) ∈ F 1(Y ) by Lemma 2.12. Hence, πF
? (x) = δ(I F/Y (η)), since

F 2(Y ) = 0 by Proposition 2.24. On the other hand, degY/k(M ) = iY/k(c1(M )) =
deg0,Y/k(φδ(M )) for any invertible sheaf M on Y (cf. Definition 1.11). For the
structure morphisms pX : X → Spec k and pY : Y → Spec k, we have

pX?(x cl•(F )) = pY ?(π?(x cl•(F ))) = pY ?

(
φ πF

? (x)
)

= pY ?(φδ(I F/Y (η)))

by Lemma 2.6, (1). Thus, iX/k(η;F ) = degY/k I F/Y (η). ¤

The following Lemma 2.29 and Corollary 2.30 are similar to the projection
formulas shown in [8, Proposition IV.2.2 (b)], and [33, Propositions 5.2.1 and
5.2.2].

Lemma 2.29. Let ψ : Y → S be a projective surjective flat morphism to a
connected Noetherian scheme S with the relative dimension e = dim Y/S, and G
a locally free sheaf on Y of finite rank. Suppose that F is flat over S and that S

admits an ample invertible sheaf when π is not flat. Then, there exist isomorphisms

I F⊗π∗G /S(η · π?θ) ' I G /S(c1(I F/Y (η)) · θ),

I F⊗π∗G /S(η′ · π?θ′) ' I G /S(θ′)⊗iF/Y (η′)

for any η ∈ Gd+1(X), η′ ∈ Gd(X), θ ∈ Ge(Y ), and θ′ ∈ Ge+1(Y ).

Proof. The assertion follows from the projection formula

πF⊗π∗G
? (x · π?y) = ψG

?

(
πF

? (x) · y)
(2.12)

for any x ∈ K•(X) and y ∈ K•(Y ). This is derived from the quasi-isomorphism

R(ψ ◦ π)∗(F ⊗ π∗G ⊗ (E ⊗ π∗V )) 'qis Rψ∗((G ⊗ V )⊗L Rπ∗(F ⊗ E ))

for any locally free sheaves E on X and V on Y of finite rank. ¤

Corollary 2.30. For θ ∈ Gd(X) and an invertible sheaf M on Y , one has
an isomorphism

I F/Y (θ · c1(π∗M )) ' M⊗iF/Y (θ).
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Proof. Apply the second isomorphism in Lemma 2.29 to θ ∈ Gd(X) and
c1(M ) ∈ G1(Y ) in the case where ψ is the identity map of Y . ¤

The following is a combination of variants of Lemmas 2.13 and 2.14. This is
proved by the same arguments as in the proofs of the both lemma; so we omit the
proof.

Lemma 2.31. Let E be a locally free sheaf on X of rank d + 1 and let σ be
an F -regular section of E on X. For the zero subscheme V := V (σ), assume that

(1) if depthOY,y = 0 (resp. = 1), then SuppF ∩ V ∩ π−1(y) is empty (resp.
finite).

Then, there exists uniquely an effective Cartier divisor D(σ) on Y with SuppD(σ)
⊂ π(SuppV ) satisfying the following properties:

I F/Y (cd+1(E )) ' OY (D(σ)), and D(σ)|Spec OY,y
= DivOY,y

(π∗(F ⊗ OV ))

for any point y ∈ Y with depthOY,y = 1. Moreover, D(σ) has the following base
change property : Let h : Y ′ → Y be a morphism from another Noetherian scheme
Y ′ and let q : X ′ → X be the first projection from the fiber product X ′ = X×Y Y ′.
Assume that

(2) if depthOY ′,y′ = 0 (resp. = 1), then SuppF ∩ V (σ) ∩ π−1(h(y′)) is empty
(resp. finite).

Then, the divisor D(q∗σ) on Y ′ with respect to q∗F/Y ′ exists, and h∗D(σ) =
D(q∗σ).

The following is regarded as a generalization of Proposition 2.15 (cf. Lemma
2.37 below):

Proposition 2.32. Let E be a locally free sheaf on X of rank d + 1 admit-
ting a surjection π∗G → E for a locally free sheaf G on Y of finite rank. Then
iF/Y (cd(E )) ≥ 0 and there is a natural surjection

Φ: SymiF/Y (cd(E ))(G ) → I F/Y (cd+1(E )).

Proof. We shall prove by essentially the same argument as in Proposition
2.15. Let q : P := PY (G ∨) → Y be the projective space bundle and O(1) the
tautological invertible sheaf associated with G ∨. Let PX be the fiber product
X ×Y P , and let p1 : PX → X and p2 : PX → P be the natural projections.
Pulling back the natural injection O(−1) → q∗G to PX , we can consider the
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composite

p∗2O(−1) → p∗2q
∗G = p∗1π

∗G → p∗1E

and hence a section σ of p∗1E⊗p∗2O(1). The zero subscheme V = V (σ) is isomorphic
to PX(K ∨) for the kernel K of π∗G → E . Thus, we have a diagram:

V PX(K ∨) ⊂ // PX
p1 //

p2

²²

X

π

²²
PY (G ∨) P

q // Y.

Since V → X is smooth, the section σ is regular and furthermore p∗1F -regular.
We define cl•(OV ) := λ−1(p∗1E

∨ ⊗ p∗2O(−1)). Then, by Lemma 1.7, we have:

φ(cl•(OV )) = cl•(OV ), cl•(OV ) cl•(p∗1F ) = cl•(p∗1F ⊗ OV ), and

cl•(OV ) = (−1)d+1γd+1(cl•(p∗1E
∨ ⊗ p∗2O(−1))− (d + 1)).

We insert here a claim.

Claim 2.33.

det
(
(p2)

p∗1F
? (cl•(OV ))

) ' q∗
(
I F/Y (cd+1(E ))

)⊗ O(1)⊗iF/Y (cd(E )).

Proof. We set l = cl•(O(−1)) ∈ K•(P ), y = δ(O(1)) = 1 − l, and x =
cl•(E ∨) ∈ K•(X). Then

λ−1(p?
1x · p?

2 l) =
∑

k≥0

(−1)kp?
1(λk(x)) · (p?

2 l)k

=
∑

k≥0

p?
1(λk(x)) · p?

2(y − 1)k

=
∑

0≤j≤k≤d+1

(−1)k−j

(
k

j

)
p?
1(λk(x)) · p?

2yj

=
d+1∑

j=0

p?
1

( d+1∑

k=j

(−1)k−j

(
k

j

)
λk(x)

)
· p?

2yj .
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By Lemma 2.8, we have

(p2)
p∗1F
? (cl•(OV )) =

d+1∑

j=0

q?πF
?

( d+1∑

k=j

(−1)k−j

(
k

j

)
λk(x)

)
· yj

≡ q?πF
? (λ−1(x)) + q?πF

?

( d+1∑

k=1

(−1)k−1kλk(x)
)
· y mod F 2(P ).

Hence, Claim 2.33 follows from the equality:

ε

(
πF

?

( d+1∑

k=1

(−1)k−1kλk(cl•(E ∨))
))

= ε
(
πF

? cd(E )
)
. (2.13)

We shall show (2.13) as follows: Comparing the coefficients of td on the both sides
of the equality

γt(x− (d + 1)) =
d+1∑

k=0

λk(x)tk(1− t)d+1−k,

we have

γd(x− (d + 1)) =
d∑

k=0

(−1)d−k(d + 1− k)λk(x)

= (−1)d(d + 1)
d+1∑

k=0

(−1)kλk(x)− (−1)d
d+1∑

k=1

(−1)kkλk(x)

= (−1)d(d + 1)λ−1(x) + (−1)d

( d+1∑

k=1

(−1)k−1kλk(x)
)

.

Here ε(πF
? λ−1(x)) = ε(πF

? cd+1(E )) = 0 by Lemmas 1.7 and 2.12. Thus, we have
the equality (2.13) by

ε
(
πF

? cd(E )
)

= (−1)dε
(
πF

? cd(E ∨)
)

= (−1)dε
(
πF

? γd(x− (d + 1))
)

= ε

(
πF

?

( d+1∑

k=1

(−1)k−1kλk(x)
))

. ¤
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Proof of Proposition 2.32 continued. We infer that p2(Supp p∗1F ∩
V ) does not contain any fiber of q : P → Y by dim(Supp p∗1F ∩ V )/Y = N −
1 = dimP /Y − 1. Thus, as in the proof of Proposition 2.15, we infer that if
depthOP ,w = 0 (resp. = 1), then Supp p∗1F ∩ V ∩ p−1

2 (w) is empty (resp. finite).
Hence, by Lemma 2.31, we have an effective Cartier divisor D = D(σ) on P such
that SuppD ⊂ p2(Supp p∗1F ∩ V ) and

det(p2)
p∗1F
? (cl•(OV )) = OP (D).

By Claim 2.33, we have a global section of

q∗
(
I F/Y (cd+1(E ))

)⊗ O(1)⊗iF/Y (cd(E )).

Restricting it to a fiber of q, we infer that iF/Y (cd(E )) ≥ 0. The global section
gives a surjection

Φ: SymiF/Y (cd(E ))(G ) → I F/Y (cd+1(E )).

by the same argument as in the proof of Proposition 2.15. ¤

Lemma 2.34. Let h : Y ′ → Y be a morphism from a Noetherian scheme Y ′.
For the fiber product X ′ = X ×Y Y ′, let q1 : X ′ → X and π′ : X ′ → Y ′ be the
first and second projections. In the situation of Proposition 2.32, let ψ : π∗G →
E be the surjection, and set F ′ := q∗1(F ), E ′ := q∗1E , G ′ := h∗G , and ψ′ :=
q∗1(ψ) : π′∗(G ′) = q∗1(π∗G ) → E ′. Let

Φ: SymiF/Y (cd+1(E ))(G ) → I F/Y (cd+1(E )) and

Φ′ : SymiF′/Y ′ (c
d+1(q∗1E ))(h∗(G )) → I F ′/Y ′(cd+1(q∗1E ))

be the surjections defined in Proposition 2.32 for (π, F , ψ) and for (π′,F ′, ψ′),
respectively. Then, Φ′ and h∗(Φ) are isomorphic to each other.

Proof. Let D = DF ,E be the effective relative Cartier divisor on PY (G ∨)
in the proof of Proposition 2.32. Let D′ = DF ′,E ′ be the similarly defined effective
relative Cartier divisor on PY ′(G ′∨). It suffices to check that D′ is the pullback of
D by the natural morphism PY ′(G ′∨) ' PY (G ∨) ×Y Y ′ → PY (G ∨). Then, it is
enough to apply the latter half of Lemma 2.31 and essentially the same argument
in the proof of Lemma 2.16. ¤
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Remark 2.35 (cf. Remark 2.17). Let D = DF ,E be the effective relative
Cartier divisor on P = PY (G ∨) in the proof of Proposition 2.32. By Lemma 2.34,
we infer that, for a point y ∈ Y , the effective divisor Dy = D|q−1(y) on the fiber
q−1(y) of q : P → Y is characterized by the following two conditions:

(1) For the tautological invertible sheaf O(1) of the projective space q−1(y),
one has

Oq−1(y)(Dy) ' O(1)⊗iF/Y (cd(E )).

(2) Let v be a non-zero element of G ⊗ k(y). Let [v] be a point of q−1(y)
corresponding to the surjection v∨ : G ∨ ⊗ k(y) → k(y), and let vX be the
global section of E ⊗ Oπ−1(y) defined by π∗G → E . Then [v] 6∈ SuppDy if
and only if V (vX) ∩ SuppF = ∅ for the zero subscheme V (vX) ⊂ π−1(y).

Remark 2.36. In the situation of Proposition 2.32, let X ′ ⊂ X be a closed
subscheme such that F is an OX′ -module and that X ′ → Y also satisfies As-
sumption 2.1. Then, applying Proposition 2.32 to X ′ → Y , we have a similar
homomorphism

Φ′ : SymiF/Y (cd(E ))(G ) → I F/Y (cd+1(E )).

Here, Φ′ is isomorphic to Φ. In fact, by Remark 2.5, iF/Y (cd(E )) and
I F/Y (cd+1(E )) do not depend on the choice of X and X ′. Moreover, by the
same reason, the isomorphism in Claim 2.33 also does not depend on the choice.
Therefore, Φ′ ' Φ by the proof of Proposition 2.32.

Lemma 2.37. If E = L1 ⊕ · · · ⊕ Ld+1 for invertible sheaves Li and if
G = G1 ⊕ · · · ⊕ Gd+1 for locally free sheaves Gi of finite rank with surjections
π∗Gi → Li, then the natural surjection

Syme(G ) → Syme1(G1)⊗ · · · ⊗ Symel(Gl)

to a component is compatible with the surjections Φ in Propositions 2.15 and 2.32,
where

ei = iF/Y (L1, . . . ,Li−1,Li+1, . . . ,Ld+1) and e = iF/Y (cd(E )) =
d+1∑

i=1

ei.

Proof. Let V be the locally free sheaf
⊕d+1

i=1 O(1)(i) on PY = PY (G ∨1 )×Y
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· · · ×Y PY (G ∨d+1), where O(1)(i) is the pullback of the tautological invertible sheaf
by PY → PY (G ∨i ). Then there is a birational morphism µ : P (V ) → PY (G ∨) for
the projective space bundle $ : P (V ) → PY such that the tautological invertible
sheaf on P (V ) associated to V is just the pullback of the tautological invertible
sheaf on PY (G ∨) by µ. Let Γi ⊂ P (V ) be the projective subbundle associated
with the quotient locally free sheaf V /O(1)(i) for 1 ≤ i ≤ d + 1. Then Γi is a
Cartier divisor such that

OP (V )(Γi)⊗$∗O(1)(i) ' µ∗O(1) and µ(Γi) = PY (G ∨/G ∨i ) ⊂ PY (G ∨).

For a point y ∈ Y , let v = (v1, . . . , vd+1) be a non-zero element of G ⊗ k(y) such
that vi ∈ Gi⊗k(y). Then [v] ∈ PY (G ∨)×Y y is not contained in µ(Γi) if and only
if vi 6= 0. Let D0 = DF ,L be the effective relative Cartier divisor on PY defining
Φ in the proof of Proposition 2.15. Let D1 = DF ,E be the effective relative Cartier
divisor on PY (G ∨) defining Φ in the proof of Proposition 2.32. Then,

$∗D0 +
d+1∑

i=1

eiΓi ∼ µ∗D1,

where ∼ denotes the linear equivalence relation, and µ∗($∗D0) = D1 over
PY (G ∨) \⋃d+1

i=1 µ(Γi), by Remarks 2.17 and 2.35. Hence,

$∗D0 +
d+1∑

i=1

eiΓi = µ∗D1,

since the invertible sheaves O(1)(i) are linearly independent in Pic(PY ). For the
structure morphism q : PY → Y , the divisor $∗D0 is defined by a section of

$∗q∗I F/Y (L1, . . . ,Ld+1)⊗$∗
( d+1⊗

i=1

(O(1)(i))⊗ei

)

and µ∗D1 is defined by a section of

$∗q∗I F/Y (L1, . . . ,Ld+1)⊗ µ∗O(1)⊗e,

where the two sections correspond to the surjections Φ in Propositions 2.15 and
2.32. The difference

∑
eiΓi is defined by the natural injection
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$∗
( d+1⊗

i=1

(O(1)(i))⊗ei

)
↪→

d+1⊗

i=1

µ∗O(1) = µ∗O(1)⊗e.

The push-forward (q ◦$)∗ of the injection is just the natural injection

d+1⊗

i=1

Symei(G ∨i ) ↪→ Syme(G ∨).

Hence, two Φ are related by

Φ: Syme(G ) →
d+1⊗

i=1

Symei(Gi)
Φ−→ I F/Y (L1, . . . ,Ld+1). ¤

2.4. A positivity problem.
Finally in Section 2, we shall consider a kind of positivity problem as an

application of Proposition 2.32.

Definition 2.38 ([14]). Let P = P (x1, x2, . . . , xr) ∈ Q[x1, . . . , xr] be a
weighted homogeneous polynomial of degree n such that the weight of xi is i for
any 1 ≤ i ≤ r. If

iV/k(P (c1(E ), . . . , cr(E ));V ) > 0

for any n-dimensional projective variety V defined over a field k and for any ample
vector bundle E of rank r on V , then P is called numerically positive for ample
vector bundles.

Note that, in [14], the intersection number iV/k(P (c1(E ), . . . , cr(E ));V ) is
denoted by

∫
V

P (c1(E ), . . . , cr(E )).

Fact 2.39. If P ∈ Z[x1, . . . , xr] is a weighted homogeneous polynomial of
degree n such that the weight of xi is i for any 1 ≤ i ≤ r, then P is expressed
uniquely as

∑
λ aλPλ for the Schur polynomial Pλ = Pλ(x1, . . . , xr) associated

with a partition λ of n by non-negative integers ≤ r and for aλ ∈ Z; the partition
λ is given by a non-increasing sequence

λ1 ≥ λ2 ≥ · · · ≥ 0

of integers with
∑

i≥1 λi = n, λ1 ≤ r, and the Schur polynomial Pλ is defined as
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the determinant of the n× n-matrix (bi,j)1≤i,j≤n whose (i, j)-component is given
by

bi,j =





xλi−i+j , if 1 ≤ λi − i + j ≤ r;

1, if λi − i + j = 0;

0, otherwise.

This is a well-known result in the theory of symmetric functions (cf. [30]). Fulton-
Lazarsfeld have proved in [14, Theorem I], that P is numerically positive for ample
vector bundles if and only if P 6= 0 and aλ ≥ 0 for any λ.

Remark 2.40. The Schur polynomial Pλ above corresponds to the usual
Schur function Sλ′ associated with the conjugate partition λ′. Here, λ′ = (λ′1 ≥
λ′2 ≥ · · · ≥ 0) for λ′i = sup({0} ∪ {j ≥ 1 | λj ≥ i}) and

Sλ(y1, y2, . . . , yr) = det
(
y

λj+r−i
i

)
1≤i,j≤r

/
det

(
yr−i

i

)
1≤i,j≤r

,

in which we have the equality

Pλ(e1(y), . . . , er(y)) = Sλ′(y1, . . . , yr) (2.14)

for the elementary symmetric polynomials ek(y) defined by

ek(y) =
∑

1≤i1<···<ik≤r

yi1 · · · yik
.

