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Abstract. The aim of this work is to show the existence of the wave operator
and its inverse among Kirchhoff equations and free wave equations.

1. Introduction.

We consider the Cauchy problem for perturbed Kirchhoff equation in one
dimensional space,

Ou(t, ) — (1 + EHa(-)ux(t)||%2)6x(a(a:)28mu(t, x)) =0,
t € (—o00,00), = € R, (1.1)

uw(0,2) = f(x), u(0,2)=g(x), =€ R, (1.2)
where ¢ > 0 is a small parameter and the coefficient a(z) € C?(R!) satisfies
0<ao<a(x)<a;, zcR (1.3)
and
laD(z)| <61+ |z))~7%, zeR' i=1,2 (1.4)

First of all we shall state the existence of the time global of solutions of the
above Cauchy problem (1.1)—(1.2), under the assumption that the initial data
feC?*(RY)NLA(RY), g € CY(R!) satisfy
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Namely we can prove the following theorem.

<C+|z))™, weRY i=0,1. (1.5

THEOREM 1.1.  Assume that a(x) satisfies (1.3)—(1.4) and the initial data
(f,9) € (C*(RY) N L3*(RY)) x CY(R') satisfies (1.5). Moreover assume o =
min{og,c1} > 1. Then there are g > 0 and §y > 0 such that if 0 < § < &y
is valid, for 0 < e < eg the Cauchy problem (1.1) and (1.2) has a unique solution
w in C?(R?) N C°(RY; L?(RY)) such that ui(t,x),u.(t,x) € C°(RY; L2(RY)).

Next we mention the scattering for the equation (1.1).

THEOREM 1.2.  Assume that a(x) satisfies (1.3)—~(1.4) and lim,_, 1 a(x) =
aoo and that the initial data (f , 9o ) € (C*(RY)NL?*(RY)) x CY(R') satisfies (1.5).
Moreover assume o = min{og— 1,01} > 1. Then there are g > 0 and §y > 0 such
that if 0 < § < 8 and 0 < & < g¢ are valid, there are u € C?*(R*)NC°(RY; L2(RY))
a unique solution of (1.1) for t € RY,(f*,97) € C*(R') x CY(R') and coo > 0
such that

||ut( Uot( 715 ||L2 + ||ux u()x( LS(t) ||L2 = O(|t|*"+1), t — +o00
(1.6)

where S(t fo +¢lla(-) (8)“%2)%d$ and
(1+ellaC)us()]32)* = e = O 7).t = oo (17)
where u* (t,x) € C*(R2) denote solutions of the following equations
Uiy (t,0) = %y, (t,2),  ug (0,2) = fi(x), ug;(0,2) = g5 () (L.8)

and || - || 2 stands for a norm of L*(RY).

It should be remarked that in the case of the coefficient a(x) = 1 Theorem 1.1
is proved essentially by Greenberg and Hu in [3] under the assumption oy > 2
and by D’Ancona and Spagnolo in [1] if o7 > 6 and by Yamazaki [6] in the case
of o1 > 1. Rzmowski in [5] treated the Cauchy problem (1.1)-(1.2) in the L'
framework. When o7 > 2, (1.6) in Theorem 1.2 is replaced by

||ut( uOt HL2+HUT uOI HL2 0, t— foo, (1.9)
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because of ¢ !S(t) —t = O(|t|>=9), t — £oo. When a = 1, Ghisi [2] gets (1.9)
in the case of t — 400 under the assumption o7 > 6 and Yamazaki [6] under the
assumption o1 > 2 derived (1.9) in the both cases of t — £00. On the other hand,
Theorem 1 in Matsuyama [4] says that in general (1.9) in the case of ¢ — +oo
does not holds if 1 < o7 < 1 and a(z) = 1. We can find many results for multi
dimensional Kirchhoff type equations with constant coefficients. For example, see
D’Ancona and Spagnolo [1], Yamazaki [6], Matsuyama [4] and their references.

We shall prove Theorem 1.1 and Theorem 1.2 by deriving the estimates of
solutions of the equations (1.1) and (1.8) in L* framework.

2. Linear equation.

In this section we transform our original equation into a two by two system of
first order equations. We let A(t, z) = us+a(z)c(t)u, and B(t, z) = up—a(z)c(t)u,,
where ¢(t)? = 1 + ¢l|a(-)ug (t)]|3.. We write ¢’ = dfi—(tt) and @'(z) = 92(z). Then
the equation (1.1) yields

1

Ay —a(x)e(t)Ay = < (C(t)a'(m) + d(t)

c(t)
¢ (1)
c(t)

: Jea-m.

