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Abstract. We study Whitehead products in the rational homotopy groups

of a general component of a function space. For the component of any based map

f : X ! Y , in either the based or free function space, our main results express the

Whitehead product directly in terms of the Quillen minimal model of f. These

results follow from a purely algebraic development in the setting of chain

complexes of derivations of differential graded Lie algebras, which is of interest in

its own right. We apply the results to study the Whitehead length of function

space components.

1. Introduction.

Let f : X ! Y be a based map of based, simply connected CW complexes

with X a finite complex. Let mapðX; Y ; fÞ denote the path component containing

f in the space of basepoint-free continuous functions from X to Y , and

map�ðX; Y ; fÞ the component in the space of basepoint-preserving functions. In

this paper, we study the structure of the Whitehead product on the rational

homotopy groups of these function spaces.

The paper is organized as follows. In Section 2, we describe the Quillen model

of the map

� � 1 : Spþq�1 �X ! ðSp _ SqÞ �X

where � is the Whitehead product. Our description is given in the framework of

chain complexes of generalized derivations of Quillen models, which was

introduced in [10] in order to identify the rational homotopy groups of function

space components. Section 3 is a purely algebraic development in the setting of

chain complexes that arise in the category of differential graded (DG) Lie

algebras. Using the form of the Quillen model of � � 1 as a guide, we construct a
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‘‘Whitehead product’’ on the homology of the mapping cone of a map of DG Lie

algebras. We extend our construction to the chain complexes of generalized

derivations mentioned above. In Section 4, we record a detailed formula useful for

applications, and mention briefly some extensions, such as iterated products. In

Section 5, we return to the topological setting and prove our main result: we

identify Whitehead products in the rational homotopy groups of mapðX; Y ; fÞ and
map�ðX; Y ; fÞ with the ‘‘Whitehead products’’ constructed algebraically from the

Quillen model of the map.

We present various applications in Section 6, where we study the rational

Whitehead length of function space components. Given a space Z, let WLðZÞ, the
Whitehead length of Z, denote the length of longest, non-zero iterated Whitehead

bracket in ��2ðZÞ. (We avoid considerations of the fundamental group throughout

this paper.) Thus WLðZÞ ¼ 1means all Whitehead products vanish and WLðZÞ �
2 means that there exists a non-trivial Whitehead product. Let WLQðZÞ, the

rational Whitehead length of Z, denote the length of longest, non-zero iterated

Whitehead bracket in ��2ðZÞ �Q. We first observe that, for the null component

of a function space, we have WLQðmapðX; Y ; 0ÞÞ ¼ WLQðY Þ as a consequence of

classical ideas (Theorem 6.1). Using our formula, we then prove that, for any map

f : X ! Y , that is, for a general component, we have

maxfWLQðmap�ðX; Y ; fÞÞ;WLQðmapðX; Y ; fÞÞg � WLQðY Þ

provided Y is a coformal space (Theorem 6.2). Focusing on the based function

space, we also prove that

WLQðmap�ðX; Y ; fÞÞ � cl0ðXÞ;

where cl0ðXÞ denotes the rational cone-length of X (Theorem 6.4) complementing

the corresponding (integral) result at the null component due to Ganea [6]. In

Theorem 6.5, we apply our formulae to give a complete calculation of the rational

Whitehead length of all components of mapðX;SnÞ and of map�ðX;SnÞ for X a

finite, simply connected CW complex. Finally, we show that the inequality

WLQðmapðX; Y ; fÞÞ >WLQðmapðX; Y ; 0ÞÞ ¼ WLQðY Þ

may hold. Precisely, in Example 6.6, we give a space Y with vanishing rational

Whitehead products and a map f : S3 ! Y such that WLQðmapðS3; Y ; fÞÞ � 2.

We assume familiarity with rational homotopy theory from Quillen’s point of

view. Our main reference for this material is [5] (see also [13], [15]). We introduce
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notation as we go but recall here that a map f : X ! Y of simply connected CW

complexes of finite type has a Quillen minimal model which is a map L f :

ðLX; dXÞ ! ðL Y ; dY Þ of connected DG Lie algebras over Q. The Quillen minimal

model of f is a complete invariant of the rationalization of f . In particular, there is

a natural isomorphism H�ðLX; dXÞ ¼� ��ð�XÞ �Q of graded Lie algebras. The

map induced by f on rational homotopy Lie algebras corresponds, with these

identifications for X and Y , to the map induced by L f on homology. Our main

results explain how the Whitehead product in the rational homotopy groups of

mapðX; Y ; fÞ and map�ðX; Y ; fÞ depends on L f .

REMARK 1.1. Rational Whitehead products for function spaces have been

studied by several authors. In [16], Vigué-Poirrier gave an elegant formula for

Whitehead products in the null-components map�ðX;Y ; 0Þ and mapðX; Y ; 0Þ
(including degree 1) directly in terms of products in the rational homotopy of Y

and the cup product in H�ðX;QÞ under certain restrictions on X and Y . This

result was recently extended to full generality by Buijs and Murillo as a special

case of their description of the rational homotopy Lie algebra of any component of

a function space [4]. Also, we mention the recent work of Buijs, Félix and Murillo

[3] which identifies a Lie model for spaces of sections and, in particular, for

components of a function space.

Our work differs from these other results in at least two respects. First, we

describe rational Whitehead products for general function space components by

means of a construction that proceeds directly from the Quillen model of a map.

Because we focus on a description specifically at the level of rational homotopy

groups, rather than a more comprehensive description of the rational homotopy

type, we are able to give a fairly direct construction: our description lends itself

well to the study of specific examples. Second, our construction of topological

(rational) Whitehead products is developed from a purely algebraic one on the

mapping cone of certain maps of chain complexes (see Section 3). This provides

the basis for new developments either in the algebraic settings, or in topological

situations other than function spaces that correspond to mapping cones.

ACKNOWLEDGEMENTS. We are indebted to Yves Félix for many helpful

discussions, and to the Université Catholique de Louvain for hospitality, during

the early stages of this project. We thank the referee for a very careful reading of

the paper.

2. The Quillen model of a certain map.

We review the development of ideas in [10]. An element � 2 �pðmapðX; Y ; fÞÞ
is represented by a map a : Sp ! mapðX; Y ; fÞ whose adjoint is a map A :

Whitehead products in function spaces 51



Sp �X ! Y that restricts to f : X ! Y on X. By considering the Quillen minimal

model of the adjoint A we are led to consider a certain complex of (generalized)

derivations of Quillen models, which we denoted by DerðLX;L Y ;L fÞ in [10].

The homology groups of this complex may be identified with the homotopy groups

of the based mapping space map�ðX; Y ; fÞ, and the homology groups of the

mapping cone of the (generalized) adjoint map

adL f
: L Y ! DerðLX;L Y ;L fÞ

may be identified with the homotopy groups of mapðX; Y ; fÞ (see [10, Theorem

3.1]). It is in this context that we wish to describe the Whitehead product.

Topologically, a Whitehead product � ¼ ½�; ��w 2 �pþq�1ðmapðX; Y ; fÞÞ, for
� 2 �pðmapðX; Y ; fÞÞ and � 2 �qðmapðX; Y ; fÞÞ, is represented by the composition

where � ¼ ½�1; �2�w is the ‘‘universal example’’ of a Whitehead product. The adjoint

C of � is the composition

As in the previous paragraph, we will translate this adjoint into the setting of

complexes of (generalized) derivations of Quillen models. In order to do so, a

description of the Quillen model of � � 1 is germane.

We say a graded rational vector space ðV ; dÞ with a differential d of degree �1

is a DG space or, alternately, a chain complex. By a DG Lie algebra ðL; dÞ we will
mean a connected, graded Lie algebra L with bilinear product ½ ; � satisfying

(a) j½x; y�j ¼ jxj þ jyj
(b) ½x; y� ¼ ð�1Þjxjjyjþ1½y; x� and
(c) ½x; ½y; z�� ¼ ½½x; y�; z� þ ð�1Þjxjjyj½y; ½x; z��

and differential satisfying

dð½x; y�Þ ¼ ½dðxÞ; y� þ ð�1Þjxj½x; dðyÞ�:
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We write LðV Þ for the free graded Lie algebra generated by the graded space V

and extend this notation, writing LðV ;W Þ for the free Lie algebra generated by V

and W and LðV ; aÞ for the free Lie algebra generated by a and V where a is an

element of homogeneous degree. We write LðV ; dÞ for the DG Lie algebra

ðLðV Þ; dÞ.
We recall that a DG Lie algebra ðL; dÞ has an associated DG Lie algebra of

derivations ðDerðLÞ; DÞ. Here DerðLÞ denotes the graded space of positive-degree

derivations of L with the usual graded commutator product of derivations, that is,

½�; �� ¼ � 	 �� ð�1Þj�jj�j� 	 �

for �; � 2 DerðLÞ, and differential Dð�Þ ¼ ½d; �� ¼ d�� ð�1Þj�j�d. Then the adjoint

ad : ðL; dÞ ! ðDerðLÞ; DÞ, defined by adðlÞðl0Þ ¼ ½l; l0�, is a map of DG Lie algebras.

We are interested in a natural generalization of this set-up. Let  : ðL; dLÞ !
ðK; dKÞ be a given DG Lie algebra map. Define a  -derivation of degree n to be a

linear map � : L� ! K�þn satisfying

�ð½x; y�Þ ¼ ½�ðxÞ;  ðyÞ� þ ð�1Þnjxj½ ðxÞ; �ðyÞ�:

We write DernðL;K; Þ for the space of degree-n  -derivations. The differential

D defined by

D ð�Þ ¼ dK 	 �� ð�1Þj�j� 	 dL

makes the pair ðDerðL;K; Þ; D Þ a DG space. The  -adjoint (or ‘‘generalized

adjoint’’) map

ad : ðK; dKÞ ! ðDerðL;K; Þ; D Þ;

given by ad ð�ÞðxÞ ¼ ½�;  ðxÞ� for x 2 L; � 2 K, is a map of DG spaces.