The equality (2.14) is called the Jacobi-Trudi formula for elementary symmetric
polynomials.

Theorem 2.41. Let P ∈ Z[x1, . . . , xr] be a weighted homogeneous polyno-
mial of degree d + 1 such that the weight of xi is i for any 1 ≤ i ≤ r. Assume that
P is numerically positive for ample vector bundles. Let E be a locally free sheaf
on X of rank r generated by finitely many global sections and F a coherent sheaf
on X flat over Y with dim(SuppF )/Y = d. Then I F/Y (P (c1(E ), . . . , cr(E )))
is generated by finitely many global sections.

Proof. We may assume that P is a Schur polynomial Pλ for a partition
λ = (λ1 ≥ · · · ≥ 0) of d + 1 with λi ≤ r, by Fact 2.39. We write P (E ) :=
P (c1(E ), . . . , cr(E )). We shall show that there exist a smooth projective morphism
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q : W → X (which is a composition of projective space bundles) and a locally free
sheaf H on W of rank N := d + 1 + dim W − dimX such that H is generated
by finitely many global sections and q?(cN (H )) = P (E ) ∈ Gd+1(X) for the
homomorphism q? = G(q?) : G•(W ) → G•(X) defined in Remark 2.22. Once this
is proved, we have

πF
? (P (E )) = πF

? (q?(cN (H ))) = (π ◦ q)q∗F
? (cN (H ))

by Lemma 2.9: Thus, I F/Y (P (E )) ' I q∗F/Y (cN (H )) and this is generated by
finitely many global sections by Proposition 2.32.

Therefore, the proof is reduced to constructing q : W → X and H . For the
purpose, we follow some arguments in [24]. Let V → E be a surjection from
a free OX -module V of rank n > r + d + 1. We fix a sequence V• : 0 ⊂ V1 ⊂
· · · ⊂ Vn−r of subbundles of V such that, for any i, Vi is a free OX -module of
rank v(i) := r + i − λi. Note that v(i) < v(j) for any i < j and that if we set
h(i) := n−(n−r)−v(i)+ i, then h(i) = λi. Let F := F (V•) be the scheme over X

defined in [24, Section 1], for the sequence V•: The scheme F parametrizes flags
C1 ⊂ C2 ⊂ · · · ⊂ Cn−r of subbundles of V such that Ci is a subbundle of Vi and
rankCi = i, for any 1 ≤ i ≤ n − r. Let D1 ⊂ · · · ⊂ Dn−r be the universal flag
on F . By an argument just before Lemma 3 of [24], we know that the structure
morphism ψ : F → X is a composite of the structure morphisms of projective
space bundles and

dimF /X =
n−r∑

i=1

(v(i)− i) =
n−r∑

i=1

(r − λi) = (n− r)r − (d + 1).

Let G := Grassn−r(V ) be the Grassmann scheme over X parametrizing subbun-
dles of V of rank n−r. Let D be the universal subbundle on G and Q the universal
quotient bundle, i.e., Q ' ϕ∗(V )/D for the structure morphism ϕ : G → X. By
the subbundle Dn−r ⊂ ψ∗(V ), we have a morphism α : F → G over X such that
α∗D = Dn−r. Let p1 and p2 denote the projections from F ×X G to F and to G,
respectively. The morphism α defines a section s : F → F ×X G of the projection
p1. Thus, we have a commutative diagram:

F
s //

α

²²

F ×X G
p1 //

p2

²²

F

ψ

²²
G G

ϕ // X.
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By the proof of [24, Lemma 2], s(F ) is the zero subscheme (cf. Definition 1.6) of
a regular section of the locally free sheaf Ĥ := p∗1D

∨
n−r ⊗ p∗2Q of rank r(n − r),

and hence

cl•(cyc(s(F ))) mod F r(n−r)+1
con (F ×X G)

= G(φ)(cr(n−r)(Ĥ )) ∈ Gr(n−r)
con (F ×X G)

for G(φ) : G•(F ×X G) → G•con(F ×X G). Note that the locally free sheaves D∨,
D∨

n−r ' α∗(D∨), and Q are all generated by finitely many global sections; hence,
so is Ĥ . By [24, Lemma 2], we have

cr(n−r)(Ĥ ) = ∆r,r,...,r

(
ct(p∗2Q − p∗1D1), . . . , ct(p∗2Q − p∗1Dn−r)

)

∈ Gr(n−r)(F ×X G),

where ∆···(· · · ) is defined in [24, Section 1], and ct(p∗2Q − p∗1Di) :=
ct(p∗2Q)/ct(p∗1Di) for the Chern polynomial ct(x) =

∑
p≥0 cp(x)tp.

We have homomorphisms p2? : F r(n−r)+i(F ×X G) → F d+1+i(G) for d + 1 +
i ≥ 0, since d + 1 = r(n − r) − dim(F /X). By the proof of Lemmas 3, 4, and
Theorem 5 of [24], we have

p2?

(
cr(n−r)(Ĥ )

)
= Pλ(c1(Q), . . . , cr(Q)) = Pλ(Q). (2.15)

In fact, [24, Lemma 3], corresponds to the equality (2.11) in Remark 2.22 and the
argument in the proof of [24, Lemma 4], can be applied by the projection formula
(2.10) in Remark 2.22. Since h(i) = n− (n− r)− v(i) + i = λi and ct(Vi) = 1 for
any i, we have

p2?(cr(n−r)(Ĥ )) = ∆h(1),...,h(n−r)

(
ct(Q − V1), . . . , ct(Q − Vn−r)

)

= ∆λ1,...,λd+1,0,...,0(ct(Q), . . . , ct(Q))

= Pλ(c1(Q), . . . , cn−r(Q)) = Pλ(Q)

by the proof of Lemma 4 and Theorem 5 in [24].
Let ν : X → G be the section of ϕ : G → X corresponding to the surjection

V → E . Thus, ν∗(Q) = E . Let q : W → X be the pullback of p2 : F ×X G → G

by ν and µ : W → F ×X G be the other projection from the fiber product W ;
hence we have a Cartesian diagram:
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W
µ //

q

²²

F ×X G
p1 //

p2

²²

F

ψ

²²
X

ν // G
ϕ // X.

Then, p1 ◦µ : W → F is an isomorphism over X. Hence, dim W/X = dim F /X =
(n− r)r − (d + 1). The locally free sheaf

H := µ∗(Ĥ ) ' µ∗
(
p∗1D

∨
n−r ⊗ p∗2Q

) ' µ∗p∗1
(
D∨

n−r

)⊗ q∗(E )

is also generated by finitely many global sections, and

rankH = rank Ĥ = r(n− r) = d + 1 + dimW − dimX = N.

Applying the base change formula ν?(p2?(x)) = q?(µ?(x)) for x ∈ K•(F ×X G)
proved in Lemma 2.8, we have

ν?p2?(cr(n−r)(Ĥ )) = q?µ?(cr(n−r)(Ĥ )).

Here, the left hand side equals ν?(Pλ(Q)) = Pλ(E ) by (2.15), and the right hand
side equals q?(cr(n−r)(H )). Thus, we have the expected equality q?(cN (H )) =
Pλ(E ) in Gd+1(X), and the proof has been completed. ¤

3. Intersection sheaves over normal base schemes.

We generalize the definition of the intersection sheaf I F/Y (η) to the following
situation:

• π : X → Y is a locally projective surjective morphism to a normal separated
Noetherian scheme Y .

• η ∈ Gd+1(X) for an integer d ≥ 0.
• F is a coherent sheaf on X such that dim(π−1(y) ∩ SuppF ) ≤ d for any

y ∈ Y .

The new intersection sheaf I F/Y (η) is an invertible sheaf on Y . If F is flat over
Y and if π satisfies Assumption 2.1, then the new intersection sheaf coincides with
the intersection sheaf defined in Section 2 (cf. Definition 2.26).

Recall that a proper surjective morphism π : X → Y to an integral scheme
Y is called equi-dimensional if, for every irreducible component Xα, π(Xα) = Y

and the function y 7→ dim(π−1(y) ∩Xα) is constant on Y (cf. [21, Sections 13.2,
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13.3]). Hence, if SuppF → Y is equi-dimensional and d = dim(SuppF )/Y , then
F satisfies the condition above.

In Section 3.1, we shall define I F/Y (η) as a reflexive sheaf of rank one on Y

for F satisfying a weaker condition than above, and in Section 3.2, the invertibility
of I F/Y (η) is proved (cf. Theorem 3.14). Some base change properties and their
applications are given in Section 3.3.

3.1. Definition of intersection sheaves.
We begin with a discussion on some condition of the dimension of fibers. The

following result is known for proper flat morphisms (cf. Section 1.2).

Lemma 3.1. Let π : X → Y be a proper morphism of Noetherian schemes
and let d be a non-negative integer. For an integer i ≥ 1, assume that
dimπ−1(y) ≤ d for any point y ∈ Y with dimOY,y < i. Then, π?F d+i

con (X) ⊂
F i

con(Y ) for the homomorphism π? : K•(X) → K•(Y ).

Proof. The inclusion is derived from the assertion that, for a closed integral
subscheme Z of X, if codim Z ≥ d + i, then codim π(Z) ≥ i. We shall derive a
contradiction by assuming codimZ ≥ d + i and codim π(Z) < i. Let x be the
generic point of Z and set y = f(x). Then, for the residue field k(y) at y, we
have:

dimOX,x ≤ dimOY,y + dimOX,x ⊗OY,y
k(y). (3.1)

Since codim Z = dim OX,x, codim π(Z) = dimOY,y, and dimx π−1(y) =
dimOX,x ⊗ k(y), we have dimx π−1(y) > d by (3.1). This contradicts our as-
sumption that dimx π−1(y) ≤ dimπ−1(y) ≤ d. ¤

Applying Lemma 2.23, we shall show:

Proposition 3.2 (cf. [22, Exp. X, Théorème 1.3.2]). Let X be a Noethe-
rian scheme. Then φ(F k(X)) = F k(X) cl•(OX) ⊂ F k

con(X). More generally,
F p(X)F q

con(X) ⊂ F p+q
con (X) for any p, q ≥ 0.

Proof. Note that codim(W1 ⊂ W2) + codim(W2 ⊂ W3) ≤ codim(W1 ⊂
W3) for any closed irreducible subsets W1 ⊂ W2 ⊂ W3. Thus, by induction on
codimension, it is enough to prove the first inclusion: φ(F k(X)) ⊂ F k

con(X). By
the same argument as in the proof of [22, Exp. X, Théorème 1.3.2], especially the
proof of (1.3.6), we infer that

δ(L ) cl•(OX) ∈ F 1
con(X)
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for any invertible sheaf L on X. Hence, by induction on k, we can prove that

δ(L1) · · · δ(Lk) cl•(OX) ∈ F k
con(X)

for any invertible sheaves L1, . . . ,Lk on X. By this property and by Lemma 2.23,
we shall prove the proposition. Let p : P = PX(E1) ×Y · · · ×Y PX(El) → X be
the fiber product of the projective space bundles PX(Ei) associated with locally
free sheaves Ei on X of rank ri. We set e := dimP/X =

∑l
i=1(ri − 1). Since p

is smooth, we have p?(F k+e
con (P )) ⊂ F k

con(X) for any k. Hence, by Lemma 2.23,
φ(F k(X)) ⊂ F k

con(X) is derived from

δ(M1) · · · δ(Mk+e) cl•(OP ) ∈ F k+e
con (P )

for invertible sheaves Mi on P . In fact, F k(X) is generated by elements
of the form pOP

? (δ(M1) · · · δ(Mk+e)), and φ(pOP
? (z)) = p?(z cl•(OP )) for z =

δ(M1) · · · δ(Mk+e) (cf. Lemma 2.6, (1)). Thus, we are done. ¤

Remark. In [22, Exp. X, Remarque 1.4], there is a discussion on a similar
property to Proposition 3.2 for a filtration of K•(X) defined by ‘codimension’
under the assumption that the scheme is universally catenary.

In what follows in Section 3, let us fix a proper surjective morphism π : X → Y

to a normal separated Noetherian scheme Y and fix a non-negative integer d.
Furthermore, we assume that Y is integral, for the sake of simplicity.

Definition 3.3. Let V
(d)

π (X) be the set of closed integral subschemes Z

of X such that dim(Z ∩ π−1(y)) ≤ d for any point y ∈ Y with dim OY,y ≤
1. We define K

(d)
π (X) to be the subgroup of K•(X) generated by the images

of K•(Z) → K•(X) for all the closed integral subschemes Z ∈ V
(d)

π (X). We
also define Coh(d)

π (X) to be the set of coherent sheaves F on X such that any
irreducible component of SuppF belongs to V

(d)
π (X).

Note that, for a closed integral subscheme Z, if π(Z) = Y and if dim(Z ∩
π−1(∗)) ≤ d for the generic point ∗ of Y , then Z ∈ V

(d)
π (X). Indeed, OY,y is a

discrete valuation ring if dimOY,y = 1, and hence, OZ is flat over the discrete
valuation ring if π(Z) = Y .

Lemma 3.4. (1) If ξ ∈ K
(d)
π (X), then π?(F d+i(X)ξ) ⊂ F i

con(Y ) for i = 1,
2.

(2) If Z ∈ V
(d)

π (X) and π(Z) 6= Y , then
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π?

(
F d+1(X) cl•(OZ)

) ⊂ (π|Z)?

(
F d+1

con (Z)
) ⊂ F 2

con(Y ).

Proof. (1): Replacing X with a closed subscheme in V
(d)

π (X), we may
assume that X is integral and X ∈ V

(d)
π (X). Since F d+i(X)ξ ⊂ F d+i

con (X) by
Proposition 3.2, it suffices to show π?F d+i

con (X) ⊂ F i
con(Y ) for i = 1, 2. This is

done by Lemma 3.1.
(2): The first inclusion is derived from F d+1(Z) cl•(OZ) ⊂ F d+1

con (Z) (cf.
Proposition 3.2). If codimπ(Z) ≥ 2, then the second inclusion follows from

(π|Z)?(K•(Z)) ⊂ Image(K•(π(Z)) → K•(Y )) ⊂ F 2
con(Y ).

Thus, we may assume that π(Z) is a prime divisor. Then, dimZ ∩ π−1(y) ≤ d

for the generic point y of π(Z). Hence, by applying Lemma 3.1 to Z → π(Z), we
have

(π|Z)?

(
F d+1

con (Z)
) ⊂ Image

(
F 1

con(π(Z)) → K•(X)
) ⊂ F 2

con(Y ).

Thus, we are done. ¤

Definition 3.5. Let π : X → Y be a proper surjective morphism from
a Noetherian scheme X to a normal separated integral Noetherian scheme Y ,
and let d be a non-negative integer. For elements ξ ∈ K

(d)
π (X), θ ∈ Gd(X),

and η ∈ Gd+1(X), we define the relative intersection number iξ/Y (θ) and the
intersection sheaf I ξ/Y (η) by

iξ/Y (θ) := lY (π?(xξ)) ∈ Z and I ξ/Y (η) := d̂et(π?(yξ)) ∈ Ref1(Y )

for representatives x ∈ F d(X) and y ∈ F d+1(X) of θ and η, respectively, where
lY is the isomorphism G0

con(Y ) ' Z in Lemma 1.14, and d̂et is the isomorphism
G1

con(Y ) ' Ref1(Y ) in Lemma 1.17. These are well-defined by Lemma 3.4, (1).

Convention.

(1) If θ = δX(L1, . . . ,Ld) mod F d+1(X) and η = δX(L1, . . . ,Ld+1) mod
F d+1(X) for invertible sheaves L1, . . . ,Ld+1 on X, then we write

iξ/Y (θ) = iξ/Y (L1, . . . ,Ld) and I ξ/Y (η) = I ξ/Y (L1, . . . ,Ld+1).

(2) If ξ = cl•(F ) for a coherent sheaf F belonging to Coh(d)
π (X), then ξ ∈

K
(d)
π (X), and we write iF/Y (·) = iξ/Y (·) and I F/Y (·) = I ξ/Y (·).
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(3) If ξ = cl•(V ) for a closed subscheme V whose irreducible components all
belong to V

(d)
π (X), then iξ/Y and I ξ/Y are written by iV/Y and I V/Y ,

respectively. Similarly, if ξ = cl•(Z) for an algebraic cycle Z whose irre-
ducible components all belong to V

(d)
π (X), then iξ/Y and I ξ/Y are written

by iZ/Y and I Z/Y , respectively.

Remark. For a closed immersion ι : X ↪→ X ′ into another proper Y -scheme
X ′, and for θ′ ∈ Gd(X ′), η′ ∈ Gd+1(X ′), we have

iξ/Y (θ′|X) = iι?(ξ)/Y (θ′) and I ξ/Y (η′|X) = I ι?(ξ)/Y (η′).

Thus, the definitions of iF/Y , iV/Y , iZ/Y , I F/Y , I V/Y , and I Z/Y above cause
no confusion.

Remark 3.6. Let F be a coherent sheaf on X flat over Y and let η be an
element of Gd+1(X) for d = dim(SuppF )/Y . If π satisfies Assumption 2.1, then
I F/Y (η) defined in Definition 3.5 coincides with the intersection sheaf I F/Y (η)
defined in Definition 2.26. In fact, this is derived from the equalities

φ
(
πF

? (x)
)

= π?(x cl•(F )) and d̂etφ(y) = det(y)

for any x ∈ K•(X) and y ∈ K•(Y ) (cf. Lemma 2.6, (1), and Lemma 1.17).
Even if π is only locally projective, I F/Y (η) is isomorphic to the intersection
sheaf I perf

F/Y (x) defined in Definition 2.26 for a representative x ∈ F d+1(X) of
η ∈ Gd+1(X). This is shown by similar formulas

φperf

(
πF

? (x)
)

= π?(x cl•(F )) and d̂et(φperf(y)) = det(y)

for the Cartan homomorphism φperf : K•(Y )perf → K•(Y ) and for y ∈ K•(Y )perf .
Here, the latter formula is shown by Lemma 1.17 and by an argument in [26,
Chapter II] (cf. [32, Chapter 5, Section 3]).

