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Abstract. We prove that a locally compact paracompact space is suborderable
if and only if it has a continuous weak selection. This fits naturally into the pattern
of the van Mill and Wattel’s characterization [15] of compact orderable spaces, and
provides a further partial positive answer to a question of theirs. Several applications
about the orderability and suborderablity of locally compact spaces are demonstrated.
In particular, we show that a locally compact paracompact space has a continuous
selection for its Vietoris hyperspace of nonempty closed subsets if and only if it is a
topologically well-orderable subspace of some orderable space.

1. Introduction.

For a T1-space X, let F (X) be the set of all nonempty closed subsets of X.
Usually, we endow F (X) with the Vietoris topology τV , and call it the Vietoris
hyperspace of X. Recall that τV is generated by all collections of the form

〈V 〉 =
{

S ∈ F (X) : S ⊂
⋃

V and S ∩ V 6= ∅, whenever V ∈ V
}

,

where V runs over the finite families of open subsets of X.
In the sequel, all spaces are assumed to be at least Hausdorff, while any

subset D ⊂ F (X) will carry the relative Vietoris topology τV as a subspace of the
hyperspace (F (X), τV ). A map f : D → X is a selection for D if f(S) ∈ S for
every S ∈ D . A selection f : D → X is continuous if it is continuous with respect
to the relative Vietoris topology τV on D .

Whenever 1 ≤ n < ω, we let Fn(X) = {S ∈ F (X) : |S| ≤ n}. Note
that we may identify each point x ∈ X with the corresponding singleton {x} ∈
F1(X), and, in fact, this gives rise to a homeomorphism between X and the space
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(F1(X), τV ). The latter means that the Vietoris topology is admissible, see [14],
and is behind the reason that every selection for a family D ⊃ F1(X) is continuous
on the singletons of X.

In the present paper, we are initially interested in continuous selections for
F2(X), and their impact on the properties of the space X. To this end, let us
recall that every selection f : F2(X) → X defines a natural order-like relation ¹f

on X [14] by letting that x ¹f y if and only if f({x, y}) = x. For convenience,
we write that x ≺f y if x ¹f y and x 6= y. This relation is very similar to a linear
order on X in that it is both total and antisymmetric, but, unfortunately, it may
fail to be transitive. In this regard, one of the fundamental questions in the theory
of continuous selections for at most 2-point subsets is the following.

Question 1 (van Mill and Wattel, [15]). Let X be a space which has a
continuous selection for F2(X). Does there exist a linear order ¹ on X such that,
for each y ∈ X, the sets {x ∈ X : x ¹ y} and {x ∈ X : y ¹ x} are both closed?

A topological space X is orderable (or, linearly orderable) if the topology of X

coincides with the open interval topology T¹ on X generated by a linear ordering
¹ on X. Recall that all “¹-open” intervals {x ∈ X : x ≺ y} and {x ∈ X : y ≺ x},
y ∈ X, constitute a subbase for T¹. A subset B of a linearly ordered set (X,¹)
is (¹)-convex if {x ∈ X : y ¹ x ¹ z} ⊂ B for every y, z ∈ B, with y ¹ z. A
topological space X is suborderable (or, generalized ordered) if there exists a linear
order ¹ on X such that the corresponding open interval topology T¹ is coarser
than the topology T of X (i.e., T¹ ⊂ T ), and T has a base of (¹)-convex sets.
It is well-known that a space X is suborderable if and only if it can be embedded
into an orderable space. Finally, let us recall that a topological space X is weakly
orderable [15] if there exists a coarser orderable topology T¹ on X with respect
to some linear ordering ¹ on X. In all these cases, the order ¹ will be called
compatible. Also, in this paper, T¹ will always denote the open interval topology
on X generated by a linear ordering ¹ on X, while the term “orderable” will be
explicitly reserved for orderable topological spaces, if not suggested otherwise.

In this terminology, Question 1 states the hypothesis if a space X is weakly
orderable provided it has a continuous selection for F2(X). In view of that, a
selection f : F2(X) → X is often called a weak selection for X. For a detailed
discussion on Question 1, we refer the interested reader to [10]. Turning to the
purpose of this paper, let us explicitly mention that Question 1 was resolved in
the affirmative for compact spaces, [15, Theorem 1.1].

Theorem 1.1 ([15]). A compact space X is orderable if and only if it has
a continuous weak selection.
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In this paper, we prove the following theorem which fits naturally into the
pattern of Theorem 1.1, and provides a further partial positive answer to Question
1 (to [10, Question 381] as well).

Theorem 1.2. A locally compact paracompact space X is suborderable if
and only if it has a continuous weak selection.

Let us explicitly mention that Theorem 1.2 fails if X is supposed to be only
collectionwise normal. It was demonstrated in [2, Theorem 4.7] (under the Di-
amond Principle) that there exists a collectionwise normal, locally compact and
locally countable space X which has a continuous selection for F (X) but is not
suborderable.

Concerning the proper place of Theorem 1.2, let us make also the following
remark. If X is a strongly zero-dimensional locally compact paracompact space,
then it has a pairwise disjoint clopen cover consisting of compact subsets of X.
Consequently, in this case, the statement of Theorem 1.2 follows by the following
simple observation and Theorem 1.1.

Proposition 1.3. Let X be a space which has a clopen pairwise disjoint
cover consisting of suborderable subsets of X. Then, X is itself suborderable.

Proof. Let P be a clopen pairwise disjoint cover of X consisting of sub-
orderable subsets. Take a linear order ≤ on P. By hypothesis, each P ∈ P is
suborderable by a linear ordering ¹P . Consider the lexicographical order ¹ on
X generated by ≤ and ¹P , P ∈ P. Then, the open interval topology T¹ is
coarser than the topology of X, and X has a base of (¹)-convex sets. Hence, it is
suborderable. ¤

The proof of Theorem 1.2 in the general case is based on the same idea, but
to reduce the situation to that one we now rely on the technique in [6]. In fact, we
demonstrate a little bit more general result that every locally compact paracom-
pact space which has a continuous weak selection must be the topological sum of
two orderable spaces, Theorem 5.1. These spaces play an interesting role in the pa-
per, they were called semi-orderable, and are investigated in Section 4. It should be
mentioned that any orderable space is semi-orderable, but the converse is not true,
Example 4.1. On the other hand, any semi-orderable space is suborderable, and
again the converse is not true, see Example 4.12. That is, semi-orderable spaces
are an intermediate class between suborderable and orderable spaces. One of their
best properties is that they are invariant with respect to topological sums (Theo-
rem 4.2), hence, in view of Proposition 1.3, their involvement is quite natural. In
fact, they will provide the main interface between local properties of orderability
of locally compact spaces and the global property of semi-orderability.
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Our main tool to study local properties of orderability of locally compact
spaces will be the connected components. In this regard, Section 2 contains sev-
eral facts about such components of spaces which have continuous weak selections.
Relying on these properties, in Section 3, we demonstrate that each point of a lo-
cally compact space has a special clopen compact-like neighbourhood provided this
space has a continuous weak selection (see, Lemmas 3.1 and 3.3). In the presence
of such nice neighbourhoods, in Section 5, we complete the proof of Theorem 1.2
relying on the Morita’s result [16] that every locally compact paracompact space
has a clopen partition of Lindelöf spaces.

Several relations between semi-orderable and orderable spaces are obtained in
Section 6. For instance, it is demonstrated that every semi-orderable space which
is not orderable has an unique partition into a compact orderable space and an
“anti-compact” orderable one, see Theorem 6.3. In case of locally compact spaces,
the converse is also true (Theorem 6.9), which allows to provide a complete clas-
sification of semi-orderable locally compact spaces, see Corollaries 6.12 and 6.13.
Relying on this, we get that a locally compact totally disconnected paracompact
space is orderable if and only if it has a continuous weak selection, Corollary 6.14.

The last Section 7 of the paper is devoted to the selection problem for F (X).
Relying on the technique developed in the previous sections, we demonstrate that
a locally compact paracompact space X is a topologically well-orderable subspace
of some orderable space (topologically well-suborderable, in our terminology) if and
only if it has a continuous selection for F (X), Theorem 7.3. Combining this
result with the characterization of orderable locally compact spaces, we obtain
an interesting result that every topologically well-suborderable locally compact
paracompact space must be orderable, Corollary 7.6.

