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Abstract. This paper is devoted to the study of a class of semilinear de-
generate elliptic boundary value problems with asymmetric nonlinearity which
include as particular cases the Dirichlet and Robin problems. The most essen-
tial point is how to generalize the classical variational approach to eigenvalue
problems with an indefinite weight to the degenerate case. The variational ap-
proach here is based on the theory of fractional powers of analytic semigroups.
By making use of global inversion theorems with singularities between Banach
spaces, we prove very exact results on the number of solutions of our problem.
The results extend an earlier theorem due to Ambrosetti and Prodi to the
degenerate case.

1. Statement of main results.

Let Ω be a bounded domain of Euclidean space RN , N ≥ 2, with smooth
boundary ∂Ω; its closure Ω = Ω ∪ ∂Ω is an N dimensional, compact smooth
manifold with boundary. Let A be a second-order, elliptic differential operator
with real coefficients such that

Au = −
N∑

i=1

∂

∂xi

( N∑

j=1

aij(x)
∂u

∂xj

)
+ c(x)u. (1.1)

Here:

(1) aij ∈ C∞(Ω) and aij(x) = aji(x) for all x ∈ Ω and 1 ≤ i, j ≤ N , and there
exists a positive constant a0 such that
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N∑

i,j=1

aij(x)ξiξj ≥ a0|ξ|2 for all (x, ξ) ∈ Ω×RN .

(2) c ∈ C∞(Ω) and c(x) ≥ 0 in Ω.

Let B be a first-order, boundary condition with real coefficients such that

Bu = a(x′)
∂u

∂ν
+ b(x′)u. (1.2)

Here:

(3) a ∈ C∞(∂Ω) and a(x′) ≥ 0 on ∂Ω.
(4) b ∈ C∞(∂Ω) and b(x′) ≥ 0 on ∂Ω.
(5) ∂/∂ν is the conormal derivative associated with the operator A:

∂

∂ν
=

N∑

i,j=1

aij(x′)nj
∂

∂xi
,

where n = (n1, n2, . . . , nN ) is the unit exterior normal to the boundary ∂Ω.

Our fundamental hypotheses on the boundary condition B are the following:

(H.1) a(x′) + b(x′) > 0 on ∂Ω.
(H.2) b(x′) 6≡ 0 on ∂Ω.

The intuitive meaning of hypotheses (H.1) and (H.2) is that either the reflection
phenomenon or the absorption phenomenon does occur at each point of the bound-
ary ∂Ω. More precisely, hypothesis (H.1) implies that the absorption phenomenon
occurs at each point of the set M = {x′ ∈ ∂Ω : a(x′) = 0}, while the reflection
phenomenon occurs at each point of the set ∂Ω \ M = {x′ ∈ ∂Ω : a(x′) > 0}
(see [15]). In other words, a Markovian particle moves continuously in the space
Ω \M until it dies at the time it reaches the set M where the particle is definitely
absorbed (see Figure 1). On the other hand, hypothesis (H.2) implies that the
boundary condition B is not equal to the purely Neumann condition.

In this paper we consider the following semilinear elliptic boundary value
problem: Let p(ξ) be a function defined on R. Given a function h(x) in Ω, find a
function u(x) in Ω such that

{−Au + p(u) = h in Ω,

Bu = 0 on ∂Ω.
(1.3)
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Figure 1.

It should be emphasized that problem (1.3) becomes a degenerate boundary value
problem from an analytical point of view. This is due to the fact that the so-
called Lopatinskii–Shapiro complementary condition is violated at each point of
the set M (see [9]). Amann [2] studied the non-degenerate case; more precisely, he
assumes that the boundary ∂Ω is the disjoint union of the two closed subsets M

and ∂Ω \M , each of which is an (N − 1) dimensional, compact smooth manifold.
In order to study problem (1.3) in the framework of Hölder spaces, we consider

the linear elliptic boundary value problem

{
Au = g in Ω,

Bu = 0 on ∂Ω
(1.4)

in the framework of the Hilbert space L2(Ω). We associate with problem (1.4) a
densely defined, closed linear operator

A : L2(Ω) −→ L2(Ω)

as follows:

(1) D(A) = {u ∈ W 2,2(Ω) : Bu = 0 on ∂Ω}.
(2) Au = Au for all u ∈ D(A).

Here and in the following the Sobolev space W k,p(Ω) for k ∈ N and 1 < p < ∞ is
defined as follows:

W k,p(Ω) = the space of functions u ∈ Lp(Ω) whose derivatives Dαu,

|α| ≤ k, in the sense of distributions are in Lp(Ω),

and its norm ‖ · ‖W k,p(Ω) is given by the formula
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‖u‖W k,p(Ω) =
( ∑

|α|≤k

∫

Ω

|Dαu(x)|p dx

)1/p

.

Then we have the following fundamental spectral results (i), (ii) and (iii) of
the operator A (see [16, Theorem 5.1]):

( i ) The operator A is positive and selfadjoint in L2(Ω).
( ii ) The first eigenvalue λ1 of A is positive and algebraically simple, and its

corresponding eigenfunction φ1 ∈ C2+α(Ω), with exponent 0 < α < 1, may
be chosen to be strictly positive in Ω. Namely, we have the assertions





Aφ1 = λ1φ1 in Ω,

φ1 > 0 in Ω,

Bφ1 = 0 on ∂Ω.

(iii) No other eigenvalues λj , j ≥ 2, have positive eigenfunctions.

Now we impose the following four conditions (P.1) through (P.4) on the non-
linear term p(ξ):

(P.1) The function p(ξ) is real-valued and is of class C2 on R, and p(0) = 0.
(P.2) p′′(ξ) > 0 on R.
(P.3) The limit γ′ = limξ→−∞ p′(ξ) exists and satisfies the condition

0 < γ′ < λ1.

(P.4) The limit γ′′ = limξ→+∞ p′(ξ) exists and satisfies the condition

λ1 < γ′′ < λ2.

The purpose of this paper is to prove very exact results on the number of so-
lutions of problem (1.3). In order to study problem (1.3), we introduce a nonlinear
map F in the framework of Hölder spaces, and make use of the global inversion
theorem with singularities between Banach spaces due to Ambrosetti–Prodi [3]. It
is worthwhile pointing out here that the method of Leray–Schauder degree gives
no useful result for problem (1.3), since the topological degree of the nonlinear
map F is equal to zero (cf. [6], [12]).