Example 3.7. Assume that OX ∈ Coh(d)
π (X) and d = 0; in other words,

π : X → Y is generically finite. Then I X/Y (L ) for an invertible sheaf L on X

is nothing but the reflexive sheaf

(
d̂et π∗L ⊗ d̂et(π∗OX)∨

)∨∨ ' (
d̂et(π∗OX)⊗ d̂et(π∗L −1)∨

)∨∨
.

If X is normal and L = OX(D) for a Cartier divisor D, then I X/Y (L ) '



Intersection sheaves over normal schemes 551

OY (π∗D) for the push-forward π∗D as a Weil divisor. In fact, we have an isomor-
phism

(
d̂et(π∗OX)⊗ d̂et(π∗OX(−∆))∨

)∨∨ ' OY (π∗∆)

for an effective Weil divisor ∆ on X, and applying it to effective Weil divisors D1,
D2 with D = D1 −D2, we have the isomorphism above (cf. Remark 1.4).

Remark 3.8. In Section 3, we are assuming that the base scheme Y to be
normal. If Y is only a separated integral scheme, then the intersection sheaves
I X/Y (L1, . . . ,Ld+1) are not naturally defined for an equi-dimensional morphism
π : X → Y of relative dimension d and invertible sheaves Li on X. For example,
we consider the following situation: Let Y be a nodal rational cubic plane curve
defined over C and π : X → Y the normalization. Let P ∈ X be a point not lying
over the node of Y . One can consider the push-forward π∗(P ) as a divisor on Y .
So, the intersection sheaf I X/Y (O(1)) for the tautological invertible sheaf O(1)
on X ' P 1 is expected to be the invertible sheaf OY (π∗P ). However, if P ′ ∈ X is
not lying over the node, then π∗(P ) is linearly equivalent to π∗(P ′) if and only if
P = P ′. Hence, we have no natural definition of I X/Y (O(1)).

Lemma 3.9. Let F be a coherent sheaf belonging to Coh(d)
π (X) and η ∈

Gd+1(X). Then

I F/Y (η) ' I (Ft.f./Y )/Y (η),

where Ft.f./Y is defined in Definition 1.15. Let {Zi}i∈I be the set of irreducible
components of SuppF dominating Y and let ei be the length lZi

(F ) of F along
Zi (cf. Definition 1.1). Then Zi ∈ V

(d)
π (X) for any i ∈ I, and

I F/Y (η) '
( ⊗

i∈I

I Zi/Y (η)⊗ei

)∨∨
.

Proof. Let {Z ′j}j∈J be the set of irreducible components of SuppF not
dominating Y . Then,

⋃
j∈J Z ′j = SuppFtor/Y and

⋃
i∈I Zi = SuppFt.f./Y . Here,

Zi, Z ′j ∈ V
(d)

π (X), since F ∈ Coh(d)
π (X). We have

π?

(
F d+1(X) cl•(Ftor/Y )

) ⊂ F 2
con(Y )

by Lemma 3.4, (2), since cl•(Ftor/Y ) ∈ ∑
j∈J Image(K•(Z ′j) → K•(X)). Thus,
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the first isomorphism is derived from cl•(F ) = cl•(Ftor/Y ) + cl•(Ft.f./Y ). Hence,
we may assume that Ftor/Y = 0 from the beginning. Let X ′ be a closed subscheme
of F such that F is an OX′ -module. Then, I F/Y (η) ' I F/Y (η|X′). Hence, by
replacing X with a closed subscheme, we may assume that X = SuppF . Then,
{Zi}i∈I is the set of irreducible components of X, and cl•(F )−∑

i∈I ei cl•(Zi) ∈
F 1

con(X) by Lemma 1.14. We have π?(F d+1(X)F 1
con(X)) ⊂ π?(F d+2

con (X)) ⊂
F 2

con(Y ) by Lemma 3.1 and Proposition 3.2. Hence, for a representative x ∈
F d+1(X) of η ∈ Gd+1(X), we have

π?(x cl•(F )) ≡
∑

i∈I

eiπ?(x cl•(OZi
)) mod F 2

con(Y ),

which induces the second isomorphism. ¤

Remark 3.10. In order to study the intersection sheaf I F/Y (η) for F ∈
Coh(d)

π (X), we may assume that Ftor/Y = 0 by Lemma 3.9. Thus, we may remove
the irreducible components of X which do not dominate Y , i.e., we may replace
OX with (OX)t.f./Y . Hence, we may assume that there is an open subset U ⊂ Y

with codim(Y \ U) ≥ 2 such that π and F are flat over U . Then, for the sheaf
F ′

U = Ft.f./Y |π−1(U) = F |π−1(U), we have

iF/Y (θ) = iF ′
U /U (θ|π−1(U)) = iπ−1(y)/k(y)

(
θ|π−1(y);F ′

U ⊗ Oπ−1(y)

)
,

I F/Y (η) ' j∗
(
I F ′

U /U (η|π−1(U))
)

for y ∈ U , θ ∈ Gd(X), η ∈ Gd+1(X), and for the open immersion j : U ↪→ Y ,
where the latter isomorphism follows from a property of reflexive sheaves shown
in [23, Proposition 1.6]. Note that, by Remark 3.6, I F ′

U /U (η|π−1(U)) is just the
intersection sheaf defined in Definition 2.26 when π|π−1(U) : π−1(U) → U is a
projective morphism.

Lemma 3.11. Let ν : X̂ → X be a proper morphism and let F̂ be a coherent
sheaf on X̂ belonging to Coh(d)

π◦ν(X̂). Then, the i-th higher direct image sheaf
Fi = Ri π∗F̂ belongs to Coh(d)

π (X) for any i ≥ 0. If dim(SuppFi ∩ π−1(∗)) < d

for the generic point ∗ of Y for any i > 0, then

I bF/Y (ν?η) ' I F0/Y (η)

for any η ∈ Gd+1(X).
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Proof. If y ∈ Y is a point with dimOY,y ≤ 1, then

dim
(
ν(Supp F̂ ) ∩ π−1(y)

) ≤ dim
(
Supp F̂ ∩ ν−1π−1(y)

) ≤ d.

Hence, Fi ∈ Coh(d)
π (X), since SuppFi ⊂ ν(Supp F̂ ). We have

(π ◦ ν)?

(
ν?(x) · cl•(F̂ )

)
=

∑

i≥0

(−1)iπ?(x cl•(Fi))

for a representative x ∈ F d+1(X) of η ∈ Gd+1(X), by the projection formula (1.1).
Assume that dim(SuppFi ∩ π−1(∗)) < d for any i > 0. Let Z be an irreducible
component of SuppFi for i > 0. If π(Z) 6= Y , then π?(x cl•(Z)) ∈ F 2

con(Y ) by
Lemma 3.4, (2), since Z ∈ V

(d)
π (X). If π(Z) = Y , then Z ∈ V

(d−1)
π (X); thus

π?(x cl•(Z)) ∈ F 2
con(Y ) by Lemma 3.4, (1). Therefore, π?(x cl•(Fi)) ∈ F 2

con(Y )
for any i > 0. Thus,

(π ◦ ν)?

(
ν?(x) · cl•(F̂ )

) ≡ π?(x cl•(F0)) mod F 2
con(Y ).

Hence, we have the expected isomorphism by Definition 3.5. ¤

Lemma 3.12. Let τ : Y ′ → Y be a dominant morphism from another normal
separated Noetherian integral scheme Y ′ such that codim τ−1(B) ≥ 2 for any closed
set B ⊂ Y of codim(B) ≥ 2. Let X ′ be the fiber product X ×Y Y ′, and let
p1 : X ′ → X and p2 : X ′ → Y ′ be the natural projections. For a coherent sheaf F
of X belonging to Coh(d)

π (X) and for η ∈ Gd+1(X), one has an isomorphism

I p∗1F/Y ′(p?
1η) ' (

τ∗I F/Y (η)
)∨∨

.

Proof. We may replace Y with a Zariski open subset U such that codim(Y \
U) ≥ 2, since the isomorphism of the reflexive sheaves follows from that on τ−1(U)
(cf. [23, Proposition 1.6]). Thus, we may assume that Y is regular and τ is flat.
Applying the flat base change formula (1.2): τ?π?(x) = p2?p?

1(x) to x = y cl•(F ) ∈
K•(X) for a representative y ∈ F d+1(X) of η ∈ Gd+1(X), we have the expected
isomorphism, since p?

1 cl•(F ) = cl•(p∗1F ). ¤

The following corresponds to Corollary 2.30:

Lemma 3.13. For ξ ∈ K
(d)
π (X), θ ∈ Gd(X), and for an invertible sheaf M

on Y , one has an isomorphism
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I ξ/Y (θc1(π∗M )) ' M⊗iξ/Y (θ).

Proof. For a representative x ∈ F d(X) of θ, and for y = δ(M ) ∈ F 1(Y ),
we have π?(xξ) mod F 1

con(Y ) = iξ/Y (θ) by Definition 3.5, and π?(xξπ?(y)) =
π?(xξ)y by the projection formula (1.1). Hence we have the expected isomorphism
by

I ξ/Y (θc1(π∗M )) ' d̂et
(
π?(xξπ?(y))

) ' d̂et(iξ/Y (θ)y) ' M⊗iξ/Y (θ). ¤

3.2. Invertibility for equi-dimensional morphisms.
We shall show that the intersection sheaf I F/Y (η) for F ∈ Coh(d)

π (X) and
η ∈ Gd+1(X) is invertible under certain conditions. The following is one of such
results:

Theorem 3.14. Let π : X → Y be a proper surjective morphism onto a
normal separated Noetherian scheme Y . Let F be a coherent sheaf on X such
that dim(SuppF ∩ π−1(y)) ≤ d for any y ∈ Y .

(1) If L1, . . . ,Ld+1 are invertible sheaves on X such that π∗π∗Li → Li is
surjective for any i, then I F/Y (L1, . . . ,Ld+1) is an invertible sheaf.

(2) If π is locally projective, then I F/Y (η) is invertible for any η ∈ Gd+1(X).

The first proof of this theorem is given after Lemmas 3.15 and 3.17. Theorem
3.18 below on the Q-factoriality of Y is obtained by applying Theorem 3.14. The
first assertion (1) of Theorem 3.14 is generalized to Proposition 3.20, which gives
a second proof. The third proof but in the case where π is projective, is given by
the proof of Proposition 3.22 in Section 3.3, which covers Proposition 3.20 in the
same case (cf. Remark 3.23).

Lemma 3.15 (cf. Lemma 2.31). Let F be a coherent sheaf on X belonging
to Coh(d)

π (X) and let E be a locally free sheaf on X of rank d + 1. Let σ be an
F -regular section of E . Then, I F/Y (cd+1(E )) ' OY (D) for the codimension
one part D of the effective algebraic cycle π∗ cyc(F ⊗ OV (σ)). Moreover,

cl•(D) ≡ cl•(π∗(F ⊗ OV (σ))) ≡ π? cl•(F ⊗ OV (σ)) mod F 2
con(Y ).

Proof. By Lemma 1.7,

cd+1(E ) = λ−1(E ∨) mod F d+2(X) and λ−1(E ∨) cl•(F ) = cl•(F ⊗ OV (σ)).
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Since cl•(cyc(F ⊗ OV (σ))) = cl•(F ⊗ OV (σ)) and since cyc(F ⊗ OV (σ)) does not
dominate Y , we have

cl•(D) ≡ π? cl•(F ⊗ OV (σ)) mod F 2
con(Y )

for the codimension one part D of π∗ cyc(F ⊗OV (σ)). Therefore, I F/Y (cd+1(E ))
' OY (D). Since codim SuppRi π∗(F ⊗ OV (σ)) ≥ 2 for i > 0, we have

cl•
(
π∗(F ⊗ OV (σ))

) ≡ π? cl•(F ⊗ OV (σ)) mod F 2
con(Y ). ¤

Remark 3.16. In the situation of Lemma 3.15, if π−1(y) ∩ Supp(F ⊗
OV (σ)) = ∅ for a point y ∈ Y , then I F/Y (cd+1(E )) is invertible at y, since
y 6∈ SuppD.

Lemma 3.17. Let V be a Noetherian scheme over a Noetherian local ring
A, and L an invertible sheaf on V generated by finitely many global sections
σ0, . . . , σN . Suppose that the residue field k(A) = A/mA is an infinite field. For
coherent sheaves F1, . . . ,Fm on V , there exists a global section σ of L such that
σ ∈ ∑N

k=0 Aσk ⊂ H0(V, L ) and σ is Fi-regular for any 1 ≤ i ≤ m.

Proof. It is enough to consider the case: m = 1. In fact, it is enough to
prove for the coherent sheaf F =

⊕m
i=1 Fi. Let J be the set of points x ∈ V with

depth(Fx) = 0; in other words, J is the set of associated primes of F . Let W (x)
be the closure of {x} for x ∈ J . Then, a global section σ of L is F -regular if and
only if σ|W (x) 6= 0 as a section of L |W (x) for any x ∈ J .

By the finite global sections σ0, . . . , σN , we have a morphism ψ : V → P N
A such

that ψ∗O(1) ' L . It is enough to find an element σ ∈ RN (A) := H0(P N
A ,O(1))

such that the divisor {σ = 0} on P N
A does not contain ψ(W (x)) for any x ∈ J .

We may replace A by the residue field k(A). In fact, if we find a global section
σ̄ ∈ RN (k(A)) = H0(P N

k(A),O(1)) ' RN (A)⊗A k(A) which does not vanish along
ψ(W (x)) for any x, then a lift σ ∈ RN (A) of σ̄ also does not vanish along ψ(W (x)).
Thus, we may assume A to be a field k.

Let L(x) ⊂ RN (k) for x ∈ J be the vector subspace consisting of elements
vanishing along ψ(W (x)). Then L(x) is a proper subspace. Since k is infinite, we
can find an expected element σ in RN (k) \⋃

x∈J L(x). ¤

We shall prove Theorem 3.14.

Proof of Theorem 3.14.

(1): By a flat base change (cf. Lemma 3.12 and [23, Proposition 1.8]), we may
assume that Y = Spec A for a local ring A. If the residue field k(A) is finite, then
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we replace A with the localization B = A[x]m of the polynomial ring A[x] at the
maximal ideal m = mA[x] + xA[x]. Then SpecB → Spec A is flat and the residue
field k(B) = k(A)(x) is infinite. Thus, we may assume that k(A) is infinite.

Now, Li are all generated by global sections. Applying Lemma 3.17 succes-
sively, for the closed point y ∈ Y , we can find global sections σi ∈ H0(X, Li)
such that σ = (σ1, . . . , σd+1) is F -regular and π−1(y) ∩ V (σ) = ∅ for the zero
subscheme V (σ) (cf. Definition 1.6). In fact, σi are constructed as follows: By
Lemma 3.17, we have a section σ1 ∈ H0(X, Li) which is F -regular and also
Oπ−1(y)-regular. Similarly, for the zero subscheme V1 = V (σ1), we have a section
σ2 ∈ H0(X, L2) which is F ⊗OV1-regular and Oπ−1(y) ⊗OV1-regular. Continuing
the same process, we have sections σi ∈ H0(X, Li) for 1 ≤ i ≤ d + 1 such that
σ = (σ1, . . . , σd+1) is F -regular and Oπ−1(y)-regular. The latter property implies
that π−1(y) ∩ V (σ) = ∅, since dim(π−1(y) ∩ V (σ)) = d− (d + 1) < 0. Therefore,
I F/Y (L1, . . . ,Ld+1) is invertible at y by Lemma 3.15 and Remark 3.16.

(2): By Lemma 2.23, we may assume that there exist locally free sheaves
E1, . . . ,El on X with ri = rankEi < ∞ and positive integers j1, . . . , jl with∑l

i=1 ji = d + 1 such that

η = p?

(
δ(O(1)(1))r1+j1−1 · · · δ(O(1)(l))rl+jl−1

)
mod F d+2(X)

for the fiber product p : P = PX(E1) ×X · · · ×X P (El) → X of the projective
space bundles PX(Ei) → X, where O(1)(i) is the pullback to P of the tautological
invertible sheaf O(1) on PX(Ei). Then, we have

dim(Supp p∗F ∩ p−1π−1(y))

= dim P/X + dim(SuppF ∩ π−1(y)) ≤ d + dimP/X,

l∑

i=1

(ri + ji − 1) = dimP/X + 1, and

I F/Y (η) ' I p∗F/Y

(
c1(O(1)(1))r1+j1−1 · · · c1(O(1)l)rl+jl−1

)
.

Therefore, we may assume that η = c1(L1) · · · c1(Ld+1) for some invertible
sheaves L1, . . . ,Ld+1 on X from the beginning. As in the proof of (1), we can
localize Y . Hence, we may assume that X admits a relatively very ample invertible
sheaf with respect to π. Thus, by the linearity of I F/Y , we may assume that Li

are all relatively very ample. Then the assertion follows from (1). ¤

As an application of Theorem 3.14, we have:
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Theorem 3.18. Let π : X → Y be an equi-dimensional locally projective
surjective morphism between normal separated Noetherian integral schemes. If X

is Q-factorial, then so is Y .

Proof. Let E be a prime divisor on Y . We shall show that some positive
multiple of E is Cartier. Thus, we may assume π to be projective by localizing
Y . Let A be a π-ample invertible sheaf on X and set θ = c1(A )d ∈ Gd(X) for
d = dim X/Y . Then iX/Y (θ) > 0. We can take a Zariski open subset U ⊂ Y

such that codim(Y \ U) ≥ 2 and E|U is Cartier. Since π is equi-dimensional,
codim(X \ π−1(U)) ≥ 2. Therefore, there exists uniquely an effective divisor D

on X such that the restriction of D to π−1(U) is just the pullback of the Cartier
divisor E|U by π|π−1(U) : π−1(U) → U . By assumption, kD is Cartier for some
k > 0. Thus, I X/Y (θc1(OX(kD))) is an invertible sheaf by Theorem 3.14. On
the other hand,

I X/Y

(
θc1(OX(kD))

)|U ' OY (iX/Y (θ)kE)|U ,

by Lemma 3.13. Hence, iX/Y (θ)kE is Cartier. ¤

The following is analogous to Lemma 2.29.

