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Abstract. We determine the structure of the Mordell-Weil lattice, Néron-
Severi lattice and the lattice of transcendental cycles for certain elliptic K3 surfaces.
We find that such questions from algebraic geometry are closely related to the sphere
packing problem, and a key ingredient is the use of the sphere packing bounds in
establishing geometric results.

1. Introduction.

Let X be a complex smooth projective K3 surface. We consider three kinds
of lattices attached to the surface X:

NS(X), T(X), MW(X). (1.1)

The Néron-Severi lattice NS(X) is the sublattice of H2(X, Z) consisting of al-
gebraic cycles. The lattice of transcendental cycles T(X) is, by definition, its
orthogonal complement in H2(X, Z).

The third lattice MW(X) is defined when X = (X, f) is an elliptic surface
given with an elliptic fibration f : X → P 1 with a section, and MW(X) denotes the
group of sections of f , or equivalently, the group E(k(t)) of k(t)-rational points of
the generic fibre E of f . (Throughout the paper, we let k = C, the field of complex
numbers, unless otherwise mentioned.) The height pairing 〈, 〉 defines the structure
of a positive-definite lattice on MW(X) modulo torsion, which is the Mordell-Weil
lattice (MWL) of X. By abuse of language, we often call MW(X) itself the
“Mordell-Weil lattice” of X = (X, f), by which we mean the pair (MW(X), 〈, 〉).
We refer to [12] for the basic facts on MWL.

In this paper, we study the structure of three lattices (1.1) by taking X to be
the elliptic K3 surface F

(n)
α,β defined by the Weierstrass equation:
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F
(n)
α,β : y2 = x3 − 3αx +

(
tn +

1
tn
− 2β

)
(1.2)

where α, β are arbitrary complex numbers and n = 1, 2, . . . , 6. The main results
will be stated in the next section, which will settle the questions in our previous
paper [14] in an improved form.

It is known (Inose [3]) that F
(2)
α,β is isomorphic to the Kummer surface of the

product of two elliptic curves C1, C2:

F
(2)
α,β

∼= Km(C1 × C2) (1.3)

where (α, β) and the absolute invariants j1, j2 of C1, C2 are related by

α3 = j1j2, β2 = (1− j1)(1− j2). (1.4)

[N.B. The absolute invariant j is normalized so that j = 1 for y2 = x3 − x and
j = 0 for y2 = x3 − 1.]

The rank r(n) = r
(n)
α,β of the Mordell-Weil lattice MW(F (n)

α,β) = F
(n)
α,β(k(t)) is

given by the following formula (see Section 4, cf. [6], [14]):

r(n) = h + Min{4(n− 1), 16} −





0 if j1 6= j2

n if j1 = j2 6= 0, 1

2n if j1 = j2 = 0 or 1

(1.5)

where

h = rk Hom(C1, C2); (1.6)

we have h = 0, 1 or 2 when k = C.

Notation. Throughout the paper, we keep the above notation. Further,
given a lattice L = (L, 〈, 〉) and a nonzero rational number m, L[m] denotes the
lattice (L,m〈, 〉). We denote by detL the absolute value of the determinant of the
Gram matrix for L; thus we have det L[m] = (det L)mr if r is the rank of L and
m > 0. For general facts on lattices and sphere packings, we refer to the standard
book of Conway-Sloane [1].

For the singular fibres of an elliptic surface, we use freely the results from [5]
and [18].
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2. The main results.

Theorem 2.1. For any α, β and any n ≤ 6, we have a lattice isomorphism:

T
(
F

(n)
α,β

) ∼= T
(
F

(1)
α,β

)
[n]. (2.1)

In particular, we have

detT
(
F

(n)
α,β

)
= det T

(
F

(1)
α,β

) · nλ, λ = 4− h. (2.2)

Theorem 2.2.

det NS
(
F

(n)
α,β

)
= det Hom(C1, C2) · nλ. (2.3)

In the above, Hom(C1, C2) is viewed as a positive-definite even integral lattice
by defining the norm of ϕ : C1 → C2 to be 2 deg(ϕ).

Theorem 2.3. The Mordell-Weil group MW(F (n)
α,β) is torsion-free except for

the cases (a) and (b) below, and then we have

detMW
(
F

(n)
α,β

)
=

detHom(C1, C2) · nλ

c(n)2dn
(2.4)

where c(n) ∈ {1, 3, 4} and d ∈ {1, 2, 3, 4} are defined by (4.11) in Section 4.
The exception is: (a) j1 = j2 = 0 and n = 2, 4, 6, and (b) j1 = j2 = 1 and

n = 3, 6. In case (a) [or (b)], the RHS of (2.4) is to be multiplied by 32 [or 42]
which is the square of the order of the torsion part MW(F (n)

α,β)tor.

Theorem 2.4. Assume that C1, C2 are not isogenous, i.e. h = 0. Then the
lattice structure of MW(F (n)

α,β) is independent of α, β and depends only on n; let us

denote it by MW(F (n)
gen) or M

(n)
gen. This lattice M

(n)
gen has the invariants in Table 1

(where µ and δ denote the minimal norm and the center density of a lattice.)

n 1 2 3 4 5 6
rk 0 4 8 12 16 16
det 1 24/32 34/42 44/32 54 64

µ - 4/3 2 8/3 4 4
δ - 1/12 1/62 22/35 1/52 1/62

Table 1. Invariants of M
(n)
gen.
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Theorem 2.5. Assume that h = 0. Then, for any n ≤ 6, the Mordell-Weil
lattice MW(F (n)

α,β) ∼= M
(n)
gen is generated by the k(t)-rational points P = (x, y) of

the following form:

x =
A0 + A1t + A2t

2 + A3t
3 + A4t

4

t2
,

y =
B0 + B1t + B2t

2 + · · ·+ B6t
6

t3
.