The next theorem is a generalization of Ambrosetti–Prodi [3, Theorem 3.1]
and [4, Chapter 4, Theorem 2.4] to the degenerate case (see also [12, Theo-
rem 3.7.5], [13, Section 6.6]):
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Theorem 1.1. Assume that the nonlinear term p(ξ) satisfies conditions
(P.1) through (P.4). Then there exist a C1 manifold Y1 of codimension one in the
Hölder space Y = Cα(Ω) and two disjoint open subsets Y0 and Y2 of Y such that
Y = Y0 ∪ Y1 ∪ Y2 with the following two properties:

( i ) Problem (1.3) has a unique solution u ∈ C2+α(Ω) for any function h ∈ Y1.
( ii ) Problem (1.3) has exactly two solutions u1, u2 ∈ C2+α(Ω) for any function

h ∈ Y2, while problem (1.3) has no solution for any function h ∈ Y0.

The next corollary is a generalization of Berger–Podolak [5, Theorem 3] to
the degenerate case, and may be proved just as in Nirenberg [12, Section 3.7,
Exercise]:

Corollary 1.2. If the nonlinear term p(ξ) satisfies conditions (P.1) through
(P.4), then the semilinear problem

{−Au + p(u) = 0 in Ω,

Bu = 0 on ∂Ω

has exactly one non-trivial solution u ∈ C2+α(Ω) if and only if p′(0) 6= λ1.

The most essential point in the proof of Theorem 1.1 is how to generalize
the classical variational approach to eigenvalue problems with an indefinite weight
to the degenerate case. Our variational approach is based on the theory of frac-
tional powers of analytic semigroups (see [14]). It should be noticed that our
Hilbert space H = D(A1/2) is the right space for the variational approach (see
formula (3.2) and Remark 3.1).

We can interpret Theorem 1.1 as follows (see [5, Theorem 1], [12, Section 3.7]):
Given a function h(x) defined in Ω, we decompose it as an orthogonal sum in the
Hilbert space L2(Ω)

h(x) = h0(x) + t φ1(x), t ∈ R,

and regard the nonlinear term p(u) as fixed. In this setting, Theorem 1.1 asserts
that there exists a number t0 = t0(h0) ∈ R, depending on h0, such that the
semilinear problem (1.3) has no solution for t > t0, exactly one solution for t = t0,
and exactly two solutions for t < t0 (see Figure 2).

The rest of this paper is organized as follows. Section 2 deals with local and
global inversions of mappings between Banach spaces which go back to Hadamard
in the finite dimensional case and to Cacciopoli and Lévy for general Banach
spaces. Moreover, we study mappings that possess singularities and are not global
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Figure 2.

homeomorphisms (Theorem 2.3). The presentation here is taken from Ambrosetti–
Prodi [4] and Nirenberg [12]. Section 3 is devoted to the study of eigenvalue
problems with an indefinite weight. In this section we describe the eigenvalues and
eigenfunctions of the eigenvalue problems with an indefinite weight, generalizing
the classical results to the degenerate case. This section is the heart of the subject.
The crucial point in our variational approach is how to use the theory of fractional
powers of analytic semigroups developed in Taira [14], which is an essential step in
the study of the semilinear problem (1.3) (Theorem 3.1). Furthermore, we make
use of a new Krĕın–Rutman theory for problem (3.1) adapted to the degenerate
case (Theorem 3.8). In Section 4 we prove Theorem 1.1, by using global inversion
theorems with singularities, just as in Ambrosetti–Prodi [3, Theorem 3.1]. To
do this, we have only to verify all the conditions of Theorem 2.3. Our proof of
Theorem 1.1 is based on the extensive use of the ideas and techniques characteristic
of the recent developments in the theory of degenerate elliptic boundary value
problems ([16]).

2. Local and global inversion theorems.

This section deals with local and global inversions of mappings between Ba-
nach spaces which go back to Hadamard in the finite dimensional case and to
Cacciopoli and Lévy for general Banach spaces. Moreover, we study mappings
that possess singularities and are not global homeomorphisms (Theorem 2.3). The
presentation here is taken from Ambrosetti–Prodi [4] and Nirenberg [12].
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2.1. Local inversion theorem.
Let X and Y be Banach spaces and let F : X → Y be a C1 map. Namely,

the map F is differentiable in X and the Fréchet derivative DF is continuous as
a map of X into the space B(X, Y ) of bounded (continuous) linear operators on
X into Y .

Definition 2.1. A continuous map F : X → Y is said to be locally in-
vertible at a point u∗ of X if there exist an open neighborhood U of u∗, an open
neighborhood V of F (u∗) and a continuous map G : V → U such that

{
G(F (u)) = u for all u ∈ U,

F (G(v)) = v for all v ∈ V .

The map G is called the local inverse of F , and will be denoted by F−1.

The local inversion theorem reads as follows (see [4, Chapter 2, Theorem 1.2]):

Theorem 2.1 (the local inversion theorem). Let F be a C1 map of a Banach
space X into a Banach space Y . Assume that the Fréchet derivative DF (u∗) :
X → Y is continuous and invertible at a point u∗ ∈ X. Then it follows that F is
locally invertible at u∗ with C1 inverse F−1. More precisely, there exist an open
neighborhood U of u∗ and an open neighborhood V of F (u∗) such that the inverse
F−1 : V → U is a C1 map and that

D(F−1)(v) = (DF (u))−1 for all v = F (u) with v ∈ U.

2.2. Global inversion theorem.
Let M and N be metric spaces and let F : M → N be a continuous map.

The map F : M → N is said to be proper if the preimage F−1(K) is compact
in M for any compact set K in N . We remark that if F is proper, then it maps
closed sets in M into closed sets in N .

A topological space T is said to be simply connected if it is arcwise connected
and if every closed path σ in T is homotopic to a constant. Namely, for any given
map σ ∈ C([0, 1], T ) with σ(0) = σ(1) there exist a map h ∈ C([0, 1] × [0, 1], T )
and a point v ∈ T such that





h(s, 0) = σ(s) for 0 ≤ s ≤ 1,

h(s, 1) = v for 0 ≤ s ≤ 1,

h(0, t) = h(1, t) for 0 ≤ t ≤ 1.
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Now we are in position to state the global inversion theorem (see [4, Chapter 3,
Theorem 1.8]):

Theorem 2.2 (the global inversion theorem). Let M be an arcwise con-
nected metric space and let N be a simply connected metric space. Assume that a
continuous map F : M → N is proper and locally invertible on all of M . Then it
follows that F is a homeomorphism of M onto N .

2.3. Global inversion theorem with singularities.
Let X and Y be real Banach spaces and let F : X → Y be a C2 map of an

open set in X into Y . In this subsection we study the equation F (u) = h. The
problem is to find for which elements h ∈ Y there exist solutions u ∈ X, and how
many there are.

