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Abstract. We prove that an arbitrary reducible curve on a smooth
surface has an essentially unique decomposition into chain-connected curves.
Using this decomposition, we give an upper bound of the geometric genus of a
numerically Gorenstein surface singularity in terms of certain topological data
determined by the canonical cycle. We show also that the fixed part of the
canonical linear system of a 1-connected curve is always rational, that is, the
first cohomology of its structure sheaf vanishes.

Introduction.

In the study of algebraic surfaces, we often encounter with reducible non-
reduced curves. Typical examples are various cycles supported by the exceptional
set of a normal surface singularity and singular fibres in a fibred surface. Needless
to say, any reducible curve decomposes into a sum of irreducible curves uniquely
up to the order. As one may see from the success of 1-connected curves ([11], [3]),
however, it is sometimes more convenient and even natural to treat a connected
reducible curve as if it were a single irreducible curve. In other words, some coarser
decompositions could be better suited to certain problems than the decomposition
into irreducible components.

The purpose of the paper is to revive and recast another canonical way to
decompose reducible curves on a smooth surface used by Miyaoka in [10]. Our
atomic curves are chain-connected curves [12] (called s-connected divisors in [10])
which themselves are reducible in general. The decomposition theorem (Corol-
lary 1.7) states that every effective divisor on a smooth surface decomposes into
a sum of chain-connected curves enjoying nice numerical relations. Furthermore,
such an ordered decomposition is essentially unique. We call it a chain-connected
component decomposition (a CCC decomposition for short). We know that 1-
connectivity is a very important notion in the surface theory. However, the class
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of 1-connected curves is not big enough to cover some important classes like funda-
mental cycles of singularities. The chain-connectivity, a notion which dates back
to Kodaira [5], is defined by a weaker condition and covers a considerably wider
range.

The present paper is organized as follows. In Section 1, after stating sev-
eral properties of chain-connected curves, we show that every curve has a CCC
decomposition. Though its essential part is roughly stated in [10], the relation be-
tween chain-connected curves derived from Proposition 1.5 (1) seems overlooked
or slighted there. In Section 2, we study the space of global sections of a nef line
bundle on a chain-connected curve and show that the dimension is bounded from
above by the degree plus one. Unlike irreducible curves, however, curves attain-
ing the bound are not necessarily rational, usually with a large fixed part of the
canonical linear system. In Section 3, we consider the minimal model problem for
chain-connected curves. Here, a minimal model is defined to be a subcurve with
nef dualizing sheaf and of the same arithmetic genus as the original curve. We
show that the minimal model uniquely exists for any chain-connected curve with
positive arithmetic genus. The procedure obtaining the model is quite similar to
that for a global surface, that is, the subtraction of “(−1)-curves” one by one.
The rest of the paper is devoted to exhibiting applications of CCC decomposi-
tions in some concrete situations. In Section 4, we study the canonical cycles of
numerically Gorenstein surface singularities. Recall that, the canonical cycle of a
weakly elliptic, numerically Gorenstein singularity has a natural decomposition,
called the elliptic sequence, introduced by S. S. T. Yau [16]. Among other things,
he succeeded in bounding the geometric genus by the length of the sequence. It is
shown that our decomposition by chain-connected curves coincides with the ellip-
tic sequence in this case. For the other singularities, we give in Theorem 4.1 an
upper bound of the geometric genus with the quantity which can be determined
by the weighted dual graph of the canonical cycle. It generalizes Yau’s result as
well as a bound given by Tomaru [14]. In Section 5, we study subcurves of a
1-connected curve, especially the fixed part of the canonical linear system. We re-
prove a theorem in [7] which asserts that the canonical fixed part of a 1-connected
curve is rational in the sense that the first cohomology group of the structure sheaf
vanishes. Finally in Section 6, we consider subcurves of fibres in a fibred algebraic
surface.

The author would like to thank Margarida Mendes Lopes very much for fruit-
ful discussions and for informing him of her excellent unpublished results. He
thanks Tadashi Tomaru who kindly answered to his very naive questions on sur-
face singularities, and Miles Reid for historical remarks and pointing out [10] to
him. Finally, he thanks the referee for his valuable suggestions which greatly
improve and simplify the original arguments.
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1. Chain-connected curves.

By a curve, we mean an effective non-zero divisor on a non-singular surface. A
line bundle (or an invertible sheaf) on a curve is called nef if it is of non-negative
degree on any irreducible components. For a curve D, the arithmetic genus is
defined by pa(D) := 1 − χ(D, OD). If D is on a non-singular surface X, then
the dualizing sheaf ωD is defined to be OD(KX + D) and we have 2pa(D) − 2 =
deg ωD = D(KX + D). If D = A + B with two curves A and B, then pa(D) =
pa(A) + pa(B)− 1 + AB.

Definition 1.1.

(1) Let D1 be a non-trivial subcurve of D, i.e., 0 ≺ D1 ≺ D = D1 + D2. The
ordered pair (D1, D2) is called a chain-disconnected partition of D if OD2(−D1) is
nef or, in other words, if D1C ≤ 0 for every irreducible component C of D2.

(2) An increasing sequence of curves D0, D1, . . . , Dm is called a connecting
chain from D0 to Dm if (i) the difference Di−Di−1 is an irreducible curve Ci and
(ii) CiDi−1 > 0 for i = 1, . . . , m.

Proposition 1.2. The following three conditions on a curve D are equiva-
lent.

(1) D has no chain-disconnected partition.
(2) For any non-trivial subcurve D0 of D, there exists a connecting chain

D0, . . . , Dm from D0 to D = Dm.
(3) There exists a connecting chain D0, . . . , Dm such that D = Dm and D0 is

an irreducible curve.

Proof.

(1) ⇒ (2): Pick up any non-trivial subcurve D0 ≺ D. We inductively con-
struct a connecting chain from D0 to D. If we have 0 ≺ Di ≺ D, then (Di, D−Di)
is not a chain-disconnected partition of D by (1). Hence, there exists an irreducible
component Ci+1 of D−Di with DiCi+1 > 0. Define Di+1 to be Di + Ci+1, even-
tually arriving at D = Dm for some m.

(2) ⇒ (1): Take an arbitrary non-trivial decomposition D = A + B. Let
D0, . . . , Dm = D be a connecting chain starting from D0 = A. Then C1 = D1−D0

is a component of B satisfying 0 < C1D0 = C1A. Thus −A cannot be nef on B.
Similarly, −B is not nef on A.

