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Abstract. The weak Harnack inequality for Lp-viscosity solutions is

shown for fully nonlinear, second order uniformly elliptic partial differential

equations with unbounded coefficients and inhomogeneous terms. This result

extends those of Trudinger for strong solutions [21] and Fok for Lp-viscosity

solutions [13]. The proof is a modification of that of Caffarelli [5], [6]. We apply

the weak Harnack inequality to obtain the strong maximum principle, boundary

weak Harnack inequality, global C� estimates for solutions of fully nonlinear

equations, strong solvability of extremal equations with unbounded coefficients,

and Aleksandrov-Bakelman-Pucci maximum principle in unbounded domains.

1. Introduction.

In this paper, we establish the weak Harnack inequality for Lp-viscosity

supersolutions of fully nonlinear, second order uniformly elliptic partial differ-

ential equations (PDE) with unbounded coefficients and inhomogeneous terms. In

fact this reduces to showing that the weak Harnack inequality holds for

nonnegative Lp-viscosity supersolutions of Pucci extremal equations

PþðD2uÞ þ �ðxÞjDuj ¼ fðxÞ in �; ð1:1Þ

where � � Rn, and � 2 Lqð�Þ, f 2 Lpð�Þ for some p; q. The Pucci operatorPþðXÞ
is defined by PþðXÞ ¼ maxf�trðAXÞ j A 2 Sn; �I � A � �Ig for X 2 Sn, where

Sn is the set of n� n symmetric matrices, and 0 < � � � are the ellipticity

constants. The ellipticity constants will be fixed throughout this paper. We also

have the Pucci operator P�ðXÞ :¼ �Pþð�XÞ for X 2 Sn.

Trudinger showed in [21] that the weak Harnack inequality holds for strong

solutions of linear PDE when the gradient coefficient is in L2nð�Þ. Afterwards,
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Fok in [13] verified this fact for viscosity supersolutions of (1.1) following the

argument in Gilbarg-Trudinger’s book [14]. In [13] and [14], in order to show the

weak Harnack inequality one estimates j�jjDuj � 1=2ð�2=cþ cjDuj2Þ for an

appropriate c and uses the exponential/logarithmic transformation to eliminate

the quadratic term cjDuj2=2. This is the place where one needs to suppose � 2
L2nð�Þ to apply the Aleksandrov-Bakelman-Pucci (ABP) maximum principle for

the new inhomogeneous term �2=ð2cÞ. Thus, as long as one follows this argument,

it seems hard to avoid the assumption � 2 L2nð�Þ.
We will generalize this result in the current paper. More precisely, when

� 2 Lqð�Þ and f 2 Lpð�Þ, we will obtain the weak Harnack inequality for

Lp-viscosity supersolutions of (1.1) if q > n and q � p > p0, where p0 ¼
p0ðn; �;�Þ 2 ½n=2; nÞ is the constant giving the range where the maximum

principle holds (see [12], [11], [10]).

Since the ABP maximum principle holds for Ln-strong solutions when

�; f 2 Lnð�Þ, we could hope that the weak Harnack inequality also holds for

Ln-viscosity supersolutions when p ¼ q ¼ n. However, unfortunately, we do not

know if the ABP maximum principle is true in this case. In fact, the difficulty

comes from the lack of existence results for Ln-strong solutions of extremal PDE

in [18] when p ¼ q ¼ n.

A direct consequence of the weak Harnack inequality is the strong maximum

principle for Lp-viscosity solutions. We refer to [2], [15] for results on the strong

maximum principle for viscosity solutions of possibly degenerate PDE without

measurable terms. We also establish the boundary weak Harnack inequality

which enables us to extend some qualitative properties of Lp-viscosity solutions.

One consequence of it is the global Hölder continuity estimates for Lp-viscosity

solutions. Similar and in fact more broad result for equations with quadratically

growing gradient terms has been recently obtained by Sirakov [20] without using

the weak Harnack inequality. When restricted to solutions of (1.1), Sirakov’s

result requires q > n; p � n and in this case our result is a slight generalization of

it as we allow p > p0. Another consequence of the boundary weak Harnack

inequality is the ABP type maximum principle in unbounded domains. The study

of ABP maximum principle in unbounded domains was initiated by Cabré in [3].

For more results on this we refer to [4], [22] in the context of strong solutions, and

[8] for viscosity solutions.

This paper is organized as follows. In section 2 we recall the definitions of

Lp-viscosity solutions and Lp-strong solutions, and then list several preliminary

results from our previous paper [18]. In section 3 we show that Lp-strong solutions

are Lp-viscosity solutions for general PDE with unbounded ingredients. Therefore

all the results of this paper also apply to strong solutions. Section 4 is devoted to

the weak Harnack inequality for Lp-viscosity supersolutions of (1.1) when q > n,
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q � p > p0.

In section 5, we derive the strong maximum principle as a simple consequence

of the weak Harnack inequality. We obtain the boundary weak Harnack

inequality, and then the global Hölder continuity estimate in section 6. In section

7, as an application of the Hölder estimates of section 6, we show existence of

strong solutions of extremal equations (1.1) when the support of � is not necessary

compact. Finally in section 8, we slightly improve a sufficient condition of [8] for

an ABP type maximum principle in unbounded domains.

In the Appendix, following [7], we prove two important results in the theory

of Lp-viscosity solutions. The first is the fact that if an Lp-viscosity subsolution

(resp., supersolution) belongs to W 2;p
loc ð�Þ, then it is an Lp-strong subsolution

(resp., supersolution). The second is a stability result for Lp-viscosity solutions of

general PDE, which is needed to prove the strong solvability of extremal

equations in section 7.

2. Preliminaries.

Throughout the paper, unless specified otherwise, � � Rn will always be a

domain, i.e. an open and connected set. We remind that � is not necessary

bounded unless stated. In particular, we notice that � can be unbounded in the

strong maximum principle, Proposition 4.1 and Theorem 5.1.

We first recall the definition of Lp-viscosity solutions of general fully

nonlinear PDE

F ðx; u;Du;D2uÞ ¼ fðxÞ in �; ð2:1Þ

where F : ��R�Rn � Sn ! R and f : � ! R are functions which are at least

measurable. We will be using the standard notation of [14]. For r � 1 we denote

by Lrþð�Þ the set of nonnegative functions in Lrð�Þ. We will often write k�kr for
k�kLrð�Þ when the integration is taken over the whole domain of a function �.

Throughout this paper we always assume that

p >
n

2
:

DEFINITION 2.1 ([7]). u 2 Cð�Þ is an Lp-viscosity subsolution ðresp., super-
solutionÞ of ð2:1Þ if

ess lim inf
y!x

F ðy; uðyÞ; D�ðyÞ; D2�ðyÞÞ � fðyÞ
� �

� 0
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resp.; ess lim sup
y!x

F ðy; uðyÞ; D�ðyÞ; D2�ðyÞÞ � fðyÞ
� �

� 0

� �

provided that for � 2 W 2;p
loc ð�Þ, u� � attains its local maximum ðresp., minimumÞ

at x 2 �.

We call u 2 Cð�Þ an Lp-viscosity solution of ð2:1Þ if it is both an Lp-viscosity

sub- and supersolution of ð2:1Þ.

We remind that if u is an Lp-viscosity subsolution (resp., supersolution) of

(2.1), then it is also an Lp̂-viscosity subsolution (resp., supersolution) of (2.1) if

p̂ > p.

We recall the definitions of Lp-strong sub- and supersolutions.

DEFINITION 2.2. A function u is an Lp-strong subsolution ðresp., super-

solutionÞ of ð2:1Þ if u 2W 2;p
loc ð�Þ, and

F ðx; uðxÞ; DuðxÞ;D2uðxÞÞ � fðxÞ a:e: in �

resp.; F ðx; uðxÞ; DuðxÞ; D2uðxÞÞ � fðxÞ a:e: in �
� �

:

We call u an Lp-strong solution of ð2:1Þ if it is both an Lp-strong sub- and

supersolution of ð2:1Þ.

Contrary to Lp-viscosity solutions, if u is an Lp-strong subsolution (resp.,

supersolution) of (2.1), then it is an Lp̂-strong subsolution (resp., supersolution) of

(2.1) provided p > p̂.

The upper-contact set �½u; �� of u over � is defined as

�½u; �� ¼ fx 2 � j 9p 2 Rn such that uðyÞ � uðxÞ þ hp; y� xi for all y 2 �g:

We will write BrðxÞ for the open ball centered at x 2 Rn with radius r > 0. For

simplicity, Br will mean Brð0Þ.
In what follows we will often consider separately the case

q > n and q � p � n: ð2:2Þ

Notice that (2.2) is equivalent to q � p > n or q > p ¼ n.