Our description of the Quillen model of � � 1 requires a construction

featuring these generalized derivations. Let L ¼ LðV ; dÞ be a free DG Lie algebra.

Let p1; . . . ; pn be given integers > 1 and a1; . . . ; an elements of degree

p1 � 1; . . . ; pn � 1. Write V ai ¼ spiðV Þ for the pith suspension of V and let Sai :

V ! V ai denote the corresponding degree pi linear map. We define a new DG Lie

algebra ðLða1; . . . ; anÞ; @Þ by setting

Lða1; . . . ; anÞ ¼ LðV ; a1; . . . ; an; V a1 ; . . . ; V anÞ: ð1Þ
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Observe that the suspension Sai : V ! V ai extends as a derivation to an element

Sai 2 DerpiðL;Lða1; . . . ; anÞ;	Þ where 	 : L! Lða1; . . . ; anÞ is the inclusion. Using

this, we define the differential as follows:

@ðvÞ ¼ dðvÞ; @ðaiÞ ¼ 0 and @ SaiðvÞð Þ ¼ ð�1Þpi�1½ai; v� þ ð�1ÞpiSaiðdvÞ

for v 2 V . The definition of @ gives the boundary relation

D	 Saið Þ ¼ ð�1Þpi�1ad	ðaiÞ 2 DerðL;Lða1; . . . ; anÞ;	Þ: ð2Þ

Recall that a simply connected CW complex X of finite type admits a Quillen

minimal model LX ¼ LðV ; dXÞ which is a free minimal DG Lie algebra with

V ¼� s�1 eH�ðX;QÞ and H�ðLXÞ ¼� ��ð�XÞ �Q. A map f : X ! Y between such

spaces induces a DG Lie algebra map

L f : ðLX; dXÞ ! ðL Y ; dY Þ:

The connection to the map � � 1 : Spþq�1 �X ! ðSp _ SqÞ �X is provided by the

following result.

THEOREM 2.1. [10, Theorem 2.1] Let X be a simply connected CW complex

of finite type. The DG Lie algebra LXða1; . . . ; anÞ; @ð Þ defined by (1) is the Quillen

minimal model for the space _ni¼1S
pi

� �
�X. �

By Theorem 2.1, the Quillen model for � � 1 is some map of DG Lie algebras

� : ðLXðcÞ; @cÞ ! ðLXða; bÞ; @a;bÞ

where jaj ¼ p� 1, jbj ¼ q � 1 and jcj ¼ pþ q � 2. It is easy to check that �ð
Þ ¼ 


for 
 2 LX while �ðcÞ ¼ ð�1Þp�1½a; b�. (This sign is appropriate per the

identifications of [17, Chapter X, 7.10].) Let us write S½a;b� for the degree pþ q �
1 linear map induced by � via the rule

S½a;b�ðvÞ ¼def �ðScðvÞÞ

for v 2 V . Then S½a;b� extends to a 	-derivation S½a;b� 2 Derpþq�1ðLX;LXða; bÞ;	Þ
satisfying the boundary relation

D	 S½a;b�
� �

¼ ð�1Þq�1ad	ð½a; b�Þ 2 Derpþq�2ðLX;LXða; bÞ;	Þ: ð3Þ
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Working backward, we see the identification of the derivation S½a;b� satisfying (3)

completely determines the Quillen minimal model of �.

In the next section, we find a formula for S½a;b�. In fact, we identify this

derivation as the ‘‘universal example’’ for Whitehead products constructed in the

category of DG Lie algebras. (See Remark 3.3, below.) To explain this further, we

introduce the mapping cone of a DG vector space map  : ðV ; dV Þ ! ðW; dW Þ,
which we denote by ðRelð Þ; � Þ. This is the DG space with Relnð Þ ¼ Vn�1 
Wn

and differential � defined as � ðv; wÞ ¼ ð�dV ðvÞ;  ðvÞ þ dW ðwÞÞ. The construction
yields a short exact sequence of DG spaces ðW; dW Þ ! ðRelð Þ; � Þ ! ðV ; dV Þ
giving rise to a long exact homology sequence whose connecting homomorphism is

Hð Þ. Applying this to the adjoint ad	 : ðLða; bÞ; dÞ ! ðDerðL;Lða; bÞ;	Þ; D	Þ we

see the boundary conditions (2) and (3) are equivalent to the elements

�a ¼ ð�1Þpa; Sað Þ; �b ¼ ð�1Þqb; Sbð Þ and �½a;b� ¼ ð�1Þq½a; b�; S½a;b�
� �

being three D	-cycles in Relðad	Þ of degree p; q and pþ q � 1, respectively. In the

next section, we construct a Whitehead product ½ ; �w on H�ðRelðad	ÞÞ satisfying

h�ai; h�bi½ �w¼ h�½a;b�i

thereby completing the description of �, the Quillen model of � � 1, above.

3. Whitehead products in the category of DG Lie algebras.

In this section, we describe the construction of Whitehead products on the

homology of chain complexes of derivations arising from a given DG Lie algebra

map  : ðL; dLÞ ! ðK; dKÞ. We will approach our final construction in several

steps. First we give the definition of a Whitehead product, referring to the

classical correspondence between Whitehead products and Samelson products.

Let sL denote the suspension of L. Given x; y 2 L define a bilinear pairing on sL

by the rule

½sx; sy�w ¼def ð�1Þjxjs½x; y�:

The pairing ½ ; �w then satisfies the identities

(i) ½�; ��w
�� �� ¼ j�j þ j�j � 1

(ii) ½�; ��w ¼ ð�1Þj�jj�j½�; ��w and

(iii) ½�; ½�; ��w�w ¼ ð�1Þj�jþ1½½�; ��w; ��w þ ð�1Þðj�jþ1Þðj�jþ1Þ½�; ½�; ��w�w
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for �; �; � 2 sL. These identities correspond, of course, to those satisfied by the

higher homotopy groups of a space with the Whitehead product [17, Chapter X,

7]. We denote a bilinear pairing satisfying (i)–(iii) by ½ ; �w and call it a Whitehead

product.

As a preliminary, we next observe that a kind of ‘‘pre-Whitehead product’’

may be defined on any DG Lie algebra ðL; dLÞ. Specifically, define a bilinear

pairing on L by setting

fx; yg ¼def ð�1Þjxjþ1½x; dLðyÞ�: ð4Þ

The pairing f ; g clearly satisfies (i). Further, we have the following:

PROPOSITION 3.1. The bilinear pairing f ; g defined on L by (4) satisfies the

identities (ii) and (iii) up to boundaries in ðL; dLÞ.

PROOF. Write � for the homologous relation in ðL; dLÞ and let d ¼ dL. Let

p ¼ jxj; q ¼ jyj and r ¼ jzj. Use the boundary

d ½x; y�ð Þ ¼ ½dðxÞ; y� þ ð�1Þp½x; dðyÞ�

to obtain

fx; yg ¼ ð�1Þpþ1½x; dðyÞ� � ½dðxÞ; y� ¼ ð�1Þðp�1Þqþ1½y; dðxÞ� ¼ ð�1Þpqfy; xg:

For (iii), observe

x; fy; zgf g ¼ ð�1Þpþq x; d ½y; dðzÞ�ð Þ½ �
¼ ð�1Þpþq x; ½dðyÞ; dðzÞ�½ �

¼ ð�1Þpþq ½x; dðyÞ�; dðzÞ½ � þ ð�1Þqðpþ1Þ dðyÞ; ½x; dðzÞ�½ �:

Then note that

ð�1Þpþq ½x; dðyÞ�; dðzÞ½ � ¼ ð�1Þqþ1 fx; yg; dðzÞ½ � ¼ ð�1Þpþ1 fx; yg; zf g:

Finally, the boundary

d y; ½x; dðzÞ�½ �ð Þ ¼ dðyÞ; ½x; dðzÞ�½ � þ ð�1Þq y; d ½x; dðzÞ�ð Þ½ �

implies

56 G. LUPTON and S. B. SMITH



ð�1Þqðpþ1Þ dðyÞ; ½x; dðzÞ�½ � � ð�1Þpqþ1 y; d ½x; dðzÞ�ð Þ½ �

¼ ð�1Þðpþ1Þðqþ1Þ y; fx; zgf g: �

Next we consider the case of a DG Lie algebra map  : ðL; dLÞ ! ðK; dKÞ and
its mapping cone ðRelð Þ; � Þ. We will construct a Whitehead product on the

homology of ðRelð Þ; � Þ. Notice that this is a chain complex, not a DG Lie

algebra; it is not immediately evident that such a product may be defined. Our

construction here refers to the two previous steps.

Let ða; �Þ 2 Relpð Þ and ðb; �Þ 2 Relqð Þ be given. Recall that this means

a 2 Lp�1; b 2 Lq�1 while � 2 Kp; � 2 Kq. Define a bilinear pairing
�
½ ; �

�
, using the

ordinary bracket in L but the pairing defined by (4) in K, by setting

�
½ða; �Þ; ðb; �Þ�

�
¼def ð�1Þp½a; b�; f�; �gð Þ ¼ ð�1Þp½a; b�; ð�1Þpþ1½�; dKð�Þ�

� �
: ð5Þ

We then have the following:

PROPOSITION 3.2. Let  : ðL; dLÞ ! ðK; dKÞ be a DG Lie algebra map with

mapping cone ðRelð Þ; � Þ. The bilinear pairing
�
½ ; �

�
on Relð Þ defined by (5)

induces a Whitehead product ½ ; �w on H�ðRelð ÞÞ.

PROOF. For suppose that ða; �Þ and ðb; �Þ are � -cycles. Then dLðaÞ ¼
dLðbÞ ¼ 0 while dKð�Þ ¼ � ðaÞ and dKð�Þ ¼ � ðbÞ. Observe that

dK f�; �gð Þ ¼ ð�1Þpþ1dK �; dKð�Þ½ �ð Þ ¼ ð�1Þpþ1 dKð�Þ; dKð�Þ½ � ¼ � ð�1Þp½a; b�ð Þ:

Thus the product
�
½ða; �Þ; ðb; �Þ�

�
is a � -cycle, as well.