(2.5)

More precisely, if n = 2, a set of generators is given by

(
γ, t +

1
t

)
,

(
γ′, t− 1

t

)
(2.6)

where γ (or γ′) runs over the 3 roots of the cubic equation:

x3 − 3αx− 2− 2β = 0 (or x3 − 3αx + 2− 2β = 0). (2.7)

If n > 2, let L = MW(F (n)+
α,β )[2] be the sublattice of half rank in M = MW(F (n)

α,β),

obtained from a rational elliptic surface F
(n)+
α,β over the s-line where s = t + 1/t

(cf. (5.2), (5.3), Lemma 5.1). Then M is generated by L and Lσ for a suitable
automorphism σ of M . In other words, M is generated by {Pi} and {Pσ

i }, if we
take a set of generators {Pi = (x, y)} of L of the form

x = a0 + a1s + a2s
2, y = b0 + b1s + b2s

2 + b3s
3. (2.8)

Theorem 2.6. For any α, β such that j1 6= j2 and for any n ≤ 6, the
Mordell-Weil lattice M = MW(F (n)

α,β) contains a direct sum M0⊕M1 as a sublattice
of finite index where

M0 := MW
(
F

(1)
α,β

)
[n] ∼= Hom(C1, C2)[n] (2.9)

and where M1
∼= M

(n)
gen has a set of generators induced from the sections of rational

elliptic surfaces.

3. Preliminaries.

Let us recall some general results on the relationship of the lattices in (1.1).
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3.1. About NS(X) and T(X).
First suppose that X is a complex smooth projective surface with torsion-

free H2(X, Z). Then it is well-known that the lattice H2(X, Z) (with respect to
cup-product pairing) is unimodular by the Poincaré duality. NS(X) is a primi-
tive sublattice of H2(X, Z), since the exponential sequence induces an injection
of the quotient group H2(X, Z)/NS(X) into H2(X, OX). Further T(X) is also
a primitive sublattice of H2(X, Z) (as the orthogonal complement of NS(X) in
H2(X, Z)), and we have

detT(X) = det NS(X). (3.1)

The rank of T(X) is called the Lefschetz number, denoted by λ(X). Obviously we
have

λ(X) = b2(X)− ρ(X) (3.2)

where ρ(X) = rkNS(X) is the Picard number of X.

Lemma 3.1.

(i) The lattice T(X) is a birational invariant of a surface X.
(ii) T(X) ⊗ Q is the smallest Q-subHodge structure of H2(X, Q) such that

T(X)⊗C contains H2,0(X) = H0(X, Ω2).

Proof.

(i) It is easy to show that, if β : X ′ → X is a blowing-up of X at one point,
then β∗ : H2(X, Z) → H2(X ′, Z) induces a lattice isomorphism of T(X) onto
T(X ′). This implies the assertion (i), since any birational map is composed of
finitely many blowing-up and blowing-down by surface theory. [N.B. It follows
that one can speak of the lattice of transcendental cycles T(Z) on any irreducible
surface Z which may not be smooth nor projective.]

(ii) NS(X) ⊗Q is the largest Q-subHodge structure of H2(X, Q) contained
in H1,1 by the Lefschetz-Hodge theorem. Taking the orthogonal complement, one
gets the assertion (ii). ¤

Lemma 3.2. Suppose π : X → Y is a rational map of finite degree be-
tween surfaces with the same geometric genus pg(X) = pg(Y ) > 0. Then we have
λ(X) = λ(Y ), and there exist natural homomorphisms π∗ : T(Y ) → T(X) and
π∗ : T(X) → T(Y ) satisfying the two-way projection formulas

π∗ ◦ π∗ = deg(π), π∗ ◦ π∗ = deg(π). (3.3)
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Moreover we have

π∗T(Y ) ∼= T(Y )[deg(π)], π∗T(X) ∼= T(X)[deg(π)]. (3.4)

Proof (cf. Inose [2, Proposition 1.1]). Given a rational map π : X → Y ,
there is a birational morphism ψ : X ′ → X such that π◦ψ : X ′ → Y is a morphism.
By (i) of Lemma 3.1, we can identify T(X) = T(X ′), and hence, by replacing X

by X ′, we can assume π : X → Y is a morphism of finite degree. Then we
consider the restriction of the standard homomorphisms π∗, π∗ between H2(X, Z)
and H2(Y, Z) to T(Y ) or T(X). Observe that π∗T(Y ) ⊗ C contains π∗H2,0(Y )
which coincides with H2,0(X) by assumption. Hence, by (ii), we have π∗T(Y ) ⊗
Q = T(X) ⊗ Q. It follows that λ(X) = λ(Y ) and π∗T(Y ) ⊂ T(X), π∗T(X) ⊂
T(Y ). Now the first projection formula of (3.3) is obvious (as restriction), while
the second one easily follows from the first one since π∗T(Y ) has finite index in
T(X). (3.4) follows immediately from (3.3). ¤

Lemma 3.3. Suppose {Xw} is a smooth family of surfaces parametrized by
an irreducible variety W . Let w be a generic point of W . Then, for any point
w0 ∈ W , there is an inclusion of lattices:

NS(Xw) ↪→ NS(Xw0) ⊂ H2(Xw0 , Z) ∼= H2(Xw, Z) (3.5)

In particular, if ρ(Xw0) = ρ(Xw), then we have NS(Xw) ∼= NS(Xw0) and T(Xw) ∼=
T(Xw0).