We begin recalling a result on existence of Lp-strong sub- and supersolutions

of extremal PDE. This is just a preliminary result which will be improved and

generalized in Section 7. In particular we will then remove the condition supp

� b �.
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THEOREM 2.3 (cf. Proposition 2.6 and Remark 2.10 in [18]). Let � � B1

satisfy the uniform exterior cone condition. Let f 2 Lpþð�Þ and � 2 Lqþð�Þ, where

q > n and q � p > p0; ð2:3Þ

and suppose that supp � b �. Then there exists an Lp-strong supersolution ðresp.,
subsolutionÞ u 2 Cð�Þ \W 2;p

loc ð�Þ of

P�ðD2uÞ � �ðxÞjDuj ¼ fðxÞ in � ð2:4Þ

resp.; PþðD2uÞ þ �ðxÞjDuj ¼ �fðxÞ in �
� �

ð2:5Þ

such that u ¼ 0 on @�. For p � n,

0 � u � C1 expðC2k�knnÞkfkLnð�½u;��Þ in � ð2:6Þ

resp.; 0 � u � �C1 expðC2k�knnÞkfkLnð�½�u;��Þ in �
� �

; ð2:7Þ

where Ck ¼ Ckðn; �;�Þ for k ¼ 1; 2 are from Theorem 2.4, and for n > p > p0,

0 � u � C3 expðC2k�knnÞk�k
N
q þ

XN�1

k¼0

k�kkq

( )
kfkp in �

resp.; 0 � u � �C3 expðC2k�knnÞk�k
N
q þ

XN�1

k¼0

k�kkq

( )
kfkp in �

 !
;

where C3 > 0 and N � 1 are from Theorem 2.5. Moreover for every �0
b � we

have

kukW 2;pð�0Þ � C4kfkp;

where C4 ¼ C4ðn; p; �;�; k�kq; distð�0; @�ÞÞ > 0.

If �; f 2 Lnþð�Þ, then for every p0 < p < n there exists an Lp-strong super-

solution ðresp., subsolutionÞ u 2 Cð�Þ \W 2;p
loc ð�Þ of ð2:4Þ ðresp., ð2:5ÞÞ satisfying

ð2:6Þ ðresp., ð2:7ÞÞ such that for every �0
b �

kukW 2;pð�0Þ � C4kfkn;

for some C4 ¼ C4ðn; p; �;�; �;�; distð�0; @�ÞÞ > 0.
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PROOF. Although we gave a complete proof in [18], we did not mention

there that we may take the Ln-norm on the upper contact set in (2.6) and (2.7).

We will only show (2.6).

Following the proof of Proposition 2.6 in [18], to find an Lp-strong

supersolution of (2.4), we approximate � and f by smooth functions �k and fk
such that supp �k � supp �,

k�� �kkq þ kf � fkkp ! 0 as k! 1;

we find classical solutions uk 2 C2ð�Þ \ Cð�Þ of

P�ðD2ukÞ � �kðxÞjDukj ¼ fkðxÞ in �;

uk ¼ 0 on @�;

(

and obtain local W 2;p estimates for the uk. We then show that there is u 2
Cð�Þ \W 2;p

loc ð�Þ such that, possibly along a subsequence,

kuk � uk1 ! 0 as k! 1:

However the ABP maximum principle applied to uk yields

0 � uk � C1 expðC2k�kknnÞkfkkLnð�½uk;��Þ in �;

and according to Appendix A in [7], we may then replace kfkkLnð�½uk;��Þ by

kfkLnð�½u;��Þ in the limit as k! 1.

The proof of the theorem in the case n > p > p0 follows the lines of the proof

of Proposition 2.6 in [18] when we now use the estimates of Theorem 2.5 (see

Remark 2.10 in [18]). We pass to the limit with the uk using the local W 2;p

estimates for the uk (which are shown with only minor and rather straightforward

technical differences) and the strong convergence, possibly along a subsequence,

of the Duk in Lp
0

loc for every p
0 < p� ¼ np=ðn� pÞ.

For �; f 2 Lnþð�Þ the proof uses similar modifications. The dependence of C4

on � and � enters through the fact that for every " > 0 there exists r0 (depending

on � and �) such that if r < r0 and V � � is a ball of radius r then k�kLnðV Þ � "

and this property can be assumed to be preserved by mollification. The smallness

of k�kn is enough to obtain the uniform W 2;p estimates for the uk. �

We next state the following version of the ABP maximum principle for

Lp-viscosity solutions. It is a slight variation of Proposition 2.8 of [18].
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THEOREM 2.4 (cf. Proposition 2.8 of [18]). Let � � B1, and let ð2:2Þ hold.

There exists Ck ¼ Ckðn; �;�Þ > 0 ðk ¼ 1; 2Þ such that if f 2 Lpþð�Þ, � 2 Lqþð�Þ, and
u 2 Cð�Þ is an Lp-viscosity subsolution ðresp., supersolutionÞ of

P�ðD2uÞ � �ðxÞjDuj ¼ fðxÞ in �0 :¼ fx 2 � j uðxÞ > sup
@�

uþg

resp.; PþðD2uÞ þ �ðxÞjDuj ¼ �fðxÞ in �0 :¼ fx 2 � j uðxÞ < � sup
@�

u�g
� �

;

then

sup
�
u � sup

@�
uþ þ C1 expðC2k�knLnð�0ÞÞkfkLnð�0Þ

resp.; sup
�

ð�uÞ � sup
@�

u� þ C1 expðC2k�knLnð�0ÞÞkfkLnð�0Þ

� �
:

The same conclusion also holds if �; f 2 Lnþð�Þ and u is an Lp-viscosity subsolution

ðresp., supersolutionÞ of the above equations for some p0 < p < n.

We could also give a corresponding result with �0 when n > p > p0 (see

Theorem 2.9 in [18]). Moreover we could state the above estimates using the Ln

norms of f over the upper contact set of u. We do not do it here since we will not

need such results. We leave these easy versions and extensions to the interested

readers. The proof for the case �; f 2 Lnþð�Þ is the same as the proof of Proposition

2.8 of [18] if we use Theorem 2.3.

Next we present the ABP maximum principle for Lp-strong solutions. It was

proved in [13] however the constant p0 there might have been different from ours.

We sketch a different proof. We refer the reader to [14] or Proposition 2.3 in [18]

for the case p ¼ q ¼ n.

THEOREM 2.5. Let � � B1, and let p0 < p < n < q. There exist an integer

N ¼ Nðn; p; qÞ and C3 ¼ C3ðn; �;�; p; qÞ > 0 such that if f 2 Lpþð�Þ, � 2 Lqþð�Þ,
and u 2 Cð�Þ is an Lp-strong subsolution ðrespectively, supersolutionÞ of

P�ðD2uÞ � �ðxÞjDuj ¼ fðxÞ in � ð2:8Þ
resp.; PþðD2uÞ þ �ðxÞjDuj ¼ �fðxÞ in �
� �

; ð2:9Þ

then

sup
�
u � sup

@�
uþ C3 expðC2k�knnÞk�k

N
q þ

XN�1

k¼0

k�kkq

( )
kfkp ð2:10Þ
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resp.; inf
�
u � inf

@�
u� C3 expðC2k�knnÞk�k

N
q þ

XN�1

k¼0

k�kkq

( )
kfkp

 !
; ð2:11Þ

where C2 is from Theorem 2.4.

PROOF. We will indicate how to show (2.10). First, we can choose

uj 2 C2ð�Þ such that uj ! u in Cð�Þ \W 2;p
loc ð�Þ. Then

P�ðD2ujÞ � �ðxÞjDujj ! P�ðD2uÞ � �ðxÞjDuj

in Lplocð�Þ. Therefore by considering slightly smaller domains we can assume

without loss of generality that f 2 Lqlocð�Þ as we can then recover the result in the

limit. After this initial adjustment the proof then repeats the proof of Theorem 2.9

in [18]. The estimates on the size of the iteration functions vk are controlled by

kfkLpð�Þ however the functions vk are now in W 2;q. Therefore in the final step we

can use the classical ABP maximum principle in its nonlinear version, see [14] or

Proposition 2.3 in [18]. �

Finally we state a slightly generalized version of the ABP maximum principle

from [18] for equations with superlinear gradient terms.

