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Abstract. Let V be a total valuation ring of a division ring K with an
automorphism o and let A= ®iczA4; X' be a graded extension of V in
K[X, X" !; 0], the skew Laurent polynomial ring. We classify A by distinguishing
three different types based on the properties of A; and A_;, and a complete
description of A; for all i € Z is given in the case where A; is not a finitely
generated left O;(A;)-ideal.

Introduction.

Let K be a division ring with an automorphism o and let V be a total
valuation ring of K, that is, for any non-zero k € K, either k€ Vor k' e V. A
graded subring A = ®;czA4; X’ of K[X, X~ 1; 0], the skew Laurent polynomial ring,
is called a graded total valuation ring of K[X,X ';0] if for any non-zero
homogeneous element a X’ of K[X, X~ ';0], either aX’ € A or (aX’)"' € A, where
Z is the ring of integers. A graded total valuation ring A of K[X, X~!; 0] is said to
be a graded extension of V in K[X, X 1 0] if A9 =V.

This paper is a continuation of [10] which is concerned with the classification
of graded extensions. In order to describe the classification in detail, we introduce
some notations. For any additive subgroups I and J of K, we set:

(J:I),={a€c K|al CJ},
(J:I),={a€e K|IaCJ}
I ={a'|a€cla+#0}and
I'' ={a € K| Ial C I}, the inverse of I.

In particular,
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Oy(I) = (I :1I);, the left order of I and
O,(I) = (I :1),, the right order of I.

A non-zero left V-submodule I of K is called a left V-ideal if Ia C V for some
non-zero a € K. Similarly we define right V-ideals and V-ideals.

Let A= ®;czA; X" be a graded extension of V in K[X,X !;0] with
W = 0y(A;). In [10], we classified graded extensions A of V in K[X, X !;0] by
distinguishing five different types based on the properties of A; and A_; in the
case where A; is a finitely generated left O;(A;)-ideal as follows:

Case 1: A; is a finitely generated left W-ideal.

Type (a) A = Va=ao(V) and A_; = Vo (a™);

Type (b) Ay = Wa D ac(W);

Type (c) Ay = Wa =Wao(V) C ac(W);

Type (d) A = Wa = ao(W), A, = J(W)o ' (a™') and J(W)*
= J(W), where J(W) is the Jacobson radical of W;

Type (e) Ay = Wa=ac(W), Ay = J(W)o (a™!) and J(W)
= Wb~ for some b € K.

In this paper, we will classify graded extensions A of V in the case where A; is
not a finitely generated left W-ideal. For this, we introduce further notations.

For any left V-ideal I and right V-ideal J, we define

IT={Wec|IC Wec,ce K}, where W = Oy(I) and
J'=n{cU | J CcU,ce€ K}, where U= O,(J).

If A, is not a finitely generated left WW-ideal, then there are two cases, that is,
either *A; D A; or *A; = A;. In the former case, we will obtain *A; = Wa, A; =
J(W)a for some a € K. In the latter case, we will divide A into two types by the
properties of M; = Ajo(Ay)---0"1(4;) for all i € N, the set of all natural
numbers. Now we can classify A by distinguishing three different types based on
the properties of A; and A_; by using *-operation as follows:

Case 2: A; is not a finitely generated left W-ideal, where W = O;(A;).
Type (f) *A; D Ay

Type (g) *A; = A; and *M; is not a principal left W-ideal for any i € N;
Type (h) *A; = A; and *M; is a principal left W-ideal for some [ € N.

In Section 1, we will give a complete description of A; for all i € Z and study
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types (f), (g) and (h) in the following ways:

For Type (f), A_; =Uo '(a™!) is a principal left U-ideal, where U is an
overring of V with o(U) = a *Wa. Then we are in a similar situation as in [10,
Theorem 1.6]. For Type (g), it will be shown that A = @;czM; X", where M_; =
o '((V: M;),) for any i € N (Theorem 1.14). For Type (h), A is not uniquely
determined by the properties of Ay, A_;, and the structure of A is complicated
(Theorem 1.20).

In Section 2, we will provide some examples of graded extensions of V in
K[X, X% 0] to illustrate the classification. We will discuss the ideal theory in the
forthcoming paper and refer the readers to [7] for some basic properties of non-
commutative valuation rings.

1. Main results.

Throughout this paper, V is a total valuation ring of a division ring K. We
start with the following lemma whose proofs are similar to ones in [7, Section 6].

LEMMA 1.1.  Let I be a left V-ideal with W = Oy(I) and U = O,(I). Suppose
that U is a total valuation ring of K. Then
(1) The following are equivalent:
(a) I is not a principal left V-ideal.
(b) I(V: 1), =J(W).
(¢c) I=JV)I.
) U=0,(I1),W=0,(I"1)and I* =1 ="I.
(3) If "I D I, then *I = Wa and I = J(W)a for some a € K.
(4) Suppose that I is not a principal left W-ideal. Then I™' = (V : 1), and
A=WV :(V:1I),), C*I
(5) I is not a principal left W-ideal if and only if it is not a principal right
U-ideal. In this case, in particular, J(W)? = J(W) and J(U)* = J(U).

PROOF.

(1) (a)=>(b): The proof is similar to one in [6, Lemma 1.2].

(b)=(c): Suppose that I D> J(V)I. Then there is a be I\ J(V)I with

J(V)b 2 J(V)I by [7, Lemma 6.3]. Thus Ib~* C O,(J(V)) = V by [7, Lemma 6.8]

and so b~' € (V:I),. Hence 1 =bb~' € I(V : I), = J(W), a contradiction. There-
fore I = J(V)I follows.

(¢)=(a): Suppose that I =Ve¢ for some c€ I. Then Ve=1=J(V)I =
J(V)e, a contradiction. Hence I is not a principal left V-ideal.

(2) and (3): These are proved in the same ways as in [7, Lemma 6.10 and
Proposition 6.13].

(4) Since I = J(W)I, we easily have (V : I), = (W : I), which is equal to '
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Hence I C *I follows since *I = (W : (W : I),), by [7, Proposition 6.13].

