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(Received Feb. 4, 2008)
(Revised June 24, 2008)

Abstract. We show that the nonlinear wave equation �uþ u3t ¼ 0 is

globally well-posed in radially symmetric Sobolev spaces Hk
radðR3Þ �Hk�1

rad ðR3Þ for
all integers k > 2. This partially extends the well-posedness in HkðR3Þ �
Hk�1ðR3Þ for all k 2 ½1; 2�, established by Lions and Strauss [12]. As a consequence

we obtain the global existence of C1 solutions with radial C1
0 data. The

regularity problem requires smoothing and non-concentration estimates in

addition to standard energy estimates, since the cubic damping is critical when

k ¼ 2. We also establish scattering results for initial data ðu; utÞjt¼0 in radially

symmetric Sobolev spaces.

1. Introduction.

Let � ¼ @2
t �� be the wave operator on R�R3 and Du ¼ ðut;ruÞ be the

space-time derivative of u. We consider the wave equation with nonlinear

damping

�uþ u3
t ¼ 0; x 2 R3; t > 0; ð1:1Þ

and initial conditions

ujt¼0 ¼ u0; utjt¼0 ¼ u1; x 2 R3; ð1:2Þ

where ðu0; u1Þ 2 HkðR3Þ �Hk�1ðR3Þ. Global well-posedness (existence and

uniqueness) in Sobolev spaces is an open question for k > 2. Interestingly, the

answer is affirmative for k 2 ½1; 2� due to Lions and Strauss [12]; see also Joly,

Metivier and Rauch [7] and Liang [11]. Below we outline the major difficulties to

obtain well-posedness in Sobolev spaces with k > 2 and explain our partial

solution. We use D� to denote partial derivatives of order � ¼ ð�0; �1; �2; �3Þ and
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k � kp to denote the norm in LpðR3Þ for p 2 ½1;1�.
A priori estimates are essential for any global well-posedness result. Let us

begin with a basic estimate in H1ðR3Þ � L2ðR3Þ known as the energy inequality.

From

d

dt

kDuðtÞk22
2

¼ �kutðtÞk44;

which is valid for sufficiently regular solutions of (1.1), we conclude that the

energy decreases in time: kDuðtÞk2 � kDuð0Þk2. Recall that we only multiply with

ut and apply the divergence theorem to obtain the above energy identity.

To establish higher regularity, we look for a priori estimates in H2ðR3Þ �
H1ðR3Þ. Assuming that (1.1) can be differentiated once, we have

�D�uþ 3u2
tD

�ut ¼ 0; j�j ¼ 1:

The above equation is also dissipative, since multiplying with D�ut and

integrating on R3 yields the identity

d

dt

kDD�uðtÞk22
2

¼ �3kutðtÞD�utðtÞk22:

Hence kDD�uðtÞk2 � kDD�uð0Þk2 for j�j ¼ 1, i.e., all second-order norms

decrease.

We can make such formal calculations rigorous using the monotonicity of

nonlinear damping and standard approximation arguments. (Monotonicity means

that ðu3
t � v3t Þðut � vtÞ � 0 for any two functions. This property implies that the

evolution governed by (1.1), (1.2) contracts initial data in the energy space; see

Lemma 3.1 or [12], [7], [11].) Once we have suitable estimates and global well-

posedness in HkðR3Þ �Hk�1ðR3Þ for k ¼ 1 and k ¼ 2, we can extend the result to

all k 2 ½1; 2� by interpolation.

Monotonicity is not sufficient, however, to show global well-posedness for

k > 2. Returning to equation (1.1), we notice that high-order derivatives produce

non-dissipative terms. In particular, the equation for D�u with j�j ¼ 2 is

�D�uþ 3u2
tD

�ut þ
X

�þ�¼�

c�;�utD
�utD

�ut ¼ 0;

where c�;� are some constants. Now kDD�uðtÞk2 is not necessarily a decreasing

function of t, as the energy identity is more complicated:
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d

dt

kDD�uðtÞk22
2

þ
X

�þ�¼�

c�;�

Z
utD

�utD
�utD

�ut dx

¼� 3kutðtÞD�utðtÞk22:

The integral is neither positive nor linearly bounded by the other terms, so it is

not clear whether kDD�uðtÞk2 < 1 at all t. To the best of our knowledge, the

question is still open for data of arbitrary size in H3ðR3Þ �H2ðR3Þ. We should

mention that the global existence and asymptotic behavior for small data are well

understood; see Klainerman and Ponce [9], Hörmander [6], and the recent work of

Matsuyama [13] and references therein.

This paper establishes global well-posedness for large data under the

assumption of radial symmetry. To state the result, we let k � 1 and introduce

Hk
radðR3Þ ¼ fu 2 HkðR3Þ : u is a function of jxjg:

Clearly uðxÞ depends only on jxj if and only if

ðxi@xj � xj@xiÞuðxÞ ¼ 0; 1 � i < j � 3:

Such spaces are invariant under the evolution map determined by (1.1), (1.2).

The most important case is k ¼ 3, since it ensures that ut;Dut 2 L2ðRþ; L
1ðR3ÞÞ.

Then higher regularity follows from energy estimates and simple induction.