Lemma 3.19. Let ψ : Y → S be a proper surjective morphism to a normal
separated Noetherian integral scheme S of relative dimension e = dim Y/S, and G
a torsion free coherent sheaf on Y . Assume that

• π, ψ, and ψ ◦ π are locally projective morphisms, and
• dim(SuppF ∩ π−1(y)) ≤ d and dim(SuppF ∩ π−1ψ−1(s)) ≤ d + e for any

y ∈ Y and s ∈ S.

Then there exist isomorphisms

I F⊗π∗G /S(ηπ?θ) ' I G /S

(
c1(I F/Y (η))θ

)
,

I F⊗π∗G /S(η′π?θ′) ' I G /S(θ′)⊗iF/Y (η′)

for η ∈ Gd+1(X), η′ ∈ Gd(X), θ ∈ Ge(Y ), and θ′ ∈ Ge+1(Y ).

Proof. Let U be an open subset of Y such that codim(Y \U) ≥ 2 and that
G is locally free on U . Then,

π?(z cl•(F ⊗ π∗G ))|U = π?(z cl•(F ))|U · cl•(G |U )
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for any z ∈ K•(X). Let x ∈ F d+1(X) be a representative of η. Then

φ(δ(I F/Y (η))) ≡ π?(x cl•(F )) mod F 2
con(Y ),

since I F/Y (η) is invertible by Theorem 3.14. Hence,

π?(x cl•(F ⊗ π∗G )) ≡ φ(δ(I F/Y (η))) cl•(G ) mod F 2
con(Y ).

Let x′ ∈ F d(X) be a representative of η′. Then iF/Y (η′) = ε(π?(x cl•(F ))), and
hence

π?(x′ cl•(F ⊗ π∗G )) ≡ iF/Y (η′) cl•(G ) mod F 1
con(Y ).

Let y ∈ F e(Y ) and y′ ∈ F e+1(Y ) be representatives of θ and θ′, respectively.
Then,

ψ?

(
yF 2

con(Y )
)

+ ψ?

(
y′F 1

con(Y )
) ⊂ ψ?

(
F e+2

con (Y )
) ⊂ F 2

con(S)

by Proposition 3.2 and Lemma 3.1, since Y ∈ V
(e)

ψ (Y ). Therefore,

ψ?π?(x · (π?y) · cl•(F ⊗ π∗G )) ≡ ψ?

(
δ(I F/Y (η)) · y · cl•(G )

)
mod F 2

con(S)

≡ δ
(
I G /S(c1(I F/Y (η)) · θ)) mod F 2

con(S),

ψ?π?(x′ · (π?y′) · cl•(F ⊗ π∗G )) ≡ iF/Y (η′)ψ?(y′ cl•(G )) mod F 2
con(S)

≡ iF/Y (η′) δ(I G /S(θ′)) mod F 2
con(S).

Hence, we have the expected isomorphisms. ¤

The following is a generalization of Theorem 3.14, (1). This is proved by an
argument analogous to Propositions 2.15 and 2.32 in Section 2. In particular, the
proof is independent of that of Theorem 3.14.

Proposition 3.20. Let G be a locally free sheaf on Y of rank N + 1 and
E a locally free sheaf on X of rank d + 1 admitting a surjection π∗G → E . Let
q : P = P (G ∨) → Y be the projective space bundle, O(1) the tautological invertible
sheaf on P with respect to G ∨, and let p1 : PX → X and p2 : PX → P be the
natural projections from PX = X ×Y P . Let F be a coherent sheaf on X such
that dim(π−1(y) ∩ SuppF ) ≤ d for any point y ∈ Y . Then I F/Y (cd+1(E )) is
invertible and iF/Y (cd(E )) ≥ 0. Moreover, there exist an effective relative Cartier



Intersection sheaves over normal schemes 559

divisor D on P with respect to q : P → Y , an isomorphism

OP (D) ' q∗(I F/Y (cd+1(E )))⊗ O(1)⊗ iF/Y (cd(E )), (3.2)

and a surjection

Φ: SymiF/Y (cd(E ))(G ) → I F/Y (cd+1(E )).

Proof. As in the proof of Proposition 2.32, from the natural injection
O(−1) → q∗G , considering the composition

p∗2O(−1) → p∗2q
∗G = p∗1π

∗G → p∗1E ,

we have a global section σ of p∗1E ⊗ p∗2O(1). Then V (σ) is isomorphic to V =
PX(K ∨) for the kernel K of π∗G → E . Thus, we have a diagram:

V PX(K ∨) ⊂ // PX
p1 //

p2

²²

X

π

²²
PY (G ∨) P

q // Y.

Since V → X is smooth, the closed immersion V ↪→ PX is locally of complete
intersection. Thus, the section σ is OPX

-regular, and furthermore it is p∗1F -
regular, since V is flat over X. By Lemma 1.7, we have

λ−1

(
(p∗1E ⊗ p∗2O(1))∨

)
mod F d+2(PX) = cd+1

(
p∗1E ⊗ p∗2O(1)

)
, (3.3)

λ−1

(
(p∗1E ⊗ p∗2O(1))∨

)
cl•(p∗1F ) = cl•(p∗1F ⊗ OV ). (3.4)

Since O(1) is invertible, we have

cd+1(p∗1E ⊗ p∗2O(1)) = cd+1(p∗1E ) + cd(p∗1E )c1(p∗2O(1))

+
d+1∑

i=2

cd+1−i(p∗1E )c1(p∗2O(1))i

in Gd+1(PX) (cf. Remark 1.8). Hence, by (3.3),
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λ−1

(
(p∗1E ⊗ p∗2O(1))∨

)

= p?
1(λ−1(E ∨)) + p?

1(z)p?
2 δ(O(1)) + xp?

2(δ(O(1))2) + y (3.5)

for a representative z ∈ F d(X) of cd(E ) ∈ Gd(X) and for some x ∈ K•(PX) and
y ∈ F d+2(PX). Note that p2?(y cl•(p∗1F )) ∈ F 2

con(P ) by Lemma 3.4, (1), since
every fiber of Supp(p∗1F ) ⊂ PX

p2−→ P has dimension at most d. Furthermore,

p2?

(
xp?

2(δ(O(1))2) cl•(p∗1F )
)

= δ(O(1))2p2?

(
x cl•(p∗1F )

) ∈ F 2
con(P ).

Therefore, we have the following from (3.4) and (3.5):

p2?

(
cl•(p∗1F ⊗ OV )

)
= p2?

(
λ−1((p∗1E ⊗ p∗2O(1))∨) · cl•(p∗1F )

)

≡ p2?p?
1(λ−1(E ∨) cl•(F )) + δ(O(1)) · p2?p?

1(z cl•(F )) mod F 2
con(P )

≡ q?π?(λ−1(E ∨) cl•(F )) + δ(O(1)) · q?π?(z cl•(F )) mod F 2
con(P ). (3.6)

Since cd(E ) = z mod F d+1(X), cd+1(E ) = λ−1(E ∨) mod F d+2(X), and since q is
flat, we have

q?(π?(z cl•(F ))) ≡ iF/Y (cd(E )) cl•(OP ) mod F 1
con(P ), and

d̂et(q?π?(λ−1(E ∨) cl•(F ))) ' q∗ d̂et(π?(λ−1(E ∨) cl•(F ))) ' q∗I F/Y (cd+1(E ))

by Definition 3.5, where in the second isomorphism, we use the fact that the
pullback of a reflexive sheaf by a flat morphism is also reflexive (cf. [23, Proposition
1.8]). Therefore, (3.6) induces an isomorphism

d̂et
(
p2?(cl•(p∗1F ⊗ OV ))

) ' q∗I F/Y (cd+1(E ))⊗ O(1)⊗ iF/Y (cd(E )). (3.7)

Let D be the codimension one part of p2∗ cyc(p∗1F ⊗OV ). Then SuppD ⊂ p2(V ∩
p−1
1 (SuppF )) and

OP (D) ' d̂et
(
p2?(cl•(p∗1F ⊗ OV ))

)
.

In particular, the expected isomorphism (3.2) is derived from (3.7). For an arbi-
trary point y ∈ Y , SuppD does not contain the fiber q−1(y), since
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dim(SuppD ∩ q−1(y)) ≤ dim
(
V ∩ p−1

1 (SuppF ∩ π−1(y))
)

≤ dimV/X + d = (N − d− 1) + d = N − 1.

Hence, q∗I F/Y (cd+1(E )) is invertible along the non-empty set q−1(y) \ SuppD

by (3.2). Thus, I F/Y (cd+1(E )) is invertible at y, and D is a relative Cartier
divisor with respect to q. Moreover,

iF/Y (cd(E )) = deg OP (D)|q−1(y) ≥ 0.

The effective divisor D defines a global section of

q∗
(
q∗I F/Y (cd+1(E ))⊗ O(1)⊗ iF/Y (cd(E ))

)

= I F/Y (cd+1(E ))⊗ SymiF/Y (cd(E ))(G ∨),

from which we have an expected homomorphism Φ by considering the natural
pairing Syml(G ) ⊗ Syml(G ∨) → OY . The surjectivity of Φ is shown by the same
argument as in the proof of Proposition 2.15. ¤

Remark. If F is flat over Y , then, by construction, the surjection Φ in
Proposition 3.20 is isomorphic to the surjection Φ in Proposition 2.32.

By Proposition 3.20 and by the proof of Theorem 2.41, we have:

Corollary 3.21. Let F be a coherent sheaf with dim(SuppF∩π−1(y)) ≤ d

for any y ∈ Y , and let E be a locally free sheaf on X of rank r generated by
finitely many global sections. If r = d + 1, then I F/Y (cr(E )) is an invertible
sheaf generated by finitely many global sections. More generally, if P (x1, . . . , xr)
is a weighted homogeneous polynomial of degree d + 1 numerically positive for
ample vector bundles, then I F/Y (P (c1(E ), . . . , cr(E ))) is also an invertible sheaf
generated by finitely many global sections.

3.3. Base change properties for equi-dimensional morphisms.
We shall give some of the base change properties of the intersection sheaves

I F/Y (η) by a morphism h : Y ′ → Y from another normal separated Noetherian
scheme Y ′. Note that if F is flat over Y and π : X → Y satisfies Assumption 2.1,
then by Lemma 2.27, the pullback h∗I F/Y (η) is isomorphic to the intersection
sheaf on Y ′ associated to the pullbacks of F and η. However, π and F are not
necessarily flat over Y in the situation of Section 3.

Proposition 3.22 below gives some of fundamental base change properties.
The proof uses results in Section 2 but not in Section 3.2.
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Proposition 3.22. Let F be a coherent sheaf on X such that dim(SuppF∩
π−1(y)) ≤ d for any point y ∈ Y . Let h : Y ′ → Y be a proper surjective morphism
from a Noetherian integral scheme Y ′ such that F ′ := (q∗1F )t.f./Y ′ is flat over
Y ′ for the first projection q1 : X ×Y Y ′ → X. Let X ′ be a closed subscheme of
X ×Y Y ′ such that F ′ is an OX′-module. Let ν : X ′ → X and π′ : X ′ → Y ′ be the
restrictions of q1 and the second projection q2 : X ×Y Y ′ → Y ′ to X ′, respectively.
Suppose that

• π is a projective morphism, and
• π′ : X ′ → Y ′ satisfies Assumption 2.1.

Let I F ′/Y ′(η′) be the intersection sheaf defined in Definition 2.26 for η′ ∈
Gd+1(X ′) with respect to π′ : X ′ → Y ′ and F ′. Then, the following assertions
hold for any η ∈ Gd+1(X) :

(1) If V is a closed subscheme of a fiber of h, then

I F ′/Y ′(ν?η)|V ' OV .

(2) Assume that η = cd+1(E ) for a locally free sheaf E of rank d + 1 on X with
a surjection π∗G → E for a locally free sheaf G of finite rank on Y . Then
I F/Y (η) is invertible and the surjection

Φ′ : SymiF/Y (cd(E ))(h∗G ) → I F ′/Y ′(cd+1(ν∗E ))

on Y ′ appearing in Proposition 2.32 descends to a surjection

Φ: SymiF/Y (cd(E ))(G ) → I F/Y (cd+1(E )) = I F/Y (η).

(3) I F/Y (η) is an invertible sheaf. If OY ' h∗OY ′ or if π satisfies Assumption
2.1, then

I F ′/Y ′(ν?η) ' h∗I F/Y (η).

(4) There exist a finite birational morphism ϑ : Y ] → Y ′ from an integral scheme
Y ] and an isomorphism

ϑ∗I F ′/Y ′(ν?η) ' ϑ∗h∗I F/Y (η).

Proof. (1): Let F ′
V be the pullback of F ′ to X ′×Y ′V and let W be a closed
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subscheme of X ′ ×Y ′ V such that F ′
V is an OW -module and SuppF ′

V = SuppW .
Then,

I F ′/Y ′(ν?η)|V ' I F ′
V /V (ν?η|W )

by Lemma 2.27 and Remark 2.5. Let y be the point h(V ). Then, the image Γ of
the composite W → X ′×Y Y ′ → X ′ → X is contained in SuppF ∩π−1(y). Thus,
dimΓ ≤ d, and η|Γ ∈ F d+1(Γ) = 0 by Proposition 2.24. Since ν?η|W is the image
of η|Γ by K•(Γ) → K•(W ), we have ν?η|W = 0. Therefore, I F ′/Y ′(ν?η)|V ' OV .

(2): The surjection Φ′ defines a morphism

ϕ : Y ′ → PY

(
SymiF/Y (cd+1(E ))(G )

)

over Y so that I F ′/Y ′(cd+1(E )) ' ϕ∗O(1) for the tautological invertible sheaf
O(1). Then ϕ(Y ′) → Y is a finite morphism by (1). By Remark 3.10, we may
assume that F and X are flat over an open subset U ⊂ Y with codim(Y \U) ≥ 2.
Then, by Proposition 2.32, I F/Y (cd+1(E ))|U is invertible and there is a surjection

ΦU : SymiF/Y (cd(E ))(G )|U → I F/Y (cd+1(E ))|U .

Here, h∗U (ΦU ) and Φ′|U ′ are isomorphic to each other by Lemma 2.34 and Remark
2.36, where U ′ = h−1(U) and hU = h|U ′ : U ′ → U . Thus, ϕ(Y ′) → Y is an
isomorphism over U . Since Y is normal and ϕ(Y ′) is integral, we have ϕ(Y ′) ' Y .
Hence, Φ′ descends to a surjection

Φ: SymiF/Y (cd(E ))(G ) → M

to an invertible sheaf M with M |U ' I F/Y (cd+1(E ))|U . Thus, M '
I F/Y (cd+1(E )), since both sides are reflexive sheaves on Y .

(3): First assume that π satisfies Assumption 2.1. Then, as in the proof
of Proposition 2.25 and that of Theorem 3.14, (2), we may assume that η =
c1(L1) · · · c1(Ld+1) for π-ample invertible sheaves Li such that π∗π∗Li → Li

is surjective and Rp π∗Li = 0 for any p > 0. If π is flat, then π∗Li are locally
free. If not, then Y admits an ample invertible sheaf, hence there exist surjections
Gi → π∗Li from locally free sheaves Gi of finite rank. Thus, I F/Y (η) is invertible
and we have the base change isomorphism I F ′/Y ′(ν?η) ' h∗I F/Y (η) by (2).
Since Assumption 2.1 is satisfied locally on Y , I F/Y (η) is always invertible.

Second, assume that OY ' h∗OY ′ . By the argument above, we infer that
I F ′/Y ′(ν?η) is the pullback of an invertible sheaf on Y at least locally on Y .
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Thus, I F ′/Y ′(ν?η) ' h∗M for an invertible sheaf M on Y by the assumption:
OY ' h∗OY ′ . Let U ⊂ X be the open subset in the proof of (2) and let hU : U ′ =
h−1(U) → U be the restriction of h. Then,

h∗U (I F/Y (η)|U ) ' I F ′/Y ′(ν?η)|U ′

by Lemma 2.27. Thus, we have an isomorphism M |U ' I F/Y (η)|U by taking
hU∗. Hence, M ' I F/Y (η), since both sides are invertible sheaves and codim(Y \
U) ≥ 2.

(4): Considering the Stein factorization of h, we have a finite surjective mor-
phism ϑ1 : Y1 → Y and a proper surjective morphism h1 : Y ′ → Y1 such that
h = ϑ1 ◦ h1 and ϑ1∗OY1 ' h∗OY ′ . Then, there is an invertible sheaf M1 on Y1

such that I F ′/Y ′(ν?η) ' h∗1M1, since I F ′/Y ′(ν?η) is isomorphic to the pullback
of an invertible sheaf on Y locally on Y . Let U ⊂ Y be the open subset in the
proof of (2). Then, M1|ϑ−1

1 (U) is isomorphic to the pullback of I F/Y (η)|U by the
proof of (3).

The double-dual of ϑ1∗OY1 = h∗OY is a coherent OX -module having an OY -
algebra structure. Thus, we have a finite morphism ν1 : Y ]

1 → Y1 such that ν1∗OY ]
1

is isomorphic to the double-dual of ϑ1∗OY1 . Since Y is normal, so is Y ]
1 . Conse-

quently, Y ]
1 is the normalization of Y1. Then, there is an isomorphism

ν∗1M1 ' ν∗1ϑ∗1 I F/Y (η), (3.8)

since both sides are invertible sheaves and we have such an isomorphism over the
open subset ν−1

1 ϑ−1
1 (U) whose complement has codimension at least two. Let Y ]

be an integral closed subscheme of Y ′×Y1 Y ]
1 which dominates Y ′. Let ϑ : Y ] → Y ′

be the induced finite surjective morphism, which is a birational morphism, since
so is ν1. Then, (3.8) induces an expected isomorphism

ϑ∗I F ′/Y ′(ν?η) ' ϑ∗h∗1M1 ' ϑ∗h∗I F/Y (η).