Next suppose ða; �Þ ¼ � c; �ð Þ is a � -boundary and ðb; �Þ is again a � -cycle.

Then

�
½ða; �Þ; ðb; �Þ�

�
¼ � ð�1Þp½c; b�;�f�; �gð Þ

is a � -boundary, as well. To verify this in the second variable observe that

dK �f�; �gð Þ þ ð�1Þp ð½c; b�Þ ¼ ð�1Þpþ1½dKð�Þ; dKð�Þ� þ ð�1Þp ð½c; b�Þ
¼ ð�1Þpþ1 ��  ðcÞ; dKð�Þ½ � þ ð�1Þp ð½c; b�Þ
¼ f�; �g;

since dKð�Þ ¼ � ðbÞ.
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The pairing
�
½ ; �

�
thus induces a bilinear pairing ½ ; �w on H�ðRelð ÞÞ satisfying

the degree condition (i) by construction. The induced product satisfies (ii) and

(iii) in the second variable by Proposition 3.1. In the first variable, ½ ; �w
corresponds to the classical Whitehead product (except with grading reduced

one instead of increased one). �

Our final step is to consider the (generalized) adjoint

ad : ðK; dKÞ ! DerðL;K; Þ; D 

� �

and its mapping cone Relðad Þ; �ad 
� �

. We define Whitehead products on the

homology of the latter two complexes. Notice that, once again, neither of these

complexes is a DG Lie algebra.

As at the start of Section 2, the Whitehead product of two elements � 2
�pðXÞ and � 2 �qðXÞ involves the ‘‘universal example’’ of such Whitehead

products, namely � 2 �pþq�1ðSp _ SqÞ. This is then mapped into �pþq�1ðXÞ by

ð� j �Þ, a map induced by the given homotopy elements. Here, we take a similar

approach. Given two elements of H�ðRelðad ÞÞ, of degree p and q we first describe
a ‘‘universal example’’ of the Whitehead product in Hpþq�1ðRelðad	ÞÞ (see (7)

below). This is then mapped to Hpþq�1ðRelðad ÞÞ using the elements whose

product we are forming (see (10) below).

For our universal example, we define a particular product in the mapping

cone of the generalized adjoint ad	 : Lða; bÞ ! DerðL;Lða; bÞ;	Þ defined above (1).

So assume now that ðL; dLÞ ¼ LðV ; dLÞ is a free DG Lie algebra. Let a and b be of

degrees p� 1 and q � 1, respectively. Then recall Lða; bÞ ¼ LðV ; a; b; V a; V b; @a;bÞ
and the suspensions Sa : V ! V a and Sb : V ! V b extend to elements of

DerðL;Lða; bÞ;	Þ; D	ð Þ of degree p and q, respectively, satisfying D	ðSaÞ ¼
ð�1Þp�1ad	ðaÞ and D	ðSbÞ ¼ ð�1Þq�1ad	ðbÞ. So ðð�1Þpa; SaÞ and ðð�1Þqb; SbÞ are

cycles in degrees p and q of ðRelðad	Þ; �ad	Þ. Define elements �a;�b of degrees p

and q in the DG Lie algebra ðDer
�
Lða; bÞ

�
; DÞ by setting

�xðvÞ ¼ SxðvÞ and �xðaÞ ¼ �xðbÞ ¼ �xðV aÞ ¼ �xðV bÞ ¼ 0 ð6Þ

for x ¼ a; b and v 2 V . Note that �x 	 	 ¼ Sx 2 DerðL;Lða; bÞ;	Þ. From the

previous step, we set

�a;�bf g ¼ ð�1Þpþ1 �a;Dð�bÞ½ � 2 Derpþq�1ðLða; bÞÞ

and observe that �a;�bf g 	 	 2 Derpþq�1ðL;Lða; bÞ;	Þ. Now define
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�
½ ð�1Þpa; Sað Þ; ð�1Þqb; Sbð Þ�

�
¼def ð�1Þq½a; b�; �a;�bf g 	 	ð Þ: ð7Þ

Observe that the right-hand side is a cycle of ðRelðad	Þ; �ad	Þ of degree pþ q � 1.

This is the universal example of a Whitehead product mentioned above.

REMARK 3.3. Taking ðL; dLÞ ¼ ðLX; dXÞ to be the Quillen model of a

simply connected complex X, we see that

�a;�bf g 	 	 2 Derpþq�1ðLX;LXða; bÞ;	Þ

satisfies the boundary condition (3). Setting S½a;b� ¼ �a;�bf g 	 	 completes the

description of the Quillen minimal model of � � 1 : Spþq�1 �X ! ðSp _ SqÞ �X.

Finally, we turn to the mapping cone ðRelðad Þ; �ad Þ of the generalized

adjoint corresponding to a DG Lie algebra map  : ðL; dLÞ ! ðK; dKÞ with L ¼
LðV Þ free. Suppose given two �ad -cycles,

�a ¼ ð
a; �aÞ 2 Relpðad Þ and �b ¼ ð
b; �bÞ 2 Relqðad Þ:

The pair �a; �b induce a DG Lie algebra map

ð�a j �bÞ : ðLða; bÞ; dLða;bÞÞ ! ðK; dKÞ ð8Þ

defined, on the basis of Lða; bÞ, as:

ð�a j �bÞ ðxÞ ¼ ð�1Þjxjþ1
x; ð�a j �bÞ ðvÞ ¼  ðvÞ and ð�a j �bÞ ðSxðvÞÞ ¼ �xðvÞ

for x ¼ a; b and v 2 V . Note that this map commutes with differentials on

generators of the form SxðvÞ since ð�a j �bÞ 	 Sx and �x agree on L as  -derivations.

Define

f�a; �bg ¼def ð�a j �bÞ 	 f�a;�bg 	 	 2 Derpþq�1ðL;K; Þ: ð9Þ

We have the following result concerning the iteration of this pairing.

PROPOSITION 3.4. Let �a; �b; �c 2 Relðad Þ be �ad	-cycles of degree p; q and r,
respectively. Then

f�a; �bg; �cf g ¼ ð�a j �b j �cÞ 	 f�a;�bg;�cf g 	 	 2 Derpþqþr�2ðL;K; Þ:
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Here ð�a j �b j �cÞ : ðLða; b; cÞ; dLða;b;cÞÞ ! ðK; dKÞ is defined as the obvious exten-

sion of the definition of ð�a j �bÞ given by (8).

PROOF. Let �z ¼ f�a; �bg 2 Relpþq�1ðL;K; Þ. Let �z ¼ ðð�1Þq½a; b�; f�a;�bg
		Þ 2 Relpþq�1ðL;Lða; b; cÞ;	Þ be the �ad	 -cycle as in (7). Define a DG Lie algebra

map

�z : Lðz; cÞ ! Lða; b; cÞ

by setting �zðvÞ ¼ v, �zðcÞ ¼ c, �zðScðvÞÞ ¼ ScðvÞ, �zðzÞ ¼ ð�1Þq�1½a; b�, and

�zðSzðvÞÞ ¼ f�a;�bg 	 	ðvÞ. This is readily checked to define a DG map: use the

fact that �z is a cycle to check on generators SzðvÞ. Then we have a commutative

diagram

The needed identity now follows directly from the observation that

�z 	 f�z;�cg 	 	 ¼ f�a;�bg;�cf g 	 	 2 Derpþqþr�2ðL;Lða; b; cÞ;	Þ: �

We obtain a bilinear pairing
�
½ ; �

�
on pairs of cycles of Relðad Þ:

�
½�a; �b�

�
¼

�
½ð
a; �aÞ; ð
b; �bÞ�

�
¼def ð�1Þp½
a; 
b�; f�a; �bgð Þ: ð10Þ

REMARK 3.5. The diagram of chain maps

commutes, inducing a chain map of mapping cones

� : ðRelðad	Þ; �ad	Þ ! ðRelðad Þ; �ad Þ:
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The map � carries
�
½ ð�1Þpa; Sað Þ; ð�1Þqb; Sbð Þ�

�
, the universal example of the

Whitehead product defined by (7), to the cycle
�
½�a; �b�

�
defined by (10).

Our main result in this section is:

THEOREM 3.6. Let  : ðL; dLÞ ! ðK; dKÞ be a DG Lie algebra map with L

free and with adjoint map ad : ðK; dKÞ ! ðDerðL;K; Þ; D Þ. The bilinear pairing�
½ ; �

�
defined on cycles of ðRelðad Þ; �ad Þ by (10) induces a Whitehead product ½ ; �w

on H�ðRelðad ÞÞ.

PROOF. The fact that
�
½ ; �

�
induces a pairing on cycles of ðRelðad Þ; �ad Þ

follows from Remark 3.5 and the observation immediately following (7). Now we

check that the Whitehead identities (i)–(iii) are satisfied up to boundaries. First,

(i) is evident. For (ii), we return to (7) and write

�
½ ð�1Þpa; Sað Þ; ð�1Þqb; Sbð Þ�

�
¼ ð�1Þq½a; b�; �a;�bf g 	 	ð Þ

¼ ð�1Þqþ1þðp�1Þðq�1Þ½b; a�; ð�1Þpq �b;�af g �D �a;�b½ �ð Þ 	 	
� �

¼ ð�1Þpq ð�1Þp½b; a�; �b;�af gð Þ � 0;
�
D �a;�b½ �

�
	 	

� �
:

In this last term, D denotes the differential in Der
�
Lða; bÞ

�
; the identity is

obtained from the first part of the proof of Proposition 3.1. Now observe that, in�
DerðL;Lða; bÞ;	Þ; D	

�
, we have

�
D �a;�b½ �

�
	 	 ¼ D	

�
�a;�b½ � 	 	

�
;

since each expression agrees on every generator v of L. Consequently, in Relðad	Þ,
we have

�ad	
�
0; �a;�b½ � 	 	

�
¼

�
0; ðD �a;�b½ �Þ 	 	

�
:

Returning to the above, we may write

�
½ ð�1Þpa; Sað Þ; ð�1Þqb; Sbð Þ�

�
¼ ð�1Þpq

�
½ ð�1Þqb; Sbð Þ; ð�1Þpa; Sað Þ�

�
� �ad	

�
0; �a;�b½ � 	 	

�
:

From the observation of Remark 3.5, it now follows that the pairing of (10) of

cycles of Relðad Þ satisfies the Whitehead identity (ii) up to boundaries, and in

particular induces a pairing H�
�
Relðad Þ

�
that satisfies (ii).
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The proof of (iii) follows the same line of argument making use of

Proposition 3.4. Indeed, using it, we may amplify the diagram of Remark 3.5 into

the following commutative diagram of chain maps:

which in turn induces chain maps of mapping cones of the horizontal maps. Each

term in (iii) may thus be identified as the image of its counterpart in the induced

map of mapping cones given by the lower trapezoid of this diagram. Again the

corresponding identity holds up to a boundary in this lower Relðad	Þ, in which

	 : L! Lða; b; cÞ. As in the preceding case, this passes to the needed identity in

Relðad Þ by the chain maps induced by the chain map ð�a j �b j �cÞ :

Lða; b; cÞ ! K.