2. Selection relations and components.

For a (binary) relation E ⊂ X2 and points x, y ∈ X, we usually write xE y to
denote that 〈x, y〉 ∈ E . A relation E ⊂ X2 is called a selection relation [9] if E is
total and antisymmetric. Note that a selection relation E ⊂ X2 is a linear order
on X if and only if it is transitive.

It should be remarked that ¹f is a selection relation on X whenever f is a
weak selection for X. The converse is also true. Take a selection relation E ⊂ X2,
and define for x, y ∈ X that fE ({x, y}) = x if xE y. Then, fE is a weak selection
for X. Thus, there is a one-to-one correspondence between the weak selections for
X and the selection relations on X. Motivated by this, we will often write ¹s for
a selection relation on X. Also, for points x, y ∈ X, we will write x≺s y to express
that x¹s y and x 6= y.

For a selection relation ¹s on X and x ∈ X, define the ¹s-open intervals:
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(←, x)¹s = {y ∈ X : y≺s x} and (x,→)¹s = {y ∈ X : x≺s y}.

In the same way, define the ¹s-closed intervals:

(←, x]¹s = {y ∈ X : y¹s x} and [x,→)¹s = {y ∈ X : x¹s y}.

Finally, for points x, y ∈ X, define the corresponding composed ¹s-intervals:

(x, y)¹s = (x,→)¹s ∩ (←, y)¹s ,

[x, y]¹s = [x,→)¹s ∩ (←, y]¹s ,

(x, y]¹s = (x,→)¹s ∩ (←, y]¹s , and

[x, y)¹s = [x,→)¹s ∩ (←, y)¹s .

Since the relation ¹s is not necessarily transitive, both intervals (x, y)¹s and
(y, x)¹s could be nonempty, similarly for [x, y]¹s and [y, x]¹s , etc.

Suppose that X is a topological space. If f is a continuous weak selection
for X, then the selection relation ¹f is “compatible” with the topology of X.
In this case, Michael [14] demonstrated that all ¹f -open intervals (←, x)¹f

and
(x,→)¹f

, x ∈ X, are open in X. Through this paper, we will freely rely on this
property of continuous weak selections. In this regard, it should be mentioned
that there are weak selections which are not continuous, but all intervals of this
type are open (see, [7, Example 3.6] and [9, Corollary 4.2]). Here is a very simple
description of continuity of weak selections in terms of selection relations.

Proposition 2.1. A weak selection f for a space X is continuous if and
only if the selection relation ¹f is closed in X2.

Proof. Take points x, y ∈ X and observe that “x ¹f y” fails if and only
if x 6= y and f({x, y}) = y, i.e. when y ≺f x. On the other hand, according to
[7, Theorem 3.1], f is continuous if and only if for any such pair of points x and
y, with y ≺f x, there are disjoint open sets V and U such that y ∈ V , x ∈ U

and t ≺f s for every t ∈ V and s ∈ U . The last property is clearly equivalent to
statement that U × V ⊂ X2\ ¹f , which completes the proof. ¤

In view of Proposition 2.1, to emphasize on the orderability, we will often
refer to closed selection relations rather than continuous weak selections.

One can easily observe that a linear order ¹ on a space X is closed if and only
if all ¹-open intervals (←, x)¹ and (x,→)¹, x ∈ X, are open in X. Consequently,
a space X is weakly orderable if and only if it has a closed linear order on it.



746 V. Gutev

From this point of view, the possible difference between weakly orderable spaces
and spaces which have continuous weak selections is about the possible lack of
transitivity of closed selection relations. It turns out that any closed selection
relation on a connected space X is transitive. The following key observations are
due to Eilenberg [3] and Michael [14].

Theorem 2.2 ([3], [14]). Any compatible order on a weakly orderable space
is a closed relation, and any closed selection relation on a connected space is a
linear order. Moreover, a connected weakly orderable space X has precisely two
compatible orders, which are inverse of each other.

For a set Z and a selection relation ¹s on Z, a point p ∈ Z is (¹s)-minimal
(respectively, (¹s)-maximal) if p¹s z (respectively, z¹s p) for every z ∈ Z.

Theorem 2.3 ([14]). If X is connected and f is a continuous selection for
some D ⊂ F (X), with

⋃{Fn(X) : 2 ≤ n < ω} ⊂ D , then each member of D has
a (¹f )-minimal element.

For a space X and x ∈ X, we will use C [x] to denote the component of the
point x, and C ∗[x] — the corresponding quasi-component. Recall that

C [x] =
⋃
{C ⊂ X : x ∈ C and C is connected}, and

C ∗[x] =
⋂
{C ⊂ X : x ∈ C and C is clopen}.

Theorem 2.4 ([8]). If X has a closed selection relation, then C [x] = C ∗[x]
for every x ∈ X.

Here is another important property related to connected subsets of such
spaces.

Proposition 2.5 ([6]). If ¹s is a closed selection relation on X, Z is a
connected subset of X, and x, y ∈ Z, with x¹s y, then [x, y]¹s is contained in Z

and is connected.

A point p of a connected space Z is called a cut point if Z \ {p} is not
connected. A point p ∈ Z is called a noncut point if Z \ {p} is connected. We
let ct(Z) to be the set of all cut points of Z, and, respectively, nct(Z) that of all
noncut points of Z.

Proposition 2.6 ([6]). Let ¹s be a closed selection relation on X, Z be
a connected subset of X, and let p ∈ Z. Then, p ∈ nct(Z) if and only if p is a
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(¹s)-minimal element of Z or a (¹s)-maximal one. In particular, | nct(Z)| ≤ 2
and ct(Z) is open in X.

We conclude this section with the following observation which was actually
established in [2, Proposition 1.18] (see, also, [7, Proposition 4.3]).

Proposition 2.7. Let Z be an infinite locally compact connected space with
a closed linear order ¹. Then, it is orderable with respect to ¹. Moreover, Z is
compact if and only if | nct(Z)| = 2.

Proof. That Z is orderable with respect to ¹, it follows by [2, Proposition
1.18]. To show the second part of this statement, it suffices to show that Z is
compact provided | nct(Z)| = 2. In this case, by Proposition 2.6, there are points
x, y ∈ Z such that Z = [x, y]¹. However, by [7, Proposition 4.3] (see, also, [4],
[11]), [x, y]¹ is compact with respect to the corresponding open interval topology
T¹ on [x, y]¹. Consequently, Z is also compact. ¤

3. Orderable compact-like neighbourhoods.

In this section we demonstrate that if X is locally compact and has a closed
selection relation, then each point of X has a special compact-like clopen neigh-
bourhood. As the reader may expect, it will turn out that any such neighbourhood
is also orderable.

Lemma 3.1. Let X be a locally compact space which has a closed selection
relation. Then, each x ∈ X has a clopen neighbourhood Z such that Z \ ct(C [x])
is compact.

Proof. For a point x ∈ X, we distinguish the following cases.
(a) If C [x] = {x}, then there exists an open set V ⊂ X such that x ∈ V and

V is compact. Set S = V \ V , and note that, by Theorem 2.4, each y ∈ S has
a clopen neighbourhood Gy in X, with y ∈ Gy and x /∈ Gy. Since S is compact,
S ⊂ G =

⋃{Gy : y ∈ F} for some finite set F ⊂ S. In this case, Z = V \ G is a
compact clopen neighbourhood of x, which is as required because ct(C [x]) = ∅.

(b) If ct(C [x]) = C [x], then, by Proposition 2.6, C [x] is open in X, hence it
is clopen in X. In this case, take Z = C [x].