Proof. By choosing a specialization Xw → Xw0 and considering the spe-
cialization of cycles, we have an injection NS(Xw) ↪→ NS(Xw0) preserving inter-
section pairing, hence the first assertion. The second assertion follows from the
primitivity of NS(Xw) in H2(Xw, Z). ¤

3.2. Mordell-Weil lattices.
Next suppose that X = (X, f) is an elliptic surface with a section. Then the

Mordell-Weil group MW(X) is isomorphic to a quotient group of NS(X) (cf. [12,
Theorem 1.3]):

MW(X) ∼= NS(X)/Triv(X) (3.6)

where Triv(X) is the trivial sublattice of NS(X) which is generated by the zero-
section (O) and all the irreducible components of fibres of f . In particular, the
rank r of MW(X) is given by
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r = ρ(X)− rk Triv(X). (3.7)

The structure of the Mordell-Weil lattice is defined by sending MW(X) nat-
urally into the orthogonal complement of Triv(X) in NS(X)⊗Q, and the height
pairing is defined by using the intersection theory on the elliptic surface X (see
[12, Section 8]). In particular, we have

Lemma 3.4. The determinant of the Mordell-Weil lattice is given by

det(MW(X)/MW(X)tor)
|MW(X)tor|2 =

detNS(X)
detTriv(X)

. (3.8)

If MW(X) is torsion-free, this simplifies to:

detMW(X) =
detNS(X)
detTriv(X)

. (3.9)

Proof. This follows easily from [12, Theorem 8.7]. ¤

Lemma 3.5. Suppose {Xw} is a smooth family of (smooth) elliptic surfaces
parametrized by an irreducible variety W . Let w be a generic point of W . Then,
for any point w0 ∈ W such that the trivial lattice stays the same under the special-
ization w → w0 i.e. Triv(Xw) ∼= Triv(Xw0) compatibly with NS(Xw) ↪→ NS(Xw0),
there is an inclusion of lattices:

MW(Xw) ↪→ MW(Xw0) (3.10)

If, in addition, the rank of MW(Xw0) is equal to that of MW(Xw) [equivalently,
if ρ(Xw0) = ρ(Xw)], then we have MW(Xw) ∼= MW(Xw0).

Proof. This follows from Lemma 3.3 by using the relation (3.6) of NS and
MW as groups and by noting that the structure of MW(X) as lattice is completely
determined by the embedding of Triv(X) into NS(X) as recalled above. ¤

4. Review on the elliptic K3 surfaces F
(n)
α,β .

For a K3 surface X, we have

H2(X, Z) ∼= U⊕3 ⊕ E8[−1]2, b2 = 22 (4.1)

where U is an even unimodular lattice of rank 2 and E8 is the root lattice of rank
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8 (the unique positive-definite even unimodular lattice of rank 8) (cf. [1]). Thus
the signature of H2(X, Z) is (3, 19), while that of the Néron-Severi lattice NS(X)
is (1, ρ− 1) by the Hodge index theorem.

If X = Km(C1 × C2) is a Kummer surface of the product of elliptic curves,
then

ρ(X) = h + 18, λ(X) = 4− h (4.2)

where h is the rank of Hom(C1, C2).
Now let us consider the elliptic K3 surfaces F (n) = F

(n)
α,β(n ≤ 6) defined by

(1.2). Clearly F (n) is obtained from F (1) by the base change t → tn; in other
words, there is a rational map from F (n) to F (1) of degree n

π = πn : F (n) → F (1), (x, y, t) 7→ (x, y, tn). (4.3)

Similarly, for any divisor m of n, there is a rational map πn,m of degree n/m:

πn,m : F (n) → F (m), (x, y, t) 7→ (x, y, tn/m). (4.4)

Applying Lemma 3.1 to this situation, it follows from (1.3) and (4.2) that
F

(n)
α,β have the same Lefschetz number λ = 4− h for all n ≤ 6. Hence we have:

ρ(F (n)
α,β) = h + 18, λ(F (n)

α,β) = 4− h (n ≤ 6). (4.5)

On the other hand, the singular fibres of the elliptic surface F
(n)
α,β are deter-

mined as follows. For n = 1, there are two reducible fibres of type II∗ at t = 0
and t = ∞, and (i) no other reducible fibres if

D(α, β) := (1 + α3 − β2)2 − 4α3 = (α3 − (1− β)2)(α3 − (1 + β)2) (4.6)

does not vanish. If D(α, β) = 0, then (ii) a reducible fibre of type I2 at t = 1 (or
t = −1) if α · β 6= 0 and α3 = (1− β)2 (or α3 = (1 + β)2); (iii) a reducible fibre of
type IV at t = β if α = 0 and β = 1 or β = −1; (iv) two reducible fibres of type
I2 at t = 1,−1 if β = 0.

Note that the above conditions for (α, β) are respectively equivalent to the
following conditions on j1, j2 in view of the relation (1.4):

(i) j1 6= j2, (ii) j1 = j2 6= 0, 1, (iii) j1 = j2 = 0, or (iv) j1 = j2 = 1. (4.7)
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For n > 1, note that the base change t → tn is ramified only at t = 0 and t = ∞,
which implies that F

(n)
α,β has, at t = 0 and t = ∞, fibres of type IV ∗, I∗0 , IV, II, I0

according as n = 2, . . . , 6. At t 6= 0,∞ where t → tn is unramified, any fibre of
F (1) induces n fibres of the same type on F (n). Hence the trivial lattice of F