(3) ⇒ (1): Let D0, . . . , Dm = D be a connecting chain starting from an
irreducible curve D0, where Ci = Di − Di−1 is an irreducible curve. We do the
proof by induction on m. When m = 0, the assertion is clear. Assume that Dm−1

has no chain-disconnected partition. We derive a contradiction by constructing a
chain-disconnected partition of Dm−1 from that of Dm. Let (A,B) be a chain-
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disconnected partition of Dm. We have neither A = Cm nor B = Cm by the
assumption CmDm−1 > 0. If Cm is a component of B, then (A,B − Cm) is
a chain-disconnected partition of Dm−1. If Cm is not a component of B, then
CmB ≥ 0, Cm ≺ A and OB(−(A − Cm)) is nef, implying that (A − Cm, B) is a
chain-disconnected partition of Dm−1.

The implication (2) ⇒ (3) is clear. ¤

Definition 1.3. D is said to be chain-connected when D satisfies the equiv-
alent conditions (1), (2) and (3) in Proposition 1.2.

Remark 1.4. The notion of chain-connected curves was introduced in [10]
as s-connected divisors. Our terminology is taken from [12].

Here are typical examples of chain-connected curves.
i) Let A =

⋃N
i=1 Ai be a connected bunch of irreducible curves Ai. The in-

tersection form is negative semi-definite on A if and only if there exists a curve D

with support ⊆ A such that −D is nef on A . The smallest curve enjoying such a
property exists and called the numerical cycle [13]. If the intersection form is neg-
ative definite, it is usually called the fundamental cycle ([1], [2]). Numerical cycles
are chain-connected, as is easily seen. In fact, it is the biggest chain-connected
curve with support A .

ii) For an integer k, a curve D is called (numerically) k-connected, if (D −
Γ)Γ ≥ k for any subcurve 0 ≺ Γ ≺ D. Any nef and big curve is 1-connected
by Hodge’s index theorem. Every 1-connected curve is chain-connected. But the
converse does not hold true in general. See, [4, Appendix] for further properties
of 1-connected curves.

Proposition 1.5. The following hold.

(1) Let D be a chain-connected curve and ∆ a curve. If OD(−∆) is nef, then
either Supp(D) ∩ Supp(∆) = ∅ or D ¹ ∆.

(2) Let D be a chain-connected curve and C an irreducible curve with DC > 0.
Then D′ = D + C is again chain-connected.

(3) Let D be a curve with connected support. Then there exists the greatest
chain-connected subcurve D1 of D. Furthermore, Supp(D1) = Supp(D),
and −D1 is nef on D −D1.

Proof. (1) Assume that Supp(D) ∩ Supp(∆) 6= ∅. Then, since D∆ ≤ 0,
we can write D = A + B, ∆ = A + Γ, where A Â 0, B º 0, Γ º 0 and the two
cycles B, Γ contain no common component. We show that B = 0. By assumption
OD(−∆) is nef and so is OB(−∆). On the other hand, since B has no component
in common with Γ, OB(Γ) is nef. Hence OB(−A) = OB(−∆+Γ) is nef. If B were
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non-zero, the pair (A,B) would be a chain-disconnected partition.
(2) If D0, . . . , Dm = D is a connecting chain starting from an irreducible

curve, then so is D0, . . . , Dm+1 = D + C.
(3) Let D1, D2 be maximal chain-connected subcurves of D. The assertion

(2) above (plus the connectivity of D) shows that −Di is nef on D −Di and that
Supp(Di) = Supp(D). Let us prove that D1 = D2. We can write Di = A + Bi,
where A Â 0 and B1, B2 have no common irreducible component. In particular,
A + B1 + B2 ¹ D, that is, B2 ¹ D −D1. Hence −D1 is nef on B2, so that −A =
−D1 + B1 is nef on B2. Then, in view of the chain-connectivity of D2 = A + B2,
we conclude that B2 = 0, i.e., D1 º D2. By the maximality of D2, this shows the
equality D1 = D2. ¤

Definition 1.6. Let D be a curve with connected support. The greatest
chain-connected subcurve of D is called the chain-connected component of D. If
D is a curve with several connected components, a chain-connected component of
D will mean the chain-connected component of some connected component of D.

From our definition it follows that a chain-connected component of a subcurve
D′ ¹ D is a subcurve of a chain-connected component of D.

Corollary 1.7. Let D be a curve. Then there are a sequence D1, D2, . . . ,
Dr of chain-connected subcurves of D and a sequence m1, . . . , mr of positive inte-
gers which satisfy

(1) D = m1D1 + · · ·+ mrDr.
(2) For i < j, the divisor −Di is nef on Dj.
(3) If mi ≥ 2, then −Di is nef on Di.
(4) For i < j, either Supp(Di) ∩ Supp(Dj) = ∅ or Di Â Dj.

Sequences as above are unique up to suitable permutations of the indices 1, . . . , r

and the number n(D) :=
∑r

i=1 mi is uniquely determined.

Definition 1.8. The ordered decomposition D = m1D1 + · · · + mrDr as
in Corollary 1.7 is called a chain-connected component decomposition or a CCC
decomposition of D.

Proof of Corollary 1.7. We inductively construct a decomposition as
above. Define D1 to be a chain-connected component of D and let m1 be the
maximum of the integers k such that kD1 ¹ D. (For k ≤ m1−1, the curve D1 is a
chain-connected component of D−kD1.) Then define D2 to be a chain-connected
component of D − m1D1 and m2 be the largest integer such that D − m1D1 −
m2D2 º 0. Similar steps give rise to a decomposition which satisfies (1), (2) and
(3).
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The property (4) immediately follows from (2) and Proposition 1.5 (1).
Let us show the unicity of the decomposition (up to suitable permutations).

Let D = m1D1 + · · ·+mrDr be a decomposition into chain-connected curves with
the properties (1) through (4). Consider the natural partial order ¹ among the Di.
Then by (4), D1 is a maximal member and by (1) and (2), D1 is necessarily a chain-
connected component of D. In particular, the choice of D1 is exactly the same as
the choice of a connected component of D. By definition, D −m1D1 = m2D2 +
· · · + mrDr is a chain-connected component decomposition of D −m1D1. Then
obvious induction (on the total number of components) shows the weak unicity.
The ambiguity of the order does not arise if the curves D −m1D1 − · · · −msDs

have connected supports for s = 0, . . . , r. ¤

In practice, it is sometimes convenient to express a CCC decomposition as
D = Γ1 + · · · + Γn by putting Γi := Dj for

∑
k<j mk < i ≤ ∑

k≤j mk, n =
n(D) =

∑r
k=1 mk. Then, for i < j, OΓj

(−Γi) is nef and, either Γj ¹ Γi or
Supp(Γi) ∩ Supp(Γj) = ∅.