Thus, we are done. ¤

Remark 3.23. By Proposition 3.22, (3), we have another proof of Theorem
3.14, (2), as follows. We may assume that π is projective and that Y is affine by
localizing Y . As a flattening (cf. [38], [39]) of F over Y , we have a projective
birational morphism h : Y ′ → Y from an integral scheme Y ′ such that F ′ =
(q∗1F )t.f./Y ′ is flat over Y ′ for the first projection q1 : X×Y Y ′ → X. Then, Y and
Y ′ have ample invertible sheaves. Thus, π and the second projection q2 : X ×Y
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Y ′ → Y ′ both satisfy Assumption 2.1. Hence, we can apply Proposition 3.22, (3).
In this way, we have a proof of Theorem 3.14, (2).

Remark 3.24. In the situation of Proposition 3.22, we have assumed that
π is projective. However, in order to prove Proposition 3.22, (3)–(4), we do not
need the projectivity assumption on π but the local projectivity. In fact, the same
arguments in the proofs work if we replace the intersection sheaf I ∗/∗(∗) with
I perf
∗/∗ (∗) (cf. Definition 2.26). For example, Proposition 3.22, (3) is proved as

follows when π is only locally projective and OY ' h∗OY ′ : Let x ∈ F d+1(X) be
a representative of η ∈ Gd+1(X). Let U ⊂ X be the open subset in the proof of
Proposition 3.22, (2). Then, we can consider the intersection sheaf I perf

FU /U (xU )
for FU = F |π−1(U) and xU = x|π−1(U), since FU and π−1(U) are flat over U . By
Remark 3.6, we have an isomorphism

I perf
FU /U (xU ) ' I F/Y (η)|U ,

where I F/Y (η) is the intersection sheaf defined in Definition 3.5. By Lemma 2.27
and Proposition 2.25, we have also an isomorphism

h∗U
(
I perf

FU /U (xU )
) ' I F ′/Y ′(q?

1η)|U ′

for U ′ = h−1(U) and hU = h|U ′ : U ′ → U . Therefore, M |U ' I F/Y (η)|U for the
invertible sheaf M in the proof of Proposition 3.22, (3), and the rest is done by
the same argument.

The base change properties in Lemma 3.12 and Proposition 3.22 are general-
ized to:

Theorem 3.25. Let π : X → Y be a projective surjective morphism to a
normal separated Noetherian integral scheme Y , and F a coherent sheaf on X with
dim(SuppF ∩ π−1(y)) ≤ d for any point y ∈ Y . Let h : Y ′ → Y be a dominant
morphism of finite type from another normal separated Noetherian integral scheme
Y ′. Let q1 : X ′ → X be the first projection from the fiber product X ′ = X ×Y Y ′

and let F ′ be the sheaf (q∗1F )t.f./Y ′ . Then, for any η ∈ Gd+1(X), one has an
isomorphism

I F ′/Y ′(q?
1η) ' h∗I F/Y (η).

Proof. We may assume that F and X are flat over an open subset U ⊂ Y

with codim(Y \ U) ≥ 2, by Remark 3.10. Let X ′[ ⊂ X ′ be the closed subscheme
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defined by OX′[ = (OX′)t.f./Y ′ . We may replace Y ′ with an open subset whose
complement has codimension greater than one, since both sides of the isomorphism
in question are invertible sheaves. Hence, we may assume that F ′ and X ′[ are
flat over Y ′. By Remark 3.10, note that the intersection sheaf I F ′/Y ′(η′) for η′ ∈
Gd+1(X ′) in the sense of Definition 3.5 is just the intersection sheaf I F ′/Y ′(η′|X′[)
in the sense of Definition 2.26 associated with the OX′[ -module F ′ flat over Y ′.
By Nagata’s completion theorem [34], [35] (cf. [29], [5]), Y ′ is realized as an open
subset of an integral scheme Y ′ proper over Y . By taking a flattening (cf. [38] and
[39]), we have a proper birational morphism ϕ : Y ′′ → Y ′ satisfying the following
conditions:

• ϕ−1(Y ′) → Y ′ is an isomorphism.
• F ′′ := (p∗1F )t.f./Y ′′ is flat over Y ′′ for the first projection p1 : X×Y Y ′′ → X.
• The restriction of F ′′ to X ×Y ϕ−1(Y ′) is isomorphic to the pullback of F ′

by the isomorphism X ×Y ϕ−1(Y ′) ' X ×Y Y ′ = X ′.
• The closed subscheme X ′′[ of X×Y Y ′′ defined by OX′′[ = (OX×Y Y ′′)t.f./Y ′′

is flat over Y ′′.
• X ′′[ ∩ (X ×Y ϕ−1(Y ′)) is isomorphic to X ′[ by the isomorphism X ×Y

ϕ−1(Y ′) ' X ×Y Y ′ = X ′.

We can apply Proposition 3.22 to h′′ : Y ′′ ϕ−→ Y ′ → Y , F ′′, and X ′′[ → Y ′′, since
F ′′ is an OX′′[ -module. As a consequence, by Proposition 3.22, (4), we have a
finite birational morphism ϑ : Y ] → Y ′′ from an integral scheme Y ] such that

ϑ∗I F ′′/Y ′′(p?
1η|X′′[) ' ϑ∗h′′∗I F/Y (η).

Since ϕ−1(Y ′) ' Y ′ is normal, ϑ is an isomorphism over ϕ−1(Y ′). Thus, re-
stricting the isomorphism to ϕ−1(Y ′) ' Y ′, we have the expected isomorphism
I F ′/Y ′(q?

1η) ' h∗I F/Y (η). ¤

The following gives a base change property by morphisms from normal sepa-
rated Noetherian schemes which are not necessarily dominant.

Proposition 3.26. Let π : X → Y be a projective surjective morphism to a
normal separated Noetherian integral scheme Y , and F a coherent sheaf on X with
dim(SuppF ∩ π−1(y)) ≤ d for any point y ∈ Y . Let ν : B → Y be a morphism
from a normal separated Noetherian integral scheme B. Let µ : W → X and
$ : W → B be the first and second projections from the fiber product W = X×Y B.
Then there exist a coherent sheaf F̂ on W and a positive integer e such that
Supp F̂ ⊂ µ−1(SuppF ) and
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ν∗I F/Y (η)⊗e ' I bF/B(µ?η)

for any η ∈ Gd+1(X). Moreover, if dim(SuppF ∩ π−1(y)) = d for any point
y ∈ Y , then one can find the F̂ satisfying also dim(Supp F̂ ∩ $−1(b)) = d for
any b ∈ B.

Remark. If F is flat over Y and π satisfies Assumption 2.1, then one can
take e = 1 and F̂ = µ∗F , by Lemma 2.27.

Proof of Proposition 3.26. We may assume that X = SuppF ,
dim(SuppF )/Y = d, and Ftor/Y = (OX)tor/Y = 0 by Remark 3.10. Let
h : Y ′ → Y be a projective birational morphism from an integral scheme Y ′ which
gives a flattening of both F/Y and X/Y . Then, F ′ = (p∗1F )t.f./Y ′ for the first
projection p1 : X ×Y Y ′ → X ′ and the closed subscheme X ′ ⊂ X ×Y Y ′ defined
by OX′ = (OX×Y Y ′)t.f./Y ′ are both flat over Y ′. Note that OY ' h∗OY ′ , since Y

is normal and h is a proper birational morphism from the integral scheme Y ′. In-
deed, h is an isomorphism outside a closed subset of Y of codimension at least two,
thus (h∗OY ′)∨∨ ' OY by [23, Proposition 1.6], which implies that OY → h∗OY ′

is isomorphic. We set π′ : X ′ → Y ′ to be the flat morphism induced from the
second projection p2 : X ×Y Y ′ → Y ′. Then, by Proposition 3.22, (3), we have an
isomorphism

I F ′/Y ′(p?
1η|X′) ' h∗I F/Y (η). (3.9)

We can find a closed integral subscheme B′ ⊂ Y ′ ×Y B such that the second
projection induces a surjective and generically finite morphism τ : B′ → B. Indeed,
it is enough to take B′ = {b′} for a closed point b′ of the generic fiber of Y ′ ×Y

B → B. Note that τ is a finite morphism over B \ Σ for a closed subset Σ with
codim Σ ≥ 2. In fact, this is true if τ is birational. In the non-birational case, let
B′ → B′′ → B be the Stein factorization of τ and let B̃ be the normalization of
B′′. Then, B̃ → B is a finite morphism, since O eB is the double-dual of OB′′ as a
coherent OB-module. Since B′ ×B′′ B̃ → B̃ is birational, this is an isomorphism
outside a closed subset Σ̃ ⊂ B̃ with codim Σ̃ ≥ 2. Hence, it suffices to set Σ ⊂ B

to be the image of Σ̃. As a consequence, we have τ?F 2
con(B′) ⊂ F 2

con(B) for the
homomorphism τ? : K•(B′) → K•(B). Let e be the rank of τ∗OB′ , i.e., the degree
of B′ → B. Since cl•(Ri τ?(OB′)) ∈ F 2

con(B) for i > 0, we have

τ?(cl•(OB′)) ≡ cl•(τ∗OB′) ≡ e cl•(OB) mod F 1
con(B) (3.10)

by Lemma 1.14.
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Let ν′ : B′ → Y ′ be the restriction of the first projection Y ′ ×Y B → Y ′ and
let W ′ be the fiber product X ′ ×Y ′ B′. Let ρ : W ′ → W , $′ : W ′ → B′, and
µ′ : W ′ → X ′ be the induced morphisms. Then, we have commutative diagrams

W
µ //

$

²²

X

π

²²
B

ν // Y,

W ′ µ′ //

$′

²²

X ′

π′

²²
B′ ν′ // Y ′,

W ′ ρ //

$′

²²

W

$

²²
B′ τ // B

(3.11)

in which the first two are Cartesian, and in the last diagram, the induced morphism
W ′ → W ×B B′ is a closed immersion. We set F ′

W ′ := µ′∗F ′. Then

I F ′
W ′/B′(µ′?(p?

1η|X′)) ' ν′∗I F ′/Y ′ (p?
1η|X′)

by Lemma 2.27, since F ′ and X ′ are flat over Y ′. Combining with (3.9), we have

I F ′
W ′/B′(µ′?(p?

1η|X′)) ' ν′∗I F ′/Y ′(p?
1η|X′) ' τ∗ν∗I F/Y (η). (3.12)

On the other hand, for a representative x ∈ F d+1(X) of η ∈ Gd+1(X), we have

δ
(
I F ′

W ′/B′(µ′?(p?
1η|X′))

) ≡ ($′)F ′
W ′

? (µ′?(p?
1x|X′)) mod F 2(B′), (3.13)

by Definition 2.26. For the right hand side of (3.13), we have

τ? φ
(
($′)F ′

W ′
? (µ′?(p?

1x|X′))
)

= τ?$′
?

(
(µ′?p?

1x) · cl•(F ′
W ′)

)
(3.14)

for the Cartan homomorphism φ : K•(B′) → K•(B′) and the push-forward homo-
morphism τ? : K•(B′) → K•(B). Since W ′ → W ×B B′ is a closed immersion and
τ : B′ → B is a finite morphism over B \ Σ, we have F ′

W ′ ∈ Coh(d)
τ◦$′(W ′) and

$(SuppRi ρ∗F ′
W ′) 6= B for any i > 0. Thus, by Lemma 3.11,

d̂et
(
τ?$′

?

(
(µ′?p?

1x) · cl•(F ′
W ′)

))
= I F ′

W ′/B(µ′?p?
1η)

' I F ′
W ′/B(ρ?µ?η) ' I bF/B(µ?η) (3.15)

for the direct image sheaf F̂ := ρ∗ (F ′
W ′) on W . Note that there is an inclu-

sion Supp F̂ ⊂ µ−1(SuppF ) by construction. In fact, by a natural surjection
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µ′∗(p∗1F |X′) = ρ∗µ∗F → F ′
W ′ , we have SuppF ′

W ′ ⊂ ρ−1µ−1(SuppF ), which in-
duces the inclusion above. In particular, dim(Supp F̂∩$−1(b)) ≤ d for any b ∈ B.
Therefore, I bF/B(η) is an invertible sheaf by Theorem 3.14. As a consequence of
(3.10) and (3.12)–(3.15), we have

δ
(
I bF/B(µ?η)

)
cl•(OB) ≡ δ

(
ν∗I F/Y (η)

) · τ?(cl•(OB′))

≡ e δ
(
ν∗I F/Y (η)

)
cl•(OB) mod F 2

con(B),

which induces the expected isomorphism

ν∗I F/Y (η)⊗e ' I bF/B(µ?η).

Suppose that dim(SuppF ∩ π−1(y)) = d for any point y ∈ Y . Then,
dim(SuppF ′

W ′)/B′ = d. Since we have the inclusion Supp F̂ ⊂ µ−1(SuppF ),
dim(Supp F̂∩$−1(b)) = d holds for any point b ∈ B, by the upper semi-continuity
of dimensions of fibers. Thus, we are done. ¤

As a corollary of the proof of Proposition 3.26, we have:

Corollary 3.27. In the situation of Proposition 3.26, suppose that X =
SuppF and that X and F are flat over the generic point of ν(B). Then, for any
η ∈ Gd+1(X), one has an isomorphism

ν∗I F/Y (η) ' I µ∗F/B(µ?η).

Proof. We follow the proof of Proposition 3.26 and use the same no-
tions and the same symbols. We may assume that dim X/Y = d and Ftor/Y =
(OX)tor/Y = 0 by Remark 3.10. Then the flattening ν : Y ′ → Y is isomorphic over
the generic point of ν(B), by assumption. Hence, the generically finite morphism
τ : B′ → B is birational, i.e., e = 1. Moreover, (ρ∗µ∗F )t.f./Y ' F ′

W ′ by construc-
tion. By applying Proposition 3.22, (4) to W → B and B′ → B, we have a finite
birational morphism ϑ : B] → B′ such that

ϑ∗I F ′
W ′/B′(ρ?µ?(η)) ' ϑ∗τ∗I µ∗F/B(µ?η).

Thus, by (3.12),

ϑ∗τ∗ν∗I F/Y (η) ' ϑ∗τ∗I µ∗F/B(µ?η).
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Taking the direct image sheaves for the birational morphism τ ◦ ϑ : B] → B, we
have the expected isomorphism

ν∗I F/Y (η) ' I µ∗F/B(µ?η). ¤

As an application of Corollary 3.27, we have:

Proposition 3.28. Let π : X → Y and ψ : Y → S be surjective morphisms
of Noetherian schemes, s ∈ S a closed point, and let d be a non-negative integer
in which the following conditions are satisfied :

(1) π is a projective morphism.
(2) Y and the fiber Ys := ψ−1(s) are separated integral normal schemes.
(3) π is flat over the generic point of Ys.
(4) dimπ−1(y) ≤ d for any point y ∈ Y .

Then, for any η ∈ Gd+1(X), one has an isomorphism

I X/Y (η)⊗OY
OYs

' I Xs/Ys
(η|Ys

).

Proof. This follows from Corollary 3.27 applied to B = Ys → Y and
F = OX . ¤

We finish Section 3 by applying Proposition 3.26 to prove the following result,
which is an analogue of [41, Théorème 2] on Kähler spaces:

Theorem 3.29. Let π : X → Y and ψ : Y → S be proper morphisms of
Noetherian schemes. Assume that Y is a normal separated Noetherian scheme
and π is an equi-dimensional surjective morphism. If ψ ◦π : X → S is a projective
morphism, then so is ψ : Y → S.

Proof. Let A be a relatively ample invertible on X with respect to ψ ◦ π.
We set η = c1(A )d+1 ∈ Gd+1(X) for d = dim X/Y . It is enough to prove that
the invertible sheaf I X/Y (η) = I X/Y (A , . . . ,A ) is relatively ample with respect
to ψ. For the purpose, we may replace S with its open subset. Thus, we may
assume that S is affine. Also we may replace A by suitable power A ⊗k. Hence,
we may assume that there is a surjection π∗ψ∗G → A for a free OS-module G of
finite rank; in other words, A is generated by finitely many global sections. Then,
I X/Y (η) is generated by finitely many global sections by Corollary 3.21. Thus,
there is a morphism h : Y → P N

S over S for some N such that h∗O(1) ' I X/Y (η).
In order to show I X/Y (η) to be ample, it is enough to prove that
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degC/k I X/Y (η)|C > 0

for any closed irreducible curve C on an arbitrary fiber ψ−1(s) of ψ, where k =
k(s). Let ν : B → C be the normalization and µ : X ×Y B → X the induced finite
morphism. Then there exist a coherent sheaf F̂ on X×Y B and a positive integer
e such that dim Supp F̂ = d + 1 and

ν∗I X/Y (η)⊗e ' I bF/B(µ?η)

by Proposition 3.26. Since B is a non-singular curve, we may assume that F̂ is
flat over B by Remark 3.10. Hence,

edegC/k I X/Y (η)|C = degB/k I bF/B(µ?η) = iX×Y B/k(µ?η; F̂ )

= iX×Y B/k(µ∗A , . . . , µ∗A ; F̂ ) > 0

by Lemma 2.28, since µ∗A is ample. Thus, we are done. ¤

4. Intersection sheaves for varieties over a field.

In what follows, we shall work in the category of k-schemes for a fixed field k.
A variety (over k) is by definition an integral separated scheme of finite type over
Spec k. We shall study the intersections sheaves for surjective morphisms X → Y

of normal projective varieties. In Section 4.1, we study some numerical properties
of I X/Y . In Section 4.2, for a family Z of effective algebraic cycles of pure
dimension on X parametrized by Y (hence, Z is a cycle on X×Y ) and for an ample
invertible sheaf A on X, we show that the intersection sheaf I Z/Y (p∗1A , . . . , p∗1A )
is just the pullback of an ample invertible sheaf by the morphism to the Chow
variety of X determined by Z/Y . An application to the study of endomorphisms
of complex projective normal varieties is given in Section 4.3.

4.1. Numerical properties of intersection sheaves.
Let π : X → Y be a proper surjective equi-dimensional morphism from a

projective variety X to a normal variety Y . Then Y is also projective by Theorem
3.29. We set d = dim X/Y and m = dim Y . Then the intersection sheaf I X/Y (η)
for η ∈ Gd+1(X) is also defined as π?G(φ)(η) modulo F 2

con(Y ) = Fm−2(Y ) for
G(φ) : Gd+1(X) → Gd+1

con (X) = Gm−1(X) and π? : Gm−1(X) → Gm−1(Y ).