(n)
α,β

(cf. [14, Section 1]) is given as follows:
For any n ≤ 6, we have

Triv
(
F

(n)
α,β

)
= U ⊕ V (n)[−1] (4.8)

where V (n) is a sum of the root lattices: in case (i) (i.e. if j1 6= j2), then

V (n) = E⊕2
8 , E⊕2

6 , D⊕2
4 , A⊕2

2 , {0}, {0} (4.9)

according as n = 1, . . . , 6. Further V (n) has an additional factor A⊕n
1 in case (ii),

A⊕n
2 in case (iii), and A⊕2n

1 in case (iv).
Therefore the determinant of the trivial lattice is given by the following for-

mula:

det Triv
(
F

(n)
α,β

)
= c(n)2dn (4.10)

where c(n) and d are integers defined as follows according to the cases:

c(n) =





1 (n = 1, 5, 6)

3 (n = 2, 4)

4 (n = 3)

and d =





1 if j1 6= j2

2 if j1 = j2 6= 0, 1

3 if j1 = j2 = 0

4 if j1 = j2 = 1.

(4.11)

The rank formula (1.5) stated in Introduction follows immediately from (3.7),
(4.5) and the above information about the trivial lattices.

5. Rational elliptic surfaces F
(n)+
α,β .

Let us introduce auxiliary rational elliptic surfaces, to be denoted below by
F

(n)+
α,β (n ≤ 6). Since we know the MWL of rational elliptic surfaces quite well, it

can be used for studying the MWL of elliptic K3 surfaces F
(n)
α,β .

Letting s = t + 1/t, we have
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tn +
1
tn

=





s2 − 2 (n = 2)

s3 − 3s (n = 3)

(s2 − 2)2 − 2 (n = 4)

s5 − 5s3 + 5s (n = 5)

(s3 − 3s)2 − 2 (n = 6).

(5.1)

Let E = F
(n)+
α,β /k(s) denote the elliptic curve:

E = F
(n)+
α,β : y2 = x3 − 3αx + (sn − nsn−2 + · · · − 2β), (5.2)

such that E⊗k(s) k(t) ∼= F
(n)
α,β . For all n ≤ 6, this defines a rational elliptic surface,

denoted by the same symbol F
(n)+
α,β . We let

L := E(k(s)) = MW
(
F

(n)+
α,β

)
(5.3)

be its Mordell-Weil lattice.

Lemma 5.1. Assume j1 6= j2. Then

L = MW
(
F

(n)+
α,β

) ∼= {0}, A∗2, D∗
4 , E∗

6 , E8, E8 (5.4)

according as n = 1, 2, 3, 4, 5, 6 (A∗2 indicates the dual lattice of root lattice A2, etc.).
The minimal norm of L[2], i.e. L viewed as a sublattice of MW(F (n)

α,β), is equal to
4/3, 2, 8/3, 4, 4 according as n = 2, 3, 4, 5, 6.

Proof. The MWL of a rational elliptic surface (with a section) is deter-
mined by the trivial lattice and its embedding into E8 (see [10]). In the case
under consideration, the trivial lattice is given by the “half” of V (n) in (4.9),
which immediately implies (5.4). ¤

Lemma 5.2. Assume j1 6= j2. Then, for any non-zero P ∈ MW(F (n)
α,β), we

have

〈P, P 〉 ≥ 4,
4
3
, 2,

8
3
, 4, 4 (5.5)

according as n = 1, 2, 3, 4, 5, 6. In particular, MW(F (n)
α,β) is torsion-free.
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Proof. By the height formula ([12, Theorem 8.6]), we have

〈P, P 〉 = 2χ + 2(PO)−
∑

v

contrv(P ) (5.6)

where χ = 2 for a K3 surface and the summation runs over v such that the fibre over
v is a reducible fibre. Under the assumption j1 6= j2, we can have reducible fibres
only at t = 0 and t = ∞, and they are both of type II∗, IV ∗, I∗0 , IV, II, I0 according
as n = 1, 2, . . . , 6 as recalled in the previous section. The local contribution for
these types, if non-zero, are respectively given by

contrv(P ) = 0, 4/3, 1, 2/3, 0, 0, (5.7)

hence the assertion follows since the intersection number (PO) of the two sections
(P ), (O) is a non-negative integer for P 6= O. ¤

Corollary 5.3. Assume j1 6= j2. Then the minimal norm of MW(F (n)
α,β)

is given as follows:

µ
(
MW(F (n)

α,β)
)

=
4
3
(n = 2), 2(n = 3),

8
3
(n = 4), 4(n = 5, 6). (5.8)

6. Proof of Theorems 2.1, 2.2, 2.3, 2.4.

Fix n(n ≤ 6), and let X = F (n) = F
(n)
α,β , Y = F (1) = F

(1)
α,β , and consider the

rational map π : X → Y of degree n given by (4.3). By Lemma 3.2, we have

T(X) ⊃ π∗T(Y ) ⊃ nT(X), π∗T(Y ) ' T(Y )[n]. (6.1)

Letting ν = ν(n, α, β) be the index of π∗T(Y ) in T (X), we have

detT(X) = det T(Y ) · nλ/ν2, ν | nλ. (6.2)

Theorem 2.1 is equivalent to the claim:

ν = ν(n, α, β) = 1 (6.3)

for any n, α, β.
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6.1. Step 1: Case h = 0.
First let us prove the claim (6.3) assuming h = 0. In this case, we have λ = 4

and T(F (1)) ∼= U⊕2. The formula (6.2) becomes

detT(F (n)) = n4/ν2. (6.4)

By (3.1), (3.9) and (4.10), this is equivalent to

det MW(F (n)) = (n4/c(n)2)/ν2 (6.5)

where c(n) is given by (4.11).
Therefore we see that Theorems 2.1, 2.2, 2.3 are mutually equivalent to each

other and to the claim ν = 1, under the assumption h = 0. (Actually the equiva-
lence holds true without this assumption. See Section 6.3 below.)