2. Nef line bundles on chain-connected curves.

Let D be a chain-connected curve. It is shown in [10] that dimH0(D, OD) =
1, so that pa(D) = dimH1(D, OD). Furthermore, for a nef line bundle L on D,
dimH0(D,−L) 6= 0 if and only if L ' OD (see, [12] and [6, Lemma 2.2]).

Theorem 2.1. Let D be a chain-connected curve. Let L be a nef line bundle
on D and put d = deg L ≥ 0. Then dimH0(D, L) ≤ d + 1. If dimH0(D, L)
attains the maximum d + 1, then L is generated by global sections. When d ≥ 1
and dimH0(D, L) = d+1, there exists a decomposition D = A+B which satisfies
the following conditions:

(1) A Â 0, B º 0 and the two curves have no common components.
(2) L|B ' OB and dimH1(B,OB) = dimH1(D, OD).
(3) L is ample on A, H1(A,OA) = 0 and each irreducible component of A is

isomorphic to P 1.

Proof. Let D =
∑

i µiAi be the irreducible decomposition. For each ir-
reducible component Ai, we pick up di := deg L|Ai

general points pi,1, . . . , pi,di

on Ai and put δ =
∑

i µi(pi,1 + · · · + pi,di
). Then δ is an effective Cartier divi-

sor such that L and OD(δ) are numerically equivalent. By the chain-connectivity
of D, we have dim H0(D, δ − L) ≤ 1 with equality holding only if L ' OD(δ).
Then dimH0(D, KD −L) ≤ dimH0(D, KD −L + δ) ≤ pa(D). It follows from the
Riemann-Roch theorem that dimH0(D, L) = dim H0(D, KD − L) + deg L + 1 −
pa(D) ≤ deg L + 1.
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Suppose that dimH0(D, L) = deg L + 1. As the above argument shows,
we have OD(L) ' OD(δ). Since the points defining δ can be chosen arbitrarily
(as far as δ satisfies the requirement), we see that |L| is free from base points.
Suppose further that d ≥ 1. Let B be the biggest subcurve of D such that
deg L|B = 0, and put A = D − B. Then OB(L) ' OB and L|A is ample. Since
H0(D, KD− δ) ' H0(D, KD) and the support of δ can move on A, the restriction
map H0(D, KD) → H0(A,KD) should be the zero map. Hence it follows from the
exact sequence

0 → OB(KB) → OD(KD) → OA(KD) → 0

that dimH1(B,OB) = dimH0(B,KB) = dimH0(D, KD) = pa(D). The restric-
tion map H0(D, KD) → H0(B,KD) should be injective, because A,B have no
common components and A is in the fixed part of |KD|. Hence H0(A,KA), which
is isomorphic to the kernel, vanishes. In particular, every irreducible component
of A is isomorphic to P 1. ¤

Corollary 2.2. Let D be a curve and D = m1D1 + · · · + mrDr a CCC
decomposition. For a nef line bundle L on D, we have the following estimate of
the dimension of global sections of L;

dimH0(D, L) ≤ deg L +
r∑

i=1

mi − 1
2

(
D2 −

r∑

i=1

miD
2
i

)

= deg L +
r∑

i=1

mi −
∑

i<j

mimjDiDj −
r∑

i=1

mi(mi − 1)
2

D2
i .

If the equality is attained in the upper bound, then L is generated by global sections.
If deg L = 0, D2 =

∑r
i=1 miD

2
i and dimH0(D, L) =

∑r
i=1 mi, then L ' OD and

Di is linearly equivalent to 0 on (mi − 1)Di +
∑

j>i mjDj.

Proof. Consider the decreasing sequence of ideals

OX , OX(−D1), . . . ,OX(−m1D1), . . . ,OX(−m1D1 −m2D2), . . . ,OX(−D).

By dividing out by OX(−D) and tensoring with L, this sequence defines a filtration
of L, of which the associated graded module is of the form

L(−m1D1 − · · · −mk−1Dk−1 − jDk)|Dk
(1 ≤ k ≤ r, 0 ≤ j ≤ mk − 1),
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which is a nef line bundle on Dk. Applying Theorem 2.1 to each of these modules
and almost everything is obvious. The final statement follows from:

1) If a divisor is linearly equivalent to 0 on a curve, so it is on any subcurve.
2) For 0 ≤ ni < mi, the divisor niDi +

∑
j<i mjDj is linearly equivalent to 0

on the curve (mi − ni)Di +
∑

j>i mjDj . ¤

Remark 2.3. The inequality in Theorem 2.1 and Corollary 2.2 were already
obtained in [10, Corollaries (3.8) and (3.10)].

3. Minimal models.

Definition 3.1. Let D be a curve on a smooth surface X.

(1) A minimal model of D is a subcurve Dmin which satisfies the following two
conditions:
(a) χ(Dmin,ODmin) = χ(D, OD).
(b) KDmin = (KX + Dmin)|Dmin is nef.

(2) Let D be a reducible curve. An irreducible component E of D is said to be
a (−m)D-curve if E is isomorphic to P 1 and E(D − E) = m.

Lemma 3.2. Let D be a reducible curve. Let E ≺ D be one of its irreducible
components and assume that ED′ > 0, where D′ = D−E. Then deg KD|E ≥ −1,
χ(D′,OD′) ≥ χ(D, OD). Furthermore, the following four conditions on such E

are equivalent :

(1) deg KD|E = −1.
(2) E is a (−1)D-curve, i.e., ED′ = 1 and E is isomorphic to P 1.
(3) χ(D′,OD′) = χ(D, OD).
(4) The restriction maps H0(D, OD) → H0(D′,OD′) and H1(D, OD) →

H1(D′,OD′) are isomorphisms.

Given a (−1)D-curve E of D, we have:

(5) If D contains another (−1)D-curve E′ 6= E and D 6= E + E′, then E and
E′ are mutually disjoint and E′ is again a (−1)D′-curve of D′ = D − E.

(6) If D is chain-connected, then the subcurve D′ = D − E is again chain-
connected.

Proof. The adjunction formula tells us deg(KD|E) = D′E + deg KE ≥
D′E − 2 ≥ −1. This shows the equivalence of the conditions (1) and (2) as well.
Furthermore, the exact sequence

0 → OE(−D′) → OD → OD′ → 0
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induces the exact sequence

0 → H0(D, OD) → H0(D′,OD′) → H1(E, OE(−D′))

→ H1(D, OD) → H1(D′,OD′) → 0.