THEOREM 1.1. Assume that the initial data ðu0; u1Þ 2 H3
radðR3Þ �H2

radðR3Þ.
Then problem ð1:1Þ, ð1:2Þ admits a unique global solution u, such that

D�u 2 CðRþ; H
3�j�j
rad ðR3ÞÞ; j�j � 3:

COROLLARY 1.2. Assume that the initial data ðu0; u1Þ 2 H3
radðR3Þ �H2

radðR3Þ.
Then the global solution of problem ð1:1Þ, ð1:2Þ satisfies

X
1�j�j�2

Z t

0

kD�uðsÞk21 ds � C1ðu0; u1Þ; t � 0;

X
j�j�2

kDD�uðtÞk2 � C2ðu0; u1Þ; t � 0;

for implicit constants Ckðu0; u1Þ, k ¼ 1; 2, which are finite whenever the norm

ku0kH3 þ ku1kH2 is finite; see the remark below.
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REMARK 1.3. The implicit bounds come from Proposition 3.2 dealing with

the non-concentration of certain space-time norms. Such results are typical for

wave and Schrödinger equations with critical nonlinearities; see Struwe [19],

Grillakis [5], Shatah and Struwe [16], Bahouri and Gérard [1], and Tao, Visan,

and Zhang [23]. It may be possible to obtain explicit bounds by the induction on

energy argument of Bourgain [2] and Tao [21], [22].

THEOREM 1.4. Assume that the initial data ðu0; u1Þ 2 Hk
radðR3Þ �Hk�1

rad ðR3Þ,
where k � 4 is an integer. Then problem ð1:1Þ, ð1:2Þ admits a unique global solution

u, such that

D�u 2 CðRþ; H
k�j�j
rad ðR3ÞÞ; j�j � k:

If ðu0; u1Þ 2 C1
radðR3Þ � C1

radðR3Þ and ðu0; u1Þ have compact support, then

problem ð1:1Þ, ð1:2Þ admits a unique global solution u with compact support in x,

such that

u 2 C1ðRþ; C
1
radðR3ÞÞ:

The proofs of Theorem 1.1, Corollaries 1.2 and Theorem 1.4 rely on the

‘‘forbidden’’ Strichartz estimate and non-concentration arguments. The L1
t L

2
x �

L2
t L

1
x Strichartz estimate (due to Klainerman and Machedon [8]) for the wave

equation in R�R3 is valid only for radially symmetric solutions which explains

the condition for radially symmetric data. The non-concentration of space-time

norms

Z
I

kutðtÞDutðtÞk22 dt ! 0; jIj ! 0: ð1:3Þ

is rather simple compared with the non-concentration argument for semilinear

wave and Schrödinger equations in [19], [5], [16], [2], [21], [1], and [23].

Nevertheless, using (1.3) gives rise to the implicit constants in Corollary 1.2. To

remove the condition for radial symmetry we may also need a more involved

argument along the lines of Colliander, Keel, Staffilani, Takaoka, and Tao [3].

In conclusion, the critical nonlinear damping in R3 is quite different from

other critical nonlinearities (at least for radial data). An indication is the

invariant scaling of equation (1.1):

uðx; tÞ 7! uLðx; tÞ ¼ L1=2uðx=L; t=LÞ; L > 0:
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We see that the kth-order norms scale as

kD�uLðtÞk2 ¼ L2�kkD�uðt=LÞk2; j�j ¼ k;

so problem (1.1), (1.2) is supercritical for k < 2 and critical for k ¼ 2. Surprisingly

the global well-posedness for such k is already known from [12], where

monotonicity plays a more decisive role than scaling invariance. This is the main

difference between wave equations with nonlinear damping and other semilinear

wave and Schrödinger equations.

For completeness we also study the long time behavior of solutions

constructed in Theorem 1.1 and Corollary 1.2. It turns out that such solutions

are asymptotically free, since the term u3
t is supercritical for scattering theory in

R3. In comparison, the cubic damping is critical (and modifies the asymptotic

profiles) in the following related equations:

�uþ uþ u3
t ¼ 0; x 2 R; t > 0;

�uþ u3
t ¼ 0; x 2 R2; t > 0:

Asymptotics for these are obtained by Delort [4] and Sunagawa [20] and by

Kubo [10], respectively; see also Mochizuki [14] for the wave equation with

general nonlinear damping and Nakanishi [15] for the Sobolev critical Klein-

Gordon equation. In the case of equation (1.1) we readily verify the sufficient

condition for scattering:

Z 1

0

kD�u3
t ðtÞk2 dt < 1; 0 � j�j � 2;

where the initial data ðu0; u1Þ 2 H3
radðR3Þ �H2

radðR3Þ. In fact, the above is a

simple consequence of the estimates in Corollary 1.2.

THEOREM 1.5. Assume that the initial data ðu0; u1Þ 2 H3
radðR3Þ �H2

radðR3Þ.
The global solution u of problem ð1:1Þ, ð1:2Þ is asymptotically free:

kD�uðtÞ �D�uþðtÞk2 ! 0; t ! 1;

for 1 � j�j � 3, where uþ is a solution of �uþ ¼ 0 with initial data

Duþðx; 0Þ 2 H2
radðR3Þ �H1

radðR3Þ:
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REMARK 1.6. We expect similar scattering results in Hk
radðR3Þ �Hk�1

rad ðR3Þ
with integer k � 4.