THEOREM 2.6. Let � � B1, m > 1, ð2:2Þ hold. For f 2 Lpþð�Þ, �1; �m 2
Lqþð�Þ, consider an Lp-viscosity subsolution u 2 Cð�Þ of

P�ðD2uÞ � �1ðxÞjDuj � �mðxÞjDujm ¼ fðxÞ in �: ð2:12Þ

Then:

(i) Let q � p > n. There exist � ¼ �ðn; �;�;m; p; k�1kqÞ > 0 and C5 ¼
C5ðn; �;�;m; p; k�1kqÞ > 0 such that if

kfkm�1
p k�mkq < �;

then

sup
�
u � sup

@�
uþ C5 kfkn þ kfkmp k�mkq

� �
:

(ii) Let p0 < p � n < q satisfy
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p >
nqðm� 1Þ
mq � n

: ð2:13Þ

Denote a0 ¼ 0 and ak ¼ 1þmþ � � � þmk�1 for k � 1. There exist an integer

N ¼ Nðn;m; p; qÞ � 1, � ¼ �ðn; �;�;m; p; q; k�1kqÞ > 0 and C6 ¼ C6ðn; �;�;m;
p; q; k�1kqÞ > 0 such that if

kfkm
N ðm�1Þ

p k�mkm
N

q < �; ð2:14Þ

then

sup
�
u � sup

@�
uþ C6

XNþ1

k¼0

k�mkakq kfk
mk

p : ð2:15Þ

REMARK 2.7. The constants C5 and C6 above are bounded if k�1kq varies in
a bounded set in R. See [19] for the precise dependence.

The proof of this theorem is similar to those of Theorems 2.11 and 2.12 in

[18], however in the iterative scheme there, we need to substitute solutions of

extremal equations

PþðD2uiÞ ¼ �fiðxÞ

(see the proofs of Theorems 2.11 and 2.12 in [18]) by solutions vi of extremal

inequalities

PþðD2viÞ þ �1ðxÞjDvij � �fiðxÞ

provided by Theorem 2.3. We refer to [19] for the details, particularly, a careful

dependence on k�1kq and k�mkq in the constants Ck (k ¼ 5; 6) and �.

3. Strong solutions are viscosity.

In [18] we presented various versions of the ABP maximum principle for

Lp-viscosity solutions of extremal inequalities with possibly superlinear gradient

terms and unbounded coefficients. However we did not mention there that

Lp-strong solutions of such inequalities are Lp-viscosity solutions. We will show it

here for general equations (2.1).

The function F : ��R�Rn � Sn ! R will satisfy the following assump-
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tions. First of all, without loss of generality we can always assume that

F ðx; 0; 0; OÞ ¼ 0 in �: ð3:1Þ

This can be achieved by taking F ðx; r; p;XÞ :¼ F ðx; r; p;XÞ � F ðx; 0; 0; OÞ and

fðxÞ :¼ fðxÞ � F ðx; 0; 0; OÞ. Next we require that F is uniformly elliptic, i.e.

P�ðX � Y Þ � F ðx; r; p;XÞ � F ðx; r; p; Y Þ � PþðX � Y Þ ð3:2Þ

for ðx; r; p;X; Y Þ 2 ��R�Rn � Sn � Sn. As regards the continuity in r; p, we

assume that there are m � 1, � 2 Lqþð�Þ, c 2 Lpþð�Þ, and a nondecreasing function

! 2 Cð½0;þ1ÞÞ satisfying !ð0Þ ¼ 0 such that

jF ðx; r; p;XÞ�F ðx; s; q;XÞj � �ðxÞðjpjm�1þjqjm�1þ1Þjp�qjþcðxÞ!ðjr�sjÞ ð3:3Þ

for ðx; r; p; q;XÞ 2 ��R�Rn �Rn � Sn. Note that (3.1) and (3.3) yield

jF ðx; 0; p; OÞj � �ðxÞðjpjm þ jpjÞ for ðx; pÞ 2 ��Rn.

THEOREM 3.1. Let (3.1)�(3.3) hold. Suppose also that f 2 Lpð�Þ and that

one of the following conditions is satisfied:

ð1Þ q > n; q � p � n;

ð2Þ q > n > p > p0; pððm� 1Þq þ nðq � nÞÞ > ðm� 1Þqn;
ð3Þ q ¼ n ¼ p; m ¼ 1:

8><
>:

If u is an Lp-strong subsolution ðresp., supersolutionÞ of ð2:1Þ, then it is an

Lp-viscosity subsolution ðresp., supersolutionÞ of ð2:1Þ.

REMARK 3.2. We remark that when q > n > p > p0 and m ¼ 1, the second

condition in ð2Þ automatically holds. Note that it is weaker than ð2:13Þ.

PROOF. We only prove the claim for subsolutions. Suppose, contrary to the

claim, that there are �; r0 > 0 and x 2 �, � 2 W 2;pðBr0ðxÞÞ such that 0 ¼
ðu� �ÞðxÞ � ðu� �ÞðyÞ for y 2 Br0ðxÞ b � and

F ðy; uðyÞ; D�ðyÞ; D2�ðyÞÞ � fðyÞ � 2� a:e: in Br0ðxÞ:

Since u is an Lp-strong subsolution, by (3.1)-(3.3), setting v ¼ u� �, we have

P�ðD2vÞ � �ðyÞðjDuðyÞjm�1 þ jD�ðyÞjm�1 þ 1ÞjDvj � �2� a:e: in Br0ðxÞ:
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Setting v"ðyÞ ¼ vðyÞ � "jy� xj2 for " > 0, we notice that v" achieves the strict

maximum over Br0ðxÞ at x. It is also easy to verify that for 0 < " � �=ð2n�Þ,

P�ðD2v"Þ � �ðyÞjDv"j � 2r"�ðyÞ � � a:e: in BrðxÞ; for all r � r0;

where �ðyÞ ¼ �ðyÞðjDuðyÞjm�1 þ jD�ðyÞjm�1 þ 1Þ in Br0ðxÞ. Using Sobolev embed-

dings we have � 2 Lp
0 ðBr0ðxÞÞ for some q > p0 > n in cases (1)-(2), and � ¼ 3� 2

LnðBr0ðxÞÞ in case (3). In cases (1) and (3) we can apply directly the maximum

principle after scaling to get

0 ¼ sup
BrðxÞ

v" � �"r2 þ C1 expðC2k�knnÞ"r2k�kLnðBrðxÞÞ � �"r2 þ C"r2k�kLnðBrðxÞÞ

for some constant C > 0 independent of r. Therefore, taking small r > 0, we

obtain a contradiction.

In case (2) we need to justify that we can apply the maximum principle using

the Ln norm of the right hand side even though we only have p < n. This is indeed

a general fact which holds for both Lp-strong and viscosity solutions.

Define �rðyÞ ¼ �ðyÞ for y 2 BrðxÞ and �rðyÞ ¼ 0 for y 2 Br0ðxÞ nBrðxÞ. In view

of Theorem 2.3, for 0 < r < r0=2, we can find Lp-strong subsolutions 	r 2
CðB2rðxÞÞ \W 2;p

loc ðB2rðxÞÞ of

PþðD2	rÞ þ �rðyÞjD	rj ¼ �2r"�rðyÞ a:e: in B2rðxÞ; 	r ¼ 0 on @B2rðxÞ;

such that 0 � �	r � C1 expðC2k�knnÞ"r2k�kLnðBrðxÞÞ in B2rðxÞ. Then w" ¼ v" þ 	r
satisfies

P�ðD2w"Þ � �ðyÞjDw"j � 0 a:e: in BrðxÞ:

Therefore, by Theorem 2.5,

�C"r2k�kLnðBrðxÞÞ � sup
BrðxÞ

w" � sup
@BrðxÞ

w" � �"r2:

Again we obtain a contradiction by taking r sufficiently small. �

REMARK 3.3. Thanks to Theorem 3:1, all the results for Lp-viscosity

subsolutions ðresp., supersolutionsÞ in this paper hold true for Lp-strong

subsolutions ðresp., supersolutionsÞ.
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4. Weak Harnack inequality.

In this section, we establish the weak Harnack inequality for nonnegative

Lp-viscosity supersolutions of extremal PDE with Lq-coefficients.

We define Q1 :¼
Qn

k¼1½�1=2; 1=2�, and then Qr ¼ rQ1, and QrðxÞ ¼ xþQr for

r > 0 and x 2 Rn.

We first recall the strong maximum principle for extremal equations without

unbounded coefficients even though we will only need it for classical solutions in

the proof of Lemma 4.2. Much more general strong maximum principle for

viscosity solutions of fully nonlinear degenerate equations was shown in [2].