(c) Suppose finally that ct(C [x]) 6= ∅ 6= nct(C [x]). Take a closed selection
relation ¹s on X, and p ∈ nct(C [x]). By Proposition 2.6, p is the (¹s)-minimal
or the (¹s)-maximal element of C [x]. If p is the (¹s)-minimal element of C [x],
then consider the subset Xp = (←, p]¹s ⊂ X which is clopen in X \ ct(C [x]),
and is itself locally compact being closed in X. Also, the component of p in Xp

is {p}. Hence, by (a), p has a clopen compact neighbourhood Zp in Xp, and in
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X \ ct(C [x]) as well. In the same way, p has a clopen compact neighbourhood Zp

in [p,→)¹s if p is the (¹s)-maximal element of C [x]. Then, Z =
⋃ {

Zp ∪ C [x] :
p ∈ nct(C [x])

}
is as required. Indeed, each Zp ∪ C [x], p ∈ nct(C [x]), is closed in

X as an union of two closed sets, hence, by Proposition 2.6, the same is true for
Z. To see that Z is also open, take p ∈ nct(C [x]) and y ∈ ct(C [x]), and assume,
for instance, that p≺s y. Since Zp ⊂ (←, p]¹s ⊂ (←, y)¹s , there exists an open
in (←, y)¹s subset V ⊂ (←, y)¹s , with Zp = V ∩ (←, p]¹s . However, (←, y)¹s

is open in X, therefore so is V . This, in fact, completes the verification because
Zp∪ct(C [x]) = V ∪ct(C [x]) while, by Proposition 2.6, ct(C [x]) is open in X. This
also completes the proof because Z =

⋃ {
Zp ∪ ct(C [x]) : p ∈ nct(C [x])

}
. ¤

It should be mentioned that even clopen subsets of orderable spaces may fail
to be orderable. In this regard, the following simple observation will be found
useful.

Proposition 3.2. Let X be a space, and let ¹ be a linear order on X

such that, for some points x, y ∈ X, with x ¹ y, the subsets (←, y]¹ and [x,→)¹
are both closed in X and orderable spaces with respect to ¹. Then, X is also an
orderable space with respect to ¹.

Proof. Let T be the topology on X, and let T¹ be the open interval
topology on X generated by ¹. Then, the identity map idX : (X, T ) → (X, T¹)
is continuous because the sets (←, y]¹ and [x,→)¹ compose a cover of X and are
both T -closed and T¹-closed. By the same reason, idX is also closed. Hence, it
is a homeomorphism. ¤

Lemma 3.3. Let Z be a locally compact space which has a closed selection
relation and a point z ∈ Z such that

∣∣ nct(C [z])
∣∣ = 1, ct(C [z]) 6= ∅ and Z \ct(C [z])

is compact. Then, Z is orderable by a linear order ¹ such that C [z] has a first
element with respect to ¹ and x ≺ y for every x ∈ Z \ C [z] and y ∈ C [z].

Proof. Take p to be the point of the singleton nct(C [z]), and, using Theo-
rem 2.2 and Proposition 2.6, take a closed selection relation ¹s on Z such that p is
the (¹s)-minimal element of C [z]. According to Proposition 2.6 once again, C [z]
has no (¹s)-maximal element because

∣∣ nct(C [z])
∣∣ = 1 and ct(C [z]) 6= ∅. Hence,

there exists a point y ∈ C [z] such that p¹s z≺s y. Set Y =
(
Z\ct(C [z])

)∪[p, y]¹s ,
and observe that Y is compact. Indeed, Y is locally compact being closed in Z

(by Proposition 2.6), and the component of z in Y is [p, y]¹s (by Proposition
2.5). Hence, by Proposition 2.7, [p, y]¹s is compact because, by Proposition 2.6,∣∣ nct([p, y]¹s)

∣∣ = 2. This implies that Y is itself compact because, by hypothesis,
Z \ ct(C [z]) is compact. Thus, by Theorem 1.1, Y is orderable. Then, reversing a
compatible order on Y if necessary, take a compatible order ¹1 on Y , with p ≺1 y.
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We are going to show that Y has another compatible order ¹0 such that y is the
(¹0)-maximal element of Y . Namely, if y is the (¹1)-maximal element of Y , then
take ¹0 to be ¹1. Otherwise, observe that (p, y]¹s = ct(C [z]) ∩ Y is a neigh-
bourhood of y in Y (by Proposition 2.6), hence there are points s, x ∈ Y , with
y ∈ (s, x)¹1 ⊂ (p, y]¹s . However, by Theorem 2.2, both orders ¹1 and ¹s coincide
on [p, y]¹s because it is connected (by Proposition 2.5) and p ≺1 y. Hence, this
now implies that

(p, x)¹1 = (p, s]¹1 ∪ (s, x)¹1 = (p, y]¹s = (p, y]¹1 .

That is, (y, x)¹1 = ∅ and, therefore, (←, x)¹1 = (←, y]¹1 and (y,→)¹1 = [x,→)¹1

are disjoint clopen subsets of Y . Then, define ¹0 by preserving the order ¹1 on
the sets (←, y]¹1 and [x,→)¹1 , and making all points of [x,→)¹1 to be ¹0-less
than the points of (←, y]¹1 . Since Y is compact, it is orderable by ¹0. Since y is
the (¹1)-maximal element of (←, y]¹1 , it is the (¹0)-maximal element of Y .

We finalize the proof as follows. Define a linear order ¹ on Z by letting
for points s, t ∈ Z that s ¹ t if s, t ∈ Y and s ¹0 t, or s, t ∈ C [z] and s¹s t,
or s ∈ Y and t /∈ Y . Observe that ¹ is well-defined because s, t ∈ Y ∩ C [z]
implies that s ¹0 t if and only if s¹s t. From one hand, by construction, Y is
orderable with respect to ¹ because ¹ coincides with ¹0 on Y . From another
hand, by Proposition 2.7, C [z] is also orderable with respect to ¹ because, on this
set, ¹ and ¹s coincide. Finally, take in mind that Y and C [z] are closed in Z,
Y = (←, y]¹ and C [z] = [p,→)¹. Hence, Proposition 3.2 completes the proof. ¤

4. Semi-orderable spaces.

A family P of subsets of a set X is usually called a partition of X if it is a
pairwise disjoint cover of X. If X is a topological space, we say that P is a clopen
partition of X if it consists of clopen (equivalently, open) subsets of X. Note that,
if P is a clopen partition of X, then X is, in fact, the topological sum

⊎
P of the

elements of the partition.
In the present section, we are interested in topological sums of orderable

topological spaces. Turning to this, let us mention that such sums may fail to be
orderable. Here is a very simple example.

Example 4.1. Let Z = {0} ∪ (1, 2) ⊂ R. Then, Z is the sum of two
orderable spaces, but is itself not orderable.

Motivated by this, we shall say that a topological space X is semi-orderable
if it has a clopen partition into two orderable spaces, or, equivalently, if it is the
topological sum of two orderable spaces. Clearly, every orderable space is semi-
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orderable, and, by Proposition 1.3, every semi-orderable space is suborderable.
However, no one of these implications is invertible. Example 4.1 demonstrates that
a semi-orderable space may fail to be orderable. As we will see, the suborderable
spaces are not necessarily semi-orderable, Example 4.12.

The purpose of this section is to prove that a topological sum of orderable
spaces is, in fact, always a semi-orderable space.

Theorem 4.2. A space X is semi-orderable if and only if it has a clopen
partition consisting of orderable spaces.

To prepare for the proof of Theorem 4.2, we will deal with a few propositions
about orderability of topological sums of orderable spaces. In what follows, for a
linearly ordered set (Z,¹), we let

ξmin(Z,¹) =
∣∣{p ∈ Z : p is (¹)-minimal}∣∣

and, respectively,

ξmax(Z,¹) =
∣∣{p ∈ Z : p is (¹)-maximal}∣∣.

Further, to any linearly ordered set (Z,¹) we associate the number ξend(Z,¹),
suggesting the end point characteristic number, which is defined by

ξend(Z,¹) = ξmin(Z,¹) + ξmax(Z,¹).

Finally, whenever Z is an orderable space, we let

ξend(Z) = min
{

ξend(Z,¹) : ¹ is a compatible order on Z
}
.

Note that, for a singleton Z, we have that ξend(Z) = 2, but |Z| = 1.
Most of our arguments in the proof of Theorem 4.2 will be based on the

following two observations. Their proofs are easy, and are left to the reader.

Proposition 4.3. Let X be an orderable space by a linear order ¹. For a
(¹)-convex subset Z ⊂ X, the following holds:

(a) Z is open provided ξend(Z,¹) = 0.
(b) Z is closed provided ξend(Z,¹) = 2.