To do this, we introduce the following:

Definition 2.2. We define the singular set

Σ′ = {u ∈ X : the Fréchet derivative DF (u) at u is not invertible}.

A point u of Σ′ is called an ordinary singular point if it satisfies the following three
conditions:

(a) The null space N(DF (u)) of DF (u) is one dimensional, and is spanned by
some element φ ∈ X, i.e., N(DF (u)) = span [φ].

(b) The range R(DF (u)) of DF (u) is closed and has codimension one in Y , i.e.,
codim R(DF (u)) = dimY/R(DF (u)) = 1.

(c) D2F (u)[φ, φ] /∈ R(DF (u)) where D2F (u) is the second Fréchet derivative
at u.

Definition 2.3. Let X be a real Banach space. A subset M of X is called
a C1 manifold of codimension one in X if, for every point u∗ ∈ M there exist a
positive number δ and a functional Γ : B(u∗, δ) → R of class C1 such that

{
M ∩B(u∗, δ) = {u ∈ B(u∗, δ) : Γ(u) = 0} ,

DΓ(u∗) 6= 0.

If u ∈ Σ′ is an ordinary singular point, then we can compute locally the
number of solutions of the equation F (u) = h. More precisely, we can obtain
the following global inversion theorem with singularities (see [4, Chapter 3, The-
orem 2.6], [12, Theorem 3.7.5]):

Theorem 2.3 (the global inversion theorem with singularities). Let X and
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Y be Banach spaces and let F : X → Y be a C2 map. Assume that the following
four conditions are satisfied :

(S.1) The mapping F : X → Y is proper.
(S.2) Every point u ∈ Σ′ is an ordinary singular point.
(S.3) For every h ∈ F (Σ′), the equation F (u) = h has a unique solution u ∈ X.
(S.4) The singular set Σ′ is connected.

Then it follows that Y1 = F (Σ′) is a C1 manifold of codimension one in Y and
further that there exist two disjoint open subsets Y0 and Y2 of Y such that

( i ) Y = Y0 ∪ Y1 ∪ Y2.
( ii ) The number [h] of solutions of the equation F (u) = h is given as follows:

[h] =





0 if h ∈ Y0,

1 if h ∈ Y1,

2 if h ∈ Y2.

3. Eigenvalue problems with an indefinite weight.

This section is devoted to the study of the following eigenvalue problem with
an indefinite weight: Given a weight function m(x) defined in Ω, find a function
u(x) in Ω and a number λ such that

{
Au = λm(x)u in Ω,

Bu = 0 on ∂Ω.
(3.1)

It should be emphasized that the weight function m(x) may change sign in Ω.
In this section we describe the eigenvalues and eigenfunctions of problem (3.1),
generalizing the classical results of de Figueiredo [7] to the degenerate case. The
crucial point in our variational approach is how to use the theory of fractional
powers of analytic semigroups developed in Taira [14], which is an essential step
in the study of the semilinear problem (1.3) (Theorem 3.1).

Since the operator A is positive and selfadjoint in L2(Ω), we can define its
square root C = A1/2, and introduce a Hilbert space H as follows:

H = the domain D(C ) with the inner product

(u, v)H = (C u, C v)L2(Ω) for all u, v ∈ D(C ). (3.2)

Here it is worthwhile pointing out (see [14, Theorem 1.10]) that the explicit for-



440 K. Taira

mula for the fractional power C = A1/2 on the domain D(A) is given by the
formula

C u = − 1
π

∫ ∞

0

s−1/2(sI + A)−1Au ds for all u ∈ D(A).

The next theorem gives a more concrete characterization of the Hilbert space
H :

Theorem 3.1. The Hilbert space H coincides with the completion of the
domain D(A) = {u ∈ W 2,2(Ω) : Bu = 0 on ∂Ω} with respect to the inner product

(u, v)H = (Au, v)L2(Ω)

=
N∑

i,j=1

∫

Ω

aij(x)
∂u

∂xi

∂v

∂xj
dx +

∫

Ω

c(x)u · v dx

+
∫

{a(x′) 6=0}

b(x′)
a(x′)

u · v dσ for all u, v ∈ D(A). (3.3)

Here the last term on the right-hand side is an inner product of the Hilbert space
L2(∂Ω).

Proof. We have only to show that the domain D(A) is dense in the domain
D(A1/2) = D(C ).

To do this, we remark (see [14, Section 1.2]) that the operators

C−1 : L2(Ω) −→ D(C )

and

C−1 : D(A1/2) −→ D(A3/2)

are algebraic and topological isomorphisms, and further that

D(A3/2) ⊂ D(A).

Therefore, we obtain that the domain D(A) is dense in the domain D(C ), since
D(A) is dense in L2(Ω). The situation can be visualized in the following diagram:
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L2(Ω) C−1
// D(C ) = H

D(C )

OO

C−1
// D(C 2) = D(A)

OO

D(A)

OO

C−1
// D(A3/2)

OO

The proof of Theorem 3.1 is complete. ¤

Corollary 3.2. We have the inclusions

D(A) ⊂ H ⊂ W 1,2(Ω) (3.4)

with continuous injections.

Proof. It suffices to show that the inclusion H ⊂ W 1,2(Ω) is continuous.
First, it follows from an application of the Rayleigh principle that we have,

for all u ∈ D(A),

‖u‖2H = ‖C u‖2L2(Ω) = (C 2u, u)L2(Ω) = (Au, u)L2(Ω) ≥ λ1‖u‖2L2(Ω). (3.5)

Moreover, it follows from formula (3.3) that

‖u‖2H =
N∑

i,j=1

∫

Ω

aij(x)
∂u

∂xi

∂v

∂xj
dx +

∫

Ω

c(x)|u|2dx +
∫

{a(x′) 6=0}

b(x′)
a(x′)

|u|2dσ

≥ a0

N∑

i=1

∫

Ω

∣∣∣∣
∂u

∂xi

∣∣∣∣
2

dx = a0‖∇u‖2L2(Ω). (3.6)

Therefore, by combining inequalities (3.5) and (3.6) we obtain that, for all u ∈
D(A),

2‖u‖2H ≥ λ1‖u‖2L2(Ω) + a0‖∇u‖2L2(Ω) ≥ min(λ1, a0)‖u‖2W 1,2(Ω).

This proves that the injection H → W 1,2(Ω) is continuous.
The proof of Corollary 3.2 is complete. ¤
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Remark 3.1. It should be noticed that the Hilbert space H = D(A1/2) is
the right space for the variational approach. In fact, it is known (see [8]) that we
have the assertion

H =

{
W 1,2

0 (Ω) if a(x′) ≡ 0 on ∂Ω (the Dirichlet case),

W 1,2(Ω) if a(x′) > 0 on ∂Ω (the Robin case),

where

W 1,2
0 (Ω) = {u ∈ W 1,2(Ω) : u = 0 on ∂Ω}.