However we present here a simple proof for completeness. Results on strong

maximum principle for classical solutions of fully nonlinear PDE can be found in

[14].

PROPOSITION 4.1. Let u 2 Cð�Þ be an Lp-viscosity subsolution ðresp.,
supersolutionÞ of

P�ðD2uÞ ¼ 0 ðresp.; PþðD2uÞ ¼ 0Þ in �

such that sup� u <1 ðresp., inf� u > �1Þ. If u attains its maximum ðresp.,
minimumÞ over � at x 2 �, then u is constant in �.

PROOF. We only show the assertion for Lp-viscosity subsolutions. Suppose

that uðxÞ ¼ sup� u ¼: K for some x 2 �. Then, for small t > 0, by setting

v :¼ K � u, the weak Harnack inequality (see for instance [6]) yields

Z
QtðxÞ

vrdx

 !1
r

� C inf
QtðxÞ

v ¼ 0 for some C; r > 0;

which implies the claim by a standard argument. �

We now present a modification of Lemma 4.1 in [6]. This lemma gives an

explicit construction of a barrier function and we could use it here as well. Our

lemma uses classical solvability of extremal equations, together with the strong

maximum principle.

Let U; V be fixed domains with smooth boundaries such that

Q1
2
� U � Q3

4
; Q7

2
� V � Q4:
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LEMMA 4.2. There exist � 2 C2ðV Þ and 	 2 CðV Þ such that

ðiÞ � � 0 in V ;

ðiiÞ P�ðD2�Þ ¼ 	 in V ;

ðiiiÞ � � �2 in Q3;

ðivÞ � ¼ 0 in @V ;

ðvÞ 	 ¼ 0 in V n U:

8>>>>>><
>>>>>>:

PROOF. Thanks to a result in Section 9 of [6], we can find a classical

solution �0 2 C2ðV n UÞ of

P�ðD2�0Þ ¼ 0 in V n U;
�0 ¼ 0 on @V ;

�0 ¼ �1 on @U:

8><
>:

Since this classical solution is an Lp-viscosity solution of the above, in view of

Proposition 4.1, setting 
 ¼ �max@Q3
�0, we see that 
 2 ð0; 1Þ, and �0 � �
 in

Q3 n U . Hence, taking � ¼ 2�0=
, and denoting by the same � a smooth extension

of � to V such that � � �2 in U, we obtain the required conclusion. �

We can now show a preliminary version of the weak Harnack inequality for

Lp-viscosity supersolutions.

LEMMA 4.3. Suppose that ð2:2Þ holds. There exist "0 ¼ "0ðn; �;�Þ 2 ð0; 1�
satisfying the following property: for � 2 LqþðV Þ satisfying

k�kLnðV Þ � "0; ð4:1Þ

there are r ¼ rðn; �;�Þ > 0 and C7 ¼ C7ðn; �;�Þ > 0 such that if f 2 LpþðV Þ, and
u 2 CðV Þ is a nonnegative Lp-viscosity supersolution of

PþðD2uÞ þ �ðxÞjDuj ¼ �fðxÞ in V ; ð4:2Þ

then

Z
Q1

urdx

� �1
r

� C7 inf
Q1

uþ kfkLnðV Þ
� �

: ð4:3Þ
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PROOF.

Step 1: By taking uðxÞðinfQ1
uþ � þ tkfknÞ

�1, where t; � > 0, it is enough to

find r > 0 and C7 > 0 (independent of �) such that

Z
Q1

urdx

� �1
r

� C7: ð4:4Þ

Thus, we may suppose that infQ1
u � 1 and kfkn � 1=t. However, to use the cube

decomposition argument, we will only need a weaker requirement infQ3
u � 1.

Let � be the function from Lemma 4.2. Setting w ¼ uþ �, we easily verify

that w is an Lp-viscosity supersolution of

PþðD2wÞ þ �ðxÞjDwj ¼ �fðxÞ � 	ðxÞ � �ðxÞjD�ðxÞj ¼: gðxÞ in V :

Denote �0 ¼ fx 2 V j wðxÞ < 0g. We notice that �0 6¼ ;. Theorem 2.4 and (iii) of

Lemma 4.2 imply

1 � sup
Q3

ð�wÞ � sup
V

ð�wÞ ¼ sup
�0

ð�wÞ � C1 expðC2k�knLnð�0ÞÞkgkLnð�0Þ:

If "0 � 1, then we have

1 � C1e
C2kgkLnð�0Þ

which, recalling (v) of Lemma 4.2, yields

e�C2

C1
� kfkLnðV Þ þ k	kL1ðQ1Þj�1j1=n þ kD�kL1ðV Þk�kLnðV Þ

� 1

t
þ k	kL1ðQ1Þj�1j1=n þ kD�kL1ðV Þk�kLnðV Þ;

where �1 ¼ fx 2 Q1 j wðxÞ < 0g: Hence, taking t sufficiently big, if "0 is small

enough we can find � ¼ �ðn; �;�; "0Þ 2 ð0; 1Þ such that

� � j�1j:

We remind that � is independent of �. Putting M :¼ supV ð��Þ > 1, we have thus

obtained

736 S. KOIKE and A. ŚWIE�CH



� � jfx 2 Q1 j uðxÞ �Mgj: ð4:5Þ

Step 2: Following [5] (see also [6] and [16]) we will show that

jfx 2 Q1 j uðxÞ > Mkgj � ð1� �Þk for integers k � 1: ð4:6Þ

Inequality (4.6) is true for k ¼ 1 by (4.5). Suppose it holds for k� 1 for some

k � 2. We will prove that it holds for k.

Setting A ¼ fx 2 Q1 j uðxÞ > Mkg and B ¼ fx 2 Q1 j uðxÞ > Mk�1g, we ob-

serve that A � B and jAj � 1� �. Therefore, in view of the Calderon-Zygmund

decomposition lemma (Lemma 4.2 in [6]), letting Q :¼ Q1=2jðzÞ be a dyadic cube of
Q̂ :¼ Q1=2j�1ðẑÞ for some z; ẑ 2 Q1 such that

jA \Qj >
1� �

2jn
; ð4:7Þ

we only need to show that Q̂ � B.

Suppose, contrary to this, that there is x̂ 2 Q̂ nB, i.e. uðx̂Þ �Mk�1. Setting

vðxÞ ¼ uðzþ 2�jxÞ=Mk�1 for x 2 V , we see that infQ3
v � 1, and v is an Lp-

viscosity supersolution of

P�ðD2vÞ þ �̂ðxÞjDvj ¼ �f̂ðxÞ in V ;

where �̂ðxÞ ¼ �ðzþ 2�jxÞ=2j and f̂ðxÞ ¼ fðzþ 2�jxÞ=ð22jMk�1Þ. Notice that

k�̂kLnðV Þ � "0. Therefore by Step 1 applied to v instead of u we obtain

jfx 2 Q1 j vðxÞ �Mgj � �

which yields jQ n Aj � �=2jn. This contradicts (4.7).

It is now standard to conclude that (4.6) implies that there exists r > 0 such

that

Z
Q1

urdx

� �1
r

� C7

for some C7 > 0. �

REMARK 4.4. If u were an Ln-strong supersolution, then we could obtain

Lemma 4.3 under the assumption p ¼ q ¼ n. This is due to the fact that the ABP
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maximum principle for Ln-strong solutions holds in this case. We do not know if

such a result is true for Ln-viscosity solutions when q ¼ n.

THEOREM 4.5. Let ð2:2Þ hold, and R > 1. Let � 2 LqþðQRÞ, f 2 LpþðQRÞ and
let r ¼ rðn; �;�Þ > 0 be from Lemma 4.3. There exists C8 ¼ C8ðn; �;�; q;
k�kq; RÞ > 0 such that u 2 CðQRÞ is a nonnegative Lp-viscosity supersolution of

PþðD2uÞ þ �ðxÞjDuj ¼ �fðxÞ in QR; ð4:8Þ

then

Z
Q1

urdx

� �1
r

� C8 inf
Q1

uþ kfkLnðQRÞ

� �
: ð4:9Þ

PROOF. The theorem will follow from Lemma 4.3 and a covering argument

of [3] once we know weak Harnack inequality in small cubes. To this end let

Q4tðxÞ � QR and without loss of generality we can assume that x ¼ 0, i.e.