Proposition 4.4. Let X be a space, ¹ be a linear ordering on X, and let
P be a clopen partition of X such each P ∈ P is orderable by ¹. Then, X
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is orderable by ¹ if and only if P is clopen in the corresponding open interval
topology T¹ on X.

Finally, here is also a standard construction of a linear order on X generated
by linear orders on the elements of a partition of X. Suppose that P is a partition
of X and ¹P is a linear ordering on P for every P ∈ P. Whenever ≤ is a linear
order on P, we will consider the lexicographical order ¹ on X generated by ≤. For
points s, t ∈ X, it is defined by s ¹ t if s, t ∈ P ∈ P and s ¹P t, or s ∈ S ∈ P,
t ∈ T ∈ P and S < T .

Proposition 4.5. Let X be a space, and let P be a clopen partition of X

such that each P ∈ P is an orderable spaces, with ξend(P ) = 0. Then, X is also
an orderable space, with ξend(X) = 0.

Proof. Take a linear order ≤ on P. By hypothesis, each P ∈ P is order-
able by a linear order ¹P such that ξend(P,¹P ) = 0. Let ¹ be the lexicographical
order on X generated by≤, and let T¹ be the corresponding open interval topology
on X. Then, ξend(X,¹) = 0, while, by Proposition 4.3, each P ∈ P is T¹-open
because ξend(P,¹) = ξend(P,¹P ) = 0. Hence, by Proposition 4.4, X =

⊎
P is

orderable by ¹. ¤

Proposition 4.6. Let Z be a space, and let {Z0, Z1} be a clopen partition
of Z such that each Zi, i < 2, is a nonempty orderable space by a linear order ¹i,
with ξend(Zi,¹i) ≤ 1. Then, Z is an orderable space by a linear order ¹ such that

ξend(Z,¹) = ξend(Z0,¹0) + ξend(Z1,¹1) (mod 2).

Proof. If ξend(Z0,¹0) = 1 = ξend(Z1,¹1), reversing one of the orders if
necessary, we are in the situation that Z0 has a (¹0)-maximal element and Z1 has
a (¹1)-minimal one. Take ¹ to be the lexicographical order on Z generated by the
relation “Z0 < Z1”. Then, ξend(X,¹) = 0, while each Zi, i < 2, is orderable by
¹, and is closed in the corresponding open interval topology T¹ on Z. Hence, by
Proposition 4.4, Z is also orderable by ¹. If ξend(Z0,¹0) 6= ξend(Z1,¹1), we may
assume that Z0 has no (¹0)-maximal element and Z1 has no (¹1)-minimal element.
Consider again ¹ to be the lexicographical order on Z generated by “Z0 < Z1”.
Just like before, each Zi, i < 2, is orderable by ¹, but now ξend(X,¹) = 1 because
only one of these sets has some end point. Finally, observe that each Zi, i < 2, is
open in the corresponding open interval topology T¹ on Z. Hence, by Proposition
4.4, Z is again orderable by ¹. Since the third case is covered by Proposition 4.5,
the proof completes. ¤
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Proposition 4.7. Let X be a space, and let P be a clopen partition of X

such that each P ∈ P is orderable by a linear order ¹P , with ξend(P,¹P ) = 1.
Then, X is an orderable space, with ξend(X) ≤ 1.

Proof. If P is a finite partition of X, then the statement follows by Propo-
sition 4.6. If P is infinite, then there exists a bijective map h : P × 2 → P.
Whenever P ∈ P, let QP = h(P, 0) ∪ h(P, 1). Note that Q = {QP : P ∈ P} is
also a clopen partition of X such that, by Proposition 4.6, ξend(QP ) = 0. Hence,
Proposition 4.5 completes the proof. ¤

Proposition 4.8. Let X be a space, and let P be a clopen partition of X

such that each P ∈ P is orderable by a linear order ¹P , with ξend(P,¹P ) = 2.
Then, X is also an orderable space.

Proof. If P is finite, take ¹ to be the lexicographical order on X generated
by a linear ordering ≤ on P. Then, by Propositions 4.3 and 4.4, X is orderable
by ¹. If P is infinite, then there exists a bijective map h : P × ω → P,
where ω is the first infinite ordinal. Whenever P ∈ P, consider the countable
infinite family QP = {h(P, n) : n < ω}, and let QP =

⋃
QP . Take ¹(P,ω)

to be the lexicographical order on QP generated by the linear order ≤ on QP

as that of ω, i.e. h(P, n) ≤ h(P, m) if and only if n ≤ m. For convenience,
let T¹(P,ω) be the corresponding open interval topology on QP , and let h(P, n) =
[`n, rn]¹(P,ω) , n < ω, which is possible by hypothesis. Then, each h(P, n), n < ω, is
T¹(P,ω)-clopen because h(P, 0) = (←, `1)¹(P,ω) and h(P, n + 1) = (rn, `n+2)¹(P,ω) ,
n < ω. Hence, by Proposition 4.4, QP =

⊎
QP is orderable by ¹(P,ω). Since

ξend(QP ,¹(P,ω)) = 1, P ∈ P, the clopen partition Q = {QP : P ∈ P} of X is as
in Proposition 4.7, which completes the proof. ¤

Proof of Theorem 4.2. Let P be a clopen partition of X consisting of
orderable spaces. Whenever i < 3, let

Pi =
{
P ∈ P : ξend(P ) = i

}
.

According to Propositions 4.5, 4.7 and 4.8, each topological sum Pi =
⊎

Pi, i < 3,
is an orderable space, with ξend(Pi) ≤ i. Since ξend(Pi) ≤ 1, i < 2, it now follows
by Proposition 4.6 that P0 ∪P1 is also an orderable space. Hence, {P0 ∪P1, P2} is
a partition of X into two clopen orderable spaces, which completes the proof. ¤

According to Theorem 4.2, we have the following immediate consequence.

Corollary 4.9. Let X be a space which has a clopen partition consisting
of semi-orderable spaces. Then, X is itself semi-orderable.



Orderability in the presence of local compactness 753

Suppose that X is a semi-orderable space. By definition, X is the topological
sum of two orderable spaces X0 and X1. Take a compatible order ¹i on Xi, i < 2,
and consider the lexicographical order ¹ on X generated by “X0 < X1”. Then, ¹
is a compatible order on X as a suborderable space, but the subsets Xi, i < 2, are
now both orderable by ¹ and (¹)-convex. In the sequel, such a compatible order
on X will be called canonical.

Corollary 4.10. Let X be a semi-orderable space and let Y ⊂ X be an
open subset. Then, Y is also semi-orderable.

Proof. By definition, X is the topological sum of two orderable spaces X0

and X1. Take a compatible canonical order ¹ on X generated by X0 and X1.
Then, X0 and X1 are both orderable by ¹ and (¹)-convex, and for every y ∈ Y

there is exactly one i(y) < 2, with y ∈ Xi(y). Finally, let P [y] be the (¹)-convex
component of y in Xi(y) with respect to Y , i.e.

P [y] =
⋃ {

[s, t]¹ : s, t ∈ Xi(y), s ¹ y ¹ t and [s, t]¹ ⊂ Y
}
.

Then, P [y] ⊂ Y is an open (¹)-convex subset of Xi(y) because Xi(y) and Y are
open in X and Xi(y) is orderable by ¹. In fact, this implies that P [y] is also
orderable by ¹. Thus, we get a clopen partition P = {P [y] : y ∈ Y } of Y

consisting of orderable spaces. Hence, by Theorem 4.2, Y is also semi-orderable.
¤

In conclusion, let us remark that the semi-orderable spaces have several com-
mon properties with orderable ones. Below, we mention only one of them that
helps to provide an example of suborderable spaces which are not semi-orderable.

Proposition 4.11. A semi-orderable space is metrizable if and only if it
has a Gδ-diagonal.

Proof. By definition, X has a clopen finite partition P consisting of or-
derable spaces. Then, X has a Gδ-diagonal if and only if each P ∈ P has a
Gδ-diagonal. However, according to a result of Lutzer [13], an orderable space is
metrizable if and only if it has a Gδ-diagonal. Hence, X has a Gδ-diagonal if and
only if each P ∈ P is metrizable, which completes the proof. ¤

It is well-known that the Sorgenfrey line is a suborderable space which has a
Gδ-diagonal but its Cartesian square is not normal [17] (see, [4, Example 2.3.12]).
Consequently, the Sorgenfrey line is not semi-orderable. Readers who are more
familiar with the Michael line one can use it as another example of a suborderable
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space which fails to be semi-orderable, see [4, Michael’s Example 5.1.32]. Thus,
we have the following example.