The rest of this paper is organized as follows. Section 2 contains several basic

facts and estimates for the wave equations in R�R3. The regularity problem in

H3
radðR3Þ �H2

radðR3Þ is split between Sections 3 and 4. In Section 5 we use simple

induction to prove Theorem 1.4 about well-posedness in Hk
radðR3Þ �Hk�1

rad ðR3Þ
with k > 3. The scattering results of Theorem 1.5 are verified in the last Section 6.

2. Basic estimates.

The most important tools in this paper are the L1
t L

2
x � L1

t H1
x (energy)

estimate and L1
t L

2
x � L2

t L
1
x (radial Strichartz) estimate for the wave equation in

R�R3.

LEMMA 2.1. Let u be a solution of the Cauchy problem in R�R3

�u ¼ F; ujt¼0 ¼ u0; utjt¼0 ¼ u1:

ðaÞ For any source and initial data, u satisfies the energy estimate

kDuðtÞk2 � Cðkru0k2 þ ku1k2Þ þ C

Z t

0

kF ðsÞk2 ds

with an absolute constant C for all t � 0.

ðbÞ For radial source and initial data, u is also a radial function which satisfies

Z t

0

kuðsÞk21 ds

� �1=2

� Cðkru0k2 þ ku1k2Þ þ C

Z t

0

kF ðsÞk2 ds

with an absolute constant C for all t � 0.

Part (a) is a classical result presented, for instance, in the books of

Strauss [18], Hörmander [6], and Shatah and Struwe [17]. Klainerman and

Machedon [8] have found the homogeneous version of estimate (b) which implies

the non-homogeneous estimate stated here.

We will work with classical solutions of problem (1.1), (1.2) whose local

properties are well understood. The following is a collection of useful facts.

LEMMA 2.2. Assume that k � 3 and ðu0; u1Þ 2 HkðR3Þ �Hk�1ðR3Þ.
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ðaÞ There exists T > 0, such that problem ð1:1Þ, ð1:2Þ has a unique solution u

satisfying

D�u 2 Cð½0; T �; Hk�j�jðR3ÞÞ; j�j � k:

Moreover, we have

sup
t2½0;T �

kD�uðtÞk2 � Ck;

where T and Ck can be chosen to depend continuously on ku0kHk þ ku1kHk�1 .

ðbÞ The continuation principle holds: if T� ¼ T�ðu0; u1Þ is the supremum of all

numbers T for which ðaÞ holds, then either T� ¼ 1 or

sup
t2½0;T�Þ

kD�uðtÞk2 ¼ 1

for some � with j�j � k.

ðcÞ If the data ðu0; u1Þ are spherically symmetric, the solution ðu; utÞ is also

spherically symmetric.

Unfortunately, we do not have a single reference for all facts. The

aforementioned books [18], [6], and [17] discuss these and other folklore results

about nonlinear wave equations.

We conclude with an elementary functional inequality to replace the usual

Gronwall inequality in some estimates.

LEMMA 2.3. Let N : Rþ ! Rþ be a non-decreasing function and � > 0 be a

constant. If, for some non-decreasing function A : Rþ ! Rþ and a constant

B > 0,

NðtÞ � AðtÞ þ BNðt� �Þ

holds for all t � �, then

NðtÞ � ð1þ BÞ1þt=�ðNð0Þ þ AðtÞÞ;

for all t � �.

PROOF. If t ¼ � there is nothing to be proved. For t > � there exists a

positive integer n, such that n� < t � ðnþ 1Þ�. From the inequality for N , we

obtain the chain of inequalities
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Nðn�Þ � Aðn�Þ þ BNððn� 1Þ�Þ

� Aðn�Þ þ BAððn� 1Þ�Þ þB2Nððn� 2Þ�Þ

� � � �

� ð1þ Bþ � � � þBn�1ÞAðn�Þ þ BnNð0Þ:

The final step uses Aðk�Þ � Aðn�Þ whenever k � n. Bounding the geometric

sequence of B by a simpler function, we can write

Nðn�Þ � ð1þ BÞn�1Aðn�Þ þ BnNð0Þ:

Since n� < t � ðnþ 1Þ�, we have a few additional steps:

NðtÞ � AðtÞ þBNðn�Þ

� AðtÞ þBð1þ BÞn�1Aðn�Þ þ Bnþ1Nð0Þ

� ð1þ BÞnAðtÞ þ ð1þ BÞnþ1Nð0Þ:

Increasing n to t=�, we complete the proof. �

3. Non-concentration and smoothing estimates.

Lemma 2.2 (b) implies global well-posedness when all kD�uðtÞk2, j�j � 3, are

locally bounded functions of t. Hence our goal is to show that such norms can not

blow up in finite time.

We begin with two preliminary estimates for problem (1.1), (1.2) involving

first and second order norms. These results, called the energy dissipation laws, are

discussed in the introduction. We outline the proofs for completeness.