Then χ(D′,OD′) = χ(D, OD)+dim H1(E, OE(−D′)) ≥ χ(D, OD). The conditions
(3) and (4) are both equivalent to the vanishing of H1(E, OE(−D′)), which amount
to the condition (2).

If C 6= E is irreducible, then deg(KD−E |C) ≤ deg(KD|C). Hence a (−1)D-
curve E′ 6= E is a (−1)D−E-curve unless D − E is irreducible. Thus E′ is a
(−1)D−E-curve as well; in other words, E′(D−E′) = E′(D−E−E′) = 1, so that
EE′ = 0.

Suppose that D is chain-connected and that there is a chain-disconnected
partition D −E = A + B, such that −A is nef on B. Since D is chain-connected,
−A is not nef on B + E, which means that EA > 0 and that E cannot be
a component of B (on which −A is nef). In particular, EB ≥ 0 and hence
1 ≤ EA = E(D−E−B) = 1−EB. Thus E is disjoint from B, so that −(A+E)
is nef on B, contradicting the chain-connectivity of D. ¤

Corollary 3.3. If D is a reducible, chain-connected curve with pa(D) =
−χ(D, OD) + 1 ≥ 1, then there exists one and only one minimal model Dmin

of D. The minimal model Dmin of a chain-connected curve D has the following
properties:

(1) Dmin is chain-connected.
(2) Dmin º ∆ for any subcurve ∆ ¹ D with K∆ nef.
(3) Dmin ¹ ∆ for any subcurve ∆ ¹ D with χ(∆,O∆) = χ(D, OD).

Proof. The existence of a chain-connected minimal model is an immediate
consequence of Lemma 3.2. The unicity of Dmin follows if we check that our
minimal model Dmin enjoys the properties (2) and (3).

We show (2) by induction on the number of the irreducible components of D.
Assume that K∆ is nef. If KD is nef, then Dmin = D and the assertion trivially
holds. If KD is not nef and D contains a (−1)D-curve E, we see that ∆ ¹ D −E

for any (−1)D-curve E by Lemma 3.2 (5). Hence we see both ∆ and Dmin are
subcurves of D − E, and induction works.

Let ∆ be a subcurve of D. Since D is chain-connected, we find a connect-
ing chain ∆ = D0, D1, . . . , Ds = D, where Ei = Di − Di−1 is irreducible with
EiDi−1 ≥ 1. We prove (3) by induction on s. If s = 0, then ∆ = D and the
assertion is trivial. Assume that s ≥ 1. If χ(∆,O∆) = χ(D, OD), then Lemma 3.2
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shows that Es is a (−1)D-curve of D, and hence the two curves ∆ and Dmin are
subcurves of D − Es. Then by our induction hypothesis, ∆ º Dmin. ¤

Example 3.4. In the usual minimal model theory of surfaces, the excep-
tional locus which should be blown down is always a union of trees of P 1’s. It is
not the case for our minimal model theory of curves.

Let E1, E2, E3 be three P 1’s on a surface X with a triangle configuration
and with self-intersection numbers E2

i = −i. The curve D = 2E1 + 2E2 + 2E3 is
chain-connected, with a connecting chain E1, E1+E2, E1+E2+E3, 2E1+E2+E3,
2E1 + 2E2 + E3, 2E1 + 2E2 + 2E3 = D. We have DEi = 4 − 2i, KXEi = i − 2,
deg(KD|Ei

) = 2−i, and hence D contains a single (−1)D-curve, which is the (−3)-
curve E3. Then E2 is the (−1)D−E3-curve and E1 is the (−1)D−E3−E2-curve. The
reduced curve E1 + E2 + E3 = D−E1 −E2 −E3 is the minimal model of D, i.e.,
D = 2Dmin.

Example 3.5. If D is not chain-connected, then there may be more than
one minimal models. For instance, let C ⊂ X be an elliptic curve whose normal
bundle is an element of infinite order in Pic0(C). Then KmC is nef on C, while the
restriction maps Hi(mC, OmC) → Hi(C,OC) are isomorphisms (i = 0, 1). Hence
mC is a minimal model of nC for 1 ≤ m ≤ n.

Lemma 3.6. Let D be a chain-connected curve and ∆ a non-trivial subcurve
of D with pa(∆) = pa(D). Then D −∆ decomposes as D −∆ = Γ1 + · · · + Γn,
where Γi is a chain-connected curve, OΓj

(−Γi) is numerically trivial for i < j, and
∆+Γi is a chain-connected curve satisfying ∆Γi = 1−pa(Γi) for i ∈ {1, 2, . . . , n}.

Proof. We write a CCC decomposition of D −∆ as Γ1 + · · ·+ Γn, where
Γi is a chain-connected curve and OΓj

(−Γi) is nef for i < j. We have pa(D) =
pa(∆)+

∑n
i=1(pa(Γi)−1+∆Γi)+

∑
i<j ΓiΓj . Since pa(∆) = pa(D) and OΓj

(−Γi)
is nef for i < j, we get

n∑

i=1

(pa(Γi)− 1 + ∆Γi) = −
∑

i<j

ΓiΓj ≥ 0.

For each i, we have pa(∆) ≤ dimH1(∆,O∆) ≤ dimH1(∆ + Γi,O) ≤
dimH1(D, OD) = pa(D) from which we get dimH1(∆ + Γi,O) = pa(∆). Then
dimH1(∆+Γi,O) ≥ pa(∆+Γi) = pa(∆)+pa(Γi)−1+∆Γi yields pa(Γi)−1+∆Γi ≤
0. From this and the above (in)equality, we get ∆Γi = 1 − pa(Γi) for any i and
see that OΓj

(−Γi) is numerically trivial for i < j. Furthermore, the equality
pa(D) = pa(∆ + Γi) is sufficient to imply that ∆ + Γi is chain-connected, by
Lemma 3.2 (6). ¤
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4. Canonical cycles.

Let (V, o) be (a germ of) a normal surface singularity and π : X → V the
minimal resolution. We denote by Z the fundamental cycle on the exceptional set
π−1(o). We have three different genera for (V, o) (see [15]):

pf (V, o) := pa(Z) (fundamental genus)

pa(V, o) := max{pa(Γ) | 0 ≺ Γ, Supp(Γ) ⊂ π−1(o)} (arithmetic genus)

pg(V, o) := dimC(R1π∗OX)o (geometric genus).