(5) Suppose that I is not a principal left W-ideal. If I = aU for some a € K,
then I = (aUa!)a = Wa, a contradiction. Hence [ is not a principal right U-ideal.
The “only if” part is similar and the last statement follows from the same
argument as in [7, Proposition 6.13.] O

In the case where J(W)2 = J(W), we have the following special properties of
ideals which are needed later.

LEMMA 1.2. Let I be aleft W and right U-ideal, where W is an overring of V-
and U is a total valuation ring of K. Suppose that J(W)* = J(W). Then

(1) If I D We for some c € K, then J(W)I D We.

(2) If JW)I D J(W)c for some ¢ € K, then J(W)I D We.

PROOF.

(1) Let b€ I\ We. Then Wb D We and so ¢b™ € J(W). Thus We C J(W)I.
But J(W)I is not a principal left W-ideal by Lemma1.1, since J(W)* = J(W).
Hence J(W)I D We.

(2) We have either J(W)I D Wecor J(W)I C We. Suppose that J(W)I C We.
Then J(W)Ic™t C J(W) and so Ie' C O (J(W))=W. So I CWec and thus
J(W)I C J(W)e, a contradiction. Hence J(W)I D We. O

Let A = ®;czA; X" be a graded extension of V in K[X, X~!; ¢]. Then note that
A; is a left V and right o'(V)-ideal for any i € Z by [2, Lemma 1.1].

LEMMA 1.3.  Let A = ®;czA; X" be a graded extension of V in K[X, X ';0].
Suppose that A; is not a principal left V-ideal for some i € Z with W = Oi(4;).
Then

(1) Ay =07"((V: 4),).

(2) If A; is not a principal left W-ideal, then

(a) Ay =0 (W: A),) =0 (A7) and
(b) If A; = J(W)a for some a € K, then A_; = o~ (a"W).

PROOF.

(1) V2 Ai0'(A_;) implies o'(A;) C (V : A;),. Suppose that (V:A4;), D
o'(A_;). Then for any c € (V: 4;),\ 0'(A_;), c ' ¢ 0'(A7,). So ¢! € A; by [10,
Lemma 1.1]. Thus 1 = ¢ 'c € 4;(V : 4;), = J(W) by Lemma 1.1, a contradiction.
Hence o/(A_;) = (V : A;),, that is, A_; =07 '(V : A;),).

(2) (a) First note that J(W)? = J(W) and J(W)A; = A; by Lemmal.1. So
(V:A4;),=(W:A4A;), by the proof of Lemmal.l (4). Hence A_; =oc (W :
A;),) =07 (A7) since A7 = (W : A4),.
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(b) If A;=J(W)a for some a€ K, then (W:A;), =a'W, because
J(W)? = J(W). Hence A_; = o~ (a~'W). 0

Let A= ®;czA4; X’ be a graded extension of V in K[X, X ;0] with W =
0O;(Ay) and o(U) = O,(A;). Then it follows that W D V and U D V, since A4, is a
left V and right o(V)-ideal. Suppose that A; is not a principal left W-ideal. Then
J(W)? = J(W) and J(U)* = J(U) by Lemma 1.1, and there are two cases, namely,
either *A; = Ay or *A; D A;. In the latter case, we have A; = J(W)a and *4; =
Wa for some a € K by Lemma 1.1. Conversely, if Ay = J(W)a for some a € K,
then *A; = Wa D Ay by [7, Lemma 6.12].

First we will study Type (f), namely, *A; D A;.

PROPOSITION 1.4. Let A= ®;czA; X" be a graded extension of V in
K[X, XY o] with W = O)(A;) and o(U) = O,(A;). Suppose that Ay is not a
principal left W-ideal and that *Ay; D Ay, that is, Ay = J(W)a for some a € K.
Then

(1) o(U) = a"'Wa.

(2) Ay =J(W)a=ao(J(U)) and Ay = oL (a"'W) =Uos (a).
(3) Ou(A-1) =U and O,(A1) = o 1 (W )
PROOF.

(1) It follows that o(U) = O,.(J(W)a) = a *Wa since O,(J(W)) = W.

(2) Since o(J(U)) = a ' J(W)a by (1), we have A; = J(W)a = ac(J(U)) and
Ag=0Ya'W)=0"1o(U)a)=Uo'(a?!) by Lemma1.3 and (1).

(3) This easily follows from (2). O

Now as in [10, Section 2], for a fixed non-zero a € K, we set
a; = ao(a)---o" a),a; =0 "(a; ') for all i € N and o = 1.
Then we have
a;=0a o (at) -0 (a ) foralli € N, a; = o'(a”})
and

;o' (o) = a4 for all i, 5 € Z.

Furthermore, by using the properties of A_; in Proposition 1.4, we can consider,
as in [10, Section 2], the following two cases:



1116 G. XIE and H. MARUBAYASHI

(a) Ay =Ua_1 D a_10 Y(U) (equivalently, Wa_; D a0 }(W) = A_)
(b) Ay =Ua_y Ca_j0}(U) (equivalently, Wa_; C a_j0” Y (W) = A_4)
The following proposition is clear by [10, Lemma 1.1].

PROPOSITION 1.5. Let A= ®;czA; X' be a graded extension of V in
K[X,X 1 0]. SetY =X and B;=A_; for alli € Z. Then B = ®;czB;Y" is a
graded extension of V in K[Y, Y% o7,

Since By = A_; is a principal left U-ideal for Type (f), we have the following
theorem by [10, Theorems 2.4, 2.5 and 2.6] and Proposition 1.5.

THEOREM 1.6. Let W be an overring of V with J(W)* = J(W) and let
A = ®iezA; X" be a subset of K[X, X 10| with Ay =V, Ay = J(W)a which is a
right o(V)-ideal for some a € K, and A_; = o *(a *W). Set O,(A;) = o(U) for
some overring U of V.. Then A is a graded extension of V in K[X, X ;0] if and
only if one of the following properties hold.

(V) IfAy=Ua12a 10t (U), then A_; =Ua_; and A; = a;o*(J(U)) for all
i€ N.