LEMMA 3.1. Assume that ðu0; u1Þ 2 H3ðR3Þ �H3ðR3Þ and j�j ¼ 1. Let u be

the solution of problem ð1:1Þ, ð1:2Þ extended on a maximal interval ½0; T�Þ by

Lemma 2.2. ðThe main theorem claims T� ¼ 1, but this result is not established

yet.Þ Then

1

2
kDuðtÞk22 þ

Z t

0

kusðsÞk44 ds ¼
1

2
kDuð0Þk22;

1

2
kDD�uðtÞk22 þ 3

Z t

0

kusðsÞD�usðsÞk22 ds ¼
1

2
kDD�uð0Þk22;

for 0 � t < T�. Thus the following norms of u are bounded functions of t:
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kDuðtÞk2 � kDuð0Þk2; kDD�uðtÞk2 � kDD�uð0Þk2; j�j � 1:

PROOF. To show the first-order identity, we combine the divergence

theorem and

0 ¼ ð�uþ u3
t Þut ¼

jDuj2

2

 !
t

�divðutruÞ þ u4
t :

The result follows from integration on R3 if uðx; tÞ has compact support with

respect to x. More generally, we can approximate ðu0ðxÞ; u1ðxÞÞ with compactly

supported C1 functions and use the finite propagation speed to show that the

boundary integral of divðutruÞ is zero. Property (a) in Lemma 2.2 implies that

the approximations will converge to the actual solution.

Similarly, we can differentiate equation (1.1) and multiply with D�utðx; tÞ to
show the second-order identity. Recall that we deal with solutions that have all

third-order derivatives in L2ðR3Þ. �

A simple corollary of Lemma 3.1 is the non-concentration of space-time

norms arising from the damping.

PROPOSITION 3.2. Assume that ðu0; u1Þ 2 H3ðR3Þ �H2ðR3Þ. Let u be the

solution of problem ð1:1Þ, ð1:2Þ extended on a maximal interval ½0; T�Þ by

Lemma 2.2. For every � > 0 there exists � > 0, such that

Z t2

t1

kusðsÞk44 þ
X
j�j¼1

kusðsÞD�usðsÞk22

0
@

1
A ds < �

whenever ½t1; t2� � ½0; T�Þ and t2 � t1 < �.

PROOF. From Lemma 3.1, kusðsÞk44 þ kusðsÞD�usðsÞk22 2 L1ð½0; T�ÞÞ if

j�j ¼ 1. Let us define the measure

�ðIÞ ¼
Z
I

kusðsÞk44 þ
X
j�j¼1

kusðsÞD�usðsÞk22

0
@

1
A ds; I � ½0; T�Þ;

where I can be any Borel set. Since � is absolutely continuous with respect to the

Lebesgue measure, we have �ðIÞ < � whenever jIj < � is sufficiently small. �

The next result combines Lemma 2.1 and Proposition 3.2 to bound the L2
t L

1
x
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norm of D�uðx; tÞ, j�j ¼ 1. Here the radial symmetry of initial data is essential.

Differentiating the main equation, we obtain

�D�uþ 3u2
tD

�ut ¼ 0; j�j ¼ 1:

Now Lemma 2.1 ðbÞ implies that

Z t

0

kD�uðsÞk21 ds

� �1=2

ð3:1Þ

� CkDD�uð0Þk2 þ C

Z t

0

ku2
sðsÞD�usðsÞk2 ds:

This is the starting point to establish the following estimate.

PROPOSITION 3.3. Assume that ðu0; u1Þ 2 H3
radðR3Þ �H2

radðR3Þ. Let u be the

local solution of problem ð1:1Þ, ð1:2Þ constructed in Lemma 2.2. There exist an

absolute constant C and positive constant � ¼ �ðu0; u1Þ, such that

X
j�j¼1

Z t

0

kD�uðsÞk21 ds

� �1=2

� C 1þ C
X
j�j¼1

kDD�uð0Þk2

0
@

1
A

1þt=�

�
X
j�j¼1

kDD�uð0Þk2

for all t 2 ½0; T�Þ.

PROOF. Let t 2 ð0; T�Þ. Using (3.1) and

ku2
sðsÞD�usðsÞk2 � kusðsÞk1kusðsÞD�usðsÞk2;

we can write

Z t

0

kD�uðsÞk21 ds

� �1=2

� CkDD�uð0Þk2

þC

Z t

0

kusðsÞk1kusðsÞD�usðsÞk2 ds:

Summation over j�j ¼ 1 yields the basic estimate
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X
j�j¼1

Z t

0

kD�uðsÞk21 ds

� �1=2

� C
X
j�j¼1

kDD�uð0Þk2

þC

Z t

0

kusðsÞk1
X
j�j¼1

kusðsÞD�usðsÞk2 ds:

We need the Cauchy inequality and non-concentration result of Proposition 3.2 to

bound the derivatives of nonlinear damping in terms of the seminorm

NðtÞ ¼
X
j�j¼1

Z t

0

kD�uðsÞk21 ds

� �1=2

; t � 0:

Let � > 0 be a small number to be determined later. For t < �, a direct

application of the Cauchy inequality shows that

NðtÞ � C
X
j�j¼1

kDD�uð0Þk2

þC

Z t

0

X
j�j¼1

kusðsÞD�usðsÞk22 ds

0
@

1
A

1=2

NðtÞ: ð3:2Þ

For t � �, the decomposition

Z t��

0

þ
Z t

t��

� �
kusðsÞk1kusðsÞD�usðsÞk2 ds;

followed by two applications of the Cauchy inequality, results in

NðtÞ � C
X
j�j¼1

kDD�uð0Þk2

þCNðt� �Þ
Z t��

0

X
j�j¼1

kusðsÞD�usðsÞk22 ds

0
@

1
A

1=2

þCNðtÞ
Z t

t��

X
j�j¼1

kusðsÞD�usðsÞk22 ds

0
@

1
A

1=2

:
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To further simplify last estimate, we notice that