We have pf (V, o) ≤ pa(V, o) ≤ pg(V, o). When pa(V, o) = 1, (V, o) is called a
weakly elliptic singularity. It is known that pf (V, o) = pa(V, o) if pf (V, o) ≤ 1 (see,
[1], [2], [8] and [15]).

(V, o) is numerically Gorenstein if there exists a (possibly zero) curve ZK

with support ⊆ π−1(o) such that −ZK is numerically equivalent to KX on π−1(o).
Such ZK is called the canonical cycle. We have ZK = 0 if and only if (V, o) is a
rational double point. We tacitly neglect such a trivial case in what follows. Note
that the dualizing sheaf ωZK

is numerically trivial by the adjunction formula. We
have pg(V, o) = dimH1(ZK ,OZK

) = dimH0(ZK , ωZK
) (see, e.g. [13]).

When (V, o) is a weakly elliptic, numerically Gorenstein singularity,
S. S. T. Yau [16] introduced a decreasing sequence of fundamental cycles start-
ing from Z, called the elliptic sequence, in order to compute ZK . Furthermore,
he gave a bound on pg(V, o) by the length of the sequence. On the other hand,
Tomaru [14] considered the case where ZK is sum Z +E of the fundamental cycle
Z and its minimal model E for singularities with pf (V, o) > 0, and showed that
pg(V, o) ≤ pf (V, o)+1 holds. These results of Yau and Tomaru can be generalized
as follows:

Theorem 4.1. Let (V, o) be a numerically Gorenstein surface singularity
with pf (V, o) > 0, π : X → V the minimal resolution and let ZK = m1D1 +
· · · + mrDr be a CCC decomposition of the canonical cycle ZK on π−1(o). Put
I = {i| Di is a minimal member of {Dj}r

j=1} and ν = #I. Then the following
hold :

(1) D1 is the fundamental cycle on π−1(o).
(2) KDi is nef for i ∈ I.
(3) pa(Di) > 0 for every i and pf (V, o) ≥ ∑

i∈I pa(Di) ≥ ν.
(4) Assume that n =

∑r
i=1 mi ≥ 2. If m1 = 1, then D2 = gcd(D1, ZK −D1),

pa(D2) = pf (V, o) and Supp(D1 − D2) ∩ Supp(ZK − D1 − D2) = ∅. In
particular, m2 = 1 if m1 = 1.
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Furthermore,

(5) pg(V, o) ≤
r∑

i=1

mipa(Di)−
∑

i∈I

(pa(Di)− 1) ≤ (n− ν)pf (V, o) + ν.

If pg(V, o) attains the bound in the first inequality, then (V, o) is a Gorenstein
singularity.

Proof.

(1) Since π is the minimal resolution, KX ≡ −ZK is nef on π−1(o), where the
symbol ≡ means the numerical equivalence. It follows from Proposition 1.5 (1)
that Z ¹ ZK and hence D1 = Z, being the biggest chain-connected curve with
support π−1(o).

(2) On Di, KDi
is numerically equivalent to −ZK + Di = −∑

j<i mjDj −∑
j>i mjDj − (mi − 1)Di. If i ∈ I, then Supp(Dj) ∩ Supp(Di) = ∅ for j > i and

we have KDi ≡ −(
∑

j<i mjDj +(mi−1)Di)|Di . Hence KDi is nef and pa(Di) > 0
for i ∈ I.

(3) By (2), we have pa(Di) > 0 for any i. We remark that Di ≺ D1 for
any i ≥ 2, since Di is a chain-connected curve, ODi

(−D1) is nef by (1) and
Supp(Di) ⊂ π−1(o). Since any two distinct members in {Di}i∈I do not inter-
sect, we have

∑
i∈I Di ¹ D1. Then

∑
i∈I pa(Di) =

∑
i∈I dimH1(Di,ODi

) =
dimH1(

∑
i∈I Di,O) ≤ dimH1(D1,OD1) = pf (V, o).

(4) Assume that m1 = 1 and put G = gcd(D1, ZK −D1). Then D2 ¹ G. We
have 2pa(G)− 2 = −G(ZK −G) = −D1(ZK −D1) + (D1 −G)(ZK −D1 −G) =
2pa(D1) − 2 + (D1 − G)(ZK − D1 − G). By the choice of G, D1 − G has no
components in common with ZK−D1−G and hence (D1−G)(ZK−D1−G) ≥ 0.
Then pa(G) ≥ pa(D1). On the other hand, clearly pa(G) ≤ pa(D1). Hence
pa(G) = pa(D1) and Supp(D1 − G) ∩ Supp(ZK − D1 − G) = ∅. In view of
Lemma 3.2 (6), the former is sufficient to imply that G is chain-connected. Thus
G = D2, being a chain-connected component of ZK − D1. The latter assertion
for supports (with G = D2) shows m2 = 1, because D1 − D2 has an irreducible
component meeting D2 by the chain-connectivity of D1.

(5) Recall that ωZK
= OZK

(KX+ZX) is numerically trivial. We get pg(V, o) =
dimH0(ZK , ωZK

) ≤ ∑r
i=1

∑mi−1
l=0 dimH0(Di,KX + ZK − ∑

j<i mjDj − lDi) as
in the proof of Corollary 2.2. We have ZK −∑

j<i mjDj − lDi = (mi − l)Di +∑
j>i mjDj . Hence, for i ∈ I and l = mi − 1, we have (ZK −∑

j<i mjDj − (mi −
1)Di)|Di

= Di|Di
and it follows ODi

(KX +ZK−
∑

j<i mjDj− (mi−1)Di) ' ωDi
,

−Di(
∑

j<i mjDj + (mi − 1)Di) = deg ωDi
= 2pa(Di) − 2 and dimH0(Di,KX +

ZK −∑
j<i mjDj − (mi − 1)Di) = pa(Di) = 1−Di(

∑
j<i mjDj + (mi − 1)Di)−

(pa(Di)−1). For the other pairs (i, l), we have dim H0(Di,KX+ZK−
∑

j<i mjDj−
lDi) ≤ 1−Di(

∑
j<i mjDj + lDi) by Theorem 2.1. Summing up, we get
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pg(V, o) ≤
r∑

i=1

mi − 1
2
(Z2

K −
r∑

i=1

miD
2
i )−

∑

i∈I

(pa(Di)− 1).