(2.1)

B + a(x)e(t)B, = 1 (c(t)a'(z)

> >(AB).

The initial conditions for A and B are computable in terms of f’ and g. They are
A(0,2) = Ag(x); =g +alz)cof', B(0,2) = Bo(a); =g —alz)cof',  (22)

where ¢ = ¢(0) = (1 + EHa(-)f’H%Q)%. The defining relation for ¢(¢) becomes

9
c(t)? =1+ WIIA(L ) = B(t, )12 (2.3)

We now introduce the change of variable 7 = fot c(s)ds. Clealy, T is a strictly in-
ceasing function of ¢. We denote its inverse function by ¢ = T'(7) and regard A, B, ¢
as functions of 7, that is, we write A(r,z) = A(T(7),z), B(r,2) = B(T(7),x),
¢(1) = ¢(T(7)) for simplicity of notation. Then by applying the change of variable
to the equations (2.1), we get

A, —a(x)A, = ;(a%x) " ) (A-B). B, +ax)B, = ;(a%x) - ) (4-B),
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and the initial condition is given by (2.2).
We introduce a functional space as follows

Xosm = {c(r) € CH(R");¢(0) = co, 1 < (1) < M, |d(1)| < 6(1+|7])"7, 7 € R'}

with a norm |¢|x = sup |¢(7)|+sup(1+|7|)7|c/(7)|. Let ¢ be in X, 5 3 and consider
the linear Cauchy problem (2.2)—(2.4). We denote its solution by (A., B.). We
define for ¢ € X, 5 1

B(c)*(7) = 1+ ﬁnfw, ) = Bo(r, )22 (2.5)

Then we can prove the following theorem.

THEOREM 2.1.  Assume that a(x) satisfies (1.3)~(1.4) and Ay, By € C*(R')
satisfy

|45 ()] + B ()| < (1 + |2))™", z€R', i=0,1. (2:6)

Then if o = min{og, 01} > 1 is valid, there is €9 > 0 such that ® is a contraction
mapping in Xe s, that is,

|‘I’(Cl) — (I)(Cg)|X < 06‘61 —C2|X, (27)

for any c1, ca € Xo 5.0 and 0 < e < gp.

The proof of this theorem will be given in the Section 3.
Now we introduce again the change of variable with respect to x as follows.
Let consider

j—i =+a(z), z(0)=y (2.8)

and we denote the solution by zy(7,y). Since zy(7,y) are strictly increasing
functions with respect to y, we get the inverse fuction y4 (7,2) as x4 (1, y4(7,2)) =
2. Hence we can define

ac(t,y) = Ac(m,2(1,y)),  Be(T,y) = Be(T,24.(7,9)).
Then it holds

Ac(Tv ‘T) = 040(7', y—(T’ 1:))7 BC(T7 1‘) = 66(7-7 y+(7-7$))' (29)
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Therefore we obtain the following integral equations from (2.2)—(2.4)

ac(ﬂy)=Ao(y)+/OTFc(S,y)d87 Be(T,y) = Bo(y) + ; Ge(s,y)ds  (2.10)

where the equation (2.1) and the relation (2.9) yield

Fulssn) = 5 (0 ) + S ) (ol = B v (s.). - 21)
Gulow) = g (o5 = S50 ) ety (v s = s (242

To derive a priori estimates for (2.10), we introduce a norm in C*(R!) as

Ifli=  sup (@)[fP(z)], i=0,1,..., (2.13)
TR, 0<k<s

where (z) = (1+ |z|2)2. Then we can prove the following proposition.

ProroSITION 2.1.  Assume that the conditions of Theorem 2.1 are valid.
Then we have

()i + 1B8e(7)]s < C(|Aoli + |Boli), 7€R', i=0,1, (2.14)
force X, 5.0 and
|ty (T) = ey (M) [14+|Be; () =Be, (1)1 < C(JAo|1+]Boli)|er—ealx, 7€ R', (2.15)

forci,co € Xo50-

PrROOF. Put

v; = sup {|ac(s)|i + |ﬂc(s)\i}, 1=0,1.
sER!