Z t��

0

X
j�j¼1

kusðsÞD�usðsÞk22 ds

0
@

1
A

1=2

� C
X
j�j¼1

kDD�uð0Þk2;

which is a consequence of Lemma 3.1. Then

NðtÞ � C
X
j�j¼1

kDD�uð0Þk2 þ C
X
j�j¼1

kDD�uð0Þk2

0
@

1
ANðt� �Þ

þC

Z t

t��

X
j�j¼1

kusðsÞD�usðsÞk22 ds

0
@

1
A

1=2

NðtÞ: ð3:3Þ

We can now finish the proof using either (3.2) or (3.3). Recall that

Proposition 3.2 yields � > 0 with the property

C

Z t2

t1

X
j�j¼1

kusðsÞD�usðsÞk22 ds

0
@

1
A

1=2

<
1

2

whenever ½t1; t2� � ½0; T�Þ and t2 � t1 < �. Here � is a function of ðu0; u1Þ.
If t < �, we refer to estimate (3.2):

NðtÞ � C
X
j�j¼1

kDD�uð0Þk2 þ
1

2
NðtÞ:

This completes the proof for sufficiently small t.

If t � �, we go to estimate (3.3):

NðtÞ � C
X
j�j¼1

kDD�uð0Þk2 þ C
X
j�j¼1

kDD�uð0Þk2

0
@

1
ANðt� �Þ:

Applying Lemma 2.3, i.e., iterating the above inequality approximately t=� times,

we arrive at the final estimate for large t.
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NðtÞ � C
X
j�j¼1

kDD�uð0Þk2 1þ C
X
j�j¼1

kDD�uð0Þk2

0
@

1
A

1þt=�

;

with � depending on ðu0; u1Þ. Unfortunately this dependence is not explicit. �

The L2
t L

1
x norm of D�uðx; tÞ, j�j ¼ 2, admits a similar estimate. Now we

differentiate twice equation (1.1):

�D�uþ 3u2
tD

�ut þ
X

�þ�¼�

c�;�utD
�utD

�ut ¼ 0;

where c�;� are constants. From Lemma 2.1 we obtain

Z t

0

kD�uðsÞk21 ds

� �1=2

� CkDD�uð0Þk2 þ C

Z t

0

ku2
sðsÞD�usðsÞk2 ds

þC

Z t

0

kusðsÞðDusðsÞÞ2k2 ds: ð3:4Þ

The rest is similar to Proposition 3.3 except that it involves third-order

derivatives D�uðx; tÞ, j�j ¼ 3. To handle such terms we need the energy estimate

in Section 4.

PROPOSITION 3.4. Assume that ðu0; u1Þ 2 H3
radðR3Þ �H2

radðR3Þ. Let u be the

local solution of problem ð1:1Þ, ð1:2Þ constructed in Lemma 2.2. There exist

positive constants C and � ¼ �ðu0; u1Þ, such that

X
j�j¼2

Z t

0

kD�uðsÞk21 ds

� �1=2

� C 1þ C
X
j�j¼2

kDD�uð0Þk2

0
@

1
A

1þt=�

�
X
j�j¼2

kDD�uð0Þk2 þ
Z t

0

kusðsÞk21kD�usðsÞk2 ds
� �

for all t 2 ½0; T�Þ.

PROOF. Let t 2 ð0; T�Þ and 0 � s � t. Substitute the upper bounds
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ku2
sðsÞD�usðsÞk2 � kusðsÞk21kD�usðsÞk2; ð3:5Þ

kusðsÞðDusðsÞÞ2k2 � kDusðsÞk1kusðsÞDusðsÞk2;

into inequality (3.4). Then

Z t

0

kD�uðsÞk21 ds

� �1=2

� C kDD�uð0Þk2 þ
Z t

0

kusðsÞk21kD�usðsÞk2 ds
� �

þC

Z t

0

kDusðsÞk1kusðsÞDusðsÞk2 ds:

Summing over j�j ¼ 2 and introducing

NðtÞ ¼
X
j�j¼2

Z t

0

kD�uðsÞk21 ds

� �1=2

; t � 0;

we have

NðtÞ � C
X
j�j¼2

kDD�uð0Þk2 þ
Z t

0

kusðsÞk21kD�usðsÞk2 ds
� �

þC

Z t

0

kDusðsÞk1kusðsÞDusðsÞk2 ds:

Similarly to the previous proposition, we can estimate the derivatives of nonlinear

damping in terms of NðtÞ. There are again two cases: t < � and t � �, where � > 0

is chosen by the non-concentration result in Proposition 3.2.