(2) IfA1 =Ua_; Ca_107Y(U), then A_; = a_jo ' (W) and A; = J(W)a; for
alli € N.

Next we will study the case where *A; = A; and it is not a principal left
W-ideal. So in the remainder of this paper, suppose that Ay is a left V and right
o(V)-ideal with W = Oy(A1), o(U) = O,(A1) and *Ay; = Ay is not a principal left
W-ideal. In this case, note that J(W)? = J(W) and J(U)? = J(U). We will study
the graded extensions by ideal theoretic methods instead of the elements a; above
as follows:

Let Ay =0 }((V : 4;),) and set
My=V,M; = Ajo(Ay) -0 HA),M_; =0 '(V: M;),) for all i € N
and
No=V,N;=A 0 (A )0 (A),N;=0'((V:N_),) foralli € N,
Then we have:

M;o'(M_;) CV,M;o'(M;) = M, ;, N_jo '(N;) CV and
N_Y',O'ii(N_j) = N—i—j for all ’L,] € N.
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Note that N; = A;, because A_; = o !(A!) and is not a finitely generated
left U-ideal and so, by Lemmal.l, Ny =o((V:A.),) =0c((V:07(AT),) =
o((e"Y(AY)) ) = o(0 (A7) = *A; = A;. Furthermore, we have that *A4; =
Aj is not a principal left W-ideal if and only if *A_; = A_; is not a principal left
U-ideal by Proposition 1.5.

Let A= @;czA4; X" be a graded extension of V in K[X, X !;0] such that
*Ay = A; and it is not a principal left W-ideal, where W = O;(4;). We will show
that the properties of A depend on the properties of M; (i € N) (see Theorems
1.14 and 1.20). There are two cases, that is,

Type (g) *M; is not a principal left W-ideal for any i € N;

Type (h) *M; is a principal left W-ideal for some [ € N.

We will study these two cases in the remainder of this section. At first, we
will show that both M = ®;czM; X' and N = ®;czN; X’ are graded extensions of
Vin K[X, X ;0] with M; = A; = Ny.

LEMMA 1.7.  LetI be aleft V and right o°(V)-ideal for somei € Z such that I
is not a principal left V-ideal as well as not a principal right o*(V)-ideal. Then
(Vi D), = (@(V): D),

PROOF.  Since both (V : 1), and (¢'(V): I), are left o’(V)-ideals, we have
either (V : 1), D (o'(V): 1), or (V: 1), C (¢'(V): I),. Suppose that the first case
occurs. Then for any b € (V : I),\ (o/(V) : I),, there is a ¢ € I with be ¢ o'(V). So
c Wt e (J(V)) and thus ¢ l=(c b HYbed(J(V)bC (V:1I),. Hence 1=
cct € I(V: 1), CJ(V) by Lemmal.l (1), a contradiction. Similarly, we have
(0'(V) : I); € (V : I), by the assumptions and the right hand version of Lemma 1.1
(1). Hence (V : I), = (¢*(V) : I), follows. O

LEMMA 1.8. Let I and J be subsets of K,0€ 1,0¢€ J andi € Z. Then
(1) If I is a left V-ideal and J = o= *((V : I),). Then IUo'(J") = K.
(2) TUo'(J") =K if and only if JUo*(I7) = K.

PROOF.

(1) For any b € K \ I, we have Vb D I, that is, [b-! C V. So bt € (V: I), =
o'(J) and thus b € 0'(J~). Hence IUo'(J7) = K.

(2) Suppose that TUo'(J")=K and c€ K\ J. Then ¢ !¢ J and so
o'(ctyel. Thus ¢t eo (), that is, c€ o (I7). Hence JUo (I") =K.
Similarly, JUo (") = K implies [Uc'(J") = K. O

PROPOSITION 1.9.  Let A; be a left V and right o(V)-ideal with O;(A;) = W
and O,(A1) = o(U). Suppose that *A; = Ay and it is not a principal left W-ideal.
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Then both M = ®jczM; X' and N = @;czN; X' are graded extensions of V in
K[X,Xfl;cr] with My = A; = Nj.

PROOF. By Lemmal.8, M;Uc'(M~;) =K for all i € Z. So it suffices to
prove that M;o'(M;) C M, for alli,j € Z by [10, Lemma 1.1]. Let i, j € N. Then
M;o'(M;) = M;,; by the definition. If i > j, then

Mio'(M-;) = Mi_jo' I (M;)o"(o? (M-;))
= M;_jo' (Mo’ (M_;))
C Mijo" (V) = Mi_;.

If i < j, then

V 2 Mo/ (M-j) = Mj_i0’ (M;)o? (0" (M_)) = Mj—; o/~ (M;o" (M_;)).
So 0/ (M;o'(M_;)) € (V : M;_;), = 07" (M;_;) and thus M;o’(M_;) C M;_;.
Since J(V)A; = A; = Ayjo(J(V)) by Lemmal.l and its right version, it
follows that J(V)M; = M; = M;o*(J(V)). So M; is not a principal left V-ideal as
well as not a principal right ¢’(V)-ideal. Hence, by Lemma 1.7, we have

o' (M_))M; = (o(V) : M;),M; C o' (V). (%)
Thus if ¢ < j, then
o' (M_j)M; = o' (M_;)M;o' (M;-i) C o' (V)o' (M—;) = o' (M)

Hence M_iO'_j’(Mj) - Mj—i‘
If i > j, then, by (x), o*(V) 2 ¢(M_;)M;o?(M;_;) and so, by Lemma 1.7,

o' (M_i)M; C ('(V) : 0 (M;-)), = o' (6" (V) = Mi—y),)
=o/((V: Mi—y),) = 0/ (0" (M) = o' (M_i;).

Hence M,io’i(M]-) C M_;4; follows.