Q4tðxÞ ¼ Q4t. Let "0 be from Lemma 4.3. We verify that vðxÞ ¼ uðtxÞ is an

Lp-viscosity supersolution of

PþðD2vÞ þ �tðxÞjDvj ¼ �ftðxÞ in V ;

where �tðxÞ ¼ t�ðtxÞ and ftðxÞ ¼ t2fðtxÞ. We notice that kftkLnðV Þ ¼ tkfkLnðVtÞ and

k�tkLnðV Þ � ð4tÞ1�
n
q k�kLqðQ4tÞ � "0

if t is sufficiently small. Hence, it follows from Lemma 4.3 that for t � �t ¼
�tðn; q; �;�; k�kq; RÞ

1

tn

Z
Qt

urdx

� �1
r

� C7 inf
Qt

uþ tkfkLnðQ4tÞ

� �
:

The result now follows from a covering argument of [3]. �

REMARK 4.6. A rather straightforward analysis of the proofs of Lemma 4.3

and Theorem 4.5, together with the use of Theorem 2.3, shows that (4.9) also

holds for nonnegative Lp-viscosity supersolutions of (4.8) if �; f 2 LnþðQRÞ and

p0 < p < n. However then the constant C8 ¼ C8ðn; �;�; �; RÞ and it depends on �

and R in a way similar to the way C4 depended on � and � in Theorem 2.3.
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In what follows, we will not make any distinction between a function and its

zero-extension outside its domain.

THEOREM 4.7. Let

q > n > p > p0 ð4:10Þ

and r ¼ rðn; �;�Þ > 0 be from Theorem 4.5. Let 1 < R � 2, � 2 LqþðQRÞ and

f 2 LpþðQRÞ. There exists C9 ¼ C9ðn; �;�; p; q; k�kq; RÞ > 0 such that if u 2 CðQRÞ
is a nonnegative Lp-viscosity supersolution of ð4:8Þ in QR, then

Z
Q1

urdx

� �1
r

� C9 inf
Q1

uþ expðC2k�knnÞk�k
N
q þ

XN�1

k¼0

k�kkq

( )
kfkp

" #
; ð4:11Þ

where N and C2 are the constants from Theorem 2.3.

PROOF. In view of Theorem 2.3, we can find an Lp-strong supersolution

v 2 CðQRÞ \W 2;p
loc

ðQRÞ of

P�ðD2vÞ � �ðxÞjDvj ¼ fðxÞ in QRþ1

such that v ¼ 0 on @QRþ1, and

0 � v � C3 expðC2k�knnÞk�k
N
q þ

XN�1

k¼0

k�kkq

( )
kfkp in QR: ð4:12Þ

Since w :¼ uþ v is a nonnegative Lp-viscosity supersolution of

PþðD2wÞ þ �ðxÞjDwj ¼ 0 in QR;

Theorem 4.5 yields

Z
Q1

urdx

� �1
r

�
Z
Q1

wrdx

� �1
r

� C8 inf
Q1

w:

This, together with (4.12), gives (4.11) for some constant C9. �

We now state scaled versions of Theorems 4.5 and 4.7 whose obvious proof is

Weak Harnack inequality 739



obtained by applying Theorems 4.3 and 4.7 to the function vðxÞ ¼ uðtxÞ.

COROLLARY 4.8. Let 1 < R � 2. There exist r ¼ rðn; �;�Þ > 0, C8 ¼ C8ðn;
�;�; q; t

1�n
qk�kq; RÞ > 0 and C9 ¼ C9ðn; �;�; p; q; t1�

n
qk�kq; RÞ > 0 such that if

t 2 ð0; 1�, � 2 LqþðQtRÞ, f 2 LpþðQtRÞ, and u 2 CðQtRÞ is a nonnegative Lp-viscosity

supersolution of

PþðD2uÞ þ �ðxÞjDuj ¼ �fðxÞ in QtR;

then for q > n and q � p � n,

1

tn

Z
Qt

urdx

� �1
r

� C8 inf
Qt

uþ tkfkLnðQtRÞ

� �
;

and for q > n > p > p0,

1

tn

Z
Qt

urdx

� �1
r

� C9

�
inf
Qt

uþ
�
expðC2k�knLnðQtRÞÞk�k

N
LqðQtRÞ

þ
XN�1

k¼0

k�kkLqðQtRÞ

	
t
2�n

pkfkLpðQtRÞ



:

5. Strong maximum principle.

As an application of the weak Harnack inequality, we can now derive the

strong maximum principle for Lp-viscosity solutions of PDE with the first

derivative term, which extends Proposition 4.1.

THEOREM 5.1. Let ð2:3Þ hold. Let � 2 Lqþð�Þ, and u 2 Cð�Þ be an Lp-vis-

cosity subsolution ðresp., supersolutionÞ of

P�ðD2uÞ � �ðxÞjDuj ¼ 0 ðresp.; PþðD2uÞ þ �ðxÞjDuj ¼ 0Þ in � ð5:1Þ

such that sup� u <1 ðresp., inf� u > �1Þ. If u attains its maximum ðresp.,
minimumÞ over � at x 2 �, then u is constant in �.

PROOF. The proof is the same as the proof of Proposition 4.1. We only need

to replace the standard weak Harnack inequality ([6]) by either Theorem 4.5 or

Theorem 4.7. �

740 S. KOIKE and A. ŚWIE�CH



REMARK 5.2. If q ¼ p ¼ n, then the strong maximum principle also holds

for Ln-strong sub- and supersolutions of ð5:1Þ since the ABP maximum principle

holds in this case, and it implies the weak Harnack inequality ðsee Remark 4.4Þ.

6. Boundary weak Harnack inequality and the global Hölder

estimate.

We will first establish the boundary weak Harnack inequality. We recall

again that, unless specified otherwise, all functions are extended by zero outside of

their domains.

THEOREM 6.1. Suppose that ð2:3Þ holds, and � � Rn is such that

� \Q1 6¼ ;:

Let R > 1 and let r, Ck ðk ¼ 8; 9Þ and N be the constants from Theorems 4.5 and

4.7. Let � 2 Lqþð�Þ and f 2 Lpþð�Þ. Let u 2 Cð�Þ be a nonnegative Lp-viscosity

supersolution of

PþðD2uÞ þ �ðxÞjDuj ¼ �fðxÞ in �: ð6:1Þ

Then for q > n and q � p � n,

Z
Q1

ðu�mÞ
rdx

� �1
r

� C8 inf
Q1

u�m þ kfkLnðQRÞ

� �
; ð6:2Þ

and for q > n > p > p0,

Z
Q1

ðu�mÞ
rdx

� �1
r

� C9

�
inf
Q1

u�m þ
�
expðC2k�knLnðQRÞÞk�k

N
LqðQRÞ

þ
XN�1

k¼0

k�kkLqðQRÞ

	
kfkLpðQRÞ



;

ð6:3Þ

where for m :¼ inffuðxÞ j x 2 @� \QRg,

u�mðxÞ ¼
minfuðxÞ;mg in � \QR;

m in QR n �:

(

ðThe functions � and f are equal to 0 outside of �.Þ
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PROOF. For u 2 Cð�Þ, we define u�m 2 CðQRÞ as above. Since constants are
Lp-viscosity supersolutions of (6.1) in QR, it is easy to see that u�m is an

Lp-viscosity supersolution of (6.1) in QR. Therefore, applying Theorem 4.5 or 4.7,

we conclude the proof. �

We will now present the global Hölder estimate for Lp-viscosity solutions of

(2.1). As we have mentioned in the introduction a similar result has been obtained

before by Sirakov [20] by a different method. His result is a little more general as

it applies to equations with quadratically growing gradient terms, however the

difficulty is in proving it for solutions of extremal equations of type (1.1).

Comparing it to our Theorem 6.2 Sirakov’s result would require q > n; p � n. Our

improvement is in allowing n > p > p0 and in obtaining a Hölder exponent which

does not depend on k�kq.
We need an additional condition on �. We assume that there exists � >

0; t0 > 0; such that

jQtðxÞ n �j � �tn for x 2 @� and 0 < t � t0: ð6:4Þ

THEOREM 6.2. Let � be a bounded domain which satisfies ð6:4Þ. Let ð2:3Þ,
ð3:1Þ, ð3:2Þ and ð3:3Þ with m ¼ 1 hold. Let g 2 C�ð@�Þ with � 2 ð0; 1Þ, and L > 0.

There exist � ¼ �ðn; p; q; �;�;�; �Þ 2 ð0; 1Þ and C10 ¼ C10ðn; p; q; �;�;�; k�kq;
kfkp; !ðLÞkckp; kgkC�ð@�Þ; diam ð�Þ; L; t0Þ > 0 such that if u 2 Cð�Þ is an Lp-vis-

cosity solution of ð2:1Þ such that

juj � L in �; and u ¼ g on @�;

then

juðxÞ � uðyÞj � C10jx� yj� for x; y 2 �: ð6:5Þ

PROOF. The proof follows rather standard arguments, however we present

it here for completeness and to keep track of the dependence of various constants.