Example 4.12. The Sorgenfrey line and the Michael line are suborderable
spaces which are not semi-orderable.

5. Weak orderability and semi-orderability.

In this section, we finalize the proof of Theorem 1.2. In fact, this theorem is
a consequence of the following more general result.

Theorem 5.1. For a locally compact paracompact space X, the following
are equivalent :

(a) X has a continuous weak selection.
(b) X is semi-orderable.
(c) X is suborderable.
(d) X is weakly orderable.

To prepare for the proof of Theorem 5.1, we need to derive some consequences
from the technique developed in the previous sections. To this end, for a space X,
we consider the family O(X) consisting of all clopen subsets U ⊂ X such that U

is connected or there is a point x ∈ U such that nct(C [x]) 6= ∅ and U \ ct(C [x]) is
compact.

The family O(X) was naturally suggested by Lemmas 3.1 and 3.3, and we
have the following immediate consequences for its members.

Corollary 5.2. Let X be a locally compact space which has a closed selec-
tion relation. Then, each member of O(X) is orderable.

Proof. Let U ∈ O(X). If U is connected, then U = C [x] for some (every)
point x ∈ U . Hence, it is orderable by Theorem 2.2 and Proposition 2.7. If U

is not connected, then there exists a point x ∈ U such that nct(C [x]) 6= ∅ and
U \ ct(C [x]) is compact. If C [x] is compact, then so is U , and it is orderable by
Theorem 1.1. If C [x] is not compact, then, by Proposition 2.7,

∣∣ nct(C [x])
∣∣ = 1,

and the statement follows by Lemma 3.3. ¤

Corollary 5.3. Let X be a locally compact space which has a closed selec-
tion relation. Then, each x ∈ X is contained in some member of O(X).

Proof. Take a point x ∈ X. If nct(C [x]) = ∅, then C [x] = ct(C [x]), hence,
by Proposition 2.6, C [x] is a clopen neighbourhood of x. If nct(C [x]) 6= ∅, then,
by Lemma 3.1, x has a clopen neighbourhood U such that U \ct(C [x]) is compact.

¤
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According to Example 4.1, the family O(X) is not closed with respect to finite
unions of its members. However, it is closed with respect to finite intersections,
which will be crucial for our proof.

Proposition 5.4. Let X be a space, W ⊂ X be clopen, and U ∈ O(X).
Then, W ∩ U ∈ O(X).

Proof. If U is connected, then either W ∩ U = ∅ or W ∩ U = U . Conse-
quently, W ∩ U ∈ O(X) as well. If U is not connected, then it has a point x such
that nct(C [x]) 6= ∅ and U \ ct(C [x]) is compact. If x ∈ W ∩ U , then the same is
true for W ∩U because C [x] ⊂ W ∩U . If x /∈ W ∩U , then W ∩U ⊂ U \ ct(C [x])
and, therefore, it will be compact. In this case, take a point z ∈ W ∩ U , and
observe that, by Proposition 2.7, nct(C [z]) 6= ∅ and (W ∩U) \ ct(C [z]) is compact
because W ∩ U is itself compact. Thus, again, W ∩ U ∈ O(X). ¤

We finalize the preparation for the proof of Theorem 1.2 with the following
result about locally compact Lindelöf spaces.

Proposition 5.5. Let X be a locally compact Lindelöf space which has a
closed selection relation. Then, X has a clopen partition P ⊂ O(X).

Proof. By Corollary 5.3, O(X) is a clopen cover of X. Since X is Lindelöf,
there exists a countable family {Un : n < ω} ⊂ O(X), with X =

⋃{Un : n <

ω}. Standard arguments now provide that {Un : n < ω} has a pairwise disjoint
refinement {Pn : n < ω} ⊂ O(X) which is still a cover of X. Namely, set P0 = U0,
and, whenever n < ω, define

Pn+1 = Un+1 \
⋃
{Uk : k ≤ n} = Un+1 ∩

(
X \

⋃
{Uk : k ≤ n}

)
.

According to Proposition 5.4, each Pn, n < ω, is a member of O(X), while, by
construction, {Pn : n < ω} is a pairwise disjoint cover of X. ¤

Proof of Theorem 5.1. To show that (a) ⇒ (b), suppose that X is as in
(a). According to a result of Morita [16] (see, [4, Theorem 5.1.27]), X has a clopen
partition P consisting of Lindelöf spaces. By Proposition 5.5, each P ∈ P has
a clopen partition QP ⊂ O(P ) ⊂ O(X). Hence, Q =

⋃{QP : P ∈ P} ⊂ O(X)
is a clopen partition of X. By Corollary 5.2, each Q ∈ Q is orderable. Then,
by Theorem 4.2, X is semi-orderable. Since (b) ⇒ (c) ⇒ (d) are obvious, while
(d) ⇒ (a) follows by Theorem 2.2, the proof completes. ¤

The following is an immediate consequence of Theorem 5.1 (compare with
Corollary 4.10).
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Corollary 5.6. Let X be a semi-orderable locally compact paracompact
space. Then, any closed subset of X is also semi-orderable.

6. Orderability and semi-orderability.

In the present section, we are interested in the difference between semi-
orderable and orderable spaces. Turning to this, let us observe the following
property of compact orderable spaces which is known in a little bit different terms.

Proposition 6.1. An orderable space X is compact if and only if there is
a compatible order ¹ on X such that ξend(Z,¹) = 2 for every nonempty clopen
subset Z ⊂ X.

Proof. Any compact orderable space has this property with respect to any
compatible order on it. To see the converse, suppose that ¹ is a compatible order
on X as in the statement of the proposition. Since X has a (¹)-maximal element,
by a result of [11] (see, also, [4, 3.12.3]), it suffices to show that every nonempty
closed subset of X has a (¹)-minimal element. Suppose if possible that this fails for
some nonempty closed subset F ⊂ X. Consider the set E =

⋃ {
(x,→)¹ : x ∈ F

}
which is open in X and is (¹)-convex. Since F has no (¹)-minimal element, the
same is true for E. Hence, by hypothesis, E is not closed in X and there exists a
point y ∈ E \E. Take a (¹)-convex neighbourhood U of y. Then, U ∩(x,→)¹ 6= ∅
for some x ∈ F , and, therefore, x ∈ U ∩ F because U is (¹)-convex and y ≺ z for
every z ∈ E. This implies that y ∈ F because F is closed. However, y ¹ z for
every z ∈ F , which is a contradiction. ¤

Motivated by Proposition 6.1, we shall say that an orderable space X is
anti-compact orderable if, whenever ¹ is a compatible order on X, we have that
ξend(Z,¹) = 0 for every clopen subset Z ⊂ X. According to Theorem 2.2 and
Propositions 2.6 and 4.5, we have the following immediate example of anti-compact
orderable spaces.

Corollary 6.2. An orderable connected space X is anti-compact orderable
if and only if nct(X) = ∅. Moreover, any topological sum of connected anti-compact
orderable spaces is also an anti-compact orderable space.

For the proper understanding of the term “anti-compact”, let us recall that
a pair (D, E) of subsets of a linearly ordered set (X,¹) is called a (¹)-cut if
X = D ∪ E, D 6= ∅ 6= E, and x ≺ y for every x ∈ D and y ∈ E. In this case, D

is called the lower section of the cut, and E — the upper section. A cut (D, E)
is called a jump if the lower section D has a (¹)-maximal element and the upper
section E has a (¹)-minimal one. A (¹)-cut (D, E) is called a gap if the lower
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section D has no (¹)-maximal element and upper section E has no (¹)-minimal
element. A linearly ordered set (X,¹) is called densely ordered if no (¹)-cut of
X is a jump. Typical examples of densely ordered sets are the real numbers R,
the rational numbers Q, also the irrational ones P , considered with respect to the
usual order on them.