Finally, since \%4 D) M]'O'j(M,j) = MjO’j(V)O'j(M,j) D) Mij(MiUi(M,i)),
(Tj(M,j) = Mi+j0i+j(M,i)Uj(M,j), we have Ji+j(M,i)O'j(M,j) Q (V : Mi+j)7. and
so M_jo™'(M_;) Co9((V : M4;),) = M_;_;. Hence M is a graded extension of
Vin K[X,X ! 0]. Since *A_; = A_; is not a principal left U-ideal, N is a graded
extension of V in K[X, X~!; 0] by the proof above and Proposition 1.5. O

Let A= ®;czA; X" be a graded extension of V in K[X, X !;0] such that
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*A; = A; and it is not a principal left W-ideal, where W = O;(A;). Then either
WA; is not a principal left W-ideal for any i € N or WA; is a principal left
W-ideal for some [ € N.

LEMMA 1.10. Let A = ®iezA; X" be a graded extension of V in K[ X, X !; 0]
such that *Ay = Ay and it is not a principal left W-ideal, where W = O;(A;). Set
o(U) = O,(A1). Then

(1) Ala(A,l) = J(W) and J(W)Apr] = A10’(Ai) fO’I“ allie N.

(2) If WA; is not a principal left W-ideal for some i € N(i > 1), then
Ai = Ala(Ai_l).

(3) Aio7Y (A1) = J(U) and J(U)A_;-1 = A_10 1 (A;) for alli € N.

(4) If UA_; is not a principal left U-ideal for some i € N(i > 1), then
A—i = A_lUil(A_H_l).

PROOF.

(1) It follows from Lemmas 1.1 and 1.3 that Ajo(A_1) = A1(V : 4;), = J(W).
A,lU_l(AiJrl) C A; implies O'(A,l)Ai+1 - O'(Ai). Thus J(W)Alqu = Ala(A,l)
Ai+] - A]O’(Ai) - Ai+1- Hence J(W)AZ+1 = Ala(Ai) since J(W)A] = A1 and
JW)? = J(W).

(2) By the assumptions, Lemmal.l and (1), we have A; CWA,; =

JWYWA;, = JW)A;, = Ajo(A;—1) C A;. Hence A; = Ajo(A;_1) follows.
(3) and (4) can be got by Proposition 1.5 and (1), (2). O

LEMMA 1.11.  Let A = ®jezA; X" be a graded extension of V in K[ X, X !; 0]
such that Ay =*A; and it is not a principal left W-ideal, where W = O;(A1).
Suppose that W A; is not a principal left W-ideal for any i € N. Then A = M.

PROOF. Suppose that W A; is not principal left W-ideal for any ¢ € N. Then
A; = A1o(A4;-1) for alli € N by Lemma 1.10. Hence we have A; = M, for alli € N
by induction on i. Furthermore, by Lemma1.3, we have A_; = o *((V : 4;),) =
o '(V: M;),) = M_;. Hence A = M follows. O

Note that A; = *A; which is not a principal left O;(A;)-ideal if and only if
A_y = *A_; which is not a principal left O;(A_;)-ideal. Now the following remark
is clear by Proposition 1.5 and Lemma1.11.

REMARK. Let A = ®;czA4;X’ be a graded extension of V in K[X, X !;0]
such that A; = *A4; and it is not a principal left O;(A4;)-ideal. Set U = O;(A_,).
Suppose that UA_; is not a principal left U-ideal for any ¢ € N. Then A = N.

LEMMA 1.12. Let A = ®iczA; X' be a graded extension of V in K[X, X }; 0]
such that *Ay = Ay and it is not a principal left W-ideal, where W = O;(A;). Set
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O'(U) = Or(Al)

(1) Suppose that either WA, =We or Ay=JW)c for some c€ K and
l€ N(I>1). Then o(A;_1) = ATtc and O)(A;1) = U.

(2) Suppose that WA; = We for some c € K and |l € N (assume that I is the
smallest natural number for this property). Then M; = J(W)c and U = W.

(3) Suppose that either UA_; =Uc or A_;=J({U)c for some c€ K and
le N(I>1). Then o7 (A_11) = A7{c and O)(A_141) = W.

(4) Suppose that UA_; = Uc for some ¢ € K and |l € N (assume that | is the
smallest natural number for this property). Then N_y = J(U)c and U = W.

PROOF.

(1) Suppose that A;=J(W)e. Then, from J(W)c= A; D Ajo(Ai—1), we
derive o(A;_1) C (J(W)e: Ay), = (W : Ay),)e = AT 'c, because J(W)A; = A;. On
the other hand, since A_; = o7 !(A7!), we have

A1 DA 0 Y (A) =0 HATTA) = o 1 (AT T(W)e) = o1 (A o),

because Ay! is not a principal right W-ideal. Hence o(A;1) = A7'c follows.
Furthermore, o(O0;(A;-1)) = Oi(c(Ai-1)) = Oi(A7'e) = Ol(ATY) = O,(Ar) = o(U),
which shows O;(A;—1) =U. In the case where WA, = We, the statements are
proved similarly.

(2) For each i (2 <i <1—1), we have A; = A;0(A;_1) by Lemma 1.10 and so
A; = M; inductively. Hence M; = Mio(M;_1) = A10(Ai-1) = A1AT e = J(W)e by
(1) and Lemmas 1.1, 1.3. That U = W follows from W = O;(J(W)c) = O;(M;) 2
Ol(Ml—l) D) Ol(Ml) =W and Ol(Ml—l) = Ol(Al—l) =U by (1).

(3) and (4) can be got by Proposition 1.5 and (1), (2). O

Since M and N are graded extensions of V in K[X,X ;0] with M; =
Ay = Ny, we have the following remark from the proofs of Lemma 1.12.

REMARK. Suppose that either M; = J(W)c for some ¢ € K and [ € N or
N_y = J(U) for some ¢ € K and!' € N. Then U =W.

LEMMA 1.13.  Let A = ®iczA; X" be a graded extension of V in K[ X, X !; 0]
such that *A; = Ay and it is not a principal left W-ideal, where W = Oy(A;). Set
o(U) = O,(A1). Then

(1) J(W)A; = M for alli € N.

(2) J(U)A_; = N_; for alli € N.