Remark. In order to calculate I X/Y (η), we may replace X with its nor-
malization by Lemmas 3.9 and 3.11. In fact, the normalization ν : X̂ → X is a
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finite birational morphism. Hence, π ◦ ν is also equi-dimensional, Ri ν∗O bX = 0 for
i > 0, and lX(ν∗O bX) = 1. Thus,

I bX/Y (ν?η) ' I (ν∗OcX)/Y (η) ' I X/Y (η)

by Lemmas 3.11 and 3.9.

In Lemma 4.1 and Theorem 4.2 below, we shall give sufficient conditions for
an intersection sheaf I X/Y (η) to be ample or nef.

Convention (“nef”). An invertible sheaf M on a projective variety Y is
called nef if the intersection number

M · C := iY/k(c1(M );C) = degC/k M |C

is non-negative for any irreducible closed curve C on Y . Note that M is nef (resp.
ample) if and only if its pullback to Y = Y ×Spec k Spec k is nef (resp. ample)
for the algebraic closure k of k. The notion of nef is introduced by Reid (cf.
[40, (0.12) (f)]), but formerly, it was called numerically effective, arithmetically
effective, or numerically semi-positive (cf. [25, Chapter I, Section 4], [11, Section
2]). The following property is known by Nakai’s criterion of ampleness (cf. [36],
[25, Chapter III]): An invertible sheaf M on a projective variety is nef if and only
if M⊗a⊗A is ample for any ample invertible sheaf A and for any positive integer
a.

Lemma 4.1. Let η be an element of Gd+1(X) such that iX/k(η;W ) ≥ 0 for
any closed irreducible subset W ⊂ X of dimension d + 1. Then I X/Y (η) is nef.

Proof. By assumption, iX/k(η;G ) ≥ 0 for any coherent sheaf G with
dimSuppG ≤ d + 1, since cl•(G ) ≡ ∑

mi cl•(Wi) mod Fd(X) for some closed
irreducible subsets Wi with integers mi ≥ 0. It is enough to prove that
degC/k I X/Y (η)|C ≥ 0 for any closed irreducible curve C on Y . Let B → C

be the normalization. Then, by Proposition 3.26, there exist a positive integer e

and a coherent sheaf F̂ of X ×Y B such that dim(Supp F̂ ) = d + 1 and

edegC/k I X/Y (η)|C = degB/k I bF/B(µ?η)

for the induced finite morphism µ : X ×Y B → X. We may assume that F̂ is flat
over B by Remark 3.10. Thus the right hand side of the equality above is equal
to
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iX×Y B/k(µ?η; F̂ ) = iX/k(η;µ∗F̂ ) ≥ 0

by Lemmas 2.28 and 1.12, since dim(Suppµ∗F̂ ) ≤ dim(Supp F̂ ) = d + 1. Thus,
we are done. ¤

Convention (“algebraic equivalence” and “numerical equivalence”). Let
M , M1, and M2 be invertible sheaves on a projective variety Y .

• M1 is called algebraically equivalent to M2 if there exist a connected alge-
braic scheme S, two k-rational points s1, s2 of S, and an invertible sheaf
M̃ on X × S such that

M1 ' M̃ |X×{s1} and M2 ' M̃ |X×{s2}.

If M is algebraically equivalent to OY , then M is called algebraically equiv-
alent to zero.

• M is called numerically trivial if M · C(= deg M |C) = 0 for any closed
irreducible curve C on Y . If M1 ⊗M−1

2 is numerically trivial, then M1 is
called numerically equivalent to M2.

Note that if M is algebraically equivalent to zero, then M is numerically trivial.

Theorem 4.2. Let π : X → Y be an equi-dimensional proper surjective
morphism of normal projective varieties defined over a field. Let θ be an element
of Gd(X) for d = dim X/Y . For an invertible sheaf L of X, the intersection sheaf
M := I X/Y (θc1(L )) has the following properties:

(1) If L is algebraically equivalent to zero, then so is M .
(2) If L is numerically trivial, then so is M .

Assume that iX/k(θ;W ) ≥ 0 for any closed subscheme W ⊂ X with dimW = d.
Then the following hold :

(3) If L is nef, then so is M .
(4) If L is ample and if iX/Y (θ) > 0, then M is ample.

Proof. (1): By assumption, we may assume that there exist a variety S

with two k-rational points s0, s1 ∈ S and an invertible sheaf L̃ on X × S such
that L̃s0 ' OX and L̃s1 ' L , where L̃s for a k-rational point s ∈ S denotes
the invertible sheaf on X isomorphic to the restriction of L̃ to X × {s} ' X.
We apply Proposition 3.28 to π× idS : X × S → Y × S and the second projection
Y ×S → S. Since π is flat over Y \Σ for a proper closed subset Σ, π× idS is also
flat over (Y \Σ)×S; thus, π× idS is flat over the generic point of Y ×{s} for any



574 N. Nakayama

s ∈ Y . We set

M̃ := I (X×S)/(Y×S)

(
p?
1(θ)c1(L̃ )

)

for the first projection p1 : X × S → X. Then, we have isomorphisms M̃s0 ' OY

and M̃s1 ' M by Proposition 3.28 applied to Y × {s} → Y × S for s = s0 and
s1. Therefore, M is algebraically equivalent to zero.

(2): iX/k(θc1(L );W ′) = 0 for any closed subscheme W ′ ⊂ X of dimension
d + 1, since L is numerically trivial and θ cl•(W ′) ∈ F d(X)Fd+1(X) ⊂ F1(X).
Hence, M and M∨ are both nef by Lemma 4.1. Thus, M is numerically trivial.

(3): By Lemma 4.1, it suffices to show

iX/k(θc1(L );W∼) ≥ 0 (4.1)

for any closed subvariety W∼ ⊂ X of dimension d + 1. If L is ample, then there
exist a finite field extension k′ ⊃ k, an ample divisor A′ on X ′ = X×Spec k Spec k′,
and a positive integer k such that

• OX′(A′) ' q∗L ⊗k, and
• dim q−1(W∼) ∩A′ = d (cf. Lemma 3.17),

for the induced morphism q : X ′ → X. In this situation, for e := [k′ : k], we have

kiX/k(θc1(L );W∼) = iX′/k′
(
q?(θ) · c1(q∗L ⊗k); q−1(W∼)

)

= iX′/k′(q?(θ); q−1(W∼) ∩A′)

= (1/e)iX′/k(q?(θ); q−1(W∼) ∩A′)

= (1/e)iX/k(θ; q? cl•(q−1(W∼) ∩A′)) ≥ 0

by Lemmas 1.12 and 1.13, since q? cl•(q−1(W∼) ∩A′) is expressed by an effective
algebraic cycle of dimension d on X. Thus, (4.1) holds if L is ample. Even if L
is only nef, L ⊗N ⊗A is ample for any ample invertible sheaf A of X and for any
N > 0. Thus

0 ≤ iX/k(θc1(L ⊗N ⊗A);W∼) = NiX/k(θc1(L );W∼) + iX/k(θc1(A );W∼)

for any N > 0. Hence, (4.1) holds for any nef invertible sheaf L .
(4): Let H be an ample invertible sheaf on Y . Then L ⊗b⊗π∗H −1 is ample

for some b > 0. By Lemma 3.13, we have an isomorphism
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I X/Y (θc1(L ⊗b ⊗ π∗H −1)) ' M⊗b ⊗I X/Y (θc1(π∗H ))−1

' M⊗b ⊗H ⊗(−iX/Y (θ)), (4.2)

where the left hand side is nef by (3). Hence, M is ample. ¤

In Lemma 4.3 and Proposition 4.5 below, we shall give sufficient conditions
for an intersection sheaf I X/Y (η) to be effective, big, or pseudo-effective.

Convention (“effective”, “big”, and “pseudo-effective”). Assume that the
base field k is algebraically closed. Let M be an invertible sheaf on a normal
projective variety X.

• M is called effective if H0(X, M ) 6= 0, or equivalently, M ' OX(D) for an
effective Cartier divisor D.

• M is called big if M⊗b ⊗ A −1 is effective for some ample invertible sheaf
A and a positive integer b.

• M is called pseudo-effective if M⊗n ⊗ A is big for any positive integer n

and for any ample invertible sheaf A .

From the definition, we have the following properties:

(1) If M is effective or big, then M is pseudo-effective.
(2) Ample invertible sheaves are big, and nef invertible sheaves are pseudo-

effective.
(3) M is pseudo-effective if and only if, for any ample invertible sheaf A and for

any positive integer n, there is a positive integer k such that (M⊗n⊗A )⊗k

is effective.

Lemma 4.3. Let B ⊂ Y be a closed subset of codim(B) ≥ 2 and Z an
effective algebraic cycle on X \ π−1(B) of codimension d such that any irreducible
component of Z dominates Y \B. Let θ ∈ Gd(X) be an element such that

G(φ)(θ|X\π−1(B)) = cl•(Z) mod F d+1
con (X \ π−1(B)) ∈ G•con(X \ π−1(B)).

If D is an effective Cartier divisor on X which does not contain any irreducible
component of Z, then the intersection sheaf I X/Y (θc1(OX(D))) is effective.

Proof. Let Z =
∑

niZi be the irreducible decomposition. Since dimZi =
dimY , the restriction morphism Zi → Y of π is generically finite and dominant.
By replacing B with a closed subset B′ ⊂ X with B′ ⊃ B and codimB′ ≥ 2, we
may assume from the beginning that Zi → Y \ B is a finite surjective morphism
for any i. Then
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I X/Y (θc1(OX(D)))|Y \B ' I Z/(Y \B)(OX(D))

'
⊗

I Zi/(Y \B)(OZi
(D|Zi

))⊗ni

by Lemma 3.9, since the appearing intersection sheaves are all invertible by The-
orem 3.14.

If M is an invertible sheaf on Y , then H0(Y,M ) ' H0(Y \B′,M ) for a closed
subset B′ with codim(B′) ≥ 2. Thus, by replacing Y with Y \ B′ for a closed
subset B′ ⊃ B with codim(B′) ≥ 2, and by replacing X with Z, we are reduced
to proving the existence of a non-zero global section of M = I X/Y (OX(D)) for a
finite surjective morphism π : X → Y of not necessarily projective varieties, where
Y is normal, and for an effective Cartier divisor D on X. We may also assume
that X is normal by Lemmas 3.9 and 3.11 as above. Therefore, the assertion
follows from the property that the push-forward π∗D is effective and from the
isomorphism OY (π∗D) ' I X/Y (OX(D)) (cf. Example 3.7). ¤

Definition 4.4 (cf. [42]). Let N be an invertible sheaf on a normal pro-
jective variety X defined over an algebraically closed field, and W ⊂ X a closed
subset. If the following condition is satisfied, then N is called weakly positive
outside W :

• For an ample invertible sheaf A on X, an arbitrary point x ∈ X \W , and
for any positive rational number ε, there exist a positive integer m with
mε ∈ Z and an effective divisor D such that OX(D) ' N ⊗m ⊗A ⊗mε and
x 6∈ SuppD.

Proposition 4.5. Let π : X → Y be an equi-dimensional proper surjective
morphism of normal projective varieties defined over an algebraically closed field
with d = dim X/Y . Let N1, . . . ,Nd be invertible sheaves on X which are weakly
positive outside π−1(B) for a closed subset B ⊂ Y of codim(B) ≥ 2. For an
invertible sheaf L of X, the intersection sheaf M := I X/Y (N1, . . . ,Nd,L ) has
the following properties:

(1) If L is pseudo-effective, then so is M .
(2) If L is big and if iX/Y (N1, . . . ,Nd) > 0, then M is big.

Proof.

(1): Let A be an ample invertible sheaf on X and ε a positive rational number.
Then there is an effective divisor ∆ such that OX(∆) ' L ⊗l⊗A ⊗lε for some l > 0
with lε ∈ Z. By the weak positivity, there exist also positive integers m1, . . . , md

and effective divisors D1, . . . , Dd such that

• miε ∈ Z and OX(Di) ' N ⊗mi
i ⊗A ⊗miε for any 1 ≤ i ≤ d,
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• codim(V ∩∆∩ π−1(Y \B)) = d + 1 for the intersection V = D1 ∩ · · · ∩Dd,
and

• every irreducible component of V dominates Y .

Hence, I X/Y (OX(D1), . . . ,OX(Dd),OX(∆)) has a non-zero global section by
Lemma 4.3. We set xi = c1(Ni) for 1 ≤ i ≤ d, xd+1 = c1(L ), and a = c1(A ).
Then

I X/Y (OX(D1), . . . ,OX(Dd),OX(∆)) ' I X/Y (mη)

for m = lm1m2 · · ·md and for

η =
d+1∏

i=1

(xi + εa) =
d+1∑

i=1

ed+1−j(x1, . . . , xd+1)εjaj ∈ Gd+1(X)⊗Q,

where ej(x1, . . . , xd+1) ∈ Z[x1, . . . , xd+1] is the elementary symmetric polynomial
of degree j (cf. Remark 2.40). Thus,

I X/Y (mη) '
d+1⊗

j=0

M
⊗(mεj)
j (4.3)

for the invertible sheaves

Mj := I X/Y (ed+1−j(x1, . . . , xd+1)aj).

Note that M0 = I X/Y (N1, . . . ,Nd,L ) = M . For an ample invertible sheaf H
on Y and for a positive integer b, we can take the positive rational number ε so
that, for any 0 ≤ j ≤ d,

H
(k)

j := H ⊗k ⊗M
⊗(−bk(d+1)εj)
j

is ample for a positive integer k with kεj ∈ Z. Indeed, H ⊗N ⊗M−1
j is ample for

N À 0 and it is possible to take b(d + 1)εj < 1/N . We can take k so that H
(k)

j

above are all effective. By (4.3), we infer that

(M⊗b ⊗H )⊗mk(d+1) ' I X/Y (mη)⊗bk(d+1) ⊗
d⊗

j=0

H ⊗km ⊗M
⊗(−bkm(d+1)εj)
j
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' I X/Y (mη)⊗bk(d+1) ⊗
d⊗

j=0

(
H

(k)
j

)⊗m

is effective, since so is I X/Y (mη). We can take b to be an arbitrary positive
integer. Therefore, M is pseudo-effective.

(2): L ⊗b ⊗ π∗H −1 is effective for an ample invertible sheaf H on Y and
a positive integer b. By (1) above and by (4.2), we infer that M⊗b ⊗H ⊗(−i) is
pseudo-effective for i = iX/Y (N1, . . . ,Nd) > 0. Thus, M is big. ¤

Corollary 4.6. Let π : X → Y be an equi-dimensional proper surjec-
tive morphism of normal projective varieties defined over an algebraically closed
field with d = dimX/Y . Let L1, . . . ,Ld+1 be invertible sheaves on X. If all
of Li have one of the following three properties (i)–(iii) at the same time, then
I X/Y (L1, . . . ,Ld+1) also has the same property :

(i) ample; (ii) nef ; (iii) nef and big.

Proof. We set θ := c1(L1) · · · c1(Ld) ∈ Gd(X). Let W be a closed integral
subscheme W ⊂ X of dimension d. If Li are all ample, then iX/k(θ;W ) > 0; in
particular, iX/Y (θ) > 0, since

iX/Y (θ) = iX/k(θ;F ) = iF /k(θ|F )

for a general closed fiber F of π (cf. Remark 3.10). If Li are all nef, then
iX/k(θ;W ) ≥ 0 by [25, Chapter III, Section 2, Theorem 1]. Thus, the assertions
for the properties (i) and (ii) follow from (4) and (3), respectively, of Theorem
4.2 applied to L = Ld+1. For the rest of the proof, we may assume that Li are
all nef and big. Then, Li are all weakly positive on the whole space X. Hence,
by applying Proposition 4.5, (2) to L = Ld+1, the proof is reduced to showing
iX/Y (θ) > 0. This well-known inequality is shown as follows: Since L1 is big,
we have an isomorphism L ⊗k

1 ' A ⊗ OX(D) for a positive integer k, an ample
invertible sheaf A on X, and for an effective Cartier divisor D on X. Then,
D := D|F is also an effective divisor on F for a general closed fiber F of π. Hence,

kiX/Y (θ)− iX/Y (A ,L2, . . . ,Ld) = iX/Y (D, L2, . . . ,Ld)

= iF /k(D|F ,L2|F , . . . ,Ld|F ) = iD/k(L2|D, . . . ,Ld|D) ≥ 0,

since Li|D are all nef. Therefore, we may replace L1 with A for the proof.
Similarly, we may replace Li with an ample invertible sheaf. Then, iX/Y (θ) > 0
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is shown as above. ¤

For the numerically positive polynomials for ample vector bundles discussed
in Section 2.4, we have the following:

Theorem 4.7. Let π : X → Y be an equi-dimensional proper surjective mor-
phism of normal projective varieties defined over a field such that d = dim X/Y .
Let E be an ample locally free sheaf of rank r on X and let P ∈ Z[x1, . . . , xr] be
a weighted homogeneous polynomial of degree d + 1 such that the weight of xi is
i for any 1 ≤ i ≤ r. If P is numerically positive for ample vector bundles, then
I X/Y (P (c1(E ), . . . , cr(E ))) is ample.