We have
∑r

i=1 mipa(Di) =
∑r

i=1 mi − (1/2)(Z2
K −∑r

i=1 miD
2
i ) by 0 = pa(ZK)−

1 =
∑r

i=1 mi(pa(Di) − 1) + (1/2)(Z2
K − ∑r

i=1 miD
2
i ). Hence we get the first

inequality in (5). If the bound is attained, then the restriction H0(ZK ,KX +
ZK) → H0(D1,KX + ZK) is surjective and dimH0(D1,KX + ZK) = 1. This
implies that ωZK

' OZK
, i.e., (V, o) is Gorenstein. The second inequality in (5)

follows from the obvious fact: pa(Di) ≤ pf (V, o). ¤

We confirm that a CCC decomposition of ZK induces Yau’s elliptic sequence,
when (V, o) is a weakly elliptic singularity.

Corollary 4.2. Let (V, o) be a weakly elliptic, numerically Gorenstein sin-
gularity and ZK the canonical cycle on its minimal resolution. Then ZK has a
unique CCC decomposition of the form D1 + · · ·+ Dn, where

(1) Dn ≺ Dn−1 ≺ · · · ≺ D1,
(2) each Di is the fundamental cycle on its support and pa(Di) = 1; D1 = Z

and Dn is a minimally elliptic cycle [8],
(3) ODj

(−Di) is numerically trivial when i < j,
(4) Supp(Di −Dj) ∩ Supp(Dk) = ∅ for i < j < k,
(5) pg(V, o) ≤ n with equality holding only if (V, o) is Gorenstein.

In other words, the sequence Dn ≺ Dn−1 ≺ · · · ≺ D1 coincides with Yau’s elliptic
sequence.

Proof. Let ZK = m1D1 + · · ·+mnDn be a CCC decomposition. We know
that D1 is the fundamental cycle Z by Theorem 4.1 (1). Since everything is clear
when ZK = D1, we assume n(D) =

∑n
i=1 mi ≥ 2.

We first remark that −D1 is numerically trivial on ZK − D1. If not, then
D1(ZK − D1) < 0 and we would get pa(ZK − D1) > 1 by pa(ZK) = pa(D1) +
pa(ZK −D1)− 1 + D1(ZK −D1) and pa(ZK) = pa(D1) = 1, which is impossible
by pa(V, o) = 1. In particular, this implies m1 = 1, because we would have
D1(ZK −D1) = D2

1 + D1(ZK − 2D1) ≤ D2
1 < 0 if m1 > 1. Then, by Theorem 4.1

(4), we have m2 = 1, pa(D2) = 1, D2 = gcd(D1, ZK −D1) and Supp(D1 −D2) ∩
Supp(ZK − D1 − D2) = ∅. Note that ZK − D1 is the canonical cycle on its
support with a CCC decomposition ZK −D1 = D2 + m3D3 + · · ·+ mnDn, since
−D1 is numerically trivial on ZK − D1. Therefore, an obvious induction using
Theorem 4.1 (4) gives us mi = 1, pa(Di) = 1, Di = gcd(Di−1, ZK −

∑
j<i Dj) and

Supp(Di−1 − Di) ∩ Supp(ZK − ∑
j≤i Dj) = ∅. Now, all the assertions are clear

from this and Theorem 4.1, except the statement for Dn in (2).
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It follows from Theorem 4.1 (2) that ωDn
is nef and, hence, numerically trivial

by pa(Dn) = 1. Since Dn is chain-connected and dimH0(Dn, ωDn
) = 1, we get

ωDn
' ODn

. This is sufficient to imply that Dn is 2-connected, and hence it is a
minimally elliptic cycle. ¤

The last inequality for pg(V, o) in Theorem 4.1 tells us that the geometric
genus, which is an analytic invariant, is bounded from above by topological data
determined by the resolution dual graph. However, the bound seems rather crude.

Example 4.3. We borrow an example from [14, p. 293] and consider (V, o) =
{x2

0+x8
1+x12+8t

2 = 0}. We follow [14] for the numbering of irreducible components
Ai of the exceptional set. The canonical cycle is given by

ZK = (6t + 8)A0 + (3t + 4)(A1 + A2) + 3
t∑

i=0

(t + 1− i)(A3,i + A4,i).

For 0 ≤ j ≤ t, we put

Dj+1 = 2A0 + A1 + A2 +
t−j∑

i=0

(A3,i + A4,i).

Then D1 is the fundamental cycle and Dt+1 is its minimal model. We further
put Dt+2 = A0 + A1 + A2 and Dt+3 = A0. Then ZK = 3

∑t+1
j=1 Dj + Dt+2 +

Dt+3 is the CCC decomposition. We know that Dt+3 is the smallest member of
{Dj}. Furthermore, pf (V, o) = pa(D1) = · · · = pa(Dt+1) = 3 and pa(Dt+2) =
pa(Dt+3) = 1. Hence the bound given in Theorem 4.1 becomes pg(V, o) ≤ 3 ×
3(t + 1) + 1 + 1 = 9t + 11, while it is known that pg(V, o) = 6t + 8.

5. Subcurves of a 1-connected curve.

We study subcurves of a 1-connected curve by means of CCC decompositions.
Almost all results in this section can be shown also by using the 0-maximality
argument as in [9] and [7].

Theorem 5.1. Let ∆ be a non-trivial subcurve of a 1-connected curve D

and L a line bundle on ∆ which is numerically trivial. If ∆ = Γ1+· · ·+Γn denotes
a CCC decomposition, then dimH0(∆, L) ≤ ∆(D−∆)+

∑
i<j ΓiΓj ≤ ∆(D−∆).

Furthermore, if dimH0(∆, L) = ∆(D −∆), then the following hold.

(1) dim H0(∆, L) = n and O∆(L) ' O∆,
(2) OΓi+···+Γn(−Γi−1) ' OΓi+···+Γn for 2 ≤ i ≤ n,
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(3) Γi and D−∆ are 1-connected curves with (D− Γi)Γi = (D−∆)Γi = 1 for
1 ≤ i ≤ n,

(4) (D −∆)∆ ≤ pa(D)− pa(D −∆) holds, when KD is nef on ∆.

Proof. Let ∆ = Γ1+· · ·+Γn be a CCC decomposition, where Γi is a chain-
connected curve and OΓj

(−Γi) is nef for i < j. We put a = a(∆) = −∑
i<j ΓiΓj .