We associate with problem (3.1) a linear operator

T : H −→ H

as follows:

(1) D(T ) = H .
(2) T u = A−1(m(x)u) for all u ∈ D(T ).

The next proposition asserts that the eigenvalue value problem (3.1) with an
indefinite weight can be reduced to the study of an operator equation for T :

Proposition 3.3. Let m(x) be a weight function in Lr(Ω) with r > N/2.
Then we have the following two assertions:

( i ) The eigenvalue problem (3.1) has a non-trivial solution u ∈ W 2,2(Ω) if and
only if λ 6= 0 and the operator equation

T u =
1
λ

u (3.7)

has a non-trivial solution u ∈ H .
( ii ) The operator T : H → H is symmetric and completely continuous.

Proof. (i) We remark that if λ = 0, then we have, by [16, Theorem 1.1]
with p := 2,

{
Au = 0 in Ω,

Bu = 0 on ∂Ω
=⇒ u = 0 in Ω.
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Hence we have only to consider the case where λ 6= 0. If the operator equation (3.7)
has a non-trivial solution u ∈ H , then it follows that

u = λT u = λA−1(m(x)u) ∈ D(A) ⊂ W 2,2(Ω),

so that

Au = λA(T u) = λm(x)u in Ω.

This proves that u ∈ W 2,2(Ω) is a non-trivial solution of the eigenvalue prob-
lem (3.1).

Conversely, we assume that the eigenvalue problem (3.1) has a non-trivial
solution u ∈ W 2,2(Ω). Then we have, by Corollary 3.2,

u ∈ D(A) ⊂ H ,

and also

u = λA−1(m(x)u) = λT u.

This proves that u ∈ H is a non-trivial solution of the operator equation (3.7).
(ii) First, we prove that T : H → H is symmetric:

(T u, v)H = (u, T v)H for all u, v ∈ H . (3.8)

Indeed, we have, by the definition of T ,

(T u, v)H = (A−1(m(x)u), v)H

= (C A−1(m(x)u),C v)L2(Ω)

= (C 2A−1(m(x)u), v)L2(Ω)

= (m(x)u, v)L2(Ω)

=
∫

Ω

m(x)u · v dx, (3.9)

and also



444 K. Taira

(u, T v)H = (u, A−1(m(x)v))H

= (C u, C A−1(m(x)v))L2(Ω)

= (u, C 2A−1(m(x)v))L2(Ω)

= (u,m(x)v)L2(Ω)

=
∫

Ω

m(x)u · v dx. (3.10)

Therefore, the desired formula (3.8) follows by combining formulas (3.9) and (3.10).
Secondly, we prove that T : H → H is completely continuous. To do this,

we assume that {un} is a bounded sequence in the space H . Then it follows from
assertion (3.4) that {un} is bounded in the Sobolev space W 1,2(Ω). By applying
the Rellich–Kondrachov theorem (see [1, Theorem 6.3]), we can find a subsequence
{un′} which converges to some function u in the space L2(Ω) as n′ →∞. Moreover,
we recall that the operator A−1 : L2(Ω) → L2(Ω) is continuous. Summing up, we
have the following two assertions:

(a) m(x)un′ → m(x)u in L2(Ω) as n′ →∞.
(b) A−1(m(x)un′) → A−1(m(x)u) in L2(Ω) as n′ →∞.

Therefore, in view of Schwarz’s inequality it follows that

‖T un′ −T u‖2H
= ‖A−1(m(x)un′)− A−1(m(x)u)‖2H
=

(
A(A−1(m(x)un′)− A−1(m(x)u)),A−1(m(x)un′)− A−1(m(x)u)

)
L2(Ω)

=
(
m(x)un′ −m(x)u, A−1(m(x)un′)− A−1(m(x)u)

)
L2(Ω)

≤ ‖m(x)un′ −m(x)u‖L2(Ω) ·
∥∥A−1(m(x)un′)− A−1(m(x)u)

∥∥
L2(Ω)

−→ 0 as n′ →∞.

This proves that the subsequence {T un′} converges to the function T u in H as
n′ →∞.

The proof of Proposition 3.3 is complete. ¤

The next proposition gives the variational characterization of eigenvalues of
problem (3.1) (cf. [7, Proposition 1.10]):

Proposition 3.4. Let m(x) be a weight function in Lr(Ω) with r > N/2.
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Then the eigenvalue problem (3.1) with an indefinite weight has a double sequence
of eigenvalues

0 < λ1(m) < λ2(m) ≤ . . . ≤ λn(m) ≤ . . . ,

. . . ≤ λ−n(m) ≤ . . . ≤ λ−2(m) < λ−1(m) < 0.

Moreover, we have the following two assertions:

( i ) The eigenvalues λn(m) and λ−n(m) are characterized respectively as follows:

1
λn(m)

= sup
Fn

inf
{ ∫

Ω

m(x)|u|2 dx : ‖u‖H = 1, u ∈ Fn

}
,

1
λ−n(m)

= inf
Fn

sup
{ ∫

Ω

m(x)|u|2 dx : ‖u‖H = 1, u ∈ Fn

}
,

where Fn varies over all n-dimensional subspaces of H .
( ii ) The corresponding orthonormal eigenfunctions ϕn(x) and ϕ−n(x) in H are

characterized respectively as follows:

(ϕn, v)H =
N∑

i,j=1

∫

Ω

aij(x)
∂ϕn

∂xi

∂v

∂xj
dx +

∫

Ω

c(x)ϕn · v dx

+
∫

{a(x′) 6=0}

b(x′)
a(x′)

ϕn · v dσ

= λn(m)
∫

Ω

m(x)ϕn · v dx for all v ∈ H .

1
λn(m)

=
∫

Ω

m(x)|ϕn|2dx.

(ϕ−n, v)H =
N∑

i,j=1

∫

Ω

aij(x)
∂ϕ−n

∂xi

∂v

∂xj
dx +

∫

Ω

c(x)ϕ−n · v dx

+
∫

{a(x′) 6=0}

b(x′)
a(x′)

ϕ−n · v dσ

= λ−n(m)
∫

Ω

m(x)ϕ−n · v dx for all v ∈ H .