Proof. We write P (E ) := P (c1(E ), . . . , cr(E )) ∈ Gd+1(X) for short. Let
p : PX(E ) → X be the projective space bundle associated with E and let O(1)
be the tautological invertible sheaf on PX(E ) associated with E . Let H be an
ample invertible sheaf on Y . Then, O(a) ⊗ p∗π∗H −1 is ample for a positive
integer a, since O(1) is ample. There exist a finite surjective morphism τ : X ′ →
X from a normal projective variety X ′ and an invertible sheaf H ′ on X ′ such
that τ∗π∗(H ) ' H ′⊗a (cf. [14, Lemma 1.1]). Then, the locally free sheaf
τ∗(E ) ⊗ H ′−1 is ample. We set η = P (τ∗(E ) ⊗ H ′−1) ∈ Gd+1(X ′). Then,
iX′/k(η;W ) > 0 for any closed subvariety W ⊂ X ′ of dimension d + 1, since P is
numerically positive for ample vector bundles. Therefore, I X′/Y (η) is nef on Y

by Lemma 4.1. It is enough to prove that

I X/Y (P (E ))⊗b ' I X′/Y (η)⊗c ⊗H ⊗k (4.4)

for some positive integers b, c, and k. We define

S(y) = S(y1, . . . , yr) := P (e1(y), . . . , er(y))

for the elementary symmetric polynomials ek(y) (cf. Remark 2.40). Then S(y)
is a symmetric polynomial in Z[y1, . . . , yr]. There exist weighted homogeneous
polynomials P (i)(x1, . . . , xr) ∈ Z[x1, . . . , xr] of weighted degree 0 ≤ i ≤ d such
that

S(y1 + t, . . . , yr + t) = P (e1(y), . . . , er(y))+
d+1∑

i=1

tiP (d+1−i)(e1(y), . . . , er(y)) (4.5)

as a polynomial in Z[y1, . . . , yr, t]. Therefore, we have
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P (τ∗(E )⊗H ′−1) = P (τ∗E ) +
d+1∑

i=1

(−1)ic1(H ′)i(P (d+1−i)(τ∗E ))

= τ?(P (E )) +
d+1∑

i=1

(−1)ic1(H ′)iτ?(P (d+1−i)(E )),

for τ? : Gd+1(X) → Gd+1(X ′). Let l be the degree of τ ; in other words, l is the
rank of τ∗OX′ . Then I X′/Y (τ?ξ) = I X/Y (ξ)⊗l for any ξ ∈ Gd+1(X) by Lemmas
3.9 and 3.11. Let m be a positive integer divisible by ad+1. Since H ′a ' τ∗π∗(H ),
the m-th power I X′/Y (η)⊗m is isomorphic to

IX/Y (P (E ))⊗ml ⊗I X/Y (c1(π∗H )P (d)(E ))⊗(−(m/a)l) ⊗I X/Y (c1(π∗H )2θ)

for some θ ∈ Gd−1(X), where

I X/Y (c1(π∗H )2θ) ' OY and I X/Y (c1(π∗H )P (d)(E )) ' H ⊗s

for s := iX/Y (P (d)(E )) by Lemma 3.13. Thus, we have the isomorphism (4.4) for
(b, c, k) = (ml, m, (m/a)ls), where the remaining inequality s = iX/Y (P (d)(E )) >

0 is a consequence of Lemma 4.8 below. In fact,

P (d)(e1(y), . . . , er(y)) =
∂S

∂t
(y1 + t, . . . , yr + t)

∣∣∣∣
t=0

by (4.5), and hence P (d)(x1, . . . , xr) is numerically positive for ample vector bun-
dles by Lemma 4.8; thus iX/Y (P (d)(E )) = iF (P (d)(E |F )) > 0 for a general fiber
F of π (cf. Lemma 2.12 and Remark 3.10). ¤

Lemma 4.8. Let S(y) = S(y1, . . . , yr) ∈ Z[y1, . . . , yr] be a symmetric homo-
geneous polynomial of degree d+1. Suppose that S(y) is expressed as a numerically
positive polynomial for ample vector bundles of weighted degree d+1, i.e., there is
a weighted homogeneous polynomial P (x1, . . . , xr) ∈ Z[x1, . . . , xr] such that

(1) P (x1, . . . , xr) is numerically positive for ample vector bundles,
(2) P (e1(y), . . . , er(y)) = S(y) for the elementary symmetric polynomials ek(y).

Then, the symmetric polynomial

∂S

∂t
(y1 + t, . . . , yr + t)

∣∣∣∣
t=0
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is also expressed as a numerically positive polynomial for ample vector bundles of
weighted degree d.

Proof. By [14, Theorem I], together with Fact 2.39 and Remark 2.40, we
may assume that S is the Schur function Sλ for a partition λ = (λ1 ≥ λ2 ≥ · · · ≥ 0)
of d + 1 such that λr+1 = 0. Then, P above equals the Schur polynomial Pλ′ in
the sense of Fact 2.39, where λ′ is the conjugate partition of λ. By definition,

Sλ(y1, . . . , yr) =
det

(
y

λj+r−j
i

)
1≤i,j≤r

det
(
yr−j

i

)
1≤i,j≤r

= det
(
y

λj+r−j
i

)
1≤i,j≤r

∆(y1, . . . , yr)−1

(4.6)

for the Vandermonde polynomial

∆(y1, . . . , yr) :=
∏

1≤i<j≤r

(yi − yj).

For an integral vector m = (m1, . . . , mr) ∈ Zr, we write

Am(y1, . . . , yr) := det(ymj

i )1≤i,j≤r ∈ Z
[
y±1
1 , . . . , y±1

r

]
.

Note that Am(y) = 0 if mi = mj for some i 6= j. For 1 ≤ k ≤ r, let ε[k] be the
unit vector (0, . . . , 0, 1, 0, . . . , 0), where 1 lies at the k-th place. Then,

∂Am

∂t
(y1 + t, . . . , yr + t)

∣∣∣∣
t=0

=
r∑

k=1

mkAm−ε[k](y1, . . . , yr).

We introduce δ := (r − 1, r − 2, . . . , 1, 0) =
∑r

k=1(r − k)ε[k] ∈ Zr. Regarding the
partition λ as a vector λ = (λ1, . . . , λr) ∈ Zr, we have

∆(y1, . . . , yr)S(y1 + t, . . . , yr + t) = Aλ+δ(y1 + t, . . . , yr + t)

by (4.6). Hence,

∆(y1, . . . , yr)
∂S

∂t
(y1 + t, . . . , yr + t)

∣∣∣∣
t=0

=
r∑

k=1

(λk + r − k)Aλ+δ−ε[k](y1, . . . , yr). (4.7)
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Note that if λk = λk+1, then Aλ+δ−ε[k](y) = 0 or λk + r − k = 0. Indeed,
(λ + δ − ε[k])k = (λ + δ − ε[k])k+1 if k ≤ r − 1, and λk + r − k = 0 for k = r

if λr = λr+1(= 0). Thus, the right hand side of (4.7) is regarded as the sum for
integers k with λk > λk+1. Let k be such an integer. Then, the coefficient λk+r−k

is positive. Moreover, we have a partition µ = (µ1 ≥ · · · ≥ µr ≥ µr+1 = 0) of the
integer d by setting µi := λi for i 6= k and µk := λk − 1, and µ satisfies

Sµ(y1, . . . , yr) = Aλ+δ−ε[k](y1, . . . , yr)∆(y1, . . . , yr)−1.

Therefore (∂/∂t)S(y1 + t, . . . , yr + t)|t=0 is expressed as a positive linear combina-
tion of some Schur polynomials associated with partitions of d. This is numerically
positive for ample vector bundles by [14, Theorem I]. ¤

4.2. Morphisms into Chow varieties.
Let X be a projective variety, Y a normal variety, and let p1 : X × Y → X

and p2 : X × Y → Y be the natural projections. Let us fix a non-negative integer
d.

Definition 4.9. Let Z =
∑

niZi be an effective algebraic cycle on X × Y ,
where ni > 0 and Zi is a closed integral subscheme of X×Y . The cycle Z is called
a family of effective algebraic cycles on X of dimension d parametrized by Y if
p2|Zi

: Zi → Y is an equi-dimensional surjective morphism of relative dimension d

for any i. We denote by SuppZ the reduced scheme
⋃

i Zi.

Let Z =
∑

niZi be a family of effective algebraic cycles on X of dimension d

parametrized by Y . For a point y ∈ Y , the fiber Zi×Y y is a closed subscheme of
Xy := X ×Spec k Spec k(y) of pure dimension d, where k(y) denotes the residue
field of OY,y. Thus, for the associated cycles cyc(Zi ×Y y), we can define the
algebraic cycle Z(y) on Xy to be

∑
ni cyc(Zi ×Y y).

Let τ : Y ′ → Y be a surjective morphism from another normal variety Y ′.
Then one can consider the pullback τ∗Z as follows: Let {Z ′i,j} be the set of
irreducible components of Zi ×Y Y ′ such that Z ′i,j dominates Y ′. Let li,j be the
length of Zi ×Y Y ′ along Z ′i,j , i.e.,

li,j = lZ′i,j
(OZi×Y Y ′).

We set τ∗Z to be the cycle
∑

i,j nili,jZ
′
i,j . Then, τ∗Z is a family of effective

algebraic cycles on X of dimension d parametrized by Y ′. For any η ∈ Gd+1(X),
we have an isomorphism
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I τ∗Z/Y ′(p?
1η) ' τ∗I Z/Y (p?

1η) (4.8)

by Lemma 3.9 and Theorem 3.25 (cf. Convention after Definition 3.5), where p1

denotes the first projection X × Y → X or X × Y ′ → X.

Theorem 4.10. Let X be a projective variety, Y a normal projective variety,
and Z a family of algebraic cycles on X of dimension d parametrized by Y . Then,
there exists uniquely up to isomorphism a proper surjective morphism ϕ : Y → T

into a normal projective variety T with connected fibers such that, for a closed sub-
set B of Y , ϕ(B) is a point if and only if dim p1(SuppZ∩(X×B)) ≤ d. Moreover,
there exist a family ZT of algebraic cycles on X of dimension d parametrized by
T , and a positive integer m such that

(1) mZ = ϕ∗ZT ,
(2) ϕ∗I ZT /T (p?

1η) ' I Z/Y (p?
1η)⊗m for any η ∈ Gd+1(X),

(3) I ZT /T (p∗1A1, . . . , p
∗
1Ad+1) is ample for any ample invertible sheaves Ai on

X,

where p1 denotes the first projection X × Y → X or X × T → X. Here, one
can take m = 1 if the function field k(Y ) is separable, or equivalently, separably
generated, over k(T ).

The proof is given after Lemmas 4.11 and 4.12.

Lemma 4.11. Let Z be a family of effective algebraic cycles on X of dimen-
sion d parametrized by Y . Let B ⊂ Y be a connected closed algebraic subset and
let F be the image p1(SuppZ ∩ (X × B)) ⊂ X. Suppose that dimF ≤ d. Then
SuppZ ∩ (X ×B) = F ×B as an algebraic subset of X × Y .

Proof. We write S = SuppZ. By construction, there is a natural inclusion
S ∩ (X × B) ⊂ F × B. Note that the equality S ∩ (X × B) = F × B holds if
and only if S ∩ (X × {b}) = F × {b} for any b ∈ B. Hence, in order to show the
equality, we may assume B to be irreducible, since B is connected. Furthermore,
we can reduce to the case where Zi → Y is flat for any i as follows: We can find
a birational morphism Y ′ → Y from a normal projective variety Y ′ which gives a
flattening of Zi → Y for any i. Let Z ′i be the irreducible component of Zi ×Y Y ′

flat over Y ′. Then Z ′i → Zi is surjective, since it is birational. Let S′ be the union⋃
i Z ′i. Then S′ ∩ (X ×B′) ⊂ F ′×B′ for B′ = B×Y Y ′ and for the image F ′ ⊂ X

of S′ ∩ (X ×B′) by the first projection X × Y ′ → X. Here, F = F ′, since S′ → S

is surjective. Thus, if S′ ∩ (X ×B′) = F ×B′, then we have S ∩ (X ×B) = F ×B

by considering the image by X × Y ′ → X × Y .
Therefore, we may assume that B is irreducible and Zi → Y is flat for any i.
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Let {Vi,j} be the set of irreducible components of Zi∩(X×B). Then p2(Vi,j) = B

and dimVi,j = dimB + d, since Vi,j → B is flat at the generic point of Vi,j . Let
Fi,j be the image p1(Vi,j). Then the natural inclusion Vi,j ⊂ Fi,j × B is just the
equality, since the both sides are irreducible subvarieties of X × Y of the same
dimension. Therefore, Zi ∩ (X × B) = Fi × B for the union Fi =

⋃
j Fi,j , and

finally, S ∩ (X ×B) = F ×B by F =
⋃

Fi. ¤

Let A1, . . . ,Ad+1 be very ample invertible sheaves on X. Then we can con-
sider the intersection sheaf M := I Z/Y (p∗1A1, . . . , p

∗
1Ad+1). Here, M is generated

by global sections by Corollary 3.21. Let ϕ : Y → T be the Stein factorization of
the morphism

Φ|M | : Y → |M |∨ = P (H0(Y, M )) = Proj(SymH0(Y, M ))

associated with the linear system |M |. In other words, ϕ is the canonical morphism

Y → T = Proj
⊕

l≥0

H0(Y,M⊗l).

Lemma 4.12. For an integral closed subscheme B ⊂ Y , ϕ(B) is a point if
and only if dim p1(Z ∩ (X × B)) ≤ d. In particular, the morphism ϕ does not
depend on the choice of very ample invertible sheaves Ai.

Proof. Let τ : Y ′ → Y be a projective birational morphism from a normal
projective variety Y ′ which gives a flattening of Zi → Y for any i. Then τ∗M '
I τ∗Z/Y ′(p?

1η) by (4.8), where η = c1(A1) · · · c1(Ad+1). Thus ϕ ◦ τ is associated
with the family τ∗Z of algebraic cycles parametrized by Y ′. Hence, we can replace
Y with Y ′ in order to prove the lemma. Therefore, we assume from the beginning
that Zi → Y is flat for any i. Then,

M |B ' I Z×Y B/B(p?
1η)

by Lemma 2.27. Assume that dim p1(SuppZ ∩ (X × B)) = d. Then, by Lemma
4.11, there is a closed subscheme W ⊂ X with dimW = d such that Zi ×Y B is a
subscheme of X×W for any i. For a representative x ∈ F d+1(X) of η ∈ Gd+1(X),
we have

p?
1(x) cl•(Zi ×Y B) = p?

1(x|W ) cl•(Zi ×Y B) = 0 ∈ K•(Zi ×Y B),

since p?
1(x|W ) ∈ F d+1(W ) = 0 by Proposition 2.24. Hence, M |B ' OB , and
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ϕ(B) is a point. Assume next that dim p1(SuppZ ∩ (X × B)) ≥ d + 1. Then
there is a closed irreducible curve C ⊂ B such that dim(SuppZ ∩ (X × C)) =
dim p1(SuppZ ∩ (X × C)) = d + 1 by Lemma 4.11. Hence

deg M |C = iX×C/k(p?
1η;Z ×Y C) > 0

by Lemma 2.28, since A1, . . . ,Ad+1 are ample on X. This implies that ϕ(B) is
not a point. Thus, we are done. ¤

We are ready to prove Theorem 4.10:

Proof of Theorem 4.10. The existence and the uniqueness of ϕ : X → T

is proved in Lemma 4.12. Let ZT,i ⊂ X×T be the image of Zi by idX ×ϕ : X×Y →
X×T . Then the natural inclusion Zi ⊂ ZT,i×T Y is an equality of algebraic sets by
Lemmas 4.11 and 4.12. In fact, for any closed point t ∈ T and the fiber B = ϕ−1(t),
we have dim p1(Zi∩(X×B)) ≤ d by Lemma 4.12, and thus Zi∩(X×B) = Fi×B

for a subset Fi of X by Lemmas 4.11. Hence, for any closed point y ∈ B = ϕ−1(t),

(ZT,i ×T Y ) ∩ (X × {y}) = p1(ZT,i ∩ (X × {t}))× {y} ⊂ Fi × {y}
= Zi ∩ (X × {y})

as a subset of X × Y . This implies that Zi = ZT,i ×T Y as a subset.
As a consequence, we infer that the morphism ZT,i → T induced from the

second projection X × T → T is a surjective equi-dimensional morphism of rela-
tive dimension d. Thus ZT,i is a family of algebraic cycles on X of dimension d

parametrized by T . Therefore, ϕ∗ZT,i = miZi as a family of algebraic cycles on
Y for the length mi of ZT,i ×T Y along Zi. Note that mi = 1 if k(Y ) is separable
over k(T ). In fact, in this situation, ZT,i ×T Y is reduced at the generic point of
Zi (cf. [20, Proposition (4.2.4)]). We set m = lcm{mi} and ZT :=

∑
(m/mi)ZT,i.

Then, mZ = ϕ∗(ZT ). Thus, (1) and the last assertion on m in Theorem 4.10 have
been proved.

The isomorphism (2) follows from (1) and (4.8). By (2), we have an isomor-
phism

M⊗m ' ϕ∗I ZT /T (p∗1A1, . . . , p
∗
1Ad+1).

On the other hand, M is the pullback of an ample invertible sheaf on T by the
construction of ϕ. Thus, (3) is derived. ¤
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Remark 4.13. The morphism ϕ : Y → T is regarded as the Stein factor-
ization of the morphism Y → Chow(X) to the Chow variety of X corresponding
to y 7→ Z(y). This is show as follows. We fix a closed immersion X ↪→ P n into
an n-dimensional projective space P n and set A = O(1)|X . Let Rn be the vector
space H0(P n,O(1)). We set θ = c1(A )d ∈ Gd(X) and η = c1(A )d+1 ∈ Gd+1(X).
Furthermore, we set

e := iZ/Y (p?
1θ) = iZ/Y (p∗1A , . . . , p∗1A ) = iZ/Y

(
p∗1O(1), . . . , p∗1O(1)

)
,

M := I Z/Y (p?
1η) = I Z/Y (p∗1A , . . . , p∗1A ) = I Z/Y

(
p∗1O(1), . . . , p∗1O(1)

)
.

Then, by Propositions 2.15 and 3.20 (cf. Lemma 2.37), we have a natural surjection

Φ:
d+1⊗

Syme(Rn)⊗k OY → M .

By construction (cf. [32, Chapter 5, Section 4]), the associated morphism

ψ : Y → P

( d+1⊗
Syme(Rn)

)

is just the morphism to the Chow variety Chowd,e(X) ⊂ Chowd,e(P n) of d-
dimensional algebraic cycles of degree e corresponding to y 7→ Z(y). Therefore,
ϕ : Y → T is just the Stein factorization of ψ, by the definition of ϕ given just
before Lemma 4.12.