Then a ≥ 0. Since D is 1-connected, we have

1 ≤ (D − Γi)Γi = (D −∆)Γi + Γi

∑

j 6=i

Γj (5.1)

for each i. Summing up, we get n ≤ (D −∆)∆ + 2
∑

i<j ΓiΓj , that is, n + 2a ≤
(D −∆)∆. On the other hand, we have dimH0(∆, L) ≤ n −∑

i<j ΓiΓj = n + a

by Corollary 2.2. Therefore, dimH0(∆, L) ≤ n + a ≤ (D−∆)∆− a ≤ (D−∆)∆,
which is what we want.

Assume now that dim H0(∆, L) = (D − ∆)∆. Then we have equality signs
everywhere in the inequalities appeared in the above discussion. In particular,
a = 0 and dimH0(∆, L) = n. The assertions (1), (2) follow from Corollary 2.2.
We show (3). Since (D − Γi)Γi = 1 by (5.1), we see that Γi and D − Γi are
1-connected. We have (D − ∆)Γi = 1. Since ΓiΓj = 0 when i 6= j, starting
from D − Γ1, we can inductively show that D − Γ1 − · · · − Γi is 1-connected. In
particular, so is D −∆ = D −∑n

i=1 Γi. Finally, we show (4). We have a(∆) = 0
and (D − Γi)Γi = 1 for any i. Then

pa(D) = pa(D −∆) + (D −∆)∆− n +
n∑

i=1

pa(Γi).

Since KD is nef on ∆, we have 0 ≤ deg KD|Γi = deg KΓi +(D−Γi)Γi = deg KΓi +1.
It follows pa(Γi) > 0 for each i. Hence pa(D) ≥ pa(D −∆) + (D −∆)∆. ¤

Quite similarly, one can show the following two corollaries.

Corollary 5.2. Let ∆ and D be as in Theorem 5.1. Let ∆ = Γ1 + · · ·+Γn

be a CCC decomposition and put a = a(∆) = −∑
i<j ΓiΓj. If L is a nef line

bundle on ∆ satisfying deg L ≤ a, then dimH0(∆, L) ≤ ∆(D −∆) holds. If the
equality holds here, then deg L = a, dimH0(∆, L) = n + 2a and each Γi is a
1-connected curve satisfying (D − Γi)Γi = 1.

Corollary 5.3. Let ∆ be a non-trivial subcurve of a 2-connected curve D.
If L is a numerically trivial line bundle on ∆, then 2 dim H0(∆, L) ≤ ∆(D −∆).
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Theorem 5.4. Let L be a line bundle on a 1-connected curve D which is
numerically equivalent to KD, and let Z be a non-trivial subcurve of D such that
the restriction map H0(D, L) → H0(Z, L) is the zero map. Then

pa(Z) ≤
{

0, if L = KD,

1, otherwise.

If pa(Z) attains the bound, then Z is 1-connected and D decomposes as

D = Z + Γ1 + · · ·+ Γn,

where n = Z(D − Z), OD−Z(L) ' OD−Z(KD), each Γi is a 1-connected curve
with (D − Γi)Γi = ZΓi = 1, OΓj+···+Γn(−Γj−1) ' OΓj+···+Γn for 2 ≤ j ≤ n and,
either Γj ¹ Γi or Supp(Γi) ∩ Supp(Γj) = ∅ when i < j.

Proof. By the assumption, we have H1(D, L) = 0 unless L = KD. It
follows from the cohomology long exact sequence for

0 → OD−Z(L− Z) → OD(L) → OZ(L) → 0

that dimH1(D−Z,L−Z) = dimH0(Z, L)+dimH1(D, L). By the Riemann-Roch
theorem and the adjunction formula, we have dimH0(Z, L) = deg L|Z+1−pa(Z) =
deg(L−KD)|Z +deg KZ +Z(D−Z)+1− pa(Z) = pa(Z)+Z(D−Z)− 1. Hence

dimH0(D − Z, KD − L) =

{
pa(Z) + Z(D − Z), if L = KD,

pa(Z) + Z(D − Z)− 1, otherwise.

Since KD−L is numerically trivial, we get dimH0(D−Z, KD−L) ≤ Z(D−Z)−
a(D − Z) by Theorem 5.1 applied to ∆ = D − Z. Hence

pa(Z) ≤ pa(Z) + a(D − Z) ≤
{

0, if L = KD,

1, otherwise.

The rest follows from Theorem 5.1. ¤

Corollary 5.5 ([7]). Let D be a 1-connected curve with pa(D) > 0 and
Z the fixed part of |KD|, that is, the biggest subcurve such that the restriction
H0(D, KD) → H0(Z, KD) is zero. Then H1(Z,OZ) = 0.
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Proof. Since pa(D) > 0, we see that Z is a non-trivial subcurve of D.
Furthermore, the restriction H0(D, KD) → H0(Z ′,KD) is zero for any subcurve
Z ′ ¹ Z. By Theorem 5.4, we have pa(Z ′) ≤ 0. Hence H1(Z, OZ) = 0 by [7,
Proposition 1.7]. ¤

As Theorem 5.4 suggests, it is worth studying curves D such that pa(D′) ≤ 1
holds for any subcurve D′ ¹ D. For such, we have the following:

Lemma 5.6. Let D be a curve such that pa(D′) ≤ 1 for any 0 ≺ D′ ¹
D. Assume that pa(D) = 1. Then D is 0-connected and decomposes as D =
Γ1 + · · · + Γn, where each Γi is a chain-connected curve with pa(Γi) = 1 and
OΓi+···+Γn(−Γi−1) is numerically trivial. In particular, ΓiΓj = 0 and, ether Γj ¹
Γi or Supp(Γi) ∩ Supp(Γj) = ∅ for i < j. Furthermore, dimH0(D, OD) ≤ n with
equality holding only when OΓi+···+Γn

(−Γi−1) ' OΓi+···+Γn
for 2 ≤ i ≤ n. If

Supp(D) is connected, then Supp(D) = Supp(Γ1) and Γn ¹ Γn−1 ¹ · · · ¹ Γ1.

Proof. Let D′ be any non-trivial subcurve of D. We have pa(D′) ≤ 1 and
pa(D−D′) ≤ 1 by the assumption. Then 1 = pa(D) = pa(D′) + pa(D−D′)− 1 +
(D−D′)D′ ≤ 1 + (D−D′)D′. Hence (D−D′)D′ ≥ 0 and D is 0-connected. Let
D = Γ1 + · · ·+ Γn be a CCC decomposition.

Since pa(D) = 1 and

pa(D)− 1 =
n∑

i=1

(pa(Γi)− 1) +
∑

i<j

ΓiΓj ≤
n∑

i=1

(pa(Γi)− 1) ≤ 0,

we see that pa(Γi) = 1 and OΓi+···+Γn
(−Γi−1) is numerically trivial for each i.