It remains to show that, if either �a or �b is a boundary, then
�
½�a; �b�

�
is a

boundary also so that the pairing passes to homology. Suppose then that �a ¼
�ad ð�cÞ is a boundary in Relpðad Þ so that �c ¼ ð
c; �cÞ 2 Relpþ1ðad Þ satisfies

dKð
cÞ ¼ �
a and D ð�cÞ ¼ �a � ad ð
cÞ:

We show that
�
½�a; �b�

�
bounds also. To do this, we would like to form the product�

½�c; �b�
�
2 Relpþqðad Þ but our construction above requires �c to be a �ad -cycle. To

accomodate non-cycles, we modify the construction of Lða; bÞ as follows. Define a

DG Lie algebra ð bLða; b; cÞ; bdÞ ¼ LðV ; a; b; c; V a; V b; V c; bdÞ with jcj ¼ p, and with

differential given by bdðvÞ ¼ dLðvÞ, bdðaÞ ¼ bdðbÞ ¼ 0, bdðcÞ ¼ �a and

bdðSaðvÞÞ ¼ ð�1Þp�1½a; v� þ ð�1ÞpSaðdLðvÞÞ
bdðSbðvÞÞ ¼ ð�1Þq�1½b; v� þ ð�1ÞqSbðdLðvÞÞ

bdðScðvÞÞ ¼ ð�1Þp�1½c; v� þ SaðvÞ þ ð�1Þpþ1ScðdLðvÞÞ

for v 2 V . The formula for the boundary of Sc gives the relation

D	ðScÞ ¼ ð�1Þp�1ad	ðcÞ þ Sa 2 DerðL; L̂ða; b; cÞ;	Þ
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where 	 : L! L̂ða; b; cÞ is the inclusion. Define �b;�c in DerðL̂ða; b; cÞÞ as above:

�xðvÞ ¼ SxðvÞ and �xðyÞ ¼ �xðV yÞ ¼ 0

for x ¼ b; c, y ¼ a; b; c and v 2 V . The classes �a, �b and �c induce, as above, a DG

Lie algebra map

’ : ð bLða; b; cÞ; dÞ ! ðK; dKÞ with

’ðxÞ ¼ ð�1Þjxjþ1
x; ’ðcÞ ¼ ð�1Þp
c; ’ðvÞ ¼  ðvÞ and ’ðSyðvÞÞ ¼ �yðvÞ

for x ¼ a; b, y ¼ a; b; c and v 2 V . Writing b	 : L! bLða; b; cÞ for the inclusion, a

straightforward computation in ðRel adb	
� �

; �adb	Þ shows that

�adb	 ð�1Þq½c; b�;�f�c;�bg 	 b	� �
¼ ð�1Þq½a; b�; f�a;�bg 	 b	� �

:

That is, the universal example of a Whitehead product, constructed now in the

complex ðRel adb	
� �

; �adb	Þ, is a boundary there. As in Remark 3.5, the map ’

induces a chain map � : ðRel adb	
� �

; �adb	Þ ! ðRelðad Þ; �ad Þ. As �
�
ð�1Þq½a; b�;

f�a;�bg 	 b	� ¼
�
½�a; �b�

�
, it follows that the latter is a boundary. �

Finally, we obtain a Whitehead product on H�ðDerðL;K; ÞÞ when L is free

as a direct consequence of the above. Suppose �a 2 DerpðL;K; Þ and �b 2
DerqðL;K; Þ are D -cycles. Set ��a ¼ ð0; �aÞ 2 Relpðad Þ and ��b ¼ ð0; �bÞ 2
Relqðad Þ. Both are �ad -cycles. Thus we can write

�
½��a; ��b �

�
¼ 0; f��a; ��b g

� �
2 Relpþq�1ðad Þ:

We define

�
½�a; �b�

�
¼def f��a; ��b g 2 Derpþq�1ðL;K; Þ: ð11Þ

We then obtain:

COROLLARY 3.7. Let  : ðL; dLÞ ! ðK; dKÞ be a DG Lie algebra map with L

free. The bilinear pairing
�
½ ; �

�
defined on cycles of ðDerðL;K; Þ; � Þ by (11)

induces a Whitehead product ½ ; �w on H�ðDerðL;K; ÞÞ. �
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4. Iterated products of the universal example.

In this section, we continue with our algebraic development and record some

formulas and results that will be useful for our applications. Let ðL; dÞ be a given

free DG Lie algebra and ðLða; bÞ; @a;bÞ the associated DG Lie algebra for

jaj ¼ p� 1, jbj ¼ q � 1. We look in detail at the universal example of a Whitehead

product

f�a;�bg 	 	 2 Derpþq�1ðL;Lða; bÞ;	Þ:

Begin in the DG Lie algebra
�
Der

�
Lða; bÞ

�
; D

�
. We are interested in the restriction

of derivations � 2 DerðLða; bÞÞ to L � Lða; bÞ, i.e., � 	 	 2 DerðL;Lða; bÞ;	Þ where
	 : L! Lða; bÞ is the inclusion.

Recall from (6) the definitions of �a;�b of degree p and q in
�
Der

�
Lða; bÞ

�
; D

�
.

From the definitions, we have that

D	ð�a 	 	Þ ¼ ð�1Þp�1ad	ðaÞ and D	ð�b 	 	Þ ¼ ð�1Þq�1ad	ðbÞ:

Amongst the terms that occur in f�a;�bg 	 	ðvÞ, we note that @a;b 	�b 	�a 	
	ðvÞ ¼ 0, whereas, e.g. �b 	 @a;b 	�a 	 	ðvÞ is generally non-zero. Using these facts,

we obtain that

f�a;�bg 	 	ðvÞ ¼ ð�1Þpþ1 �a;Dð�bÞ½ � 	 	ðvÞ
¼ ð�1Þpþq�a 	 ad	ðbÞðvÞ þ ð�1ÞpqDð�bÞ 	�a 	 	ðvÞ

¼ ð�1Þpþq�a 	 ad	ðbÞðvÞ þ ð�1Þpqþqþ1�b 	 @a;b 	�a 	 	ðvÞ
¼ ð�1Þpþq�a 	 ad	ðbÞðvÞ þ ð�1Þpqþpþq�b 	 ad	ðaÞðvÞ

þ ð�1Þðpþ1Þðqþ1Þ�b 	�a 	 	ðdvÞ;

yielding finally

f�a;�bg 	 	ðvÞ ¼ ð�1Þqðpþ1Þ½b; SaðvÞ� þ ð�1Þp½a; SbðvÞ�
þð�1Þðpþ1Þðqþ1Þ�b 	�a 	 	ðdvÞ:

ð12Þ

The formulae of the previous section may be extended to iterated Whitehead

products. We sketch this here. Suppose given �ad -cycles �1; . . . ; �n 2 Rel�ðad Þ,
with each �i ¼ ð
ai ; �aiÞ 2 Relpiðad Þ, with n � 2 and each pi � 2. Let a1; . . . ; an be

of degrees p1 � 1; . . . ; pn � 1, and define elements �ai of degree pi in the DG Lie
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algebra
�
Der

�
Lða1; . . . ; anÞ

�
; D

�
as at (6) above. Thus, we have derivations �ai 	

	 2 DerðL;Lða1; . . . ; anÞ;	Þ that satisfy D	ð�ai 	 	Þ ¼ ð�1Þpi�1ad	ðaiÞ. Write

wða1; . . . ; anÞ ¼ . . . ½a1; a2�; a3½ � . . . an�1½ �; an½ �

for the ‘‘left-justified’’ iterated bracket in Lða1; . . . ; anÞ and, similarly,

wð�a1 ; . . . ;�anÞ ¼ . . . f�a1 ;�a2g;�a3f g . . . �an�1
f g;�anf g

for the iterated product of derivations, using the pairing of (4) in

DerðLða1; . . . ; anÞÞ. Then

�wða1; . . . ; anÞ;�wð�a1 ; . . . ;�anÞ 	 	ð Þ ð13Þ

is a cycle of ðRelðad	Þ; �ad	Þ that is the universal example of iterated Whitehead

products of this form.

The �i induce a DG Lie algebra map as in (8) ð�IÞ : Lða1; . . . ; anÞ ! ðK; dKÞ.
We define the iterated Whitehead product as

�
½
�
½. . .

�
½
�
½�1; �2�

�
; �3�

�
. . . �n�1�

�
; �n�

�
¼ �ð�IÞ 

�
wða1; . . . ; anÞ

�
;�ðð�IÞ Þ�wð�a1 ; . . . ;�anÞ 	 	

� �
:

ð14Þ

We conclude this section by observing that the Whitehead products we have

constructed for a DG Lie algebra map are invariant under quasi-isomorphisms in

the second variable.