1
λ−n(m)

=
∫

Ω

m(x)|ϕ−n|2dx.
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Proof. Indeed, it suffices to note that we have, for all u, v ∈ H ,

(T u, v)H = (C T u, C v)L2(Ω)

= (C 2A−1(m(x)u), v)L2(Ω)

= (m(x)u, v)L2(Ω)

=
∫

Ω

m(x)u · v dx,

and further that we have, for all v ∈ H ,

(T ϕn, v)H =
(

1
λn(m)

ϕn, v

)

H

=
1

λn(m)
(ϕn, v)H ,

(T ϕ−n, v)H =
(

1
λ−n(m)

ϕ−n, v

)

H

=
1

λ−n(m)
(ϕ−n, v)H .

The proof of Proposition 3.4 is complete. ¤

By using Proposition 3.4, we can describe how the eigenvalues λn(m) vary as a
function of m(x). First, we prove the following comparison property of eigenvalues
λn(m) (cf. [7, Proposition 1.12A]):

Proposition 3.5. Let m(x) and m̂(x) be two weight functions in Lr(Ω)
with r > N/2 such that

m(x) ≤ m̂(x) almost everywhere in Ω.

If the Lebesgue measure of the set

Ω+ = {x ∈ Ω : m(x) > 0}

is positive, then we have, for all n ∈ N ,

λn(m) ≥ λn(m̂).

Moreover, if m(x) < m̂(x) on a subset of positive measure in Ω, then we have, for
all n ∈ N ,

λn(m) > λn(m̂).
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Proof. Indeed, it follows from an application of Proposition 3.4 that

1
λn(m)

= sup
Fn

inf
{ ∫

Ω

m(x)|u|2dx : ‖u‖H = 1, u ∈ Fn

}

≤ sup
Fn

inf
{ ∫

Ω

m̂(x)|u|2dx : ‖u‖H = 1, u ∈ Fn

}

=
1

λn(m̂)
,

so that

λn(m) ≥ λn(m̂).

It is easy to see that if m(x) < m̂(x) on a subset of positive measure in Ω, then
we have the strict inequality

λn(m) > λn(m̂).

The proof of Proposition 3.5 is complete. ¤

Remark 3.2. If m(x) ≡ 1 in Ω, then we simply write

λj = λj(1), j = 1, 2, . . . .

It is easy to see that we have, for all α > 0,

λj(α) =
λj

α
, j = 1, 2, . . . .

Indeed, it suffices to note that, for all α > 0,

1
λj(α)

= sup
Fj

inf
{ ∫

Ω

α|u|2dx : ‖u‖H = 1, u ∈ Fj

}

= α× sup
Fj

inf
{ ∫

Ω

|u|2dx : ‖u‖H = 1, u ∈ Fn

}

= α× 1
λj(1)

=
α

λj
.



448 K. Taira

Secondly, we prove the following comparison property of eigenvalues λn(m)
and λn = λn(1):

Corollary 3.6. Let m(x) be a weight function in Lr(Ω) with r > N/2 such
that we have, for all n ∈ N ,

m(x) < λn = λn(1) almost everywhere in Ω.

Then we have, for all n ∈ N ,

λn(m) > 1.

Proof. Indeed, by combining Propositions 3.4 and 3.5 we obtain that

1
λn(m)

= sup
Fn

inf
{ ∫

Ω

m(x)|u|2dx : ‖u‖H = 1, u ∈ Fn

}

< sup
Fn

inf
{

λn(1)
∫

Ω

|u|2dx : ‖u‖H = 1, u ∈ Fn

}

= λn(1)× sup
Fn

inf
{ ∫

Ω

|u|2dx : ‖u‖H = 1, u ∈ Fn

}

= λn(1)× 1
λn(1)

= 1,

so that

λn(m) > 1.

The proof of Corollary 3.6 is complete. ¤

Thirdly, the next proposition proves the continuity property of eigenvalues
λn(m) in the framework of Lp spaces (cf. [7, Proposition 1.12B]):

Proposition 3.7. The eigenvalues λn(m) depend continuously on the
weight function m(x) in the LN/2 topology. More precisely, if mj(x) and m(x)
are functions in Lr(Ω) with r > N/2 such that

mj(x) −→ m(x) in LN/2(Ω) as j →∞,
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then we have, for each n ∈ N ,

λn(mj) −→ λn(m) as j →∞.

Proof. First, we have, for all u, v ∈ H ,

(T u, v)H = (C T u, C v)L2(Ω)

= (C 2A−1(m(x)u), v)L2(Ω)

= (m(x)u, v)L2(Ω)

=
∫

Ω

m(x)u · v dx. (3.11)

However, by applying the generalized Hölder inequality (see [1, Corollary 2.6]) we
obtain that

∣∣∣∣
∫

Ω

m(x)u · v dx

∣∣∣∣ ≤ ‖m‖LN/2(Ω)‖u‖L2∗ (Ω)‖v‖L2∗ (Ω), (3.12)

where

2∗ =
2N

N − 2
.

Indeed, it suffices to note that

1
N/2

+
1
2∗

+
1
2∗

= 1.

Moreover, it follows from an application of Sobolev’s imbedding theorem (see [1,
Theorem 4.12, Part I]) that we have the imbeddings

W 1,2(Ω) ⊂ Lq(Ω) if





N ≥ 3, 2 < q ≤ 2∗ =
2N

N − 2
,

N = 2, 2 < q < ∞.

(3.13)

Therefore, by using inequality (3.13) and inclusion (3.4) we obtain from for-
mula (3.11) and inequality (3.12) that
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|(T u, v)H | =
∣∣∣∣
∫

Ω

m(x)u · v dx

∣∣∣∣

≤ ‖m‖LN/2(Ω)‖u‖L2∗ (Ω)‖v‖L2∗ (Ω)

≤ C‖m‖LN/2(Ω)‖u‖W 1,2(Ω)‖v‖W 1,2(Ω)

≤ C ′‖m‖LN/2(Ω)‖u‖H ‖v‖H .

In view of Proposition 3.4, this inequality proves that the eigenvalues λn(m) de-
pend continuously on the weight function m(x) in the LN/2 topology.

The proof of Proposition 3.7 is complete. ¤

Finally, we recall a theorem of the Krĕın and Rutman type for problem (3.1)
proved in Taira [16, Theorem 1.2] (cf. [10], [7, Theorem 1.13]):

Theorem 3.8. Assume that the weight function m(x) is in the space L∞(Ω),
and takes a positive value in a subset of positive measure in Ω. Then the first
eigenvalue λ1(m) of problem (3.1) is positive and algebraically simple, and its
corresponding eigenfunction φ1 ∈ W 2,p(Ω), N < p < ∞, may be chosen to be
strictly positive in Ω. Moreover, no other eigenvalues, λj(m), j ≥ 2, have positive
eigenfunctions.