It follows immediately by the definitions that if X is an anti-compact orderable
space and ¹ is a compatible order on it, then ξend(X,¹) = 0 and (X,¹) is a
densely ordered set. In this regard, there are orderable spaces which are densely
ordered sets with respect to some compatible order on them, but they fail to be
anti-compact orderable. Such examples are the set of the rational numbers Q,
also the irrational numbers P . For instance, let Q0 = {q ∈ Q : q ≤ 0} and
Q1 = {q ∈ Q : q ≥ 0}, and let X = Q0 ⊕ Q1 be the disjoint sum of these sets
equipped with the sum topology. Then, X is homeomorphic to Q, but it is not
a densely ordered set when Q0 and Q1 are ordered by the usual order, and all
points of Q0 are less than the points of Q1.

We are now ready to state the main result of this section.

Theorem 6.3. Let X be a semi-orderable space which is not orderable.
Then, X is the topological sum of a nonempty compact orderable space and a
nonempty anti-compact orderable one.

To prepare for the proof of Theorem 6.3, we are going to examine “order”-cuts
in orderable spaces. In what follows, if X is a suborderable space with respect to
a linear order ¹, and (D, E) is a (¹)-cut of X, then we shall say that (D, E) is
clopen if both sets D and E are clopen (equivalently, open or closed) in X.

Lemma 6.4. A suborderable space X is orderable with respect to a compatible
linear order ¹ on it if and only if each clopen (¹)-cut of X is either a gap or a
jump.

Proof. Suppose that X is suborderable by a linear order ¹ such that each
clopen (¹)-cut of X is either a gap or a jump. For convenience, let T be the
topology on X, and let T¹ be the open interval one. To show that T = T¹, take
a point x ∈ X such that [x,→)¹ ∈ T . Then, [x,→)¹ is clopen in X because
T¹ ⊂ T . If X = [x,→)¹, then [x,→)¹ ∈ T¹. If X 6= [x,→)¹, then consider the
clopen (¹)-cut (D, E) of X, where D = (←, x)¹ and E = [x,→)¹. Since x is the
(¹)-minimal element of E, the (¹)-cut (D, E) must be a jump, consequently D

has a (¹)-maximal element y. In this case, [x,→)¹ = (y,→)¹ ∈ T¹. In the same
way, (←, x]¹ ∈ T¹ provided (←, x]¹ ∈ T . Hence, T = T¹.

Suppose now that X is an orderable space by a linear order ¹, and take a
clopen (¹)-cut (D, E) of X. Further, suppose that E has a (¹)-minimal element
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x ∈ E. Since E is open and x ∈ [x,→)¹ = E, there exists a y ∈ X, with
x ∈ (y,→)¹ ⊂ E. Hence, (y,→)¹ = [x,→)¹ which implies that y /∈ E and
(y, x)¹ = ∅. That is, y ∈ D and it is the (¹)-maximal element of D. Thus, (D, E)
is a jump. In the same way, (D, E) is a jump if D has a (¹)-maximal element,
which completes the proof. ¤

Lemma 6.5. Let Y be an orderable space with respect to a linear order ≤
such that ξend(Y,≤) = 0 or ξend(Y,≤) = 2, and let Z ⊂ Y be a clopen (≤)-convex
subset of Y , with ξend(Z,≤) = 1. Then, Y is also orderable by a linear order ¹
such that ξend(Y,¹) + ξend(Y,≤) = 2.

Proof. Suppose, that Z has a (≤)-minimal element z, the another case is
symmetric. If ξend(Y,≤) = 0, then D = (←, z)≤ 6= ∅, while E = [z,→)≤ is clopen
in Y because Z is open in Y and [z,→)≤ = Z∪(z,→)≤. Hence, (D, E) is a clopen
(≤)-cut of Y , and, by Lemma 6.4, it must be a jump. Hence, D = (←, y]≤ for some
y ∈ D. In this case, define a linear order ¹ on Y by preserving the ≤-order on the
sets D and E, and making all points of E to be ¹-less than the points of D. Thus,
in fact, the clopen (≤)-cut (D, E) is transformed into a clopen (¹)-cut (E, D) of
Y which is now a gap, and ξend(Y,¹) = 2. The sets D and E are clearly open
(hence, clopen as well) in the open interval topology T¹ on Y , so, by Proposition
4.4, Y is orderable by ¹. If ξend(Y,≤) = 2, then D = (←, z]≤ ∪ Z = (←, z)≤ ∪ Z

is clopen in Y and has no (≤)-maximal element. Then, E = Y \ D 6= ∅ and it
is also clopen. Since Z is (≤)-convex, we also have that x < y for every x ∈ D

and y ∈ E. Hence, (D, E) is a clopen (≤)-cut of Y which, by Lemma 6.4, must
be a gap. Then, just like before, define a linear order ¹ on Y by preserving the
≤-order on the sets D and E, and making all points of E to be ¹-less than the
points of D. Thus, Y is orderable by ¹, but now ξend(Y,¹) = 0. ¤

We finalize the preparation for the proof of Theorem 6.3 with the following
observation.

Lemma 6.6. Let X be a semi-orderable space by a canonical ordering ≤, and
let Z be a clopen (≤)-convex subset of X, which is orderable by ≤ and ξend(Z,≤)
= 1. Then, X is orderable.

Proof. By definition, X is the topological sum of two (≤)-convex subsets
X0 and X1 which are orderable by ≤, say we have x0 < x1 for every xi ∈ Xi,
i < 2. If one of these sets is empty, then X is itself orderable. If X0 6= ∅ 6= X1,
then (X0, X1) is a clopen (≤)-cut of X. If this (≤)-cut is a gap or a jump, then
X0 and X1 are also clopen in the open interval topology T≤ on X, hence, by
Proposition 4.4, X should be orderable. Suppose finally that (X0, X1) is neither
a gap nor a jump. The following cases are possible. If ξend(Xi) ≤ 1, i < 2,
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then, by Proposition 4.6, X is orderable. Thus, it remains, for instance, that
ξend(X1,≤) = 2. If ξend(X0,≤) = 1, then X0 must have a (≤)-minimal element
because (X0, X1) is neither a gap nor a jump. In this case, define a linear order ¹
on X by preserving the ≤-order on the sets X0 and X1, and making all points of
X1 to be ¹-less than the points of X0. This makes X orderable by ¹ because now
the sets X0 and X1 are clopen in the open interval topology T¹ on X. Suppose
finally that ξend(X0,≤) = 0. In this case, Z ∩X0 = ∅ or Z ∩X1 = ∅. Indeed, if
D = Z ∩X0 6= ∅ and E = Z ∩X1 6= ∅, then (D, E) must be a (≤)-cut in Z which
is neither a gap nor a jump. However, Z is orderable by ≤, hence, by Lemma
6.4, this is impossible. If Z ⊂ X0, then, by Lemma 6.5, X0 is orderable by a
linear order ≤0, with ξend(X0,≤0) = 2. So, by Proposition 4.8, X is orderable as
well. If Z ⊂ X1, then, by Lemma 6.5, X1 is orderable by a linear order ≤1, with
ξend(X1,≤1) = 0, and, by Proposition 4.5, X is orderable again. ¤

Proof of Theorem 6.3. Suppose that X is as in that theorem. By defi-
nition, X is the topological sum of two orderable spaces K and L. Since X is not
orderable, both sets K and L must be nonempty. Take a compatible canonical
order ¹ on X so that K and L are orderable by ¹ and s ≺ t for every s ∈ K and
t ∈ L. Then, (K, L) is a clopen (¹)-cut of X which, by Proposition 4.4, is not
clopen in the corresponding open interval topology T¹. We now have that, for
instance, K has a (¹)-maximal element and L has no (¹)-minimal one. According
once again on the hypothesis that X is not orderable, we get, by Lemma 6.6, that
K must have a (¹)-minimal element and L has no (¹)-maximal element. First, we
are going to show that K is compact. Take a nonempty closed subset F ⊂ K, and
suppose if possible that F has no (¹)-minimal element. We proceed just like in the
proof of Proposition 6.1. Namely, consider the set E =

⋃ {
(x,→)¹ ∩K : x ∈ F

}
which is open in K (hence, in X) and is (¹)-convex. Since F has no (¹)-minimal
element, the same is true for E and we now get that ξend(E,¹) = 1. According to
Lemma 6.6, E cannot be closed. Hence, there exists a point y ∈ E \E ⊂ K. Take
a (¹)-convex neighbourhood U ⊂ K of y. Then, U ∩ (x,→)¹ 6= ∅ for some x ∈ F ,
and, therefore, x ∈ U ∩ F because y ≺ z for every z ∈ E. That is, y ∈ F because
F is closed, which is impossible because y ¹ z for every z ∈ F . A contradiction,
which, together with Proposition 6.1, implies that K is compact.