Now we prove ν = 1, separately for each n ≤ 6. The key is to look at the
density of the sphere packing by the Mordell-Weil lattice MW(F (n)

gen). This idea
has been used in [14, Section 3, Remark] for the case n = 5, and we adapt it to
other cases as follows.

The center density of a positive-definite lattice L is defined by

δ(L) =
(

1
2
√

µ

)r

/
√

det L (6.6)

where r is the rank, µ is the minimal norm of L (see [1]). Hence, if L′ is a sublattice
of L of finite index (say ν) such that µ(L′) = µ(L), then δ(L) is equal to ν · δ(L′),
since det L = det L′/ν2. Thus the value of δ in Table 1 (Theorem 2.4) is to be
multiplied by ν at the moment, since the value of minimal norm µ given there
is correct by Corollary 5.3. Thus we have the modified Table 2 where βr in the
last row denotes the (lattice) sphere packing bound in dimension r copied from [1,
Tables 1.1 and 1.2].

n 1 2 3 4 5 6
rk 0 4 8 12 16 16
δ - ν/12 ν/62 ν · 22/35 ν/52 ν/62

βr - 1/8 1/16 0.06559 0.11774 0.11774

Table 2. Center density of M
(n)
gen.
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Now, for each n, we should have

δ ≤ βr and ν | nλ. (6.7)

n = 2, 3, 5: In these cases, if ν > 1, then the center density δ would exceed
the bound βr as Table 2 shows. This gives the required conclusion ν = 1. (N.B.
The case n = 2 is classically well-known from the theory of Kummer surfaces, cf.
[2], [16].)

The above argument is not sufficient in the remaining cases n = 4 and n = 6.
In fact, it shows only that ν ≤ 2 in case n = 4, and ν ≤ 3 in case n = 6. Thus we
need a different approach.

n = 6: In this case, the rational map π : F (6) → F (1) factors through F (3)

on one hand, and through F (2) on the other hand. We apply Lemma 3.2 here. Via
the first factorization, we have the inclusion of lattices:

T (F (6)) ⊃ T (F (3))[2] = T (F (1))[3][2] = T (F (1))[6] (6.8)

of index a power of 2 (= the degree of the rational map π6,3 : F (6) → F (3)), where
the first equality follows from the case n = 3 proven above. Similarly, via the
second factorization, we have the inclusion of lattices:

T (F (6)) ⊃ T (F (2))[3] = T (F (1))[2][3] = T (F (1))[6] (6.9)

of index a power of 3 (= the degree of the rational map π6,2 : F (6) → F (2)), with
the first equality following from the case n = 2. Since 2 and 3 are relatively prime,
we conclude that

T (F (6)) ∼= T (F (1))[6], (6.10)

which proves the assertion for n = 6.

n = 4: To exclude the possibility ν = 2, we directly show that the lattice
M

(4)
gen is “2-primitive”, i.e. it has no overlattice of index 2 preserving the minimal

norm. We omit the computation here, and refer to Usui [19, IV] where this is
treated in the special case α = β = 0. In view of the independence result in
Theorem 2.4, this is in fact sufficient. (The independence will be shown below in
Step 2.)

This completes the proof of Theorems 2.1, 2.2, 2.3 under the assumption
h = 0.
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6.2. Step 2: General case.
Now we prove Theorem 2.1 for any α, β and any n ≤ 6. For this, we use a

specialization (or deformation) argument. Take and fix any α0, β0.
We can specialize (or deform) a general F

(n)
α,β to F

(n)
α0,β0

in a smooth family.
In fact, we have a smooth family {Xw | w ∈ W} of smooth elliptic surfaces such
that Xw = F

(n)
α,β and Xw0 = F

(n)
α0,β0

where W is a smooth irreducible variety. This
follows from the existence of simultaneous resolution of rational double points, due
to Brieskorn and others (cf. [13] and the references therein). Namely, if an elliptic
surface is given by a Weierstrass equation, then we can consider two models of the
surface: the Weierstrass model and the Kodaira-Néron model (a smooth elliptic
surface). The former is the surface defined naturally by the given Weierstrass
equation, which is a normal surface with rational double points (corresponding
to the reducible fibres), and the latter is obtained as the minimal resolution of
the former. The theory of simultaneous resolution assures that, given a family of
Weierstrass models, a suitable finite base change of the parameter space gives a
smooth family of Kodaira-Néron models.

Applying Lemma 3.3 to the specialization w → w0, we obtain

NS(Xw) ↪→ NS(Xw0) ⊂ H2(Xw0 ,Z) ∼= H2(Xw,Z). (6.11)

A digression: we insert here the proof of Theorem 2.4. In the above situation,
assume for a moment that Triv(Xw) ∼= Triv(Xw0). Then Lemma 3.5 gives an
inclusion of lattices:

MW(Xw) ↪→ MW(Xw0). (6.12)

In particular, if the rank of MW(Xw0) is equal to that of MW(Xw), then we have
MW(Xw) ∼= MW(Xw0), which proves the independence statement in Theorem
2.4. The rest of Theorem 2.4 has been already shown in Step 1. This completes
the proof of Theorems 2.1–2.4.