PROOF.
(1) If W A; is not a principal left W-ideal for any ¢ € N, then A; = M; for all
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i € N by Lemma1.11 so that J(W)A4; = JW)M; = M;. If WA, is a principal left
W-ideal for some [ € N, then U =W by Lemma1.12. We inductively suppose
that J(W)AZ = Mi, for some i € N. Then Mi+1 = Mla(M,;) = A1O’(J(W)A1) =
Ao(J(U)A;) = Aro(A;) = J(W)Ai41 by Lemma1.10 since A; is not a principal
right o(U)-ideal.

(2) can be got by Proposition 1.5 and (1). O

We are now ready to prove the following theorem which characterizes
Type (g):

THEOREM 1.14. Let A = ®;czA; X' be a subset of K[X, XY o] with Ay =V
such that Ay is a left V and right o(V')-ideal with * Ay = Ay, which is not a principal
left W-ideal, where W = O,(A;). Suppose that *M; is not a principal left W-ideal
for any i € N. Then A is a graded extension of V in K[X, X ;0] if and only if
A=M=@iczM;X".

PROOF. Suppose that A is a graded extension of V in K[X, X ';0]. By
Lemma1.13. J(W)A; = M; for all i € N. Assume that WA; = We for some j € N
and ¢ € K. Then *M; = *(J(W)A;) = *(J(W)c) = W, a contradiction. Thus W A4,
is not a principal left W-ideal for any i € N. Hence A = M = @®;czM; X' by
Lemma1.11. Conversely, if A= M, then A is a graded extension of V in
K[X, X% 0] by Proposition 1.9. O

Since N = @;czN; X' is a graded extension of V in K[X, X~!; 0] with N} = A,
we have the following

COROLLARY 1.15.  Suppose that *M; is not a finitely generated left W -ideal
foranyi e N. Then N = M.

Finally we will study Type (h), that is, M; = J(W)c for some c € K andl € N
(see Lemma1.1).

LEMMA 1.16.  Suppose that M; = J(W)c for some ¢ € K andl € N (assume
that 1 is the smallest natural number for this property). Then

(1) For any i € N, *M; D M; if and only if i € IN. In this case, My =
J(W)eal(e)---a=Vle) for alli € N.

(2) O)(M;) =W forallie N.

PROOF.

(1) First note that U = W by the remark to Lemma 1.12. For any i € N, let
B = ca'(c) -+ o V(c). Suppose that My = J(W)B;. Then M 1y = Mio'(My) =
Mo (J(W)B;) = Mya (J(U))a! (B;) = Mol (B;) = J(W)Bis1. Thus *M; D M; for all
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i € IN. So it suffices to prove that *M, = M, if p ¢ IN. Before that, we have to
prove the statement (2). Let i € N. Then there is a j € N with jl > 4. So W =
O (J(W)B;) = Oi(My) 2 O)(M;) 2 W and hence O;(M;) =W. Write p=1il+j
(0 < j <) and suppose that *M, D M,, that is, M, = J(W)b for some b € K by
Lemmal.1. Then J(W)b = M]‘O'j(M“) = MJO'J(J(W),QZ) = MjO’j(ﬂi). So Mj =
J(W)ba? (1), which contradicts to the choice of I. Hence *M, = M, for all p €
N with p¢ IN. O

Now the following Lemma is clear by Proposition 1.5 and Lemma 1.16.

LEMMA 1.17.  Suppose that N_; = J(U)d for some d € K andl € N (assume
that 1 is the smallest natural number for this property). Then

(1) For any i € N, *N_; D N_; if and only if i € IN. In this case, N_; =
J(U)do ! (d) - -- o= V(d) for alli € N.
(2) Oy(N_;) =U forallie N.

LEMMA 1.18. M =J(W)b for some be K and k€ N if and only if
N_j = J(U)o ¥ (b1). In this situation, o*(W) = b~ Wb.

PrOOF. Note that U =W by the remark to Lemma1.12. Suppose that
Mj, = J(W)b. Then M_j = o~*(b~'W) by Lemma 1.3 and J(W)b = J(W)bo*(W)
since M, is a right o*(W)-ideal. So ba*(W)b~! C O,(J(W)) = W. To prove that
(W) = b~'Wb, suppose that o*(W) C b-'Wb. Then, applying Lemma1.13 to
M = @icz M; X', we have

N_p=JW)M_ = JW)o " 'W)
= JW)o " b Wh)o*(b7h)
= o "W F () = o bW,

which is a contradiction, because N_j, is not a principal right o=*(W)-ideal. Hence
" (W) =b"'Wb follows. Therefore, by Lemmal.13, N_; = J(W)o*(b'W) =
JWYWo*b=1) = J(W)o~"(b~!) as desired. Now, by Proposition 1.5, we can get
that N_j, = J(U)o~*(b~') implies M, = J(W)b. This completes the proof. O

Suppose that M;=J(W)c for some ce€ K and € N. Then M_;=
o (M) =07 (W) =Wol(c!) D J(W)o~!(c™!) = N_; by Lemmas1.3 and
1.18. Thus we have the following remark.

REMARK. Suppose that M; = J(W)c for some c¢€ K and [ € N. Then
M #N.
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LEMMA 1.19. Let M; = J(W)e for some ¢ € K and l € N (assume that [ is
the smallest natural number for this property) and B = @jeZAﬂXﬂ is a graded
extension of V in K[X', X! o!] with J(W)e C A C We. Then

(1) JW)ol(ch) C A S Waol(e™h).

(2) JW)Aj = My = Ao (J(W)) for all j € N.

(3) JIW)A_jy=N_j = A_o'(J(W)) for all j € N.

(4) N_; = M_; for alli e N\IN.

J
J

PROOF.

(1) First note that U = W and ¢/(W) = ¢"!We by the remark to Lemma 1.12
and Lemma 1.18. Since ¢ 'W = (V : J(W)e), 2 (V: A), 2 (V : We), D ¢ LI(W),
we have

Wol(c ) Do (Vi A4),) 2 J(W)o(c™).