THEOREM 4.1. Let  : ðL; dLÞ ! ðK; dKÞ be a map between connected DG

Lie algebras with ðL; dLÞ finitely generated and minimal. Suppose � : ðK; dKÞ !
ðK0; dK0 Þ is a surjective DG Lie algebra map such that Hð�Þ : H�ðKÞ ! H�ðK0Þ is
an isomorphism. Then composition with � induces isomorphisms

H�ðDerðL;K; ÞÞ ¼� H�ðDerðL;K0;� 	  ÞÞ and H�ðRelðad ÞÞ ¼� H�ðRelðad�	 ÞÞ:

Further, these are isomorphisms of Whitehead algebras with all spaces equipped

with the Whitehead products constructed in Theorem 3.6 and Corollary 3.7.

PROOF. Write  0 ¼ � 	  ; for a cycle �a ¼ ð
a; �aÞ 2 Relðad Þ, use �0a to

denote the corresponding cycle ð�ð
aÞ; �� 	 �aÞ 2 Relðad 0 Þ. Then � 	 ð�a j �bÞ ¼
ð�0a j �0bÞ 0 : Lða; bÞ ! K0, and we have a commutative diagram as follows:
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From this, it is clear that the map � induces a commutative diagram of long exact

homology sequences of the respective adjoints ad and ad 0 , and also that the

construction of our Whitehead product is natural with respect to the maps

induced by composition with �.

Thus by the Five-Lemma it suffices to prove composition with � induces an

isomorphism H�ðDerðL;K; ÞÞ ¼� H�ðDerðL;K0;� 	  ÞÞ. The proof of this fact is

an adaptation of a standard result for lifting maps with domain a minimal DG Lie

algebra (see [5, Proposition 22.11]). We give the full details to show composition

by � induces a surjection on homology. The proof of injectivity is similar and so

we omit it.

Write L ¼ LðV ; dLÞ where V ¼ Qðx1; . . . ; xnÞ and the xi are homogeneous of

nondecreasing degree. Let �0 2 DerpðL;K0;� 	  Þ be a D-cycle where we write

D ¼ D�	 . We define � 2 DerpðL;K; Þ and a derivation �00 2 Derpþ1ðL;K0;� 	  Þ
so that

D ð�Þ ¼ 0 and � 	 � ¼ �0 þDð�00Þ: ð15Þ

We define � and �00 on our basis for V by induction.

Observe that, since dLðx1Þ ¼ 0, dK0 ð�0ðx1ÞÞ ¼ Dð�0Þðx1Þ ¼ 0. Since � : K ! K0

induces a homology isomorphism we can choose a dK-cycle 
 2 K such that

�ð
Þ ¼ �0ðx1Þ þ dK0 ð�Þ for some � 2 K0. We set �ðx1Þ ¼ 
 and �00ðx1Þ ¼ �.

Now suppose �ðxjÞ and �00ðxjÞ are defined for j < r, such that (15) holds on the

Lie subalgebra Lðx1; . . . ; xr�1Þ of L. Set y ¼ ð�1Þp�ðdLðxrÞÞ 2 K. Applying our

induction hypothesis, we see dKðyÞ ¼ 0. Furthermore, since Dð�0Þ ¼ 0, we have

dK 0 ð�0ðxrÞÞ ¼ ð�1Þp�0ðdLðxrÞÞ
¼ �ðyÞ þ ð�1Þpþ1Dð�00ÞðdLðxrÞÞ ¼ �ðyÞ þ ð�1Þpþ1dK0 ð�00ðdLðxrÞÞÞ:

Thus �ðyÞ is a boundary in ðK0; dK0 Þ and so we can choose z 2 K with dKðzÞ ¼ y.

Next note that �0ðxrÞ þ ð�1Þp�00ðdLðxrÞÞ � �ðzÞ is a dK0-cycle. Thus, as above, we

can find a dK-cycle z and � 2 K0 such that
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�ðzÞ ¼ �0ðxrÞ þ ð�1Þp�00ðdLðxrÞÞ � �ðzÞ þ dK0 ð�Þ:

We put �ðxrÞ ¼ zþ z and �00ðxrÞ ¼ � and (15) is satisfied on Lðx1; . . . ; xrÞ. �

5. Whitehead product formulae for function space components.

In this section we return to the topological setting and prove our main result,

the identification of the Whitehead product in the rational homotopy groups of a

function space component. Let f : X ! Y be a map between simply connected

CW complexes of finite type with X now a finite complex. Let L f : ðLX; dXÞ !
ðL Y ; dY Þ be the Quillen minimal model for f . We first recall the identifications

�pðmapðX; Y ; fÞÞ �Q ¼� HpðRelðadL f
ÞÞ

for p > 1 given in [10, Theorem 3.1].

The adjoint of a representative a : Sp ! mapðX; Y ; fÞ of a homotopy class

� 2 �pðmapðX; Y ; fÞÞ is a map A : Sp �X ! Y . By Theorem 2.1, the Quillen

minimal model for A is a map

L A :
�
LXðaÞ; @a

�
! ðL Y ; dY Þ:

Define �a 2 DerpðLX;L Y ;L fÞ by setting �aðvÞ ¼ L AðSaðvÞÞ for v 2 V and

extending as an L f -derivation. Then 
a ¼ ð�1ÞpL AðaÞ is a cycle of degree p�
1 in L Y , and �a ¼ ð
a; �aÞ 2 RelpðadL f

Þ is a �adL f
-cycle. Set

�0ð�Þ ¼ �ah i 2 HpðRelðadL f
ÞÞ: ð16Þ

The map �0 is then a homomorphism whose rationalization � : �pðmapðX; Y ;
fÞÞ �Q ! HpðRelðadL f

ÞÞ is an isomorphism for p � 2.

Given two homotopy classes � 2 �pðmapðX; Y ; fÞÞ and � 2 �qðmapðX; Y ; fÞÞ,
their Whitehead product � ¼ ½�; ��w has adjoint C given by

where � is the universal example of the Whitehead product. Let �a ¼ ð
a; �aÞ 2
RelpðadL f

Þ and �b ¼ ð
b; �bÞ 2 RelqðadL f
Þ satisfy h�ai ¼ �0ð�Þ and h�bi ¼ �0ð�Þ.
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LEMMA 5.1. The map

ð�a j �bÞL f
:
�
LXða; bÞ; @a;b

�
! ðL Y ; dY Þ

defined by (8) is the Quillen minimal model for

ðA j BÞf : ðSp _ SqÞ �X ! Y :

PROOF. Denote by L the composite of the Sullivan and the Quillen

functors. That is, we write L ðZÞ to denote the DG Lie algebra obtained by

applying the Quillen functor to the coalgebra dual of A�ðZÞ, which is the Sullivan

functor applied to Z. (See [5, Section 22(e)] or [15, I.1(7)].) For a space Z, denote

by �Z : L Z ! L ðZÞ the Quillen minimal model of Z. To establish the Lemma, we

want the diagram

to be homotopy commutative, in the DG Lie algebra sense. Following [15,

II.5.(20)], this means we seek a DG Lie algebra map H : LXða; bÞ ! ðt; dtÞ �
L ðY Þ such that p0 	H ¼ �Y 	 ð�a j �bÞL f

and p1 	H ¼ L
�
ðA j BÞf

�
	 �ðSp_SqÞ�X.

Now we have a pushout of DG Lie algebras

where the maps 	a; 	b; 	a; 	b are the appropriate inclusions. Notice that our

desired minimal model ð�a j �bÞL f
is exactly the pushout of the minimal models

L A : LXðaÞ ! L Y and L B : LXðbÞ ! L Y . We will obtain our homotopy H by

pushing out homotopies from LXðaÞ and LXðbÞ. To this end, suppose that we

have our chosen minimal model L f : LX ! L Y , and a DG Lie algebra homotopy

H f : LX ! ðt; dtÞ �L ðY Þ that satisfies p0 	H f ¼ �Y 	L f and p1 	H f ¼
L ðfÞ 	 �X.
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As in the proof of [10, Proposition A.3], we may assume that the following

cube is (strictly) commutative:

Next, in the diagram

the left-hand square commutes and furthermore, the right-hand square commutes

up to homotopy, but we may assume that the homotopy H a : LXðaÞ ! ðt; dtÞ �
L ðY Þ extends the homotopy H f , that is, that we have H a 	 	a ¼ H f . This last

assertion is easily justified by adapting the usual lifting lemma: rather than lift

L ðAÞ 	 �Sp�X through the quasi-isomorphism �Y starting with the elements of

lowest degree in LXðaÞ, we may start with the lift already defined on LX as L f ,

with �Y 	L A ¼ �Y 	L f and L ðAÞ 	 �Sp�X ¼ L ðfÞ 	 �X homotopic by H f when

resticted to LX. (See [7, Proposition 10.4] for the corresponding result in the DG

algebra setting.) We argue similarly with b and B replacing a and A respectively.

This gives us the pushout which defines H . We check that H has the desired

properties.
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�

We next give an official statement of our work in Section 2. Define

� :
�
LXðcÞ; @c

�
!

�
LXða; bÞ; @a;b

�

by setting �ð
Þ ¼ 
 for 
 2 LX;�ðcÞ ¼ ð�1Þp�1½a; b� and

�ðScðvÞÞ ¼ �a;�bf g 	 	ðvÞ

where �a;�b 2 DerðLXða; bÞÞ are as defined in (6) and 	 : LX ! LXða; bÞ is the
inclusion.

LEMMA 5.2. The map

� :
�
LXðcÞ; @c

�
!

�
LXða; bÞ; @a;b

�

is the Quillen model for

� � 1 : Spþq�1 �X ! ðSp _ SqÞ �X:

PROOF. We have a commutative diagram

where the vertical maps are the projections and �ðcÞ ¼ ð�1Þp�1½a; b� and �ð
Þ ¼ 


for 
 2 LX. Since � is evidently a (non-minimal) Quillen model for � � 1, the

result follows from uniqueness of the Quillen model of a map. �
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Combining these facts we obtain our identification.