Going back to (6.11) and considering the orthogonal complement, we have

T(Xw0) ⊂ T(Xw) ⊂ H2(Xw, Z) (6.13)

where both inclusions are obviously primitive.
In particular, letting n = 1, we have a primitive embedding:

T(F (1)
α0,β0

) ⊂ T(F (1)
α,β). (6.14)
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This implies that, for any n ≤ 6, the inclusion in the first row of the following
diagram is primitive:

T
(
F

(1)
α0,β0

)
[n]⊂T

(
F

(1)
α,β

)
[n]

⋂ ‖
T

(
F

(n)
α0,β0

) ⊂ T
(
F

(n)
α,β

)
(6.15)

The equality on the right is true by Step 1. Therefore the inclusion on the left

T
(
F

(1)
α0,β0

)
[n] ⊂ T

(
F

(n)
α0,β0

)
(6.16)

is also primitive. Since this inclusion is of finite index for any α0, β0 (see (6.1)), it
must be an equality. This proves Theorem 2.1 for F

(n)
α0,β0

. ¤

6.3. Proof of Theorems 2.2 and 2.3 in general.
The equivalence of Theorem 2.1 and 2.2 in general is a consequence of the

following:

Lemma 6.1.

detT
(
F

(1)
α,β

)
= det Hom(C1, C2). (6.17)

Proof. Recall that F
(1)
α,β is a double cover of the Kummer surface Km(A)

(A = C1×C2), not only a degree two quotient of F
(2)
α,β

∼= Km(A) (see [15]). By [4]
(cf. [8]), this implies that there are isomorphisms of lattices (and also of Hodge
structures):

T(F (1)
α,β) ∼= T(A), T(Km(A)) ∼= T(A)[2]. (6.18)

Hence we have

detT(F (1)
α,β) = detT(A) = det NS(A) = det Hom(C1, C2), (6.19)

where the second equality results from (3.1) and the last one from the well-known
fact that Hom(C1, C2) is the orthogonal complement of T0 = {C1 × pt, pt × C2}
in NS(A)[−1] (cf. [16, (14.22)]. Note that, in [16], the norm of φ ∈ Hom(C1, C2)
was defined by deg(φ) instead of 2 deg(φ) as in the present paper.) ¤
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The equivalence of Theorem 2.2 and 2.3 easily follows from Section 3 and
Section 4, except for the statement about torsion.

Lemma 6.2. The Mordell-Weil group MW(F (n)
α,β) is torsion-free, except for

the following cases: (a) α = 0, β = ±1 (i.e. j1 = j2 = 0) and n = 2, 4, 6, and (b)
α3 = 1, β = 0 (i.e. j1 = j2 = 1) and n = 3, 6. The torsion subgroup MW(F (n)

α,β)tor

is Z/3Z in case (a), and (Z/2Z)⊕2 in case (b).

Proof. In Lemma 5.2, the torsion-freeness is proven in case (i) j1 6= j2 by
means of the height formula (5.6). In case (ii) j1 = j2 6= 0, 1, it is similarly proven,
so we omit it.

Let us consider the remaining cases (iii) j1 = j2 = 0 and (iv) j1 = j2 = 1.
In case (iii), the elliptic surface F

(n)
α,β has n singular fibres of type IV at

t 6= 0,∞, and the height formula gives (cf. the proof of Lemma 5.2)

〈P, P 〉 ≥ µ
(
MW(F (n)

gen)
)− 2

3
· n (6.20)

where the value of µ is given by (5.8). If P 6= O is a torsion section, we have
〈P, P 〉 = 0, which implies that n = 2, 4, 6 or n = 3. But n = 3 is impossible,
because if P 6= O is a torsion then P ′ = 2P should satisfy 〈P ′, P ′〉 = 0 too;
writing down the height formula for P ′, we find easily a contradiction.

Thus a non-trivial torsion in case (iii) can occur only for the case (a), and
similarly, a non-trivial torsion in case (iv) can occur only for the case (b). Moreover
the torsion subgroup, if any, must be as stated in the lemma.

Conversely, we exhibit the torsion points. First, for (a), n = 2:

F
(2)
0,1 : y2 = x3 +

(
t2 +

1
t2
− 2

)
, (6.21)

we have 3-torsion points ±(0, t− 1/t). Next, for (b), n = 3:

F
(3)
1,0 : y2 = x3 − 3x +

(
t3 +

1
t3

)
, (6.22)

we have a 2-torsion point (−(t + 1/t), 0) and two more by replacing t by ωt with
cube roots of unity ω. This completes the proof of Lemma 6.2. ¤

Remark. As for the statement about the torsion parts of the Mordell-Weil
group in question, an alternative approach is to apply Shimada’s classification
result [11].
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7. Explicit generators and structure of lattices.

In this section, we consider the structure and generators of the Mordell-Weil
lattices MW(F (n)

gen) and MW(F (n)
α,β), and prove Theorems 2.5 and 2.6.

7.1. Review of the case n = 1, 2.
In our previous paper [16], we have studied the case n = 1, 2 in detail (over

any algebraically closed base field k of characteristic different from 2 and 3). Recall
[16, Theorem 1.1, 1.2, 6.1]:

Theorem 7.1. Assume j1 6= j2. Then

MW
(
F

(1)
α,β

) ∼= Hom(C1, C2), (7.1)

(where the norm of φ ∈ Hom(C1, C2) is 2 deg(φ)), and

M = MW
(
F

(2)
α,β

) ⊃ M0 ⊕M1, [M : M0 ⊕M1] = 2h (7.2)

where M0 = MW(F (1)
α,β)[2] and M1 = MW(E(1)

α,β)[2]. Here

E
(1)
α,β : y2 = x3 − 3αt2x + t2(t2 − 2βt + 1) (7.3)

is a rational elliptic surface with MW(E(1)
α,β) ∼= (A∗2)

⊕2. In particular, we have

MW
(
F (1)

gen

)
= {0}, MW

(
F (2)

gen

) ∼= A∗2[2]⊕2. (7.4)

The generators (2.6) given in Theorem 2.5 for n = 2 are, up to sign, the
minimal vectors of norm 4/3 of two copies of A∗2[2] which are similar to hexagonal
lattices.