Then we can see easily that F,., G, satisfies

[Fe(s,9)| < 0v0((2—(5,9)) "7+ {5) ") {{y+(s,2—(5,))) "7 + ()7},
|Ge(s, )] < 070 ((4-(5,)) 7 + (5) ") {{y—(5,24(5,))) "7 + ()~}
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Put

hi(s,y) = ((z—(5,9)) "7 + ()" ) {{ws (s,2_(5,9))) "7+ (v) 7}
+ (@4 (5,9)) 7 + ()" ) {y=(s,24(5,9))) "7+ (y) 7 }.

Taking account of x4 (s,y) = yifos a(z+(p,y))dp and y4 (s, zx(s,y)) = zx(s,y) F
Jy alz+(p,y+(s,25(s,y))))dp, we can see easily that

| wtss

holds. Hence we obtain from (2.10)

<C{y)™°, 1, yecR (2.16)

Y0 < Y00 sup (y)? + [Aolo + [Bolo-

T,y€ER!

/ " (s, y)ds

This yields (2.14) for ¢ = 0 and for 0 < 6 < §p together with (2.16) if §o > 0 is
sufficiently small. Next we shall prove (2.14) for ¢ = 1. Differentiating (2.10) with
respect to y

tey (1) = Ab(y) + /0 "oy (s.y)ds,  Buy(rsy) = Boly) + /0 " Guy(s,y)ds, (2.17)

where Fi,(s,y) and Gey(s,y) are given by

Fuyls.y) = ;<a'(m<s,y)> +2 (s))

x {aey(5,y) + Bey (5,44 (5,2 (5,9))sa (5,2 (5,9)) 2y (5,9) }

+ %a”(x—(s,y))x—y(s, ) {ae(s,y) = Be(s, y4(s,2-(5,9))) },

1

Goylos1) = 3 (o5 - 52

X {O‘cy(sa Y- (57 l‘+(5, y)))y—y(sv I+(57 y))5’3+y(5a y) - ﬂcy(sa y)}

+ %a//<x+(8’ y))x+y(8a y){ac(87 Y- (S’ ‘TJr(Sv y))) - ﬁc(sa y)}

Taking account that ¥4, and x4, are bounded in R? we see from the assumption
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(1.4) that it holds

_0)71{<y+(8 z_(s,9)" 7+ ()7}

|[Foy(s,9)] < 0((x—(5,9)) "7 + (s)
)7 { () (Yo (s, (Svy))>_”}

+ Cvyolx

and
,U)fyl{<y_(8, 33_’_(57 y)))*ﬂ + <y>7g}

Gey(s, )| < 0((x4(s,9)) 7 + (s)
)T+ (- (s, 21 (s,9)) 7}

+ Co(z+(s,9))

Therefore we get from(2.17) by use of (2.16)

v / h(s,y)ds
0

which implies (2.14) for ¢ = 1 together with the fact vo < C(|Aplo + |Bolo), if d is

+ C(lAol1 + [Bolh),

71 < C(671 + 70) sup (y)
yeR?!

small. Next we shall prove that (2.15) holds. Put

pr=sup (7 (|05 (ae, (1,9) = e, (1, 9))| + |05 (Be, (T.9) — Bea (1, 1))
T,y€R k<1

Then ac;, Bc;, j = 1,2 satisfy for k = 0,1

(e, ) = [ O4(Fs,  Fu)ls0)ds,
0 (2.18)
(50 = Ba) = [ 04(Gey = G590
where
O(F ~ Fu)so) = 5{ 2 = 210k aw (5:0) = A oo (2 (50)
+ 205 [(a’(az_(s,y)) + 2)

) (5,Y) — (Bey — Bea) (5,94 (5,2-(s5,9))) }

X {(aq -

and
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O Gy — Goy)(s) = ‘1{ - C/Q}a;;{acl (5,9 (5.4 (,9))) — Bor (5,)}

2 C1 Co

+ 30| (e - 2)

C2

X {(acl - aC2)($>y—(Sax+(s7y))) - (ﬂq - 562)(3734)}
hold. Since we can estimate for £k = 0,1