We first notice that 	u are Lp-viscosity supersolutions of

PþðD2ð	uÞÞ þ �ðxÞjDuj ¼ �jfðxÞj � cðxÞ!ðLÞ:

This is the only information needed to show the weak Harnack and boundary

weak Harnack inequalities. Thus, we may assume that cðxÞ!ðLÞ ¼ 0 regarding it

as the inhomogeneous term.
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We will only prove the assertion when q > n > p > p0, since the other case is

proved by the same argument.

We first show an estimate at a boundary point. By translation, we may

suppose that 0 2 @� and without loss of generality we can assume that t0 ¼ 2. We

note that for any constant K 2 R, K 	 u are Lp-viscosity supersolutions of

PþðD2uÞ þ �ðxÞjDuj ¼ �jfðxÞj in �:

Thus, by setting Mt ¼ supQt\� u and mt ¼ infQt\� u for 0 < t � 2, M2 � u and

u�m2 are nonnegative Lp-viscosity supersolutions of the above PDE in Q2 \ �.

For a function w : Q2 \ � :! R, we define m½w� :¼ inffwðxÞ j x 2 Q2 \ @�g,
and

w�
mðxÞ ¼

minfwðxÞ;m½w�g for x 2 Q2 \ �;

m½w� for x 2 Q2 n �:

(

Setting also @Mt ¼ sup@�\Qt
u and @mt ¼ inf@�\Qt

u, we observe that

inf
Q1

ðM2 � uÞ�m �M2 �M1 and inf
Q1

ðu�m2Þ�m � m1 �m2:

Hence, by (6.3) applied to the functions ðM2 � uÞ�m and ðu�m2Þ�m, using (6.4) we

have

�ðM2 � @M2Þ � C9 M2 �M1 þ A½��kfkp
� �

and

�ð@m2 �m2Þ � C9 m1 �m2 þ A½��kfkp
� �

;

where A½�� ¼ expðC2k�knnÞk�k
N
q þ

PN�1
k¼0 k�kkq

n o
. Therefore, we find � ¼ �ðn; �;�;

p; q;�; k�kqÞ 2 ð0; 1Þ and C > 0 such that

M1 �m1 � �ðM2 �m2Þ þ Cð@M2 � @m2Þ þ CA½��kfkp: ð6:6Þ

Here and below C stands for various positive constants independent of u.

However we will only use a scaled version of (6.6). We then have

Mt �mt � �ðM2t �m2tÞ þ Ct� þ CA½�t�kftkp
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for � ¼ �ðn; �;�; p; q;�; k�tkqÞ 2 ð0; 1Þ where �tðxÞ ¼ t�ðtxÞ and ftðxÞ ¼ t2fðtxÞ for
x 2 Q2 and 0 < t � 1. We have k�tkLqðQ2Þ ¼ t

1�n
q k�kLqðQ2tÞ � 1 for t � �t ¼

�tðn; q; k�kqÞ, and kftkLpðQ2Þ ¼ t
2�n

pkfkLpðQ2tÞ � t
2�n

pkfkp. Therefore if we take t � �t

we obtain that � ¼ �ðn; �;�; p; q;�Þ 2 ð0; 1Þ, i.e. it is independent of k�kq. We can

now follow a standard argument (see for instance [14]) to establish that

Mt �mt � Ct�1 ð6:7Þ

for all t > 0 for some C > 0 and �1 2 ð0;minf�; 2� n
p
gÞ (which also depends on

n; �;�; p; q;�).

Next, we show a precise local estimate for u. Instead of (6.4), we will use the

fact that for every region �0

Z
�0
j� þ �jrdx

� �1
r

� 2
1
r�1

Z
�0
j�jrdx

� �1
r

þ
Z
�0
j�jrdx

� �1
r

( )
ð6:8Þ

for �; � 2 Lrð�0Þ when 0 < r < 1, which, together with the weak Harnack

inequality, will give a precise Hölder continuity estimate with no use of the local

maximum principle.

We fix x 2 � and let d ¼ distðx; @�Þ > 0. We notice that Q2d=
ffiffi
n

p � �. We will

suppose that x ¼ 0 for the sake of simplicity.

For t 2 ð0; d= ffiffiffi
n

p �, setting v ¼M2t � u and then v ¼ u�m2t, Corollary 4.8

yields

1

tn

Z
Qt

vrdx

� �1
r

� C9 inf
Qt

vþ A½��t2�
n
pkfkp

� �
;

where A½�� ¼ expðC2k�knnÞk�k
N
q þ

PN�1
k¼0 k�kkq for some integer N , where the

norms are taken over Q2t. Hence, in view of (6.8), we obtain

M2t �m2t � C M2t �Mt þmt �m2t þ t
2�n

p

� �

for some C ¼ Cðn; �;�; t1�
n
qk�kqÞ, which implies that for t � �t ¼ �tðn; q; k�kqÞ

Mt �mt � �ðM2t �m2tÞ þ t
2�n

p

for some � ¼ �ðn; �;�; p; qÞ 2 ð0; 1Þ. It is then standard (see Lemma 8.23 of [14]) to
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verify that

Mt �mt � C
t

�

� ��2

M2� �m2�ð Þ þ t�2

� 	
ð6:9Þ

for some �2 2 ð0; 2� n
p
Þ (depending only on n; �;�; p; q), and t 2 ð0; �Þ, where

� ¼ minf�t; d= ffiffiffi
n

p g.
We now define � :¼ minf�1; �2g. For x; y 2 �, in order to show that

juðxÞ � uðyÞj � Cjx� yj�;

we only need to consider the case when x; y 2 � and jx� yj < �t, because of (6.7),

and g 2 Cð@�Þ.
We may suppose that distðx; @�Þ � distðy; @�Þ > 0. Thus, we set d :¼

distðx; @�Þ and suppose for simplicity that x ¼ 0.

Case 1: jx� yj � d=
ffiffiffi
n

p

We choose x0; y0 2 @� such that distðx; @�Þ ¼ jx� x0j and distðy; @�Þ ¼
jy� y0j. Noting that jx� yj � jx� x0j=ð

ffiffiffi
n

p Þ � jy� y0j=ð
ffiffiffi
n

p Þ, in view of (6.7), we

see that

juðxÞ � uðyÞj � Cðjx� x0j� þ jx0 � y0j� þ jy� y0j�Þ � Cjx� yj�:

Case 2: jx� yj � d=
ffiffiffi
n

p

Because of (6.9) we have

juðxÞ � uðyÞj � C
jx� yj
�

� ��
ðM2� �m2�Þ þ Cjx� yj�: ð6:10Þ

If � ¼ �t we are done. Otherwise � ¼ d=
ffiffiffi
n

p
. Then, if x0 2 @� is such that

jx� x0j ¼ distðx; @�Þ ¼ d, (6.7) implies that

max
Q 4dffiffi

n
p ðx0Þ\�

u� min
Q 4dffiffi

n
p ðx0Þ\�

u � Cd�

which, together with (6.10) gives

juðxÞ � uðyÞj � Cjx� yj�: �

REMARK 6.3. Theorems 6.1 and 6.2 also hold for nonnegative Lp-viscosity
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supersolutions of ð6:1Þ and Lp-viscosity solutions of ð2:1Þ if �; f; c 2 LnþðQRÞ and

p0 < p < n. The constant C8 in ð6:2Þ is then the one from Remark 4.6 and in

Theorem 6.2 we have � ¼ �ðn; �;�;�; �Þ 2 ð0; 1Þ and C10 ¼ C10ðn; �;�;�; kfkn;
!ðLÞkckn; kgkC�ð@�Þ; �;�; L; t0Þ > 0. We leave the details to the readers as the

proofs are almost the same as those above if we carefully use Remark 4.6 and its

small cube version.

7. Strong solvability of extremal equations.

As an application of the global continuity estimates of Theorem 6.2, we prove

a result about strong solvability of general extremal equations. Fok [13] showed

this result for f 2 Lpð�Þ \ L2nð��Þ, where �� ¼ fx 2 � : distðx; @�Þ < �g for

some � > 0, however his p0 may be different from ours. (We incorrectly attributed

the full Theorem 7.1 to [13] in [17].) When p ¼ n, Theorem 7.1 can be also

deduced from the results of [20].