Remark 3.3. If m(x) is Hölder continuous on Ω with exponent 0 < α < 1,
then we find from the proof of [15, Theorem 9.1] that φ1 ∈ C2+α(Ω). In particular,
it follows that the eigenfunction φ1(x) of the operator A belongs to C2+α(Ω), by
taking m(x) ≡ 1 on Ω.

It should be emphasized that Theorem 3.8 goes back to Manes–Micheletti
[11] in the Dirichlet case.

4. Proof of Theorem 1.1.

This section is devoted to the proof of Theorem 1.1 which is inspired by
Ambrosetti–Prodi [3, Theorem 3.1]. The crucial point in the proof is how to
verify all the conditions (S.1) through (S.4) of the global inversion theorem with
singularities (Theorem 2.3). The approach here is based on the extensive use of
the ideas and techniques characteristic of the recent developments in the theory
of semilinear degenerate elliptic boundary value problems ([16]). The proof is
divided into three steps.

Step I: We let
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X = C2+α
B (Ω) = {u ∈ C2+α(Ω) : Bu = 0 on ∂Ω},

Y = Cα(Ω),

and introduce a nonlinear map

F : X −→ Y

by the formula

F (u) = −Au + p(u) for all u ∈ X.

Then it is easy to verify the following three assertions:

(1) DF (u)v = (−A + p′(u))v for all v ∈ X.
(2) D2F (u)[v, w] = p′′(u)vw for all v, w ∈ X.
(3) F ∈ C2(X, Y ).

First, the next lemma verifies condition (S.1) of Theorem 2.3:

Lemma 4.1. The mapping F : X → Y is proper.

Proof. The proof is divided into two steps.

Step 1: Let {hn} be an arbitrary bounded sequence in the space Y such that
F (un) = hn with un ∈ X, that is,

F (un) = −Aun + p(un) = hn. (4.1)

We show that the sequence {un} is bounded in the space Y .
Assume, to the contrary, that

‖un‖Y −→∞ as n →∞. (4.2)

Then, by letting

zn(x) =
un(x)
‖un‖Y

for all x ∈ Ω,

we obtain from equation (4.1) that
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


−Azn + ϕ(un)zn =

hn

‖un‖Y
in Ω,

Bzn = 0 on ∂Ω,

where ϕ(ξ) is a continuous function on R defined by the formula

ϕ(ξ) =





p(ξ)
ξ

if ξ 6= 0,

p′(0) if ξ = 0.

Since ϕ(ξ) is bounded and since {hn} and {zn} are bounded in Y = Cα(Ω), it
follows from condition (4.2) that the two functions

ϕ(un(x))zn(x),
hn(x)
‖un‖Y

are bounded in the space C(Ω). By applying [16, Theorem 1.1] for p > N/(1−α),
we obtain from the equation

Azn = ϕ(un)zn − hn

‖un‖Y
in Ω (4.3)

that the sequence {zn} is bounded in the Hölder space C1+α(Ω). Namely, we have,
for some positive constant C,

‖zn‖C1+α(Ω) ≤ C.

Indeed, it follows from an application of Sobolev’s imbedding theorem (see [1,
Theorem 4.12, Part II]) that we have the imbedding

W 2,p(Ω) ⊂ C2−N/p(Ω) ⊂ C1+α(Ω),

for p > N/(1− α).
Therefore, by the Ascoli–Arzelà theorem we may assume that the sequence

{zn} itself converges to some function z∗ in the space C1(Ω) as n →∞:

zn −→ z∗ in C1(Ω) as n →∞.
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We remark here that the limit function z∗(x) satisfies the condition

‖z∗‖Y = lim
n→∞

‖zn‖Y = 1, (4.4)

and also the boundary condition

Bz∗ = lim
n→∞

Bzn = 0 on ∂Ω. (4.5)

On the other hand, by multiplying equation (4.3) by an arbitrary test function
w ∈ C∞0 (Ω) and integrating over Ω we obtain that

−
N∑

i,j=1

∫

Ω

aij(x)
∂zn

∂xi

∂w

∂xj
dx−

∫

Ω

c(x)znw dx +
∫

Ω

ϕ(un)znw dx

=
∫

Ω

hn

‖un‖Y
w dx. (4.6)

However, we have, by conditions (4.2), (P.3) and (P.4),





(a) z∗(x) < 0 =⇒ un(x) = zn(x)‖un‖Y −→ −∞

=⇒ limn→∞ ϕ(un(x)) = limn→∞
p(un(x))
un(x)

= γ′;

(b) z∗(x) > 0 =⇒ un(x) = zn(x)‖un‖Y −→ +∞

=⇒ limn→∞ ϕ(un(x)) = limn→∞
p(un(x))
un(x)

= γ′′;

(c) z∗(x) = 0 =⇒ limn→∞ zn(x)ϕ(un(x)) = 0.

Hence, if we define a function m(x) by the formula

m(x) =





γ′ if z∗(x) < 0,

γ′′ if z∗(x) > 0,

p′(0) if z∗(x) = 0,

(4.7)

then it follows that

ϕ(un(x))zn(x) −→ m(x)z∗(x) in Ω as n →∞.
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Therefore, by applying the Lebesgue bounded convergence theorem we obtain from
equation (4.6) and condition (4.2) that

− (Az∗, w)L2(Ω) + (m(x)z∗, w)L2(Ω)

= −
N∑

i,j=1

∫

Ω

aij(x)
∂z∗

∂xi

∂w

∂xj
dx−

∫

Ω

c(x)z∗w dx +
∫

Ω

m(x)z∗w dx

= 0 for all w ∈ C∞0 (Ω). (4.8)

By combining three formulas (4.4), (4.5) and (4.8), we have proved that the non-
trivial function z∗(x) satisfies the conditions

{
Az∗ = m(x) z∗ in Ω,

Bz∗ = 0 on ∂Ω.
(4.9)

This proves that

λk(m) = 1 for some k ≥ 1.

Since we have, by condition (P.4),

m(x) ≤ γ′′ < λ2 for almost all x ∈ Ω,

it follows from an application of Corollary 3.6 for n = 2 that

λ2(m) > 1.

Hence we have the assertion

λ1(m) = 1.

By Theorem 3.8, this implies that the corresponding eigenfunction z∗(x) does not
change sign in Ω. Hence we obtain from the definition (4.7) of the function m(x)
that

m(x) ≡
{

γ′ if z∗(x) < 0,

γ′′ if z∗(x) > 0.
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Therefore, by conditions (4.9) it follows that we have the assertion





Az∗ = γ′z∗ in Ω,

z∗(x) < 0 in Ω,

Bz∗ = 0 on ∂Ω,

or the assertion




Az∗ = γ′′z∗ in Ω,

z∗(x) > 0 in Ω,

Bz∗ = 0 on ∂Ω.