’ag]j(Fcl = Fo,)(s,y)| < (0+ M)ler — calx 71 (s) ™7 {{y4(s,2—(s,9))) "7 + (y) 7}
+0p1((@—(5,9) "7+ (s) ") {{yr(s,2-(5,9)) "7+ (y) "7}

and

|08 (Gey = Gey)(,9)| < (6 + M)ler — ealxvi(s) 7 {{y—(s, 24 (s,9))) "7 + ()7}
+6p1 ({4 (5,9)) "7+ ()" {{y— (5,24 (5,9))) "7+ ()~}

we obtain from (2.18) and (2.16)

o< 6300 —aalx s (1417 (] [ nts.inas| +001] [ntsas]).
T,yER? 0 0
Therefore we obtain (2.15) analogously to the case of (2.14). O

3. Nonlinear equation.

In this section we shall prove Theorem 2.1 and Theorem 1.1. We can show
that ®(c) belongs to X, 5 for ¢ € X, 6.0r. In fact we can see that for ¢ € X, 5.0,
1 <®(c)? <1+4e(||A2. + ||Bl|22)/2 < 1 +eC(|Ao|3 + | Bo|3) holds from (2.14).
Hence if we take M > 0, ¢ > 0 suitablly, then we see ®(c) < M. Besides ®(c)(0) =
1+ (/4c3)||Ac(0) — B.(0)||? = 1 +¢l|laf’||> = c2. Here || - || stands for a norm of
L?(R') and (,) an inner product of L?(R'). Next we shall prove that |®(c)'(7)| <
§(r)~?, 7 € R. Differentiating ®(c)? with respect to 7,

—ec

20()B(c) (1) = 5

e
|A. — Be|]? + @%(ACT — Ber, A. — B). (3.1)

It follows from (2.14) that
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eld|

2¢3

||AC—BC||2 S €(S<T>_UC(|A0|O—|— |B0|0)2. (32)
On the other hand, taking account that

1 1
§R(af4cxa Ac) = (a/Acy Ac)7 §R(a/Bc:va Bc) = _i(a/BC, Bc)

2

are valid, we can see

§R(ACT - Bc‘ra Ac - Bc) = §R(CLAC:E + Fc + ch:v - Gc; Ac - Bc)
= —R(aAcz, Be) + R(aBew, Ae) + R(F. — G, Ac — Be)

1

1
5 (a’Asy Ap) — i(a'Bc, B.). (3.3)

The assumption (1.4) and Proposition 2.1 imply

@4 A0 < [0 @) Acra)de < Ol [ (@) "ty (r. )7 ds
< ClAolg(m) ™7,

@B B < [ 16 Belr)Pds < CIBf} [ (a) (s (r.0)) 2
< CIBof3(r) 7,

(@4er, Bl < ClAdi|Bolo [ (- () 7 (g (r,)) 7da
< ClAohi|Bolo (7)™,

(@Ber, 40| < ClAdlolBoly [ (- ()~ (g (r,)) ~7da
< ClAolo| Boly ().

and moreover
(., A, — B.)|
< C(of + 1Bol) [} + (1)) (ty- (r. ) + () )

< C(|Aolg + |Bol3) (7)™
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and analogously
[R(Ge, Ac = Be)| < C(|Aolg + | Bol3) ()7
Therefore we get
531 R(Aer = Ber, Ac = B)| < Ce(r) ™
and consequently from (3.1)
|2 (e)(T)] < Ce(|Aolg + |Bolg) (1) ~7 < d(r) ™7, (3.4)

if € > 0 is chosen suitably. Finally we shall prove (2.7). Let ¢1,c2 be in X5 50s.
We begin to prove

|@(c1)(7) = (c2)(7)| < Celer — 2| x, T €R. (3.5)
The definition (2.5) of ® gives
®(c1)*(7) — ®(c2)*(7)

€ 1 1 €
{5~ 2) 10 = BalP + 5 (1e - BalP - 140, - Bal?) |
2

2
1 G

Therefore noting that

and
“lACl - Bcl||2 - ||AC2 - BCzHQ}
< (HACI - ACz” + ||B61 - BCZ”) (HACIH + ||B61 H + ||AC2|| + HBCZH)

we can get (3.5) by use of Proposition 2.1. Next we shall prove
|®(c1) (1) — ®(c2) ()| < Celey — el x(T)77, 7€ R, (3.6)

for ¢1,¢0 € X4 5,00. It follows from (3.1)
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20(c1)®(c1)'(1) — 2®0(c2)®(c2) (1)
! c 2, 502 2 2
(55~ 355 ) Mes = Ball + 55 (e = BulP = 14c, = Bel)

e )5t
2¢2

2c;