Then dimH0(D, OD) ≤ n by Corollary 2.2.
If D has connected support, then Supp(Γ1) = Supp(D) by Proposition 1.2

(3). Hence Γi ¹ Γ1. Since we have pa(Γi) = pa(Γ1), Corollary 3.3 implies that
every Γi contains the minimal model of Γ1 as a common subcurve. Therefore,
Γj ¹ Γi for i < j. ¤

6. Subcurves of a multiple fibre.

In this section, F denotes a fibre in a fibred surface of genus g > 0. We know
that the intersection form is negative semi-definite on Supp(F ) by Zariski’s lemma.
Let D be the numerical cycle on Supp(F ). Then it is 1-connected and there exists
a positive integer m such that F = mD. We have g − 1 = m(pa(D) − 1). When
m > 1, F is called a multiple fibre and OD(D) is a torsion element of order m in
Pic(D).

The following is an analogue of Theorem 5.1.
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Theorem 6.1. Let F = mD be a multiple fibre. Then, for a given curve
∆ with 0 ≺ ∆ ¹ F , the inequality dimH0(∆,O∆) ≤ −∆2 + 1 holds. If the upper
bound is attained, then ∆ has a CCC decomposition of the form ∆ = kD + Γ1 +
· · ·+ Γn (n = −∆2), where

(1) 1 ≤ k ≤ m,
(2) Γi is a 1-connected curve with Γ2

i = −1 for 1 ≤ i ≤ n,
(3) OΓj+···+Γn

(−Γj−1) ' OΓj+···+Γn
for 1 ≤ j ≤ n, where Γ0 = kD.

Proof. Let kD be the maximal multiple of D such that kD ¹ ∆ and put
A = ∆− kD. Then 0 ≤ k ≤ m and ∆2 = A2.

Assume that A = 0. Then k > 0. We consider the exact sequence

0 → H0(D,−(i− 1)D) → H0(iD, OiD) → H0((i− 1)D, O(i−1)D)

for 2 ≤ i ≤ m. Since OD(−(i − 1)D) 6' OD and D is 1-connected, we have
dimH0(D,−(i− 1)D) = 0. Hence dimH0(iD, OiD) ≤ dimH0((i− 1)D, O(i−1)D).
By induction, we get dimH0(iD, OiD) ≤ dimH0(D, OD) = 1. In particular,
dimH0(∆,O∆) = 1.

Assume that A 6= 0. We have dimH0(kD,OkD) = 1 when k 6= 0, as shown
above. Let A = Γ1 + · · · + Γn be a CCC decomposition of A. Since Γi is chain-
connected and OΓi

(−D) is nef, we have Γi ≺ D by Proposition 1.5 (1). Then
Γ2

i ≤ −1 and it follows A2 =
∑n

i=1 Γ2
i + 2

∑
i<j ΓiΓj ≤ −n + 2

∑
i<j ΓiΓj . Since

OA(−kD) is numerically trivial, we have dimH0(A,−kD) ≤ n − ∑
i<j ΓiΓj by

Corollary 2.2. Hence dimH0(A,−kD) ≤ n − ∑
i<j ΓiΓj ≤ −A2 +

∑
i<j ΓiΓj ≤

−A2. By the cohomology long exact sequence for

0 → OA(−kD) → O∆ → OkD → 0,

we get dim H0(∆,O∆) ≤ dimH0(A,−kD) + dim H0(kD,OkD) ≤
dimH0(A,−kD) + 1 ≤ −A2 + 1 = −∆2 + 1. If dimH0(∆,O∆) = −∆2 + 1, then
k is positive, a(A) = −∑

i<j ΓiΓj = 0 and dimH0(A,−kD) = n. Hence we get
(3) by Corollary 2.2. Furthermore, Γ2

i = −1 for 1 ≤ i ≤ n. Since Γi ≺ D and D

is 1-connected, Γi is also 1-connected. ¤

Corollary 6.2. Let F be a multiple fibre and Z a subcurve of F such that
H0(F, KF ) → H0(Z, KF ) is zero. Then pa(Z) ≤ 1. If pa(Z) = 1, then Z is
0-connected and F decomposes as

F = Z + Γ0 + Γ1 + · · ·+ Γn, (n = −Z2)
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where

(1) for 1 ≤ i ≤ n, Γi is a 1-connected curve with Γ2
i = −1, ZΓi = 1, and

OΓi(−(Γ0 + · · ·+ Γi−1)) ' OΓi , OΓj (−Γi) ≡ 0 when i < j.
(2) Γ0 is a positive multiple of the numerical cycle D.

Proof. If the restriction map H0(F, KF ) → H0(Z,KF ) is zero, then the
cohomology long exact sequence for

0 → OF−Z(KF−Z) → OF (KF ) → OZ(KF ) → 0

yields dim H0(F − Z, OF−Z) = −Z2 + pa(Z). Since dimH0(F − Z,OF−Z) ≤
−Z2 + 1 by Theorem 6.1, we get pa(Z) ≤ 1. Note that we also have pa(Z ′) ≤ 1
for any subcurve Z ′ ¹ Z. If pa(Z) = 1, then Z is 0-connected by Lemma 5.6. The
rest follows from Theorem 6.1. ¤

Finally, we remark that the following holds:

Proposition 6.3. Let F be a fibre in a relatively minimal fibred surface of
genus g ≥ 1 and E a chain-connected curve contained in the fixed part of |KF |.
Then the following hold.

(1) If F is a non-multiple fibre, then pa(E) = 0 and −E2 ≤ g.
(2) If F is a multiple fibre of multiplicity m ≥ 2, then pa(E) ≤ 1. Furthermore,

−E2 ≤ (g − 1)/m when pa(E) = 1, and −E2 ≤ (g − 1)/m + 2 when
pa(E) = 0.

Proof. Let D be the numerical cycle on Supp(F ). Since E is chain-
connected, we have E ¹ D by Proposition 1.5 (1). It is easy to see that the
restriction map H0(F, KF ) → H0(D, KF ) is surjective and hence H0(D, KF ) →
H0(E, KF ) is zero. By the assumption, KF |D is a nef line bundle numerically
equivalent to KD. Hence we get the assertion for pa(E) by Theorem 5.4. The
assertion for E2 follows from Theorem 5.1 (4) applied to ∆ = D − E, except in
the case (2), pa(E) = 0. For this exceptional case, one can show −E2 = (D−E)E
≤ pa(D) + 1 in a similar way. ¤
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