This is a contradiction, since both γ′ and γ′′ are not eigenvalues of the operator
A.

Summing up, we have proved that the sequence {un} is bounded in the space
Y .

Step 2: Secondly, we show that if {un} is a sequence in X such that the
sequence

hn = F (un) = −Aun + p(un) (4.10)

converges to some function h in X as n →∞, then the sequence {un} contains a
convergent subsequence in X. This proves that the mapping F : X → Y is proper.

Since {un} is bounded in the space Y as is shown in Step 1, it follows that
the sequence

{p(un)− hn} = {Aun}

is bounded in the space Y = Cα(Ω). Hence, by applying [15, Theorem 9.1] with
ϕ := 0 we obtain from equation (4.10) that the sequence {un} is bounded in the
space X = C2+α

B (Ω). Namely, we have, for some positive constant C,

‖un‖C2+α(Ω) ≤ C.

By the Ascoli–Arzelà theorem, we may assume that the sequence {un} itself con-
verges to some function u∗ in the space C2(Ω) as n →∞:

un −→ u∗ in C2(Ω) as n →∞. (4.11)
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We remark here that the limit function u∗(x) satisfies the boundary condition

Bu∗ = lim
n→∞

Bun = 0 on ∂Ω.

Moreover, since we have the assertion

Aun = p(un)− hn −→ p(u∗)− h in Y = Cα(Ω) as n →∞,

it follows from an application of [15, Theorem 9.1] with ϕ := 0 that

un = A−1(p(un)− hn) −→ A−1(p(u∗)− h) in X = C2+α
B (Ω) as n →∞.

In view of assertion (4.11), this proves that

u∗ = A−1(p(u∗)− h) ∈ X,

and further that

un −→ u∗ in X as n →∞.

Now the proof of Lemma 4.1 is complete. ¤

Step II: Secondly, we shall study the singular set

Σ′ = {u ∈ X : the Fréchet derivative DF (u) at u is not invertible}.

First, we prove the Fredholm alternative theorem for the Fréchet derivative
DF (u) at a point u ∈ X:

Claim 4.1. The index of DF (u) = −A + p′(u) : X → Y is equal to zero:

indDF (u) = dimN(DF (u))− codim R(DF (u)) = 0.

Proof. If we associate with the linear elliptic boundary value problem

{
Av = f in Ω,

Bv = 0 on ∂Ω

a continuous linear operator A by the formula
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A = A : X −→ Y,

then it follows from an application of [15, Theorem 9.1] with ϕ := 0 that the
operator A is a Fredholm operator with index zero:

indA = dim N(A )− codim R(A ) = 0. (4.12)

Moreover, if we let

P (u)v = p′(u)v for all v ∈ X,

then we obtain from the Ascoli–Arzelà theorem that the operator

P (u) : C2+α(Ω) −→ Cα(Ω)

is compact. Therefore, we find that the operator

DF (u) = −A + P (u) : X −→ Y

is a Fredholm operator with index zero, since we have, by assertion (4.12),

indDF (u) = ind(−A ) = 0.

The proof of Claim 4.1 is complete. ¤

By virtue of Claim 4.1, it is easy to see that a point u of X belongs to Σ′ if
and only if the linear eigenvalue problem with a weight function

{
Av = λ p′(u)v in Ω,

Bv = 0 on ∂Ω

has a non-trivial solution v ∈ X for λ = 1. In other words, we have the assertion

u ∈ Σ′ ⇐⇒ λk(p′(u)) = 1 for some k ≥ 1.

However, since we have, by condition (P.4),

p′(u(x)) < γ′′ < λ2 for all x ∈ Ω,
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it follows from an application of Corollary 3.6 with m(x) := p′(u(x)) and n = 2
that

λ2(p′(u)) > 1.

Hence we have the assertion

λ1(p′(u)) = 1.

Therefore, we have proved the following:

Claim 4.2. A point u ∈ X belongs to Σ′ if and only if λ1(p′(u)) = 1.

Moreover, the next lemma verifies conditions (S.2) and (S.4) of Theorem 2.3:

Lemma 4.2.

(1) The singular set

Σ′ = {u ∈ X : DF (u) : X → Y is not invertible}

is not empty, closed and connected.
(2) Every point u ∈ Σ′ is an ordinary singular point.

Proof. The proof is divided into two steps.

Step 1: In order to prove that the singular set Σ′ is not empty and connected,
it suffices to show that the set Σ′ has a Cartesian representation on a closed
linear subspace W of X of codimension one. More precisely, by taking a positive
eigenfunction φ1(x) ∈ X of the operator A we let

W =
{

u ∈ X :
∫

Ω

u(x)φ1(x) dx = 0
}

,

and show that (see Figure 3)

Σ′ = {u = σ(w)φ1 + w : w ∈ W},

where σ : W → R is a continuous function.
If σ ∈ R and w(x) is a function of W , we define a continuous function mσ(x)

by the formula
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Figure 3.

mσ(x) = p′(σφ1(x) + w(x)) for all x ∈ Ω,

and consider the following linear eigenvalue problem with a weight function:

{
Av = λmσ(x)v in Ω,

Bv = 0 on ∂Ω.

(a) First, by Claim 4.2 we know that the point u = σφ1 + w of X belongs to
the singular set Σ′ if and only if λ1(mσ) = 1.

(b) Secondly, since φ1(x) > 0 in Ω and since p′′(ξ) > 0 on R, it follows from
an application of Proposition 3.5 that

σ > µ

=⇒ mσ(x) = p′(σφ1(x) + w(x)) > mµ(x) = p′(µφ1(x) + w(x)) for all x ∈ Ω,

=⇒ λ1(mσ) < λ1(mµ).

This implies that the first eigenvalue λ1(mσ) is a strictly decreasing function of σ.
(c) Thirdly, it follows from an application of Proposition 3.7 that the first

eigenvalue λ1(mσ) is a continuous function of σ. Indeed, it suffices to note that
we have, by the Lebesgue bounded convergence theorem,

‖mσ −mµ‖LN/2(Ω) = ‖p′(σφ1 + w)− p′(µφ1 + w)‖LN/2(Ω) −→ 0 as σ → µ,
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since p′(ξ) is bounded and continuous on R.
(d) Since φ1(x) > 0 in Ω, it follows that we have, for each x ∈ Ω,

mσ(x) = p′(σφ1(x) + w(x)) −→
{

limξ→−∞ p′(ξ) = γ′ as σ → −∞,

limξ→+∞ p′(ξ) = γ′′ as σ → +∞,

and further from an application of the Lebesgue bounded convergence theorem
that we have, for all r > 1,

{‖mσ − γ′‖Lr(Ω) −→ 0 as σ → −∞,

‖mσ − γ′′‖Lr(Ω) −→ 0 as σ → +∞.