+ 53 (R(Acir = Beyr, Acy = Bo) = R(Aear = Boars Acy = Bry)). (3.7)
2

Besides, it follows from (3.3)

§R(ACIT - chra Ac1 - Bcl) - §R(ACQT - BCQT? AC2 - Bcz)
= _éR(a(Aclx - Aczx)v BC1) - §R(a(Bclac - BCQ"IJ)7 Acl)
= R(aAcyu; Bey — Be,) = R(aBeya, Aey — Acy)

(R(d'Ac,, Acy) — R(d Ay, Ary)) — ;(%R(a’Bcl,Bcl) — R(d'Be,, Be,))

N\H

%(Fcl - Gcl + G027AC1 - 01)
%<F62 GCQ?A61 - AC2 - (BC1 - Bcz))'

Since

FCI_FCQ_GCI+G02
¢ ¢
= (2 - 2> (ACI - Bcl) + 7(A01 - AC2 - BCl + BC2)
cf  c5 c

holds, it follows from Proposition 2.1 that we can show

IR(Ac,r — Beyry Ae, — Bey) — R(Acyr — Beyr, Acy, — Be,)|
< C(|Aol1 + [Bol1)[er — e2|x-

Moreover we can show using again Proposition 2.1

G G

3 3
2¢]  2ch

[ Acyr — Be,r|I> < C(|Aoly + |Bol1)?ler — calx (1) ™7

)

C
2023 (HACl - Bcl||2 - ||A02 - BCz||2) <C
2

(|Aolo + [Bolo)ler — ca|x (7)™
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Therefore, taking account of the equality

_ (®(c1)®(c1) = D' (ca)P(c2)) n P'(c)(P(c1) — P(c2))
O(cq) (cz)

we can obtain (3.6) from (3.5) and (3.7). Thus we have completed the proof of
Theorem 2.1.

ProOF OF THEOREM 1.1. Theorem 2.1 assures the existence of solutions
A, B, c of the equations (2.1)—(2.2) and (2.3). Put P = (A+ B)/2 and Q =
(A — B)/2ac. Then we can find u such that u; = P and u, = Q, since (P, Q) is
complete, that is, P, = @Q;. In deed, we see

A,+B, A -F-Bi+G (A-B)—<(A-B)
P, = - — = Q.
2 2ac 2ac

Put

u(t,z) = f(ac)—l—/o st

which solves (1.1) uniquely in C°([0, 00); L?(RY)).

4. Scattering for Kirchhoff equations and perturbed linear equa-
tions.

In this section we shall show the existence of wave operators among Kirchhoff
equation (1.1) and the following linear equations

ui(tﬂj) = Cgo(a(x)Qu;ct(tvx))I’ ui(o, :L‘) = fi(x)7 u;t(o, CE) = gi(x),
+t >0, 2 € R (4.1)

THEOREM 4.1.  Assume that a(x) satisfies (1.3)—(1.4) and the initial data
f~ e C](RY) N LA(RY) and g— € CY(RY) satisfy (1.5). Moreover assume o =
min{og,01} > 1. Then there are g9 > 0 and dy > 0 such that if 0 < § < &y
and 0 < € < &g are valid, there are u € C*(R?) a solution of (1.1), ceo > 0 and
(ft,g%) € C*(RY) N L2(RY) x CY(RY) satisfying (1.5) such that

Hut( — Uy Fle = S(t) H + Hua: (cxtS(t) H =0(Jt|77™h), t— +oo (4.2)
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and
(1+ lla()un(]?)* = e = Ot 1), 1 — 00 (4.3)

where u® (t,z) € C?(R?) are solutions of (4.1) and S(t) :fot(l+E||a(~)uI(s)||2)%ds.

PROOF. We let A;(t,z) = ut + a(x)e(t)u, and By(t, z) = ur — a(z)c(t)uy,
where c(t)? = 1+ ella(-)u.(t)]|* and A7 (t,2) = u; + a(x)cou, and By (t,z) =
uy — a(x)coou, . Then the equation (1.1) yields

Ay — a(z)e(t)Ar, = ;(C(t)a'(a:) + CC((:))) (A1 - By)
, (4.4)
By + a(2)c(t)Bry = ;(C(t)a’(:z:) - ié?) (A1 — By)
and the equation (4.1) gives
ATy~ al@)ese Ay, = Jesd (@)(AT — BY),
) (4.5)
By, + a(z)co By, = icooa’(x)(Al_ — B7).
The initial data is given by
A7 (0,7) = Ay (2);= g~ (2) + a(z)ceo () (2),
(4.6)

By (0,2) = B; (z); =g (2) — a(z)co (f7) ().