For t < �, the use the Cauchy inequality to obtain

NðtÞ � C
X
j�j¼2

kDD�uð0Þk2 þ
Z t

0

kusðsÞk21kD�usðsÞk2 ds
� �

þC

Z t

0

kusðsÞDusðsÞk22 ds
� �1=2

NðtÞ: ð3:6Þ

For t � �, we split the integral

638 G. TODOROVA, D. UĞURLU and B. YORDANOV



Z t��

0

þ
Z t

t��

� �
kDusðsÞk1kusðsÞDusðsÞk2 ds

and apply the Cauchy inequality to each part. Then

NðtÞ � C
X
j�j¼2

kDD�uð0Þk2 þ
Z t

0

kusðsÞk21kD�usðsÞk2 ds
� �

þC

Z t��

0

kusðsÞDusðsÞk22 ds
� �1=2

Nðt� �Þ

þC

Z t

t��

kusðsÞDusðsÞk22 ds
� �1=2

NðtÞ:

It follows from Lemma 3.1 that

Z t��

0

kusðsÞDusðsÞk22 ds
� �1=2

� C
X
j�j¼1

kDD�uð0Þk2;

so we have

NðtÞ � C
X
j�j¼2

kDD�uð0Þk2 þ
Z t

0

kusðsÞk21kD�usðsÞk2 ds
� �

þC
X
j�j¼1

kDD�uð0Þk2

0
@

1
ANðt� �Þ ð3:7Þ

þC

Z t

t��

kusðsÞDusðsÞk22 ds
� �1=2

NðtÞ:

Proposition 3.2 shows the existence of � > 0, such that ½t1; t2� � ½0; T�Þ and

t2 � t1 < � imply

C

Z t2

t1

kusðsÞDusðsÞk22 ds
� �1=2

<
1

2
:

Hence estimates (3.6) and (3.7) yield
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NðtÞ � C
X
j�j¼2

kDD�uð0Þk2 þ
Z t

0

kusðsÞk21kD�usðsÞk2 ds
� �

and

NðtÞ � C
X
j�j¼2

kDD�uð0Þk2 þ
Z t

0

kusðsÞk21kD�usðsÞk2 ds
� �

þC
X
j�j¼1

kDD�uð0Þk2

0
@

1
ANðt� �Þ;

respectively. The proof is complete in the first case. Lemma 2.3 helps finish the

proof in the second case. �

4. Energy estimates and global existence of radial solutions in

H3 �H2.

In Section 3 we related smoothing estimates of uðx; tÞ with estimates of

kD�uðtÞk2, 1 � j�j � 3. Here we obtain an inequality for the latter norms.

PROPOSITION 4.1. Assume that ðu0; u1Þ 2 H3
radðR3Þ �H2

radðR3Þ and let u be

the local solution of problem ð1:1Þ, ð1:2Þ constructed in Lemma 2.2. There exists an

absolute constant C, such that

X
j�j¼2

kDD�uðtÞk2 � C
X
j�j¼2

kDD�uð0Þk2

þC

Z t

0

kDuðsÞk21
X
j�j¼2

kDD�uðsÞk2

0
@

1
A ds

þC
X
j�j¼1

kDD�uð0Þk2

0
@

1
A Z t

0

kDusðsÞk21 ds

� �1=2

for all t 2 ½0; T�Þ.

PROOF. Differentiating (1.1) twice, we find that D�u is a weak solution of

�D�uþ 3u2
tD

�ut þ
X

�þ�¼�

c�;�utD
�utD

�ut ¼ 0
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with constant c�;�. Thus, D
�u satisfies the estimate in Lemma 2.1 (a):

kDD�uðtÞk2 � CkDD�uð0Þk2

þC

Z t

0

ku2
sðsÞD�usðsÞk2 ds

þC

Z t

0

kusðsÞðDusðsÞÞ2k2 ds

for t 2 ½0; T�Þ. Using (3.5) in both integrals and applying the Cauchy inequality to

the second integral, we can write

kDD�uðtÞk2 � CkDD�uð0Þk2

þC

Z t

0

kDuðsÞk21kD�usðsÞk2 ds

þC

Z t

0

kDusðsÞk21 ds

� �1=2 Z t

0

kusðsÞDusðsÞk22 ds
� �1=2

:

To complete the proof, we add these estimates for all j�j ¼ 2 and refer to

Lemma 3.1 for the inequality

Z t

0

kusðsÞDusðsÞk22 ds � C
X
j�j¼1

kDD�uð0Þk22:

�

We can finally show that kDD�uðtÞk2, with j�j � 2, do not blow up if the

initial data have radial symmetry. Recall that such regularity is not preserved

automatically, as the equation for second-order derivatives is not dissipative.

PROOF OF THEOREM 1.1. It is clear from Lemma 3.1 that kD�uðtÞk2,
j�j � 2, do not blow up in finite time. Thus we consider only third-order norms.