Note that both E(1) and F (1) above become isomorphic to F (2) by the
quadratic base change t → t2, i.e. they are the twist of each other with respect to
the quadratic extension.

7.2. Proof of Theorem 2.5 for n > 2.
Assume 2 < n ≤ 6. With the notation in Theorem 2.5 or 2.6, we consider

M = MW
(
F

(n)
α,β

)
, L = MW

(
F

(n)+
α,β

)
[2], M0 = MW

(
F

(1)
α,β

)
[n]. (7.5)

By introducing the elliptic curve E/k(w):
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E : y2 = x3 − 3αx + w − 2β, (7.6)

and letting

s = t +
1
t
, T = tn, w = T +

1
T

, (7.7)

we have (by ignoring the lattice structure)

M = E(k(t)), L = E(k(s)), M0 = E(k(T )). (7.8)

We note that E ∼= F
(1)+
α,β . Note also (cf. [17]) that k(t)/k(w) is a Galois extension

with the Galois group G = 〈σ, τ〉 where

σ : t → ζn · t, τ : t → 1
t

(7.9)

(ζn a primitive n-th root of unity). Since k(T ) corresponds to 〈σ〉 and k(s) to 〈τ〉
by Galois theory, we have also M 〈σ〉 = M0 and M 〈τ〉 = L.

Lemma 7.2. L ∩M0 = {0} and L⊕M0 is an orthogonal direct sum.

Proof. Since L ∩M0 = E(k(s) ∩ k(T )) and k(s) ∩ k(T ) = k(w) by Galois
theory, the first assertion follows from E(k(w)) = {0}. The latter holds because
E/k(w) defines a rational elliptic surface with a singular fibre of type II∗ at
w = ∞.

Next take any P ∈ L and Q ∈ M0, and let 〈P,Q〉 = a. Applying τ , we have
〈P τ , Qτ 〉 = a too, since the height pairing is invariant under an automorphism
([12, Proposition 8.13]). It follows that 〈P, Q + Qτ 〉 = 2a. But, since Q + Qτ

belongs to L∩M0 = {0}, we have 2a = 0, implying a = 0. This proves the second
assertion. ¤

Lemma 7.3. Let L′ ⊂ M be the image of L under σ; in other words, let
L′ = E(k(s′)) where s′ = sσ = ζnt + 1/(ζnt). Then L ∩ L′ is equal to {0} in case
n is odd, and to MW(F (2)+) in case n is even.

Proof. We have L ∩ L′ = E(k(s) ∩ k(s′)), and k(s) ∩ k(s′) corresponds
to H = 〈τ, τ ′〉 ⊂ G where τ ′ = σ−1τσ. By rewriting τ ′ = σ−2τ , we see that
H = 〈τ, σ−2〉 is equal to 〈τ, σ〉 = G if n is odd, but H is of index 2 in G if
n is even. It follows that L ∩ L′ = E(k(w)) = {0} in case n is odd and that
L ∩ L′ ∼= MW(F (2)+) in case n is even. ¤
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Now we refer to [12, Theorem 10.10] for the fact that the rational points of
the form (2.8) in Theorem 2.5, Section 2, generate the Mordell-Weil group E(k(s))
for any E/k(s) which defines a rational elliptic surface.

Lemma 7.4. Assume h = 0 and let n = 3 or n = 5. Then det(L + L′) is
equal to 34/42(n = 3) or 54(n = 5), and we have M = L + L′.

Proof. By Lemma 7.3, L + L′ has the same rank as M under the assump-
tion. If we admit the assertion about the determinant, then L + L′ = M ∼= M

(n)
gen

follows in view of Theorem 2.4. This will prove the lemma and hence Theorem
2.5 for n = 3 or n = 5. Thus the proof is reduced to computing the determinant
of the height matrix, which we omit here but it is similar to that given in [17,
Section 6, pp. 59–64] or [19, III, pp. 184–186]. ¤

To cover the case n = 4, 6, we can modify the above argument as follows.
First, by Theorem 2.4, we may assume that α = β = 0, since this corresponds to
the case where j1 = 0, j2 = 1, i.e. C1 : y2 = x3 − 1 and C2 : y2 = x3 − x, which
are non-isogenous elliptic curves (h = 0). In this case, the elliptic surface

F
(n)
0,0 : y2 = x3 + tn +

1
tn

(7.10)

for any n has an automorphism

(x, y, t) → (− x,
√−1y, ζ2n · t

)
. (7.11)

Let σ̃ be the automorphism of M = MW(F (n)
0,0 ) ∼= MW(F (n)

gen) and redefine L′ as
the image of L under σ̃.

Lemma 7.5. Assume h = 0 and let n = 4 or n = 6. Then the intersection
L ∩ L′ = {0}, and det(L + L′) is equal to 44/32(n = 4) or 64(n = 6).

As before, Lemma 7.5 will complete the proof of Theorem 2.5 for all n ≤ 6
in view of Theorem 2.4. The lemma can be proven by computing the height
determinant. We refer to Usui’s paper in preparation [19, IV] for more detail, who
uses such results for the determination of Mordell-Weil lattice of y2 = x3 + tm + 1
for all m.