THEOREM 5.3. Let f : X ! Y be a map between simply connected CW

complexes of finite type with X finite. The map

�0 : �pðmapðX; Y ; fÞÞ ! HpðRelðadLX
ÞÞ

defined for p > 1 by (16) preserves Whitehead products where the latter space has

the Whitehead product given by Theorem 3.6. Thus �0 induces an isomorphism

��ðmapðX; Y ; fÞÞ �Q; ½ ; �w ¼� H�ðRelðadLX
ÞÞ; ½ ; �w

of rational Whitehead algebras in degrees > 1.

PROOF. With notation as above and Lemmas 5.1 and 5.2,

ð�a j �bÞL f
	 � : ðLXðcÞ; @cÞ ! ðL Y ; dY Þ

is the Quillen minimal model for the adjoint C of � ¼ ½�; �� 2 �pþq�1ðmapðX; Y ;
fÞÞ. Thus �0ð�Þ is represented by the �adL f

-cycle �c ¼ ð
c; �cÞ 2 Relpþq�1ðadL f
Þ

with


c ¼ ð�1Þpþq�1ð�a j �bÞL f
	 �ðcÞ ¼ ð�1Þp½
a; 
b� 2 L Yð Þpþq�2 while

�cðvÞ¼ ð�a j �bÞL f
	 �ðScðvÞÞ¼ ð�a j �bÞL f

�a;�bf g 	 	ðvÞ 2 Derpþq�1ðLX;L Y ;L fÞ:

Thus

�0ð�Þ ¼
�
½�a; �b�

�� 	
¼ h�ai; h�bi½ �w

by Theorem 3.6 and the definition of the pairing
�
½ ; �

�
at (10). �

We now apply the same line of reasoning to the case of the based function

space. We first recall the homomorphism,

�0 : �pðmap�ðX; Y ; fÞÞ ! �pðDerðLX;L Y ;L fÞÞ ð17Þ

from [10, Theorem 3.1] inducing an isomorphism after rationalization for p > 1.

Given � 2 �pðmap�ðX; Y ; fÞÞ we have �0ð�Þ ¼ h�ai where �a 2 DerpðLX;L Y ;L fÞ
is the DL f

-cycle given by �a ¼ L A 	 Sa where L A : ðLXðaÞ; @aÞ ! ðL Y ; dY Þ is the
Quillen minimal model for the adjoint A : Sp �X ! Y of �. We prove
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THEOREM 5.4. Let f : X ! Y be a map between simply connected CW

complexes of finite type with X finite. The map

�0 : �pðmap�ðX; Y ; fÞÞ ! HpðDerðLX;L Y ;L fÞÞ

defined for p > 1 by (17) preserves Whitehead products where the latter space has

the Whitehead product given by Corollary 3.7. Thus �0 induces an isomorphism

��ðmap�ðX; Y ; fÞÞ �Q; ½ ; �w ¼� H�ðDerðLX;L Y ;L fÞÞ; ½ ; �w

of rational Whitehead algebras in degrees > 1.

PROOF. Given �; � 2 ��ðmap�ðX; Y ; fÞÞ of degrees p and q with Whitehead

product � ¼ ½�; �� 2 �pþq�1ðmap�ðX; Y ; fÞÞ, the class �0ð�Þ is represented by

ð��a j ��b ÞL f
	 � 	 Sc ¼

�
½�a; �b�

�
2 Derpþq�1ðLX;L Y ;L fÞ

by Lemmas 5.1 and 5.2 and definition of the bilinear pairing
�
½ ; �

�
in (11). The

result now follows from Corollary 3.7. �

REMARK 5.5. For �1; . . . ; �n 2 ��ðmapðX; Y ; fÞÞ, write

wð�1; . . . ; �nÞ ¼ . . . ½�1; �2�w; �3

� �
w
; . . . ; �n�1

h i
w
; �n

h i
w

for their ‘‘left-justified’’ iterated Whitehead product. The argument above may

easily be extended, using the algebraic universal Whitehead product indicated in

(13), and the topological universal example for such Whitehead products, namely

wð�1; . . . ; �nÞ : Sp1þ


þpn�nþ1 ! Sp1 _ 
 
 
 _ Spn :

Using Proposition 3.4 and the above arguments, we may show that the algebraic

iterated Whitehead product indicated in (14) in Section 4 corresponds with

wð�1; . . . ; �nÞ under the map �0. We have no immediate need for this, and so we

omit details.

6. Whitehead length of function space components.

We apply our formulae to study the Whitehead length of function space

components. To begin, we make some remarks concerning the sensitivity of the

invariants
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WLðmapðX; Y ; fÞÞ and WLðmap�ðX; Y ; fÞÞ

to the (homotopy class of the) map f : X ! Y . For example, in the case X ¼ Y

and f ¼ 1, the space mapðX;X; 1Þ is a topological monoid, and so

WLðmapðX;X; 1ÞÞ ¼ 1. When Y is an H-space, so too is mapðX; Y Þ, and hence

WLðmapðX; Y ; fÞ ¼ 1 for any component. Dually, if X is a co-H-space, then

map�ðX; Y Þ is an H-space, and hence WLðmap�ðX; Y ; fÞÞ ¼ 1 for any component

of the based mapping space. On the other hand, we have the following fact

concerning the null-component which shows that we may easily have an

abundance of non-zero Whitehead products in the free function space. Recall

that we are only considering ��2

�
mapðX; Y ; fÞ

�
here.

THEOREM 6.1. Let Y be any space. Then

maxfWLðY Þ;WLðmap�ðX; Y ; 0ÞÞg � WLðmapðX; Y ; 0ÞÞ:

If the universal cover of Y has finite rational type then

WLQðmapðX; Y ; 0ÞÞ ¼ WLQðY Þ:

PROOF. The first inequality follows from the evaluation fibration

map�ðX; Y ; 0Þ ! mapðX; Y ; 0Þ ! Y . On the one hand, the obvious section

s : Y ! mapðX; Y ; 0Þ implies that Y is a retract of mapðX; Y ; 0Þ. On the other

hand, s implies that the fibre inclusion map�ðX; Y ; 0Þ ! mapðX; Y ; 0Þ induces an
injection on homotopy groups.

For the rational result, we start with a nice observation of Brown-Szczarba

[2]: writing �0Y for the connected component of the constant loop in �Y , we have

�0ðmapðX; Y ; 0ÞÞ � mapðX;�0Y ; 0Þ. Next, by [8, Theorem 4.10]

HnilðmapðX;�0Y ; 0ÞÞ ¼ Hnilð�0Y Þ

where HnilðGÞ of a loop-space G denotes the homotopical nilpotency of G in the

sense of Berstein-Ganea [1]. Taking Y ¼ YQ the result follows from the identity

Hnilð�0YQÞ ¼ WLQðY Þ [14, Theorem 3]. �

Recall that a simply connected space Y is coformal if there is a DG Lie

algebra map 
 : ðL Y ; dY Þ ! ð��ð�Y Þ �Q; 0Þ inducing an isomorphism on homol-

ogy (see [5, p. 334, Example 7]).

THEOREM 6.2. Let X be a finite simply connected CW complex and Y a

simply connected coformal complex of finite type. Then for all f : X ! Y we have
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maxfWLQðmap�ðX; Y ; fÞÞ;WLQðmapðX; Y ; fÞÞg � WLQðY Þ:

PROOF. By Theorem 4.1, we may replace ðL Y ; dY Þ by ðHðL Y Þ; 0Þ ¼
ð��ð�Y Þ �Q; 0Þ when we apply Theorem 5.3. We say that a cycle � ¼
ð
; �Þ 2 Rel�ðadL f

Þ is of length � r in HðL Y Þ if 
 2 HðL Y Þ is of bracket length

� r and, when applied to a generator v 2 LðV Þ ¼ LX, �ðvÞ is also of bracket

length � r in HðL Y Þ. The result is proved by arguing that iterated Whitehead

products in H�ðRelðadL f
ÞÞ of length r are represented by cycles of length � r in

HðL Y Þ.
To see this, consider two cycles �a and �b, and suppose that �a is of length � r

in HðL Y Þ. According to (12), f�a;�bg 	 	ðvÞ is contained in the ideal of LXða; bÞ
generated by a and SaðvÞ, and also is of length � 2. Therefore, when the map

ð�a j �bÞL f
is applied to it, we obtain an element of bracket length � ðrþ 1Þ in

HðL Y Þ. Likewise for the bracket ½a; b�. It follows that a cocycle representative of�
½�a; �b�

�
is of length � ðrþ 1Þ in HðL Y Þ. An easy induction using this completes

the proof. �

We say a simply connected CW complex X is a rational co-H-space if XQ is

homotopy equivalent to a wedge of spheres. We remarked above that, if X is a co-

H-space, then Whitehead products vanish in any component of the based

mapping space. The following result provides a large class of examples of free

function spaces with vanishing rational Whitehead products.

THEOREM 6.3. Let X be a finite rational co-H-space and Y a simply

connected, coformal complex of finite type. Suppose f induces a surjection on

rational homotopy groups. Then WLQðmapðX; Y ; fÞÞ ¼ 1.

PROOF. Since X is a rational co-H-space, the differential dX in the Quillen

minimal model for X vanishes. Since Y is coformal, we may replace ðL Y ; dY Þ by
ðHðL Y Þ; 0Þ, and view L f as a map LX ! HðL Y Þ, when we apply Theorem 5.3.

Suppose given a pair �a ¼ ð
a; �aÞ 2 RelpðadL f
Þ and �b ¼ ð
b; �bÞ 2 RelqðadL f

Þ of

�adL f
-cycles; with 
a; 
b 2 HðL Y Þ and �a; �b 2 Der�ðLX;HðL Y Þ;L fÞ. Using the

fact that

ð�a j �bÞL f
: LXða; bÞ ! HðL Y Þ

is a DG Lie algebra map, we see that ½
a;L fðvÞ� ¼ �ð�a j �bÞL f

�
@a;bSaðvÞ

�
¼ 0, for

any v 2 LX. By assumption, L f is surjective and it follows that the bracket of 
a
with any element of HðL Y Þ is zero. A similar argument yields the same

conclusion for 
b. Finally, we obtain from (12) that f�a;�bg 	 	ðvÞ ¼ �½b; SaðvÞ�
�½a; SbðvÞ�. It follows that in H�

�
RelðadL f

Þ
�
, we have
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�
½�a; �b�

�
¼

�
� ½
a; 
b�;�½
a; �bðvÞ� � ½
b; �aðvÞ�

�
¼ ð0; 0Þ:

The result follows from Theorem 5.3. �

In [6], Ganea proved WLðmap�ðX; Y ; 0ÞÞ � catðXÞ. We give a rational

version of this inequality which applies to all components. Recall the rational cone

length cl0ðXÞ of a space X is the least integer n such that X has the rational

homotopy type of an n-cone (see [5, p. 359]). Spaces of rational cone length 1 then

correspond to rational co-H-spaces.