Proposition 4.14. Let π : X ···→Y be a dominant rational map from a pro-
jective variety X to a normal projective variety Y with d = dim X/Y . Then there
exist a normal projective variety T and a birational map µ : Y ···→T satisfying the
following two conditions:

(1) The graph ΓT ⊂ X × T of the composite µ ◦ π : X ···→Y ···→T is equi-
dimensional over T by the second projection X × T → T , i.e., dimΓT ∩
(X × {t}) = d for any t ∈ T .

(2) There is an ample invertible sheaf A on X such that I ΓT /T (c1(p∗1A )d+1) =
I ΓT /T (p∗1A , . . . , p∗1A ) is ample.

The map µ : Y ···→T is unique up to isomorphism, and the following conditions
are also satisfied :

(3) For any ample invertible sheaves A1, . . . ,Ad+1 on X, the intersection sheaf
I ΓT /T (p∗1A1, . . . , p

∗
1Ad+1) is ample.
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(4) For any birational map µ′ : Y ···→T ′ satisfying (1), there exists a birational
morphism ν : T ′ → T such that µ = ν ◦ µ′.

Definition 4.15. For the birational map µ : Y ···→T satisfying the condi-
tions (1) and (2) in the proposition above, the composite µ ◦ π : X ···→Y ···→T

is called the Chow reduction of π : X ···→Y .

Proof of Proposition 4.14. First, we shall construct a birational map
µ : Y ···→T satisfying the conditions (1), (2), and (3). We can find a birational
morphism Y ′ → Y from a normal projective variety Y ′ which gives a flattening
of ΓY → Y for the graph ΓY of π : X ···→Y . Then, an irreducible component X ′

of ΓY ×Y Y ′ is flat over Y ′ and is birational to ΓY . Thus, we have a morphism
X ′ → X × Y ′ such that the first projection gives a birational morphism X ′ → X

and the second projection gives a flat morphism X ′ → Y ′. The image of X ′ →
X × Y ′ is just the graph ΓY ′ of X ···→Y ···→Y ′, which is equi-dimensional over
Y ′, since so is X ′. Therefore, the rational map Y ···→Y ′ satisfies (1). Since ΓY ′

is regarded as a family of algebraic cycles on X of dimension d parametrized by
Y ′, we have a morphism ϕ : Y ′ → T by applying Theorem 4.10. Here, T is a
normal projective variety, ϕ has only connected fibers, and there is a family ZT of
algebraic cycles on X of dimension d parametrized by T such that mΓY ′ = ϕ∗(ZT )
for some positive integer m. Since ZT is the image of ΓY ′ by X×Y ′ → X×T , the
first projection X × T → X induces a birational morphism ZT → X. Hence, ZT

is just the graph of the rational map X ···→Y ′ → T , and ϕ : Y ′ → T is birational,
since dim Y ′ = dim X − d = dim ZT − d = dim T . By Theorem 4.10, we infer that
m = 1 and that the rational map µ : Y ···→Y ′ ϕ−→ T satisfies the conditions (1),
(2), and (3).

Second, we compare the birational map µ : Y ···→T above with any other
birational map µ′ : Y ···→T ′ satisfying the condition (1). For such µ′, there exist
birational morphisms ν0 : T ′′ → T and ν1 : T ′′ → T ′ from a normal projective
variety T ′′ such that ν−1

0 ◦ µ = ν−1
1 ◦ µ′. Here, µ′′ := ν−1

0 ◦ µ : Y ···→T ′′ also
satisfies (1), since the graph ΓT ′′ of µ′′ is contained in ΓT ×T T ′′ ⊂ X × T ′′. Let
A be an ample invertible sheaf on X. We define

M := I ΓT /T

(
p?
1η

)
, M ′ := I ΓT ′/T ′

(
p?
1η

)
, and M ′′ := I ΓT ′′/T ′′

(
p?
1η

)

for η := c1(A )d+1, where p1 denotes the first projections X×T → X, X×T ′ → X,
and X × T ′′ → X, respectively. Then, M ′′ ' ν∗0M ' ν∗1M ′ by (4.8). Since M
is ample, we infer that every fiber of ν1 : T ′′ → T ′ is contracted to a point by
ν0 : T ′′ → T . Hence, ν = ν0◦ν−1

1 : T ′ → T is a birational morphism. Consequently,
µ satisfies the condition (4). In this situation, assume further that µ′ : Y ···→T ′

satisfies also the condition (2) for the ample invertible sheaf A . Then, M ′ is also
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ample, and thus ν : T ′ → T is an isomorphism by the same reason. Therefore, the
uniqueness of the rational map Y ···→T satisfying (1) and (2) has been proved.
Thus, we are done. ¤

4.3. Endomorphisms of complex normal projective varieties.
In the last subsection, we shall study surjective endomorphisms f : X → X

of a normal projective variety X, mainly over the complex number field C.

Lemma 4.16. Let π : X → Y , π′ : X ′ → Y ′, τ : Y ′ → Y , and τ ′ : X ′ → X

be surjective morphisms for projective varieties X, X ′, Y , and Y ′ such that

(1) π ◦ τ ′ = τ ◦ π′,
(2) Y and Y ′ are normal,
(3) π is equi-dimensional of relative dimension d,
(4) for an open dense subset U ′ ⊂ Y ′, the induced morphism π′−1(U ′) → X ×Y

U ′ is a surjective generically finite morphism of degree e.

Then, for any η ∈ Gd+1(X), one has an isomorphism

I X′/Y ′(τ ′?η) ' τ∗I X/Y (η)⊗e.

Proof. Considering the fiber product X×Y Y ′, we have the following com-
mutative diagram:

X ′ ν //

π′

²²

X ×Y Y ′ p1 //

p2

²²

X

π

²²
Y ′ Y ′ τ // Y,

where p1 and p2 denote the natural projections X×Y Y ′ → X and X×Y Y ′ → Y ′,
respectively, and ν is the induced morphism (τ ′, π′) : X ′ → X ×Y Y ′. By the
condition (4), Z := ν(X ′) is a unique irreducible component of X×Y Y ′ dominating
Y ′. Thus, we have an isomorphism

I Z/Y ′(p?
1η) ' I X×Y Y ′/Y ′(p?

1η) ' τ∗I X/Y (η)

by Lemma 3.9 and Theorem 3.25. Let Fi be the i-th higher direct image sheaf
Ri ν∗OX′ . Then, by the condition (4), dim(SuppFi ∩ p−1

2 (∗)) < d for the generic
point ∗ of Y for any i > 0, and lZ(F0) = e. Therefore,

I X′/Y ′(τ ′?η) ' I F/Y ′(p?
1η) ' I Z/Y ′(p?

1η)⊗e
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by Lemmas 3.11 and 3.9. Thus, we have the expected isomorphism. ¤

Proposition 4.17. Let f : X → X be a surjective endomorphism of a nor-
mal projective variety X. Let π : X → Y be an equi-dimensional surjective mor-
phism of relative dimension d to a normal projective variety Y such that π has
connected fibers and that π ◦ f = h ◦ π for a surjective endomorphism h : Y → Y .
Let A be a nef and big invertible sheaf on X and let M be the intersection sheaf
I X/Y (c1(A )d+1) = I X/Y (A , . . . ,A ). Then, M is a nef and big invertible sheaf.
If A is ample, then so is M . The endomorphisms f and h have the following
properties:

(1) If f∗A ' A ⊗q for an integer q, then h∗M⊗e ' M⊗qe for some e > 0.
(2) If f∗A is numerically equivalent to A ⊗q for an integer q, then h∗M is

numerically equivalent to M⊗q.

Proof. The first two assertions on the numerical properties on M are
shown in Corollary 4.6. Hence, it is enough to prove the assertions (1) and (2)
for f and h. Note that f and h are finite morphisms. In fact, f∗ induces an
automorphism of NS(X) ⊗ Q for the Néron-Severi group NS(X), the group of
Cartier divisors on X modulo the algebraic equivalence relation: It is well-known
that NS(X) is a finitely generated abelian group. Thus, for any ample divisor A

on X, some positive multiple mA is linearly equivalent to the pullback of an ample
divisor on X. This implies that f is finite. The finiteness of h is derived from the
same argument. The induced morphism (f, π) : X → X×Y,hY is a finite surjective
morphism, since π has connected fibers. Thus, deg f = edeg h for the mapping
degree e of (f, π). Therefore, by Lemma 4.16, we have an isomorphism

I X/Y (f∗A , . . . , f∗A ) = I X/Y (f?η) ' h∗I X/Y (η)⊗e = h∗M⊗e (4.9)

for η := c1(A )d+1 ∈ Gd+1(X). In both cases (1) and (2), f∗A is numerically
equivalent to A ⊗q. Note that q > 0, since f∗A is nef and big. Thus, I X/Y (f?η)
is numerically equivalent to

I X/Y (A ⊗q, . . . ,A ⊗q) ' M⊗qd+1

by Theorem 4.2, (2). Hence, M⊗qd+1
is numerically equivalent to h∗M⊗e by

(4.9). Here, we have deg f = qdim X = qd+m for m = dim Y , and deg h = qm
1 for

q1 = qd+1e−1 from the calculations
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qd+miX/k

(
c1(A )d+m;X

)
= iX/k

(
c1(f∗A )d+m;X

)
= iX/k

(
c1(A )d+m; cl•(f∗OX)

)

= (deg f)iX
(
c1(A )d+m;X

)
> 0,

(qd+1)miY/k

(
c1(M )m;Y

)
= iY/k

(
c1(h∗M⊗e)m;Y

)
= iY/k

(
c1(M⊗e)m; cl•(h∗OY )

)

= (deg h)emiY/k

(
c1(M )m;Y

)
> 0,

where we use Lemma 1.12. Furthermore, e = qd and deg h = qm by deg f =
edeg h. In particular, h∗M is numerically equivalent to M⊗q. In case (1), from
(4.9), we have

h∗M⊗e ' M⊗qd+1 ' M⊗qe.

Thus, we are done. ¤

In what follows, we assume the base field k to be the complex number field C.
Recall that a complex projective variety X is called uniruled if there is a dominant
rational map P 1×Y ···→X from a projective variety Y with dimY = dim X − 1.
Note that X is uniruled if and only if X contains a dense subset which is a union
of rational curves. A complex projective variety X is called rationally connected
if, for arbitrary two closed points x1, x2 of X, there is an irreducible rational
curve C which contains x1 and x2 (cf. [28, Theorem (2.1) and Definition-Remark
(2.2)]).

Fact (MRC fibration). Let M be a non-singular complex projective variety.
Then, there is a dominant rational map f : M ···→S, called the maximal rationally
connected fibration, MRC fibration for short, satisfying the following conditions:

(1) S is a non-uniruled variety.
(2) There exist open dense subsets U ⊂ M and V ⊂ S such that f |U : U → V

is regular and proper.
(3) A general fiber of f is a rationally connected submanifold of M .

The MRC fibration is unique up to birational equivalence, i.e., if µ : M ′ ···→M is
a birational map from a non-singular projective variety M ′ and f ′ : M ′ ···→S′ is
an MRC fibration of M ′, then f ◦µ = ν ◦f ′ for a birational map ν : S′ ···→S. The
existence and the uniqueness of the rational map f : M ···→S satisfying (2), (3),
and the following condition (4), has been proved by [4, Théorème 2.3] and [28,
Theorem (2.7)]:

(4) A sufficiently general fiber of f is a maximal rationally connected manifold.

Note that (1) and (3) imply (4). Later, it was proved in [16] that the rational
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map f : M ···→S satisfying (2)–(4) also satisfies the condition (1).

Applying the Chow reduction (cf. Proposition 4.14), we have the notion of
special MRC fibration for a projective variety, as follows.

Theorem 4.18. Let X be a complex projective variety. Then, there exists
a dominant rational map π : X ···→Y uniquely up to isomorphism satisfying the
following conditions:

(1) Y is a non-uniruled normal projective variety.
(2) The graph ΓY ⊂ X × Y of π is equi-dimensional over Y .
(3) A general fiber of ΓY → Y is rationally connected.
(4) If π′ : X ···→Y ′ is a dominant rational map satisfying (1)–(3), then there is

a birational morphism ν : Y ′ → Y such that π = ν ◦ π′.

We call the rational map π : X ···→Y above the special MRC fibration of X.

Proof. Let M → X be a resolution of singularities and let M ···→S be
an MRC fibration. Then, by Proposition 4.14, the Chow reduction π : X ···→Y of
the rational map X ···→M ···→S satisfies the required conditions. ¤

Remark. For the special MRC fibration π : X ···→Y , it is not always pos-
sible to find an open dense subset U ⊂ X such that π|U : U → Y is regular and is a
proper surjective morphism to an open subset of Y . For example, let p : M → C be
a P 1-bundle over a non-singular projective curve C of genus ≥ 1 having a section
Γ with negative self-intersection number, and let µ : M → X be the blow-down of
the section Γ. Then the special MRC fibration π : X ···→Y is isomorphic to the
composite p ◦ µ−1 : X ···→M → C. If π|U is regular for an open subset U ⊂ X,
then µ−1(U) ∩ Γ = ∅; hence π does not induces a proper morphism from U . Note
that the surface X is not rationally connected, but it is rationally connected in
the sense of [4, Definition 2.1].

Theorem 4.19. Let f : X → X be a surjective endomorphism of a normal
complex projective variety X. Let π : X ···→Y be the special MRC fibration. Then
there is an endomorphism h : Y → Y such that π ◦ f = h ◦ π.

Proof. Note that f is a finite surjective morphism (cf. the proof of Propo-
sition 4.17). Let X ···→Y1 → Y be the Stein factorization of the composite
π ◦ f : X ···→Y ; we set π1 : X ···→Y1 and τ : Y1 → Y . Let ΓY and ΓY1 be the
graphs of rational maps π and π1, respectively. Then, we have a commutative
diagram:
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ΓY1
//

²²

ΓY ×Y Y1
//

²²

ΓY

²²
X × Y1

f×idY1 // X × Y1
idX ×τ // X × Y,

(4.10)

where the vertical arrows are all closed immersions and the horizontal arrows
are all finite morphisms. In particular, the graph ΓY1 is equi-dimensional over
Y1, since ΓY is so over Y . Let W ⊂ Y × Y1 be the image of the rational map
(π, π1) : X ···→Y × Y1. Then, a general fiber of the first projection W → Y

is rationally connected by a property of special MRC fibration. On the other
hand, Y1 is not uniruled, since τ : Y1 → Y is a finite surjective morphism to a
non-uniruled variety Y . Hence, the first projection W → Y is birational. The
second projection W → Y1 is also birational, since a general fiber of W → Y1

is also connected and since dim W = dim Y1. Then, by Proposition 4.14, we
infer that π is the Chow reduction of π1, since ΓY1 is equi-dimensional over Y1.
Consequently, there is a birational morphism ϕ : Y1 → Y such that π = ϕ ◦ π1.
We set η = c1(A )d+1 ∈ Gd+1(X) for an ample invertible sheaf A of X and for
d = dim X/Y . A general fiber of ΓY ×Y Y1 → Y1 is irreducible, since this is
isomorphic to a general fiber of ΓY → Y . Thus, the morphism ΓY1 → ΓY ×Y Y1

in the diagram (4.10) is a finite surjective morphism over an open dense subset of
Y1. Then, by Lemma 4.16, we have an isomorphism

I ΓY1/Y1(p
?
1f?η) ' τ∗I ΓY /Y (p?

1η)⊗b

for some b > 0, where p1 denotes the first projection X × Y → Y or X × Y1 →
Y1. Here, I ΓY /Y (p?

1η) is ample by Proposition 4.14. Thus, I ΓY1/Y1(p
?
1f?η) is

also ample, since τ is finite. Therefore, π1 : X ···→Y1 is the Chow reduction of
itself by Proposition 4.14. As a consequence, ϕ is an isomorphism. Then, the
endomorphism h = τ ◦ ϕ−1 : Y → Y satisfies π ◦ f = h ◦ π. ¤

Remark. In Theorem 4.19, if f is étale, then h is induced from the push-
forward morphism [f∗] : Chow(X) → Chow(X) given by Z 7→ f∗Z. In fact, for the
special MRC fibration π : X ···→Y and its graph ΓY , we have a finite morphism
ψ : Y → Chow(X) which maps a general point y to the point [ΓY (y)] correspond-
ing to the cycle ΓY (y) = cyc(ΓY ×Y {y}) (cf. Remark 4.13). For a general
point y, ΓY (y) and also f(ΓY (y)) = ΓY (h(y)) are rationally connected. Since a
non-singular model of ΓY (h(y)) is simply connected (cf. [3, Theorem 3.5]), every
irreducible component of f−1(ΓY (h(y))) is birational to ΓY (h(y)) by f . Hence,
f∗(ΓY (y)) = ΓY (h(y)) as a cycle. Therefore, ψ ◦ h = [f∗] ◦ ψ.
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Corollary 4.20. Let X be a normal complex projective variety admitting
a surjective endomorphism f : X → X such that f∗A ' A ⊗q for a nef and
big invertible sheaf A and a positive integer q. Let π : X ···→Y be the special
MRC fibration. Then there exist an endomorphism h : Y → Y and a nef and big
invertible sheaf M on Y such that π ◦ f = h ◦ π and h∗M ' M⊗q. Here, if A is
ample, then one can take M to be ample.

Proof. We have h by Theorem 4.19. The intersection sheaf M ′ =
I ΓY /Y (p?

1c1(A )d+1) is nef and big by Corollary 4.6. If A is ample, then so is
M ′ by Theorem 4.18. Then a suitable power M = (M ′)⊗e satisfies the required
condition by Proposition 4.17. ¤

References

[ 1 ] D. Barlet and M. Kaddar, Incidence divisor, Internat. J. Math., 14 (2003), 339–359.
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25 (1992), 539–545.

[ 5 ] B. Conrad, Deligne’s notes on Nagata compactifications, J. Ramanujan Math. Soc., 22

(2007), 205–257.
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ceaux cohérents (seconde partie), Publ. Math. I.H.É.S., 17 (1963), 5–91.
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morphismes de schémas (seconde partie), Publ. Math. I.H.É.S., 24 (1965), 5–231.
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