THEOREM 7.1. Let � � B1 be a domain satisfying the uniform exterior cone

condition. Under ð2:3Þ, let f 2 Lpð�Þ and � 2 Lqð�Þ, and let g 2 Cð@�Þ. Then,

there exist Lp-strong solutions u; v 2 Cð�Þ \W 2;p
loc ð�Þ of

P�ðD2uÞ � �ðxÞjDuj ¼ fðxÞ in � ð7:1Þ

and

PþðD2vÞ þ �ðxÞjDvj ¼ fðxÞ in � ð7:2Þ

such that u ¼ v ¼ g on @�. Moreover for every �0
b �, we have

kwkW 2;pð�0Þ � Cðkgk1 þ kfkpÞ; ð7:3Þ

for w ¼ u; v, and C ¼ Cðn; p; q; �;�; k�kq; distð�0; @�ÞÞ.

REMARK 7.2. We notice that the uniform exterior cone condition for �

implies ð6:4Þ.

PROOF. We will only consider (7.1). We first approximate g by gi 2 C�ð@�Þ
for some � 2 ð0; 1Þ, i ¼ 1; 2; . . .. Then, approximating f and � by smooth functions

fk and �k such that kf � fkkp þ k�� �kkq ! 0 as k! 1, we find uk 2 Cð�Þ \
C2ð�Þ such that

P�ðD2ukÞ � �kðxÞjDukj ¼ fkðxÞ in �;

746 S. KOIKE and A. ŚWIE�CH



under uk ¼ gi on @�.

Thanks to Theorem 6.2, we may assume that uk converges to a function

�ui 2 Cð�Þ uniformly in �. On the other hand, it is known (e.g. [18]) that for each

�0
b �, there is C ¼ Cðn; �;�; distð�0; @�Þ; k�kkqÞ > 0 such that

kukkW 2;pð�0Þ � Cðkgik1 þ kfkkpÞ:

Therefore, we may suppose that w ¼ �ui 2 Cð�Þ \W 2;p
loc

ð�Þ satisfies (7.3).
It is standard to show that �ui is an L

p-strong supersolution of (7.1) because of

the concavity of P� and the fact that we may suppose that D2uk converges

weakly to D2 �ui. It remains to show that �ui is also an Lp-strong subsolution of

(7.1). However, Proposition 9.4 in Appendix implies that �ui is an Lp-viscosity

subsolution of (7.1). On the other hand, since �ui is twice differentiable for almost

all x 2 � (because p > n=2), Proposition 9.1 implies that �ui satisfies

P�ðD2 �uiðxÞÞ � �ðxÞjD�uiðxÞj � fðxÞ for almost all x 2 �.

We can now pass to the limit as i! þ1. It follows from the maximum

principle that the �ui converge uniformly on � to some function u 2 Cð�Þ, u ¼ g on

@�. Moreover the function u 2W 2;p
loc ð�Þ and it satisfies (7.3). The fact that u is a

strong solution of (7.1) follows from the same arguments as these described above

to establish this fact for the �ui. �

8. Maximum principle in unbounded domains.

An application of Theorem 6.1 is an ABP type maximum principle in

unbounded domains. Following [4] (see also [22]), we say that � satisfies (wG) if

there exist 0 <  , 
 < 1 such that

8x 2 �; 9Rx and 9zx 2 Rn such that jQRx
ðzxÞ n �x;Rx; j � 
jQRx

ðzxÞj:

Here �x;Rx; is the connected component of � \QRx= ðzxÞ such that x 2 � \
QRx

ðzxÞ.
We will impose the condition

M :¼ sup
x2�

Mx <1; ð8:1Þ

where Mx ¼ R
1�n

q
x k�kLqð�x;Rx; Þ. In [8], instead of (8.1), it was assumed that

sup
x2�

Rxk�kL1ð�x;Rx; Þ <1:
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We also refer to a recent paper [1] and references therein for results on ABP

type maximum principles, strong maximum principle, Liouville type theorems,

etc. for viscosity solutions of fully nonlinear PDE having superlinear, at most

quadratic, growth in Du with bounded and continuous coefficients in unbounded

domains.

THEOREM 8.1. Let � � Rn satisfy ðwGÞ and let ð2:3Þ hold. Suppose that

f 2 Lpþð�Þ and � 2 Lqþð�Þ satisfies ð8:1Þ. There exists C11 ¼ C11ðn; �;�; p; q;M;


; Þ > 0 such that if u 2 Cð�Þ is an Lp-viscosity subsolution ðresp., supersolutionÞ
of

P�ðD2uÞ � �ðxÞjDuj ¼ fðxÞ in �

ðresp.; PþðD2uÞ þ �ðxÞjDuj ¼ �fðxÞ in �Þ

such that sup� u <1 ðresp., inf� u > �1Þ, then

sup
�
u � sup

@�
uþ C11 sup

x2�
R

2�n
p

x kfkLpð�x;Rx; Þ

resp.; sup
�

ð�uÞ � sup
@�

ð�uÞ þ C11 sup
x2�

R
2�n

p
x kfkLpð�x;Rx; Þ

� �
:

PROOF. Fix any x 2 Rn. By (wG), we choose R ¼ Rx > 0 and z ¼ zx 2 Rn

such that x 2 QRðzÞ and

jQRðzÞ n �x;R; j � 
jQRðzÞj: ð8:2Þ

We may suppose z ¼ 0 by translation. Moreover, by scaling, we may suppose that

u is an Lp-viscosity subsolution of

P�ðD2uÞ � �̂ðyÞjDuj ¼ f̂ðyÞ in
1

R
�x;R; ;

where �̂ðyÞ ¼ R�ðRyÞ and f̂ðyÞ ¼ R2fðRyÞ (and where f and � are equal to 0

outside of �). We notice that (8.1) implies that k�̂kLqðQ1= Þ �M.

Setting v ¼ K � u, where K :¼ sup� u, we denote by v�m the function

v�mðyÞ ¼
minfK � uðyÞ;mg for y 2 1

R
�x;R; ;

m for y 2 Q1= n 1
R
�x;R; ;

(
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where m ¼ K � sup@� u. It now follows from Theorem 6.1 and (8.2) that


 K � sup
@�

u

� �
� C0

9 K � uðxÞ þ kf̂kLnðQ1= Þ

� �

for some C0
9 ¼ C0

9ðn; �;�; p; q;M; Þ � 1. Therefore we have

uðxÞ � 1�



C0
9

� �
K þ




C0
9

sup
@�

uþ kf̂kLpðQ1= Þ:

Therefore, taking the supremum over x 2 �, we find

K � sup
@�

uþ C0
9



sup
x2�

R
2�n

p
x kfkLpð�x;Rx; Þ: �

9. Appendix.

We prove several technical results about Lp-viscosity solutions. We refer to

[9] for the definition of the semi-jets J2;	.

PROPOSITION 9.1 (cf. Proposition 3.4 in [7]). Let F satisfy ð3:1Þ–ð3:3Þ, let
f 2 Lpð�Þ and let one of the following conditions be satisfied:

ð1Þ q > n; q � p � n;

ð2Þ q > n > p > p0; pðmq � nÞ > nqðm� 1Þ:

(
ð9:1Þ

If u 2 Cð�Þ is an Lp-viscosity subsolution ðresp., supersolutionÞ of ð2:1Þ, then there

exists a null set N � � such that for x 2 � nN

F ðx; uðxÞ; p;XÞ � fðxÞ ðresp.; � fðxÞÞ
provided ðp;XÞ 2 J2;þuðxÞ ðresp.; J2;�uðxÞÞ:

In particular, if u 2W 2;p
loc ð�Þ is an Lp-viscosity solution of ð2:1Þ, then it is an

Lp-strong solution of ð2:1Þ.

REMARK 9.2. When m ¼ 1, the second property of ð9:1Þ automatically

holds.

PROOF. We will only present proof in the case (2) and m > 1 as the proofs

in the other cases are similar but much easier. Set Gðx; r; p;XÞ ¼ F ðx; r;
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p;XÞ � fðxÞ for ðx; r; p;XÞ 2 ��R�Rn � Sn. For ðp;XÞ 2 Rn � Sn we denote

by Lðp;XÞ the set of points x 2 � such that

lim
r!0

1

rn

Z
BrðxÞ

jGðx; uðxÞ; p;XÞ �Gðy; uðyÞ; p;XÞjpdy ¼ 0: ð9:2Þ

Let C � Rn � Sn be a countable dense set. For �; c 2 Lpþð�Þ in (3.3), we then

define

E ¼
\

ðp;XÞ2C
Lðp;XÞ

\
x 2 � lim

r!0

1

rn

Z
BrðxÞ

j�ðxÞ � �ðyÞjpdy ¼ 0

�����
)(
:

This set has full measure, i.e. jEj ¼ j�j and it is easy to see that (9.2) holds for

every ðx; p;XÞ 2 E �Rn � Sn.