Therefore, by using the continuity of the eigenvalues (see Proposition 3.7) we
obtain that





λ1(mσ) −→ λ1(γ′) =
λ1

γ′
> 1 as σ → −∞,

λ1(mσ) −→ λ1(γ′′) =
λ1

γ′′
< 1 as σ → +∞.

(4.13)

Since the function λ1(mσ) is a strictly decreasing function of σ, it follows from
assertion (4.13) that there exists a unique value σ∗ ∈ R satisfying the condition
(see Figure 4)

λ1(mσ∗) = λ1(p′(σ∗φ1 + w)) = 1.

It should be emphasized here that every straight line σ 7→ σφ1 +w meets the space
W in a unique way and further that this point depends continuously on W (see
Figure 3).

Summing up, by letting σ∗ = σ(w) we have proved that

Σ′ = {u = σ(w)φ1 + w : w ∈ W}
= {u = σφ1 + w : σ ∈ R, w ∈ W, λ1(p′(σφ1 + w)) = 1}.

This representation formula proves the desired assertion (1).

Step 2: In order to prove assertion (2), let u ∈ Σ′. Then, by Claim 4.2 it
follows that λ1(p′(u)) = 1. Therefore, by applying Theorem 3.8 with m(x) :=
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Figure 4.

p′(u(x)) and Remark 3.3 we obtain that the null space

N(DF (u)) =
{
v ∈ C2+α

B (Ω) : DF (u)v = 0
}

is spanned by a strictly positive function φ1 ∈ X = C2+α
B (Ω). This verifies condi-

tion (a) of Subsection 2.3 with φ := φ1.
Moreover, we remark the following orthogonal decomposition of the Hölder

space Y = Cα(Ω) in the Hilbert space L2(Ω):

Cα(Ω) =
{
v ∈ C2+α

B (Ω) : DF (u)v = 0
}⊕ {

DF (u)w : w ∈ C2+α
B (Ω)

}

= span[φ1]⊕R(DF (u)). (4.14)

Indeed, it suffices to note that

DF (u) = −A + p′(u(x))

and further that the operator A is selfadjoint and p′(u) ∈ C1(Ω). Therefore, we
have, for any h ∈ Cα(Ω),

h ∈ R(DF (u)) ⇐⇒
∫

Ω

h(x)φ1(x) dx = 0.
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This verifies condition (b) of Subsection 2.3 with φ := φ1.
In order to verify condition (c) of Subsection 2.3, we define a (projection)

functional Ψ : X → R by the formula

Ψ : h 7−→
∫

Ω

φ1(x)h(x) dx.

Then we have, by the orthogonal decomposition (4.14),

h ∈ R(DF (u)) ⇐⇒ 〈Ψ, h〉 =
∫

Ω

h(x)φ1(x) dx = 0. (4.15)

Since we have the formula

D2F (u)[v, w] = p′′(u)vw for all v, w ∈ X,

it follows that

〈
Ψ, D2F (u)[φ1, φ1]

〉
=

∫

Ω

p′′(u(x))φ1(x)3 dx. (4.16)

However, since p′′(ξ) > 0 on R and since φ1(x) > 0 in Ω, it follows that

∫

Ω

p′′(u(x))φ1(x)3 dx > 0.

By formula (4.16), this proves that

〈
Ψ, D2F (u)[φ1, φ1]

〉 6= 0.

Hence we have, by assertion (4.15),

D2F (u)[φ1, φ1] /∈ R(DF (u)).

This verifies condition (c) of Subsection 2.3 with φ := φ1.
Summing up, we have proved the desired assertion (2).
The proof of Lemma 4.2 is complete. ¤

Step III: Finally, the next lemma verifies condition (S.3) of Theorem 2.3:
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Lemma 4.3. For every h ∈ F (Σ′), the equation F (u) = h has a unique
solution u ∈ Σ′.

Proof. Let u be a solution in Σ′ such that F (u) = h. We assume, to the
contrary, that there exists another solution w in Σ′ satisfying the equation

F (w) = h.

Then we define a continuous function ω(x) by the formula

ω(x) =





p(w(x))− p(u(x))
w(x)− u(x)

if w(x) 6= u(x),

p′(u(x)) if w(x) = u(x).

Since we have the formula

{−Au + p(u) = −Aw + p(w) in Ω,

Bu = Bw = 0 on ∂Ω,

we obtain that the function

v(x) = w(x)− u(x)

is a non-trivial solution of the linear eigenvalue problem with a weight function

{
Av = ω(x)v in Ω,

Bv = 0 on ∂Ω.

This proves that

λk(ω) = 1 for some k ≥ 1.

However, since we have, by conditions (P.1) through (P.4),

γ′ < ω(x) < γ′′ < λ2 for all x ∈ Ω,

it follows from an application of Corollary 3.6 with m(x) := ω(x) and n = 2 that

λ2(ω) > 1.
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Hence we have the assertion

λ1(ω) = 1.

By Theorem 3.8 with m(x) := ω(x), this implies that the corresponding eigen-
function v(x) = w(x)− u(x) does not change sign in Ω.

(1) First, we consider the case where v(x) = w(x) − u(x) > 0 in Ω: Since
p′′(ξ) > 0 on R and w(x)− u(x) > 0 in Ω, it follows that

ω(x) =
p(w(x))− p(u(x))

w(x)− u(x)
> p′(u(x)) in Ω,

so that, by Proposition 3.5 for n = 1,

1 = λ1(ω) < λ1(p′(u)).

However, we have, by Claim 4.2,

λ1(p′(u)) = 1 for all u ∈ Σ′.

This is a contradiction.
(2) Secondly, we consider the case where v(x) = w(x)− u(x) < 0 in Ω: Since

p′′(ξ) > 0 on R and w(x)− u(x) < 0 in Ω, it follows that

ω(x) =
p(w(x))− p(u(x))

w(x)− u(x)
< p′(u(x)) in Ω,

so that, by Proposition 3.5 for n = 1,

1 = λ1(ω) > λ1(p′(u)).

However, we have, by Claim 4.2,

λ1(p′(u)) = 1 for all u ∈ Σ′.

This is also a contradiction.
Summing up, we have proved that the equation F (u) = h has a unique solution

for every h ∈ F (Σ′).
The proof of Lemma 4.3 is complete. ¤
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Now the proof of Theorem 1.1 is complete.
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