To finish the proof, let us show that (L,¹) is a densely ordered set. Take a
(¹)-cut (D, E) of L. If (D, E) is a jump, then both sets D and E must be closed
in L, hence clopen in X. However, ξend(L,¹) = 0 which implies that, in this case,
ξend(D,¹) = 1 = ξend(E,¹). According to Lemma 6.6, this is impossible. Thus,
L is densely ordered by ¹. Finally, observe that any compatible order on L as an
orderable space generates a compatible canonical order on X as a semi-orderable
space. Hence, L has the same property with respect to any compatible order on
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it, consequently it is anti-compact orderable. ¤

It is an interesting question if the topological sum of a nonempty compact
orderable space and a nonempty anti-compact orderable one gives rise always to a
non-orderable space. In this regard, let us observe that the partition in Theorem
6.3 is not as arbitrary as one might look at first. The following is an immediate
consequence of the definition of anti-compact orderable spaces.

Corollary 6.7. Let X be a space which is the topological sum of a compact
orderable space K and an anti-compact orderable space L. Then, K contains any
clopen compact subset of X, i.e.

K =
⋃
{A ⊂ X : A is clopen and compact}.

Motivated by this, for a semi-orderable space X, we define an invariant
soc(X), suggesting the semi-orderable character of X, as the cardinality of the
minimal clopen partition of X into orderable spaces. Thus, X is orderable if and
only if soc(X) = 1, and X is not orderable if and only if soc(X) = 2.

Corollary 6.8. Let X be a semi-orderable space, and let P and Q be
clopen partitions of X into orderable spaces such that |P| = soc(X) = |Q|. Then,
P = Q.

Proof. If soc(X) = 1, this is obvious. If soc(X) = 2, then it follows by
Theorem 6.3 and Corollary 6.7. ¤

Going back to our question it should be mentioned that, in fact, the author
was unable to verify if an anti-compact orderable space L which is a clopen subset
of an orderable space X will be orderable with respect to any compatible order
on X. In the presence of the local compactness, the situation is different, and we
have the following theorem.

Theorem 6.9. A locally compact semi-orderable space X is not orderable if
and only if it is the topological sum of a nonempty compact orderable space and a
nonempty anti-compact orderable one.

As the reader may expect, to achieve this result it seems crucial to provide
a topological description of the possible anti-compact orderable component of a
semi-orderable space. This is what we will do in the preparation for the proof of
Theorem 6.9.

Proposition 6.10. Let X be a locally compact space which is the topological
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sum of a compact orderable space K and an anti-compact orderable space L. Then,
X doesn’t contain a point x such that

∣∣ nct(C [x])
∣∣ = 1 and ct(C [x]) 6= ∅.

Proof. Suppose that this fails, i.e. that X has a point x such that∣∣ nct(C [x])
∣∣ = 1 and ct(C [x]) 6= ∅. Then, C [x] ⊂ K or C [x] ⊂ L because both K

and L are clopen. Since C [x] is not compact (by Proposition 2.7), we have that
C [x] ⊂ L. Take a compatible order ¹ on L. Then, by Proposition 2.6, C [x] has,
for instance, a (¹)-minimal element y which is the point of the singleton nct(C [x]).
On the other hand, by Lemma 3.1, there exists a clopen neighbourhood Z of x in
L such that Z \ct(C [x]) is compact. By assumption, Z \ct(C [x]) 6= ∅, hence it has
a (¹)-minimal element z0 and a (¹)-maximal one z1. Since y ∈ Z \ ct(C [x]), we
now have that z0 ¹ y ¹ z1. If y is not the (¹)-minimal element of Z, we get that
z0 ≺ y which, by Proposition 2.5, implies that z0 ≺ t for every t ∈ C [x]. Thus, Z

must have a (¹)-minimal element which contradicts the property of L. ¤

Proposition 6.11. Let X be a locally compact space which is the topological
sum of a compact orderable space K and an anti-compact orderable space L. Then,

K =
{
x ∈ X : nct(C [x]) 6= ∅} and L =

{
x ∈ X : nct(C [x]) = ∅}.

Proof. Take a point x ∈ X. Then, C [x] ⊂ K or C [x] ⊂ L because both
K and L are clopen. If nct(C [x]) 6= ∅, then, by Proposition 6.10, either C [x] is a
singleton or

∣∣ nct(C [x])
∣∣ = 2. In this case, according to Proposition 2.7, C [x] must

be compact. Hence, by Lemma 3.1, C [x] has a clopen compact neighbourhood Z

and, by Corollary 6.7, C [x] ⊂ Z ⊂ K. If nct(C [x]) = ∅, then C [x] is a clopen
subset of X (by Proposition 2.6) and is not compact (by Proposition 2.7). Hence,
it is not a subset of K, consequently C [x] ⊂ L. ¤

Proof of Theorem 6.9. The one direction follows by Theorem 6.3. To
show the converse, suppose that X is orderable by a linear order ¹ and is the
topological sum of a nonempty compact orderable space K and a nonempty anti-
compact orderable one L. Let

P =
{
C [x] : x ∈ X and nct(C [x]) = ∅}.

According to Propositions 2.6 and 6.11, P is a clopen partition of L, while, by
Proposition 2.7, each P ∈ P is orderable by ¹. Hence, by Proposition 4.4, L

is also orderable by ¹. In this case, one of the sets K or L must be not (¹)-
convex. Namely, if both K and L are (¹)-convex, then either (K, L) or (L,K)
must be a clopen (¹)-cut of X. However, by Lemma 6.4, this is impossible because
ξend(K,¹) = 2 and ξend(L,¹) = 0. Thus one of the sets K and L is not (¹)-
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convex, and there are points t ∈ L and z ∈ K such that t ≺ z. Let Z be the
maximal (¹)-convex set which contains z and is contained in K, i.e.

Z =
⋃ {

[x, y]¹ : x, y ∈ X, x ¹ z ¹ y and [x, y]¹ ⊂ K
}
.

Then, Z has a (¹)-minimal element y because it is a nonempty compact subset
of X. In fact, Z is clopen in X because K is clopen in X and is orderable by
¹. Then, consider the set E = [y,→)¹ = Z ∪ (y,→)¹ which is also clopen in
X and D = X \ E 6= ∅ because t /∈ E. Thus, (D, E) is a clopen (¹)-cut in X

which, by Lemma 6.4, must be a jump, so D = (←, x]¹ for some point x ∈ D.
Since x ∈ C [x] ⊂ L and C [x] is orderable by ¹, by Proposition 2.6, x ∈ nct(C [x]).
According to Proposition 6.11, this is impossible which completes the proof. ¤

We finalize this section with several applications about the orderability of
locally compact spaces.

Corollary 6.12. Let X be a locally compact noncompact semi-orderable
space which does not contain a point x ∈ X, with

∣∣ nct(C [x])
∣∣ = 1 and ct(C [x]) 6= ∅.

Then X is not orderable if and only if the union of all compact components of X

is nonempty and compact.

Proof. Consider the set L = {x ∈ X : nct(C [x]) = ∅}. Then, L is an
open subset of X, and, by Proposition 2.7 and Corollary 6.2, L is an anti-compact
orderable space. Let K = X \ L. Then, K is closed, while x ∈ K if and only
if C [x] is compact. Hence, by Lemma 3.1, K is also open in X. Thus, we get a
clopen partition of X into a space K an anti-compact orderable one L. Observe
that L 6= ∅ provided K is nonempty and compact because X is not compact.
Hence, by Proposition 6.11 and Theorem 6.9, X is not orderable if and only if K

is nonempty and compact. ¤

Corollary 6.13. A semi-orderable locally compact noncompact space X is
orderable if and only if one of the following holds:

(a) X contains a point x such that
∣∣ nct(C [x])

∣∣ = 1 and ct(C [x]) 6= ∅.
(b) The union of all compact components of X is either empty or not compact.