7.3. Proof of Theorem 2.6 for n > 2.
Now we assume only the condition j1 6= j2 (which is weaker than h = 0) in

the situation of Section 7.2. For n fixed, the trivial lattice of F
(n)
α,β is the same as

that for general parameter α, β, and hence the argument in Section 6.2 applies.
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By the inclusion (6.12), we have

MW
(
F (n)

gen

) ∼= M1 = L + L′ ⊂ MW
(
F

(n)
α,β

)
. (7.12)

On the other hand, M0 = MW(F (1)
α,β)[n] is orthogonal to M1 in M = MW(F (n)

α,β)
by Lemma 7.2. Hence, comparing the rank, we see that M0⊕M1 is of finite index
in M . This proves Theorem 2.6. ¤

N.B. Actually we have shown in the above that L + L′ has the right rank,
only in case n is odd (Lemma 7.3), since we have omitted the proof of lemma 7.5.
In order to make the proof of Theorem 2.6 self-contained, we note an alternative
proof in case n = 4, 6 similar to the case n = 2 mentioned in Section 7.1.

Namely, if n = 2m, then we have

M = MW
(
F

(n)
α,β

) ⊃ MW
(
F

(m)
α,β

)
[2]⊕MW

(
E

(m)
α,β

)
[2] (7.13)

as a sublattice of finite index, where E(m) is the quadratic twist of F (m) for m = 2
or 3 given by

E
(2)
α,β : y2 = x3 − 3αt2x + t(t4 − 2βt2 + 1), (7.14)

E
(3)
α,β : y2 = x3 − 3αt2x + (t6 − 2βt3 + 1). (7.15)

Since Theorem 2.6 is proven for m = 2, 3, it suffices to note that E(m) is a rational
elliptic surface for m = 2, 3 (e.g. with MWL of type E8 for general values of α, β;
cf. [12, Section 10]). This proves Theorem 2.6. ¤

8. Application to singular K3 surfaces.

Let X be a singular K3 surface, i.e. a complex K3 surface with maximal
Picard number ρ(X) = 20, and let T (X) denote the lattice of transcendental
cycles on X, given with the natural orientation. Let QX denote the Gram matrix
of T (X) with respect to an oriented basis:

QX =
(

2a b
b 2c

)
. (8.1)

Let us recall the following:
(1) The correspondence X → QX defines a bijection from the set of singular K3
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surfaces (up to isomorphisms) to the set of positive-definite even integral matrices
up to SL2(Z)-equivalence (see [4]).
(2) Every singular K3 surface X is isomorphic to an elliptic surface F

(1)
α,β for some

α, β (not necessarily unique) ([4], [15]).
Now suppose X ∼= F

(1)
α,β . Then X has a double cover F

(2)
α,β which is isomorphic

to a Kummer surface Km(C1×C2) such that the absolute invariants j1, j2 of C1, C2

are given by (1.4). We have ρ(X) = 20 iff C1, C2 are isogenous elliptic curves with
complex multiplications. As a special case of Theorem 2.1, we have the following
result:

Theorem 8.1. If a singular K3 surface X ∼= F
(1)
α,β corresponds to the ma-

trix QX above, then for each n ≤ 6, X(n) = F
(n)
α,β is the singular K3 surface

corresponding to

QX(n) = nQX = n

(
2a b
b 2c

)
. (8.2)

Example 8.1. Let j1 = j2 = 0, i.e. α = 0, β = ±1; we choose β = 1.
Then X = F

(1)
0,1 with the defining equation: y2 = x3 + t + 1/t − 2 corresponds to

QX =
(

2 1
1 2

)
. By Theorem 8.1, F

(n)
0,1 : y2 = x3 + tn + 1/tn − 2 corresponds to nQX

for any n ≤ 6. In particular, we have

detT
(
F

(n)
0,1

)
= detNS

(
F

(n)
0,1

)
= 3n2 (n ≤ 6).

Example 8.2. Let j1 = j2 = 1, so that we can take α = 1, β = 0. Then X =
F

(1)
1,0 corresponds to QX =

(
2 0
0 2

)
. By Theorem 8.1, F

(n)
0,1 : y2 = x3− 3x+ tn +1/tn

corresponds to nQX , and we have

detT
(
F

(n)
1,0

)
= detNS

(
F

(n)
1,0

)
= 4n2 (n ≤ 6).

N.B. In the above example, the elliptic curve C1 with j1 = 1 has a defining
equation y2 = x4−1. Then F

(2)
1,0 is isomorphic to the Kummer surface Km(C1×C1)

with the defining equation (x4
1− 1)t2 = x4

2− 1, where t is the “elliptic parameter”
giving the elliptic fibration F (2) (cf. [7], [16, Section 5]). Since Y = F

(4)
1,0 is

obtained from F
(2)
1,0 by the base change t = u2, it is birational to (x4

1−1)u4 = x4
2−1.

Hence Y is isomorphic to the Fermat quartic surface and we see that QY = 4QX

with det = 64 (as is well-known). This argument is applicable to more general
situation (cf. [2]).
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Example 8.3 (cf. [17]). Next take

C1 : y2 = x3 − 1 (j1 = 0), C2 : y2 = x3 − 15x + 22 (j2 = 53/4). (8.3)

(There is a 2-isogeny ϕ : C1 → C2, and C2 is a unique elliptic curve with this
property up to isomorphism.) Then we have α = 0, β = ±11/2

√−1, and a simple
coordinate change makes the defining equation of F

(n)
α,β to be:

y2 = x3 + tn − 1
tn
− 11. (8.4)

The singular K3 surface X = F
(n)
α,β corresponds to QX = 2n

(
2 1
1 2

)
. The case n = 5

has been studied in detail in [17]: the Mordell-Weil lattice MW(F (5)
α,β) of rank 18

and det = 3 · 102.

In closing, we remark that the method in this paper has some application to
supersingular K3 surfaces, which will be discussed elsewhere.
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