Define

NðtÞ ¼
X
j�j¼2

kDD�uðtÞk22 þ
Z t

0

kD�uðsÞk21 ds

� �1=2

:

We combine Propositions 3.4 and 4.1 to obtain

Wave equation with a critical nonlinear damping 641



NðtÞ � C1ðu0; u1; tÞ Nð0Þ þ
Z t

0

kusðsÞk21NðsÞ ds
� �

for all t 2 ½0; T�Þ, where C1ðu0; u1; tÞ is a continuous increasing function of t

determined from these results. Using the Gronwall inequality, we have an

exponential estimate:

NðtÞ � C1ðu0; u1; tÞNð0Þ exp C1ðu0; u1; tÞ
Z t

0

kusðsÞk21 ds

� �
:

Proposition 3.3 shows that the integral of kusðsÞk21 is finite on any finite ½0; t�.
Hence NðtÞ is finite on every finite subinterval of ½0; T�Þ. This completes the

proof. �

PROOF OF COROLLARY 1.2. We start with the uniform estimates of L2
t L

1
x

norms. Notice that inequality (3.1) is valid on any interval ½t0; t� for all j�j ¼ 1:

X
j�j¼1

Z t

t0

kD�uðsÞk21 ds

� �1=2

� C
X
j�j¼1

kDD�uðt0Þk2

þC
X
j�j¼1

Z t

t0

ku2
sðsÞD�usðsÞk22 ds:

From the Cauchy inequality, we have

N1ðtÞ � C
X
j�j¼1

kDD�uðt0Þk2

þCN1ðtÞ
Z t

t0

kusðsÞDusðsÞk22 ds
� �1=2

;

where

N1ðtÞ ¼
X
j�j¼1

Z t

t0

kD�uðsÞk21 ds

� �1=2

; t � t0:

Since the integral on ½0;1Þ is convergent, we can find a large t0, such that
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C

Z t

t0

kusðsÞDusðsÞk22 ds
� �1=2

<
1

2
: ð4:1Þ

Thus N1ðtÞ � 2C
P

j�j¼1 kDD�uðt0Þk2 for all t � t0. For bounded t the estimates

follow from Theorem 1.1.

Using N1ðtÞ � Cðu0; u1Þ, t � 0, and Propositions 3.4 and 4.1, we can show

that the remaining norms in Corollary 1.2 are also uniformly bounded. Let

N2ðtÞ ¼
X
j�j¼2

Z t

t0

kD�uðsÞk21 ds

� �1=2

; t � t0:

It follows from (3.4) that

Z t

t0

kD�uðsÞk21 ds

� �1=2

� CkDD�uðt0Þk2 þ C

Z t

t0

ku2
sðsÞD�usðsÞk2 ds

þC

Z t

t0

kusðsÞðDusðsÞÞ2k2 ds;

where j�j ¼ 2. Thus

N2ðtÞ � C
X
j�j¼2

kDD�uðt0Þk2

þC

Z t

t0

kusðsÞk21
X
j�j¼2

kD�usðsÞk2

0
@

1
A ds

þCN2ðtÞ
Z t

t0

kusðsÞDusðsÞk22 ds
� �1=2

:

Now (4.1) shows that

N2ðtÞ � 2C
X
j�j¼2

kDD�uðt0Þk2

þ2C

Z t

t0

kusðsÞk21
X
j�j¼2

kD�usðsÞk2

0
@

1
A ds
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for sufficiently large t � t0. An immediate consequence is

N2ðtÞ � 2C
X
j�j¼2

kDD�uðt0Þk2

þ2CN3ðtÞ
Z t

t0

kDuðsÞk21 ds

� �
ð4:2Þ

with

N3ðtÞ ¼
X
j�j¼2

sup
s2½t0;t�

kDD�uðsÞk2; t � t0:

Since Proposition 4.1 is also valid on ½t0; t�, we can write

N3ðtÞ � C
X
j�j¼2

kDD�uðt0Þk2

þCN3ðtÞ
Z t

t0

kDuðsÞk21 ds

� �
ð4:3Þ

þCN2ðtÞ
X
j�j¼1

kDD�uð0Þk2

0
@

1
A

for all t � t0. The convergence of

Z 1

0

kDuðsÞk21 ds

and estimates (4.2), (4.3) are sufficient to bound uniformly N2ðtÞ þN3ðtÞ. �

5. Global existence of radial solutions in Hk �Hk�1, k > 3.

Let u be the local solution of problem (1.1), (1.2) constructed in Lemma 2.2

and define the kth-order norms

EkðtÞ ¼
X
j�j¼k

kDD�uðtÞk2:

We will use induction in k � 2 to show the global existence of u.

644 G. TODOROVA, D. UĞURLU and B. YORDANOV



PROOF OF THEOREM 1.4. We already know that E2ðtÞ < 1 for all

t 2 ½0;1Þ; see Theorem 1.1. To prove that higher regularity is also preserved,

we assume that Ek�1ðtÞ < 1 on ½0;1Þ but EkðtÞ < 1 only on ½0; T�Þ. If we apply

D�, j�j ¼ k, to equation (1.1), the result is

�D�uþ 3u2
tD

�ut þ
X

�þ�þ�¼�

c�;�;�D
�utD

�utD
�ut ¼ 0

with constants c�;�;� 6¼ 0 only when maxðj�j; j�j; j�jÞ � k� 1. Estimating D�u by

Lemma 2.1 (a), we have

kDD�uðtÞk2 � CkDD�uð0Þk2 þ C

Z t

0

ku2
sðsÞD�usðsÞk2 ds

þC
X

�þ�þ�¼�

c�;�;�

Z t

0

kD�usðsÞD�usðsÞD�usðsÞk2 ds ð5:1Þ

for t 2 ½0; T�Þ. A key observation is that the second integral can be bounded in

terms of ElðsÞ, 0 � l � k� 1, and kD�uðsÞk1, 1 � j�j � 2.