So if A; is not a finitely generated left V-ideal, then the statement follows since
A =07'((V:A4),) by Lemmal.3. If A, is a finitely generated left V-ideal, say,
A;=Vb for some b€ A;, then J(W)cC WbC We implies Wb= We since
J(W)* = J(W), that is, cb* is a unit in W. It follows from the proof of [10,
Lemma 1.4] that o/(A_;) Db 'J(V) andso A_; D o' (b7 J(V)) Do (b LI(W)) =
o (T J(W)) = J(W)o~!(c™?). Furthermore from V D Aj0'(A_;), we derive
o(A) C(V:A),=b'V. Thus A, Col(b7'V) Col(b71W) =07 l(c1W) =
Wo!(c7!). Hence in any case, we have J(W)o'(c’))C A CWol(c!) as
desired.

(2) It follows from (1) and Lemma 1.18 that J(W)A_; = J(W)o ! (c!) = N,
and A ;07 (J(W)) = J(W)o~!(c"), which is the proof of (3) in the case where
j=1. Now we prove the statement by induction on j. If j =1, then J(W)A; =
JW)e= M, and M;=J(W)c=cd(J(W))= A (J(W)) since ca'(J(W))C
A; C co'(W). Suppose that J(W)A; = Mj for some j € N. Then

TJW)Ajier 2 J(W) A (A1) = J(W)eo' (A) = co' (J(W) Az)
= CU[(Mj) = CUZ(J(W)@') = J(W)Bj11 = M,
where f3; = co'(c)---0U "V (c) as in Lemmal.16. Suppose that J(W)A;y D

MjH—l = J(W)ﬂﬁ_l Then, by Lemma 12, J(W)Aﬂ+[ D) W,Bj+1 and so Cilg](W)
Ajis1 D ¢ 'WBjs1. Thus, operating o' on both sides, we have

JW)o™ (o (Agir) = o (T T (W) Ajar) D 07 (¢ W) = W,
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So
WA; D JW)A_ o™ (Aj) = JW)o (cY) o7 (Ajy) D W

Thus, by Lemmal.2, J(W)A; D J(W)B;=M;, a contradiction. Hence
J(W) A1 = Mjy follows. We can prove that M = Ao/ (J(W)) for all j€ N
by the right version.

(3) can be got by Proposition 1.5 and (2).

(4) Let ¢ € N\IN. Then *M; = M; and W = O;(M;) by Lemmal.16. So
M_; = o7'(M; ') by lemma 1.3. Since M, is not a principal left W-ideal, M;! is not
a principal right W-ideal so that it is not a principal left W’-ideal, where W’ =
O,(M;') and it contains o(W). In particular, M; ! is not a principal left
o'(W)-ideal. Thus J(W)M_; = M_; by Lemma 1.1. Hence N_; = J(W)M_;, = M_;
by Lemma1.13. (]

In the case where either *A; D A; or *A; = A; and *M; is not a principal left
W-ideal for any i€ N, the graded extension A = @;czA; X' is uniquely
determined by A; and A_; (see Theorems1.6 and 1.14). However, in the case
where *A; = A; and *M; is a principal left W-ideal for some [ € N, that is, M; =
J(W)c for some ¢ € K, A is not uniquely determined by A; and A_; (see the
remark after Lemma 1.18) and we are now ready to prove the following theorem
which characterizes Type (h).

THEOREM 1.20. Let A = ®;czA; X" be a subset of K[X,X Y;0] such that
Ay =V, Ay is aleft V and right o(V)-ideal with * Ay = Ay which is not a principal
left W-ideal, where W = O,(A;). Suppose that M; = J(W)c for some ¢ € K and
l € N (assume that [ is the smallest natural number for this property). Then A is a
graded extension of V in K[X, X 1;0] if and only if

(1) A; = M; fOT all i € Z\lZ

(2) B=®jezAsX" is a graded extension of V in K[X', X 0] with
J(W)e C A C We.

PrROOF. Note that U = W by the remark to Lemma 1.12. Suppose that A is
a graded extension of V in K[X, X !;0]. Then, by Lemma1.13, M; = J(W)c =
J(W)A; C A; and so Aie™t C O, (J(W)) =W. Hence J(W)c C Ay C We. Thus it
remains to prove that A; = M; for alli € Z\1Z. Let i € N \ IN. Then *M; = M;
and A; O J(W)A; = M; by Lemmas 1.13 and 1.16. Suppose that A; D M; and let
de A;\ M;. Then Wd D> M; and so J(W)d D M,. If J(W)d = M;, then Wd =
“(J(W)d) =*M; = M;, which is a contradiction, because J(W)M; = M;. Thus
JW)d > M;. Then J(W)A; D J(W)d D M;, a contradiction. Hence A; =M,
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follows. Now, by Proposition 1.5, we can get that A_;, = N_; andso A_; = M_; by
Lemma 1.19.

Conversely, suppose that (1) and (2) hold. For any i € Z, we have A; U
07'(A7) = K by [10, Lemma 1.1] and the assumptions. So it suffices to prove that
A;o'(Aj) C Ay for all 4,5 € Z, which will be proved in the following four cases:

(1) Z¢ lZ and j¢ (Z. Then A7O'Z(AJ) = Micri(Mj) g Mi+j Q Ai+ja because
M,;_._j = Ai+j if ’L+]¢ lZ and A7j+]‘ B) J(W)AH_] = Mi+j if 147 € VA by Lemma,
1.19.

(i) 4¢1Z, je€lZ. Then i+j¢lZ and Aio'(A)d"(J(W))=
AZO"L(AJUJ(J(W)) = M7(TZ(MJ) g Mj+j by Lemma1.19. So

A0 (A7) € (A (A)0 (W), = (Ao (A7) (I (W)
(Misg), € (Miy;)" = Miyj = Ay

v

N 1N

by Lemma 1.1, where I, = (o' (W) : (¢"™/(W) : I),), for a right o™/ (W)-ideal I.
(iii) ¢ € IZ, j¢ 1Z. In this case, it is proved in the same way as in (ii) by
considering J(W)A;07(A;).
(iv) 4,7 € IZ. This case is clear by the assumption. O

2. Examples.

In this section, we will provide concrete examples of graded extensions of V in
K[X, X1 0] for illustrating the classification.