THEOREM 6.4. Let X be a finite CW complex and Y a simply connected

complex of finite type. Then WLQðmap�ðX; Y ; fÞÞ � cl0ðXÞ for all maps f : X !
Y .

PROOF. Let n ¼ cl0ðXÞ. By [5, Theorem 29.1], the underlying vector space

V of the Quillen minimal model of X admits a filtration f0g � V ð1Þ �
V ð2Þ � 
 
 
 � V ðnÞ ¼ V where dXðV ðiÞÞ � LðV ði� 1ÞÞ. The result is proved by

arguing that iterated Whitehead products in H�ðDerðLX;L Y ;L fÞÞ of length r

are represented by cycles that vanish on V ðr� 1Þ. We argue in a similar fashion to

the proof of Theorem 6.2.

Consider two cycles �a; �b 2 DerðLX;L Y ;L fÞ. Recall that their Whitehead

product is represented by the image of the universal example

f�a;�bg 	 	 2 DerðLX;LXða; bÞ;	Þ

under the map

ð��a j ��b ÞL f

� �
�
: DerðLX;LXða; bÞ;	Þ ! DerðLX;L Y ;L fÞ:

Here ��a ¼ ð0; �aÞ and ��b ¼ ð0; �bÞ in RelðadL f
Þ. In particular, ð��a j ��b ÞL f

maps a

and b to zero.

From (12), we see that f�a;�bg 	 	ðvÞ � ��b 	�aðdXðvÞÞ modulo terms in

the ideal generated by a and b. Now assume that �a vanishes on V ðrÞ. Since
dXðV ðrþ 1ÞÞ � LðV ðrÞÞ, we have that f�a;�bg 	 	 vanishes on V ðrþ 1Þ. An easy

induction using this completes the proof. �

We next give a complete calculation of the rational Whitehead length of

function spaces in a special case. Let X be a simply connected, finite complex and

Sn a sphere with n � 2. When n is odd, Sn is a rationalH-space and hence so too is

mapðX;SnÞ. It follows that, after rationalization, each component of mapðX;SnÞ
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is homotopy equivalent to the null component, which itself is an H-space; in

particular we haveWLQðmapðX;Sn; fÞÞ ¼ 1. Identical remarks apply to the based

function space.

When n is even, the rational homotopy types of components mapðX;Sn; fÞ
are more complicated. A complete description for X rationally ð2nþ 1Þ-co-
connected is given by Møller-Raussen [12, Theorem 1]. We compute the rational

Whitehead length of all components in both the based and free setting without

dimension restriction on X.

Since Sn is a coformal space, WLQðmap�ðX;Sn; fÞÞ and WLQðmapðX;Sn; fÞÞ
are each equal to either 1 or 2—but not a priori equal to each other—by

Theorem 6.2. Suppose first that Hðf ;QÞ ¼ 0 : H�ðSn;QÞ ! H�ðX;QÞ. Then the

rationalization of f factors through the fibre KðQ; 2n� 1Þ of the Postnikov

decomposition KðQ; 2n� 1Þ ! ðSnÞQ ! KðQ; nÞ. This implies f is a rationally

cyclic map (see [11, Definition 2.4 and Example 4.4]). By [9, Theorem 3.7], the

evaluation fibration ! : mapðX;Sn; fÞ ! Sn is then rationally fibre-homotopically

trivial and, from the long exact homotopy sequence, we have an isomorphism of

Whitehead algebras:

��ðmapðX;Sn; fÞÞ�Q; ½ ; �w ¼� ��ðmap�ðX;Sn; fÞÞ�Q; ½ ; �w
� �

� ��ðSnÞ�Q; ½ ; �w
� �

:

Since WLQðSnÞ ¼ 2, we have WLQðmapðX;Sn; fÞÞ ¼ 2 and WLQðmap�ðX;Sn; fÞÞ
is equal to either 1 or 2 in this case.

Suppose Hðf ;QÞ 6¼ 0. Write ðL Sn ; dSnÞ ¼ Lðu; 0Þ with juj ¼ n� 1 and

LX ¼ LðV ; dXÞ. The condition Hðf ;QÞ 6¼ 0 translated to Quillen models implies

there exists v 2 Vn�1 with L fðvÞ ¼ u. This implies there are no cycles ðu; �Þ 2
RelnðadL f

Þ because adL f
ðuÞ þDL f

ð�Þ cannot equal zero: note that �ðdXðvÞÞ ¼ 0

for degree reasons, and then applied to v we obtain that

adL f
ðuÞðvÞþDL f

ð�ÞðvÞ¼ ½u;L fðvÞ� þ dSn�ðvÞ � �ðdXðvÞÞ¼ ½u; u� 6¼ 0 2 ðL SnÞ2n�2:

By the formula for the Whitehead product in H�ðRelðadL f
ÞÞ [Theorem 3.6], we see

directly that the cycle ð½u; u�; 0Þ 2 Rel2n�1ðadL f
Þ does not represent a Whitehead

product. Translating back, this means

��ðmapðX;Sn; fÞÞ �Q; ½ ; �w ¼� ��ðmap�ðX;Sn; fÞÞ �Q; ½ ; �w
� �


 Qð½�; ��wÞ; 0
� �

where � 2 �nðSnÞ is nontrivial and ðQð½�; ��wÞ; 0Þ denotes the abelian Whitehead

algebra generated in degree 2n� 1. Thus in this case

WLQðmapðX;Sn; fÞÞ ¼ WLQðmap�ðX;Sn; fÞÞ ¼ 1 or 2:
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In both cases, the relevant question is the rational Whitehead length of the based

function space. We address this question as an application of our formula:

THEOREM 6.5. Let X be a finite, simply connected CW complex and f :

X ! Sn a based map with n even. Then WLQðmap�ðX;Sn; fÞÞ ¼ 2 if and only if

there exists a pair x; y 2 H�n�2ðX;QÞ satisfying:

(i) xy 6¼ 0,

(ii) xz 6¼ 0 or yz 6¼ 0 for z 2 HnðX;QÞ ¼) Hðf;QÞðzÞ ¼ 0 and

(iii) xy ¼ wz for some z 2 HnðX;QÞ and any w ¼) Hðf ;QÞðzÞ ¼ 0

Otherwise, WLQðmap�ðX;Sn; fÞÞ ¼ 1.

As for the free function space, if Hðf ;QÞ ¼ 0 then WLQðmapðX;Sn; fÞÞ ¼ 2.

Otherwise, WLQðmapðX;Sn; fÞÞ ¼ WLQðmap�ðX;Sn; fÞÞ, as given above.

PROOF. The results for the free function space follow from the discussion

preceding the statement of the theorem. Thus we focus on the based function

space and so the space H�ðDerðLX;L Sn ;L fÞÞ with Whitehead product given by

Corollary 3.7. Write LX ¼ LðV ; dXÞ and L Sn ¼ Lðu; 0Þ. Given a homogeneous

basis fv1; . . . ; vsg for V ¼ s�1 eH�ðX;QÞ, we will assume the vectors are in

nondecreasing order of degree. If Hðf ;QÞ 6¼ 0, we will further assume that there

is some basis vector vk 2 Vn�1 such that L fðvkÞ ¼ cku while L fðviÞ ¼ 0 for any

other basis element vi of degree n� 1. Here ck 6¼ 0. For convenience, we allow the

case ck ¼ 0 so that Hðf;QÞ ¼ 0 if and only if ck ¼ 0.

We recall the quadratic part of the differential dX is dual to the cup product

in H�ðX;QÞ (see [15, Section I.1.(10)] and [5, Section 22e]). Let fx1; . . . ; xsg be

the corresponding additive basis of eH�ðX;QÞ, that is, xi ¼ sðviÞ. Given any v 2 V

we may write

dXðvÞ ¼
X
i�j

cijðvÞ½vi; vj� þ longer length terms ð18Þ

with cijðvÞ 2 Q and ciiðvÞ ¼ 0 for vi of even degree. As a direct consequence of this

duality we have that the cup product xixj ¼ 0 if and only if cijðvÞ ¼ 0 for all v 2 V .

We make use of this repeatedly below.

Let � 2 DerpðLX;L Sn ;L fÞ. Using (18), we have

DL f
ð�ÞðvÞ ¼ ��ðdXvÞ ¼ �

X
i�k

cikðvÞ½�ðviÞ;L fðvkÞ� ¼ �
X
i�k

ckcikðvÞ½�ðviÞ; u�:

It follows that � is a cycle if �ðviÞ ¼ 0 for all vi in Vn�1�p. If �ðviÞ 6¼ 0 for some

vi 2 Vn�1�p we may alter our basis in this degree so that �ðvjÞ ¼ �iju for vj 2 Vn�1�p
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where �ij is the Kronecker delta function. Then we see � is a cycle if and only if

ckcikðvÞ ¼ 0 for all v 2 V . Translating, we have shown a derivation � 2
DerpðLX;L Sn ;L fÞ not vanishing on Vn�1�p is a cycle if and only if there exists

x 2 H�n�2ðX;QÞ such that xz 6¼ 0 implies Hðf ;QÞðzÞ ¼ 0 for all z 2 HnðX;QÞ.
Next let �a; �b 2 DerðLX;L Sn ;L fÞ be cycles of degree p and q, respectively.