Proof. Suppose that (a) fails. Then, by Corollary 6.12, (b) fails if and
only if X is not orderable. Finally, observe that if (a) holds, then, by Proposition
6.10, X must be orderable. This completes the proof. ¤

Corollary 6.14. Every semi-orderable locally compact totally disconnected
space X is orderable. In particular, a locally compact totally disconnected para-
compact space X is orderable if and only if it has a continuous weak selection.
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Proof. If X is compact, then it is orderable. Suppose that X is not com-
pact. Since X is totally disconnected, by Theorem 2.4, ct(C [x]) = ∅ for every
x ∈ X. Hence, X is the union of all compact components of X and, by Corollary
6.12, it must be orderable. Now, Theorem 5.1 completes the second part of the
statement. ¤

7. Topological well-suborderability and semi-orderability.

This last section of the paper goes further in the orderability-like properties
of X but now implicated by continuous selections for F (X). To this end, let
Y be an orderable space, and let ¹ be a compatible order on Y . Recall that a
subset X ⊂ Y is called a topologically well-ordered subspace [5] if any nonempty
relatively closed subset of X has a (¹)-minimal element. In this case, to avoid any
source of ambiguity, let us agree to say that X is topologically well-suborderable.
Thus, to reserve the term topologically well-orderable for an orderable space Y

such that, with respect to a compatible order ¹ on Y , each nonempty closed
subset of Y has a (¹)-minimal element. It should be mentioned that there are
orderable spaces which are neither topologically well-orderable nor topologically
well-suborderable. For instance, the real line R is an example in this direction, see
[5]. Here is another simple example of a space which is orderable, topologically
well-suborderable, but is not topologically well-orderable.

Example 7.1. Let X = [0, 1) ∪ [2, 3) ⊂ R. Then, X is a locally compact
space which is orderable and topologically well-suborderable, but it fails to be
topologically well-orderable.

Proof. The space X is topologically well-suborderable with respect to the
usual order on R. It is also easy to see that X is orderable, use, for instance,
Proposition 4.6. To see that X is not topologically well-orderable, take a compat-
ible order ¹ on X so that X is orderable with respect to it. Then, we have that
ξend(X,¹) = 0 or ξend(X,¹) = 2. If ξend(X,¹) = 0, then X has no (¹)-minimal
element. Hence, it remains ξend(X,¹) = 2. In this case, X has a partition con-
sisting of nonempty clopen subsets X0, X1 ⊂ X such that X0 has no (¹)-maximal
element and X1 has no (¹)-minimal one. Hence, it fails to be topologically well-
orderable. ¤

Turning to selections for F (X) and the role of topologically well-orderable
spaces, let us explicitly recall the following partial case of [14, Lemma 7.5.1].

Proposition 7.2 ([14]). If X is a topologically well-suborderable space, then
F (X) has a continuous selection.
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We are now ready to state also the main purpose of this section. Namely, in
this section we will prove the following theorem.

Theorem 7.3. For a locally compact paracompact space X, the following
are equivalent :

(a) X is topologically well-suborderable.
(b) F (X) has a continuous selection.
(c) X has a continuous weak selection and nct(C [x]) 6= ∅ for every x ∈ X.

The proof of Theorem 7.3 consists of a reduction to the same statement but
now for the members of the family O(X) which was defined in Section 5. To
prepare for this, we proceed with several statements about the members of this
family.

Proposition 7.4. For a locally compact connected space Z, the following
are equivalent :

(a) Z is topologically well-orderable.
(b) F (Z) has a continuous selection.
(c) Z has a closed selection relation and nct(Z) 6= ∅.

Proof. The implication (a) ⇒ (b) follows by Proposition 7.2. As for (b) ⇒
(c), it follows by Theorem 2.3 and Proposition 2.6. To show finally that (c) ⇒ (a),
take a point p ∈ nct(Z). By Theorem 2.2 and Proposition 2.6, Z has a closed linear
order ¹ such that p is the (¹)-minimal element of Z. According to Proposition
2.7, Z is orderable with respect to ¹. Take a nonempty closed subset F ⊂ Z,
and a point y ∈ F . Consider the space Y = [p, y]¹ which is locally compact,
and, by Proposition 2.5, it is also connected. Hence, by Proposition 2.7, it is
compact. Therefore, F ∩ [p, y]¹ has a (¹)-minimal element which is, in fact, the
(¹)-minimal element of F because p is the first (¹)-element of Z. Hence, Z is
topologically well-orderable. ¤

Lemma 7.5. Let X be a locally compact space. Then, for a member Z ∈
O(X), with Z 6= ∅, the following are equivalent :

(a) Z is topologically well-orderable.
(b) F (Z) has a continuous selection.
(c) Z has a closed selection relation and nct(C [z]) 6= ∅ for every z ∈ Z.

Proof. The implication (a) ⇒ (b) follows by Proposition 7.2. The implica-
tions (b) ⇒ (c) ⇒ (a) follow by Theorem 1.1 if Z is compact, and by Proposition
7.4 if Z is connected. Suppose that Z is neither compact nor connected. In
this case, by definition, there exists a point z ∈ Z such that nct(C [z]) 6= ∅ and
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Z \ ct(C [z]) is compact. Since C [z] cannot be compact, by Proposition 2.7, we
have that

∣∣ nct(C [z])
∣∣ = 1. Thus, to finish the proof, it only remains to show

that in this case Z is topologically well-orderable provided it has a closed selection
relation. To this end, observe that ct(C [z]) 6= ∅ because Z is not compact while
Z \ ct(C [z]) 6= ∅ is compact. Hence, by Lemma 3.3, Z is orderable by an order
¹ such that C [z] has a (¹)-minimal element p and x ≺ y for every x ∈ Z \ C [z]
and y ∈ C [z]. Take an F ∈ F (Z). If F ⊂ C [z], then, just like in the proof of
Proposition 7.4, take a point y ∈ F and observe that [p, y]¹ is compact. Hence,
F has a (¹)-minimal element in [p, y]¹ which is the (¹)-minimal element of F

because F ⊂ [p,→)¹. If F ∩ (Z \ ct(C [z])) 6= ∅, then F ∩ (Z \ ct(C [z])) has a
(¹)-minimal element x(F ) in Z \ ct(C [z]). Since x(F ) ¹ y for every y ∈ C [z],
x(F ) is the (¹)-minimal element of F . This completes the proof. ¤

Proof of Theorem 7.3. The implication (a) ⇒ (b) is Proposition 7.2,
while the implication (b) ⇒ (c) follows by Corollary 5.3 and Lemma 7.5. Suppose
finally that X is as in (c). We follow the proof of Theorem 5.1. Just like in that
proof, X has a clopen partition Q ⊂ O(X). By Lemma 7.5, each member of O(X)
is topologically well-orderable, hence so is each Q ∈ Q. Then, by [1, Proposition
1.4], X =

⊎
Q is topologically well-suborderable. ¤

According to Example 7.1, the topological well-suborderability in Theorem
7.3 cannot be replaced by the topological well-orderability. However, we have the
following immediate consequence.

Corollary 7.6. Let X be a topologically well-suborderable locally compact
paracompact space. Then, X is orderable.

Proof. By Theorem 7.3, nct(C [x]) 6= ∅ for every x ∈ X. Hence, by Propo-
sition 6.11, X is not the topological sum of a compact orderable space and a
nonempty anti-compact orderable one. Therefore, by Theorem 6.9, X must be
orderable. ¤

We conclude this paper with the following interesting consequence.

Corollary 7.7. Let X be a locally compact paracompact space which has
a continuous selection for F (X). Then, X is orderable.

Note that the converse of Corollary 7.7 is not true. As it was already men-
tioned, the real line R is not topologically well-suborderable, and there is no
continuous selection for F (R), [5].

Addendum (August, 2007). At the time when this manuscript was in pro-
cess to be accepted for publication, Michael Hrušák and Iván Mart́ınez-Ruiz an-



766 V. Gutev

nounced that they answered Question 1 in the negative by constructing a separable,
first countable locally compact space which admits a continuous weak selection but
is not weakly orderable. Their manuscript [12] is in preparation.
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