Let W be an overring of V with J(W)? = J(W) and ¢ = 1. Then the following
is a trivial example satisfying Theorem 1.6.

EXAMPLE 2.1. A =®nWX '@V & (®ienJ(W)X') is a graded extension
of V in K[X,X].

Let Fy[Y/ |i€ Z,r € Q] be a commutative domain over a field Fy in
indeterminates Y; with Y/ Y =Y/** and let F = Fy)(Y/ |i€ Z,r € Q) be its
quotient field, where @ is the field of rational numbers. We define a o € Aut (F) as
follows;

o(a)=aforalla e Fyand o(Y) =Y/ forallic Z and r € Q.
Furthermore, let G = ®;czQ;, the direct sum of @, with @ = Q,, which is a

totally ordered abelian group by lexicographic ordering and we define a map v
from F' to G as follows;
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v(a) =0 for any a € Fy and for any homogeneous element o =Y --- Y™

(9 < -+ <ip), v(a)=(---,0,71,--,7,0,---), ie., the i;-component of v(a) is
r;(1 < j < n) and the other components of it are all zeroes.

Furthermore, let =0+ --+ [, be any element in FY |i€ Z,r¢€
Ql,where [; are homogenous elements. Then we define v(3) = min{v(3;) |
1 < <m}. As usual, we can extend the map v to F, which is a valuation of F.
We denote by Vj the valuation ring of F' determined by v, that is, Vj = {37! |
v(afB7t) = v(a) —v(B) > 0, where o, B € Fy[Y] | i € Z,r € Q] with 8 # 0}.

Note that o(Vy) = V;, since o is just shifting and that, for any a3 ! € F,
Voa3~t = VoY - Y/ for some homogeneous element Y;'---Y;" by the con-
struction of v. We set U; = U{WY/ | r € @}, an overring of Vj. Then o(U;) =
Ui_1DU,forallie Z.

Let F[t, o] be the skew polynomial ring over F in an indeterminate ¢ and let
K = F(t,0) be the quotient ring of F'[t,o] which is a division ring.

As in [8, Section 1], we define the map

p: Flt, o], — F

by @(f()g(t)"") = F(0)g(0) ", where [f(t),g(t) € Flt, 0], g(0) # 0 and FIt,0], is
the localization of F[t,o] at the maximal ideal (¢). We let

V=9 (Vo) = Vo + tF[t, 0],y and W; = ¢~ (U;) = U; + tF[t, 0],

the complete inverse images of Vj and U; by ¢ respectively for any ¢ € Z. Then V
and W; are all total valuation rings of F(¢, o) by [8, Proposition 1.6]. Furthermore,
we have the following properties which are easily proved by the definitions:

(1) o(V) =V and o(W;) = W;_1 D W, for any i € Z.

(2) Y]V =VY] and YJW; = W;Y] for any i,j € Z and r € Q.

Let 7 be a positive real number but not a rational number and set

A =U{t Y,V ]r<mre Q=u{VY;t ' |r<mre Q)
Then A; satisfies the following:
(a) W2 = O[(A1) and W1 = O,(Al)

(b) A; is not a principal left Wa-ideal.
(c) Ay =n{WLY*t7! | s > m,5 € Q} so that *A; = A;.
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PROOF. First note that t’lF[t,o](t) 2 Ay D Flt, 0], which are easily
obtained from the construction of A;.
(a) To prove Wy C Oy(Ay), let r,s € Q with r < . Then

F[t, O-](t)t . t71YE)7TV = F[t, U](t)V = F[t, U](t> g Al
and
}/;tfl}/off‘v _ t*l}/lS}/OfTV _ t71%7(7l1+7.)1/g1 }/19‘/ g t71%7(7‘1+7‘)v g A],

where r; € Q with r+r; <7 and 7 > 0. Hence W5 C O;(A;) follows since
Wy = Uz + LF[L, o .

To prove the converse inclusion, let a € Oi(4:). Since K = U{t'Flt, 0], |
i € Z}, we can write a = t'c for some i € Z and ¢ € U(F[t, 0,), where U(F[t, 0] ;)
is the set of units in F[t,0],. If i <0, then at™" =t'ct™" =t""lo(c) ¢ Ay, since
A CtURLL, a](t), which is impossible so that ¢ > 0. If ¢ > 0, then « € tF[t,o](t) -
Ws. So we may assume that ¢ =0, that is, a € U(F[t,0]y)). Since F[t, 0], =
F +tF[t, a](t), we can write a = b+ td, where b € F, and d € F[t,0]<t). Suppose
that ¢ W. Then b¢ Us and b= Y;l]' Y;lnu for some [; € Q,iy < --- <1, and
u € U(V}) as it is noticed before. If either iy > 2 or l; > 0, then b € Us. So we may
assume that i; <2 and Il; < 0. If 4y <1, then A; > at™! =t"lo(a) = iyl