As in the discussion preceding Corollary 3.7, let ��x ¼ ð0; �xÞ 2 RelðadL f
Þ, x ¼ a; b,

be the corresponding cycles so that, by (11), the derivation cycle

�
½�a; �b�

�
¼ ð��a j ��b ÞL f

	 f�a;�bg 	 	 2 Derpþq�1ðLX;L Sn ;L fÞ

represents ½h�ai; h�bi�w. Using (18) again, (12) and the fact that ð��a j ��b ÞL f
ðxÞ ¼ 0

for x ¼ a; b, we obtain

�
½�a; �b�

�
ðvÞ ¼ �ð��a j ��b ÞL f

	�b 	�a 	 	ðdXvÞ

¼
X
i<j

� cijðvÞ ½�aðviÞ; �bðvjÞ� � ½�bðviÞ; �aðvjÞ�
� �

�
X
i

2ciiðvÞ½�aðviÞ; �bðviÞ�:

From this we conclude that
�
½�a; �b�

�
nonvanishing for derivation cycles �a; �b

implies �aðviÞ 6¼ 0 for some vi 2 Vn�1�p and �bðvjÞ 6¼ 0 for some vj 2 Vn�1�q and for

this i; j we have cijðvÞ 6¼ 0 for some v 2 V . By the above computation, the fact that

�a and �b are cycles implies ckcikðwÞ ¼ ckcjkðwÞ ¼ 0 for all w 2 V . Conversely,

suppose there exist indices i; j such that cijðvÞ 6¼ 0 and ckcikðwÞ ¼ ckcjkðwÞ ¼ 0 for

all w 2 V . Then define �a; �b by setting �aðvlÞ ¼ �liu and �bðvlÞ ¼ �lju and extend by

the L f -derivation law. By the preceding paragraph, the �a and �b are derivation

cycles. Computing as above
�
½�a; �b�

�
ðvÞ ¼ �cij½u; u� is non-vanishing. Combining

and translating to cohomology, we have shown that there exists a nontrivial

pairing
�
½�a; �b�

�
2 Derpþq�1ðLX;L Sn ;L fÞ for cycles �a 2 DerpðLX;L Sn ;L fÞ and

�b 2 DerqðLX;L Sn ;L fÞ if and only if there exists a pair x; y 2 H�n�2ðX;QÞ
satisfying (i) and (ii).

Finally, suppose �a; �b 2 DerðLX;L Sn ;L fÞ are cycles of degree p and q with�
½�a; �b�

�
6¼ 0. As above, let vi 2 Vn�1�p and vj 2 Vn�1�q be basis elements so that

�aðviÞ 6¼ 0 and �bðvjÞ 6¼ 0. If p 6¼ q we arrange our basis in degree n� 1� p and

n� 1� q so that �aðvlÞ ¼ �ilu and �bðvmÞ ¼ �jmu for vl 2 Vn�1�p and vm 2 Vn�1�q. If

p ¼ q, we must allow for the case vi ¼ vj. In this case, we may arrange the basis in

degree n� 1� p so that �aðvlÞ ¼ ca�ilu and �bðvmÞ ¼ cb�jmu for vl; vm 2 Vn�1�p.

Here ca; cb 6¼ 0 and can be taken to be 1 when i 6¼ j. We use this identification in

all cases by taking ca ¼ 1 and cb ¼ 1 except, perhaps, when i ¼ j.

Let x ¼ sðviÞ 2 Hn�pðX;QÞ and y ¼ sðvjÞ 2 Hn�qðX;QÞ be the corresponding
cohomology elements. Then the pair x; y satisfy (i) and (ii). We show

�
½�a; �b�

�
2

78 G. LUPTON and S. B. SMITH



Derpþq�1ðLX;L Sn ;L fÞ bounds if and only if the pair x; y violates (iii). Since�
½�a; �b�

�
is nonvanishing, the preceding discussion shows there is a vector v 2

V2n�1�p�q with

�
½�a; �b�

�
ðvÞ ¼ �cacbcijðvÞ½u; u� 6¼ 0:

Suppose
�
½�a; �b�

�
¼ DL f

ð�Þ for some � 2 DerpþqðLX;L Sn ;L fÞ. Applying this to

v 2 V using (18) we obtain

�cacbcijðvÞ½u; u� ¼
�
½�a; �b�

�
ðvÞ ¼ DL f

ð�ÞðvÞ ¼ ��ðdXvÞ ¼ �
X
r<k

ckcrkðvÞ½�ðvrÞ; u�:

We conclude that if
�
½�a; �b�

�
is a nonvanishing boundary then there is v 2 V with

cijðvÞ 6¼ 0 and ckcrkðvÞ 6¼ 0 for some r which directly translates to imply the pair

x; y violates (iii) with w ¼ sðvrÞ and z ¼ sðvkÞ. Conversely, if x; y violate (iii) then
ck 6¼ 0 and there exists some v 2 V2n�1�p�q such that cijðvÞ 6¼ 0 and crkðvÞ 6¼ 0 for

some index r. Notice that vr 2 Vn�1�p�q. Define a derivation � 2 DerpþqðLX;L Sn ;

L fÞ by setting �ðvlÞ ¼ �lru and extending. We then see DL f
ð�ÞðvÞ ¼

�ckcrkðvÞ½u; u� 6¼ 0 while
�
½�a; �b�

�
ðvÞ ¼ �cacbcijðvÞ½u; u� 6¼ 0. To complete the proof,

we show the derivations DL f
ð�Þ and

�
½�a; �b�

�
differ by a constant. Note that both

derivations increase bracket length. This implies they both vanish on V except in

degree 2n� 1� p� q. In this degree, they are linear maps V2n�1�p�q ! Qð½u; u�Þ.
We have shown both are nonzero on a particular vector v 2 V2n�1�p�q. Since the

target is one-dimensional, there is a constant c 6¼ 0 such that
�
½�a; �b�

�
¼

cDL f
ð�Þ ¼ DL f

ðc�Þ, as needed. �

We conclude with an example realizing the inequality

WLQðmapðX; Y ; fÞÞ >WLQðmapðX; Y ; 0ÞÞ ¼ WLQðY Þ

for some map f : X ! Y .

EXAMPLE 6.6. Let X ¼ S3, and let Y be a space with Sullivan minimal

model �ðx1; x2; x3; y; dÞ, the free DG algebra with generators of degrees

jx1j ¼ 2; jx2j ¼ jx3j ¼ 3, and jyj ¼ 7. Define the (degree þ1) differential here by

setting dðxiÞ ¼ 0 and dðy7Þ ¼ x1x2x3. Then Y has vanishing Whitehead products

since d has no quadratic term [5, Proposition 13.16]. Consequently,

WLQðmapðX; Y ; 0ÞÞ ¼ 1 by Theorem 6.1. The Quillen minimal model ðL Y ; dY Þ
for Y is of the form LðW ; dY Þ where W ¼ s�1 eH�ðY ;QÞ. We use that the quadratic

part of the differential dY is dual to the cup-product in H�ðY ;QÞ (see [5, Section
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22(e)]). In low degrees, we see W contains elements w1; w2; w3; w1;1; w1;2; w1;3; w2;3

with jw1j ¼ 1; jw2j ¼ jw3j ¼ 2; jw1;1j ¼ 3; jw1;2j ¼ jw1;3j ¼ 4 and jw2;3j ¼ 5. Here wi
corresponds to xi and wi;j to the cup-product xi 
 xj. We may write the differential

as

dY ðw1Þ ¼ dY ðw2Þ ¼ dY ðw3Þ ¼ 0 with dY ðw1;1Þ ¼
1

2
½w1; w1�;

dY ðw1;2Þ ¼ ½w1; w2�; dY ðw1;3Þ ¼ ½w1; w3� and dY ðw2;3Þ ¼ ½w2; w3�

on these generators. Write the Quillen minimal model for S3 as Lðv; 0Þ with v in

degree 2 and let f : S3 ! Y correspond, after rationalization, to the class

w3 2 H2ðL Y Þ. That is, L fðvÞ ¼ w3. We show that WLQðmapðS3; Y ; fÞÞ � 2.

Observe that an element �a ¼ ð
a; �aÞ 2 RelpðadL f
Þ is a �adL f

-cycle if dY ð
aÞ ¼ 0

and dY ð�aðvÞÞ ¼ �½
a; w3�. Thus �a ¼ ðw1; �aÞ and �b ¼ ðw2; �bÞ are �adL f
-cycles of

degree 2 and 3 respectively where �aðvÞ ¼ �w1;3 and �bðvÞ ¼ �w2;3. Write

� 2 �2ðmapðX; Y ; fÞÞ �Q and � 2 �3ðmapðX; Y ; fÞÞ �Q for the corresponding

homotopy elements as in Section 5. Applying Theorem 5.3, their Whitehead

product ½�; ��w 2 �4ðmapðX; Y ; fÞÞ �Q corresponds to the class represented by

the �adL f
-cycle

�
½�a; �b�

�
¼ ð½w1; w2�; f�a; �bgÞ 2 Rel4ðadL f

Þ; where, by using formula

(12), we have that f�a; �bgðvÞ ¼ �½w2; w1;3� � ½w1; w2;3�. This cannot be a boundary.

For if �adL f
ð�; �Þ ¼ ð½w1; w2�; f�a; �bgÞ, then we have � ¼ �w1;2 þ 
 for some 
 a

cycle in L Y of degree 4. Since Y has no rational homotopy of degree 5 (direct from

the Sullivan model), we see that 
 ¼ dY ð�Þ for some � 2 L Y . Further, we then

obtain that

adL f
ð�w1;2 þ dY ð�ÞÞðvÞ þDL f

ð�ÞðvÞ ¼ f�a; �bgðvÞ;

which implies that

dY ð½�; w3� þ �ðvÞÞ ¼ ½w1;2; w3� � ½w1; w2;3� � ½w2; w1;3�:

However, when dY is applied to this latter term, it yields 2½½w1; w2�; w3� and not

zero, so it cannot be a cycle (boundary). We conclude that ½�; ��w 6¼ 0.
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