We will show that if ðp;XÞ 2 J2;þuðxÞ for x 2 E, then

Gðx; uðxÞ; p;XÞ � 0:

Similar statement holds for the supersolution case.

By translation we may assume that x ¼ 0. Suppose that the above inequality

fails, i.e. there is � > 0 such that

2� � Gð0; uð0Þ; p;XÞ:

Then for small � > 0, setting Y ¼ X þ 2�I, we find r0 > 0 such that

uðxÞ þ
�

2
jxj2 � �ðxÞ :¼ uð0Þ þ hp; xi þ

1

2
hY x; xi for jxj � r0; ð9:3Þ

and

� � Gð0; uð0Þ; p; Y Þ: ð9:4Þ

Conditions (3.2) and (3.3) imply that  ¼ u� � is an Lp-viscosity subsolution

of

P�ðD2 Þ � C�ðxÞjD jm � C�ðxÞjD j ¼ gðxÞ in Br;

 � � �

2
r2 on @Br;

8<
: ð9:5Þ
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where

gðxÞ ¼ �� þ C�ðxÞjY xj þGð0; uð0Þ; p; Y Þ �Gðx; uðxÞ; p; Y Þ:

Since 0 2 E we have

kgkLpðBrÞ � oðr
n
p Þ: ð9:6Þ

The idea now is to show that this cannot happen using maximum principle.

Unfortunately the estimate of Theorem 2.6 is nonlinear and it is not obvious how

it scales when the diameter of the domain goes to 0. However after careful analysis

one can obtain a scaled version of (2.15) presented below in Lemma 9.3. Using

(9.6) and (9.7), we easily conclude the proof since  ð0Þ ¼ 0 and this cannot

happen for small r. �

LEMMA 9.3. If � ¼ Br in Theorem 2.6, then in case ðiiÞ we have

sup
Br

u � sup
@Br

uþ Cr
2�n

p
XNþ1

k¼0

k�mkakLqðBrÞkfk
mk

LpðBrÞ: ð9:7Þ

PROOF. We will rescale equation (2.12). Set wðxÞ ¼ uðrxÞ. Then w is an

Lp-viscosity subsolution of

P�ðD2wÞ �
�mðrxÞ
rm�2

jDwjm � r�1ðrxÞjDwj ¼ r2fðrxÞ in B1: ð9:8Þ

Denote

~�mðxÞ ¼
�mðrxÞ
rm�2

; ~�1ðxÞ ¼ r�1ðrxÞ; ~fðxÞ ¼ r2fðrxÞ:

Then for r � 1

k~�kkLqðB1Þ ¼ r
2�k�n

q k�kkLqðBrÞ ðk ¼ 1;mÞ; k~fkLpðB1Þ ¼ r
2�n

pkfkLpðBrÞ: ð9:9Þ

First we need to convince ourselves that condition (2.14) is preserved under

scaling. We have
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k~fkm
N ðm�1Þ

LpðB1Þ k~�mkm
N

LqðB1Þ ¼ r
mN ðm�nðm�1Þ

p �n
q Þkfkm

N ðm�1Þ
LpðBrÞ k�mkm

N

LqðBrÞ < r
mN ðm�nðm�1Þ

p �n
q Þ�:

However m� nðm�1Þ
p

� n
q
> 0 by (2.13) so (2.14) is satisfied. In fact the above

shows that � ! þ1 as r! 0.

To show (9.7) we proceed by induction. We define

M0 ¼ k~fkLpðB1Þ; Mkþ1 ¼ k~�mkLqðB1ÞM
m
k for k � 0:

By (9.9) we can assume that

Mk � r
2�n

pk�mkakLqðBrÞkfk
mk

LpðBrÞ

since it is satisfied for k ¼ 0. Then for r � 1

Mkþ1 � r
2�m�n

q r
ð2�n

pÞmk�mkakþ1

LqðBrÞkfk
mkþ1

LpðBrÞ

¼ r
2�n

p r
m�nðm�1Þ

p �n
qk�mkakþ1

LqðBrÞkfk
mkþ1

LpðBrÞ � r
2�n

pk�mkakþ1

LqðBrÞkfk
mkþ1

LpðBrÞ:

where we again have used by (2.13). Therefore, by (2.15), we obtain

sup
Br

u ¼ sup
B1

w � sup
@B1

wþ C
XNþ1

k¼0

Mk � sup
@Br

uþ Cr
2�n

p
XNþ1

k¼0

k�mkakLqðBrÞkfk
mk

LpðBrÞ: �

We can now show the stability result for (2.1), which is needed to establish

the strong solvability of extremal PDE in section 7.

PROPOSITION 9.4. Let F; Fk : ��R�Rn � Sn ! R; k ¼ 1; 2; . . . satisfy

ð3:1Þ–ð3:3Þ with m � 1; �;� > 0; � 2 Lqþð�Þ; c 2 Lpþð�Þ and modulus !, let f; fk 2
Lpð�Þ; k ¼ 1; 2; . . . ; and let one of ð9:1Þ hold.

Let uk be Lp-viscosity subsolutions ðresp., supersolutionsÞ of

Fkðx; uk;Duk;D2ukÞ ¼ fkðxÞ in �:

Assume also that for every BrðxÞ � �, uk ! u uniformly in BrðxÞ as k! 1, and

for � 2W 2;pðBrðxÞÞ

lim
k!þ1

kðG½�� �Gk½��ÞþkLpðBrðxÞÞ ¼ 0 ð9:10Þ
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resp.; lim
k!þ1

kðG½�� �Gk½��Þ�kLpðBrðxÞÞ ¼ 0

� �
;

where

Gk½��ðyÞ ¼ Fkðx; ukðxÞ; D�ðxÞ; D2�ðxÞÞ � fkðxÞ; and
G½��ðyÞ ¼ F ðx; uðxÞ; D�ðxÞ;D2�ðxÞÞ � fðxÞ:

Then u is an Lp-viscosity subsolution ðresp., supersolutionÞ of

F ðx; u;Du;D2uÞ ¼ fðxÞ in �:

PROOF. Again we will only show the result for case ð2Þ when m > 1.

Suppose, contrary to the claim, that there exist y 2 �, r > 0, ’ 2 W 2;pðBrðyÞÞ such
that u� ’ has a maximum at y over BrðyÞ b � but

F ðx; uðxÞ; D’ðxÞ; D2’ðxÞÞ � fðxÞ � � a:e: in BrðyÞ:

Without loss of generality we may assume that y ¼ 0 2 � and ðu� ’Þð0Þ ¼ 0.

Define wkðxÞ ¼ ukðxÞ � ’ðxÞ � �jxj2, where � ¼ �=ð2n�Þ, and set "k ¼ supBr

jukðxÞ � uðxÞj.
Using (3.2) and (3.3) we easily obtain that wk is an L

p-viscosity subsolution of

P�ðD2wkÞ � C1�ðxÞjDwkjm � C1�ðxÞðjD’ðxÞjm�1 þ j2�xjm�1 þ 1ÞjDwkj

¼ cðxÞ!ð"kÞ þG½’þ �jxj2�ðxÞ �Gk½’þ �jxj2�ðxÞ

þ C1�ðxÞðjD’ðxÞjm�1 þ j2�xjm�1 þ 1Þj2�xj

in Br for some constant C1 ¼ C1ðmÞ. Because of condition ð2Þ, the function

�ðxÞðjD’ðxÞjm�1 þ j2�xjm�1 þ 1Þ 2 Lp̂ðBrÞ for some p̂ > n. Moreover, denoting

hðxÞ :¼ C1�ðxÞðjD’ðxÞjm�1 þ j2�xjm�1 þ 1Þj2�xj and using that � 2 Lqð�Þ,
D’ 2 Lp

� ðBrÞ, we have

khkLpðBrÞ � C2r
n
pþ�

for some C2 and � > 0. Therefore it follows from Lemma 9.3 and (9.10) that

sup
Br

wk � sup
@Br

wk þ C3r
2�n

p r
n
pþ� þ 
ðkÞ;
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where 
ðkÞ ! 0 as k! þ1. This leads to a contradiction by first choosing small r

and then letting k! þ1 since

lim
k!þ1

sup
Br

wk ¼ 0 and lim
k!þ1

sup
@Br

wk � ��r2: �
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