If the largest index satisfies j�j ¼ k� 1, then j�j þ j�j ¼ 1 and

kD�usðsÞD�usðsÞD�usðsÞk2 � kD�usðsÞk2kD�usðsÞk1kD�usðsÞk1
� Ek�1ðsÞ

X
1�j�j�2

kD�uðsÞk21:

If the indices satisfy maxðj�j; j�j; j�jÞ � k� 2, we combine the Hölder

inequality and Sobolev embedding in R3 to obtain

kD�usðsÞD�usðsÞD�usðsÞk2 � kD�usðsÞk6kD�usðsÞk6kD�usðsÞk6
� CkrD�usðsÞk2krD�usðsÞk2krD�usðsÞk2

� C
Xk�1

l¼1

E3
l ðsÞ:

Thus, (5.1) yields
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kDD�uðtÞk2 � CkDD�uð0Þk2 þ C

Z t

0

ku2
sðsÞD�usðsÞk2 ds

þC
X

1�j�j�2

Z t

0

Ek�1ðsÞkD�uðsÞk21 dsþ C
Xk�1

l¼1

Z t

0

E3
l ðsÞ ds

for all t 2 ½0; T�Þ. Adding these estimates for j�j ¼ k, we obtain

EkðtÞ � CEkð0Þ þ C

Z t

0

kusðsÞk21EkðsÞ dsþ Ck�1ðtÞ;

where

Ck�1ðtÞ ¼ C
X

1�j�j�2

Z t

0

Ek�1ðsÞkD�uðsÞk21 dsþ C
Xk�1

l¼1

Z t

0

E3
l ðsÞ ds

does not blow up in finite time due to the inductive assumption and Corollary 1.2.

Now the Gronwall inequality and Proposition 3.3 imply that EkðtÞ is uniformly

bounded on every finite subinterval of ½0; T�Þ. Hence u can be continued to a global

solution with EkðtÞ < 1.

We have shown that, for all k � 1, Hk �Hk�1 regularity is preserved during

the evolution of radial data. Thus C1 regularity is also preserved during the

evolution of compactly supported radial data. �

6. Scattering of radial solutions in H3 �H2.

To study the behavior of u as t ! 1, we restate Corollary 1.2:

X
1�j�j�2

Z 1

0

kD�uðsÞk21 ds � C1ðu0; u1Þ;

X
j�j�2

sup
t2½0;1Þ

kDD�uðtÞk2 � C2ðu0; u1Þ; ð6:1Þ

where Ckðu0; u1Þ, k ¼ 1; 2, are finite constants if ku0kH3 þ ku1kH2 is finite.

PROOF OF THEOREM 1.5. We rewrite problem (1.1), (1.2) in an equivalent

integral form:
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uðx; tÞ ¼ ulðx; tÞ �
Z t

0

sinðt� sÞ
ffiffiffiffiffiffiffiffi
��

p
ffiffiffiffiffiffiffiffi
��

p u3
sðs; xÞ ds:

Here ul solves the homogeneous wave equation �ul ¼ 0 with the same initial data:

ulðx; tÞ ¼ cos t
ffiffiffiffiffiffiffiffi
��

p
u0ðxÞ þ

sin t
ffiffiffiffiffiffiffiffi
��

p
ffiffiffiffiffiffiffiffi
��

p u1ðxÞ:

Define the asymptotic profile uþðx; tÞ as

uþðx; tÞ ¼ ulðx; tÞ �
Z 1

0

sinðt� sÞ
ffiffiffiffiffiffiffiffi
��

p
ffiffiffiffiffiffiffiffi
��

p u3
sðx; sÞ ds:

Clearly �uþ ¼ 0 and wðx; tÞ ¼ uðx; tÞ � uþðx; tÞ is given by

wðx; tÞ ¼
Z 1

t

sinðt� sÞ
ffiffiffiffiffiffiffiffi
��

p
ffiffiffiffiffiffiffiffi
��

p u3
sðx; sÞ ds:

Our goal is to show that kD�uþðtÞk2 < 1 and

kD�wðtÞk2 ! 0 as t ! 1; 1 � j�j � 3:

Hence, it is sufficient to show that the following integrals converge:

Z 1

0

kD�u3
sðsÞk2 ds < 1; j�j � 2: ð6:2Þ

Using jD�u3
sj � 3u2

s jD�usj, for j�j ¼ 1, and jD�u3
sj � 3u2

sjD�usj þ 6jusjjDusj2, for
j�j ¼ 2, we immediately obtain

Z 1

0

ku3
sðsÞk2 ds � C

Z 1

0

kusðsÞk21kusðsÞk2 ds;Z 1

0

kD�u3
sðsÞk2 ds � C

Z 1

0

kusðsÞk21kD�usðsÞk2 ds; j�j ¼ 1;

Z 1

0

kD�u3
sðsÞk2 ds � C

Z 1

0

kusðsÞk21kD�usðsÞk2 ds

þC

Z 1

0

kDusðsÞk21kusðsÞk2 ds; j�j ¼ 2:
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The integrals on the right sides converge due to (6.1). Hence these estimates

imply the convergence in (6.2). �
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