i—1
Yii"_la(u) + o(d), which implies t’lY;”l'_l e Y;l_l € A; and so t’lYill‘_1 e Ylil”"_lz
t7 1Y, " (v +te) for some re Q with r<m v €V, e€ Flt,0];. Thus
Vi Y =Y e = Yy Tte € tF [t 0]y = J(Ft,0),y)  and Y.V —
Y, 7wy is non-zero and is a unit in F[t,0], a contradiction, because i; —1 <0
and [; < 0. Hence i1 = 1 and I; < 0. In this case, there is an r € Q with r < 7w and
li —r<—m. Then A 3>at™ 'Yy =tlo(a)Y;" = t_l[YillLl . Y;i’Lla(u) + to(d)]
Y, = t‘lYU_Sul for some s € Q with s < 7w and u; = ug + td; € V, where uy € Vg
and di € F[t,o],. Hence, as before, we have Yoll*rin{l : --Yiln’;la(u) =Y, a
contradiction, because —s > —mw > l; — r. Thus o € W5 and hence Wy = O;(A;).
Similarly, we can prove that Wi = O,(4,).
(b) It follows that Ay =U{WY"t"'|r<mre @} by (a) and that
WQYI_TIf_1 D I/Vng_st_1 if r > s. Hence A; is not a principal left Ws-ideal.
(c) Let s and r € Q with s> m>r. Then WoY5t! D WLY; "t ! and so
A Cn{WLY*t7! | s > m, s € Q}. To prove the converse inclusion, let o = ct' for
some c € U(F[t,a]m) and i € Z with a € N{WLY*t"! | s > m,s € Q}. Suppose
that a¢ Ay. If i >0, then a € FJt, O’](t) C Ay, a contradiction. If 7 < —2, then
ct’ € WoY,*t~! implies ¢ € WoY, "t C J(Ft, 0] ), a contradiction. Hence we may
assume that ¢ = —1. As before, let ¢ = b+ td, where b € F and d € F1t, a]<t) and let
b= Yfll Yti’u, where i1 < -+ <1y, [; € Q, l; <0 (since « is not in A;) and
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uw € U(Vp). Then for any s>m>r, we have WoY*t™' D Wha = Wact™ D
WaY;"t™!, which implies UpY;™* D U5Y;" -+ Y{"u D UpY,". Tt follows that 4 = 1
and —s <l; < —r for any s,7 € Q with s > 7 > r > 0. Hence [y = —s for some
s€ Q with s>m This implies Waoa D WoY, *¢t7! for any s € Q with
7 < 81 < —li, a contradiction. Hence A; = N{WLY; %t |s>m s € Q} follows.
In particular, *A; = A;. O

We set M; = Ajo(A;) -+ 01 (A;). Then we have

(d) M; = W{VY[t7 |r<imre Q} = U{WLY"t™" | r <imr e Q} for all
1 € N and they are not finitely generated left Ws-ideals.

(e) M; = N{WLY5t™" | s > im,s € Q} so that *M; = M;.

() (V: M), = U{E'YFV |s > ims€ Q} sothat M, = o *((V: M;),) =
U{tYE,V | s >im s € QF.

PROOF.

(d) The first statement follows by induction on i and the second statement is
clear from the proof of (b).

(e) This is clear from (c¢)(we use 7' = i7 instead of 7 in (¢)).

(f) It is clear from (d) that (V : M;), D U{t'Y$V | s > im, s € Q}. To prove the
converse inclusion, let a = t/c € (V : M;), for some ¢ € U(F[t,0] ) and j € Z. We
may suppose that j > i, because VY "t t/c CV C F[t,cr](t) for any r € Q with
r <im If j >4 then a = 't/ "'c € t'tF[t, U](z) C 'YV for any s € Q with s > im. If
j =1, then, as before, let ¢ =0+ td for some b€ F and d € F[t,o}(t) and write
b= Y/ll . Yti’u for some u € U(Vp), 41 < -+- < i, and [; € Q. Since V 2 Y "t '« for
any r < im,r € Q, we have Y "b € Vp, that is, b € ¥{'V{. This implies {; > 0 and
iy < 1. If 43 <1, then a=#(b+td) € t!(YVy+ Y tF[t, oly) C t'YSV for any
s >1im, s € @, because v(b) > v(Y). If iy =1 and I; < im, then there is an r € Q
with I} < r <imand b¢ Y]Vp, a contradiction. If 4, = 1 and l; > 4w, then there is
an s € Q with [; > s > 4w and bVj) C Y°V|. So we have

a=te=1t(b+td) € t'(Y7Vo + YtF[t, 0] ) = 'YV

Hence (V:M;), =U{t'Y{V |s>im,se€ Q} follows. In particular, M_; =

U{t'YE,V | s >im s € QF. O

Thus we have the following example of a graded extension A of V in
K[X, X! 0] satisfying all conditions in Theorem 1.14.

EXAMPLE 2.2. Under the notations and assumptions as above, let
A =U{VY "t | r<imre Q) and A =U{t'YS,V|s>imse Q}. Then
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A= ®iczA; X" is a graded extension of V in K[X, X ! 0].

In order to obtain more concrete examples of Theorem 1.6, let A; = J(Ws)t/,
which is a left W5 and right ¢t Wt/ (= 077 (Ws) = Wayj)-ideal. So, by using the
notation in Section 1, W = Ws, o(U) = Wayj, a; =, a_; =t " for all i € N and
A1 =Ua_ = W3+J‘t_j. Thus we have the following:

(1) Ay =Ua_1 = a_10 (V) if and only if j = —1.

(2) Ay =Ua_1 D a0 (U) if and only if j > —1.

(3) Ay =Ua_1 C a_10 (V) if and only if j < —1.

Hence we have the following example illustrating Theorem 1.6.

EXAMPLE 2.3. Under the notations and assumptions as above, if j > —1,
then A= @ieNWgﬂ-t’”X’i OV D (EBieNt”J(Wg,iﬂ)Xi) is a graded extension
of V in K[X,X Y0] and if j< -1, then A=®@nt " Wo X'V
(DienJ(W)t7 X" is a graded extension of V in K[X, X 1;0].

Finally we will provide examples satisfying all conditions in Theorem 1.20.
Let V be a total valuation ring of K with rank one and suppose that J(V) D (0) is
an exceptional prime segment with C, the non-Goldie prime ideal. Then *C = C
such that O;(C) =V = 0,(C) and it is not a finitely generated left V-ideal (cf.
[3]). Let [ be a natural number with *(C!) = Ve = ¢V for some ¢ € K (assume that
[ is the smallest natural number for this property and [ > 1)(cf. [1, p. 3173]). Then
C' = J(V)c. Thus we have the following example (in the case o = 1):

EXAMPLE 2.4. Under the notations and assumptions above, let A; = C.
Then

A=Bienun(C) X @ (@jenVe I X
Ve (@ieN\lNCiXi) ® (@jeNVCjXﬂ)

and
B = @ieN\lN(Ci)_lX_i © (DjenVe X
BV & (®ienunC' X)) & (BjenJ (V) X7

are graded extensions of V in K[X, X 1].
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