Let T(7) be the inverse function of 7 = S(¢). Put A(r,z) = A1(T(7),x),
B(T,lL’) = Bl(T(T)vx)v Af(’r,x) = Al_(cgolTax)a Bi('rvx) = Bl_(CgolT,ﬂj) and
(1) = ¢(T(7)). Then (4.4) and (4.5) yield

A, — a(2) A, — ;<a'(z) + 77'((:)))(,4 _B),
1 , (@.7)
B, +a(x)B, = 3 <a’($) — ?’y((:)))(A - B)

and
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AT —a(2)As = %a’(m)(A_ _B),

T

) (4.8)
B +a(z)B, = ia’(x)(A* -B7), T, x€RY

respectively. Here we pose the condition below to solve (4.8)
IA(T) = A=(D)| + | B(r) = B~(7)[| = O(|I7|77*"), 7 — —o0,  (4.9)

which is equivalent to (4.2). v is given by

3

— B(7)|]?. .
47(7)2\\14(7) B(7)|| (4.10)

Yr)? =1+

Then we note that (4.3) is equivalent to

9

N=B@O)|? =2 = ot oo, (4,
Tz 1A = BOIF = e = 077, (4.11)

Y1) - =1+

Denote by x4 (7,y) the solutions of the ordinary equations of (2.8) and by y (7, )
the inverse function of x4 (7,y) = . If we put a(r,y) = A~ (r,2_(7,y)), B(1,y) =
B~ (r,z4(7,y)), then we can prove analogously to the proof of Proposition 2.1
that a(7,y) and (7, y) satisfy (2.14). Therefore we can see

LEMMA 4.1.  Assume that a satisfies (1.3) and (1.4) and Ay (x), By (x)
satisfies
1A (@)| + | BS? ()| < €1 + |z)~™, zeRY, i=0,1 (4.12)

Then if 0 = min{og, 01} > 1, the solution A~, B~ satisfies

|0, A (m,2)| < COA+ |y (r,2)))~7, |0,B (r,2)| < C(1+ |y4(r,2)])~°, (413)
7<0, z€R' i=0,1. '

We continue to prove Theorem 4.1. First of all we define ¢, as a positive
root of the following equation

g _ _
=1+ (g 2+ lla(r Y1), (414)
COO
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which satisfies

9 _ —
e =1+ 77 (146 I” + 1By I1*) (4.15)

because of | Ay |12+ 1By I* = (llg7|? + 2 |la(f7)’||?). On the other hand, noting
that Lemma 4.1 implies

[(A™(7), B~ (1)) < C/jo I+ lys(ra)) (A + y—(r,2))"7de < C(A+|7])77,

7<0

and taking account of the relation ||[A~(7)||? + [|B~(7)|> = |45 |I* + | By ||* we
can estimate

1A7 (1) = B=(0)|I* = A5 |I* = I By I?] = 21R(A™ (1), B~ (7))| < C(1 + |7]) 77,
7 <0.

Therefore if (A(7), B(7)), v satisfies (4.7), (4.9) and (4.11) we get

V1t el A(r) = B — V1 + (40 I + 1By |1P)
2

*{||A B()|* = 149 1> = 1By I}
<ell|A(r) = B> = |A7(7) = B~ (1)|]| + €| R(A™ (1), B~ (7))
<Ce{(l+|r)) M+ A+ r))77}, <0

[V(r)? = | =

| /\

which implies (4.11).

Now we shall find the solution (4, B) and + satisfying (4.7), (4.9) and (4.10)
by the simillar way of the proof of Theorem 2.1. Let ¢ > 0, § > 0 and M > 0 and
introduce

Xosm = {7(7) € CH((=00,0]); 1 < 4(7) < M, |5/ (1) < (L + 7))~ }.

For v € X, s.m we consider the linear equation of (4.7) and (4.9). We change a
unkown function (A, B) of (4.7) to (U,V)asU = A— A~, V = B — B~ which
satisfies
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U, — a(z)U, = ;(d(a:) n 77/((:))>(U V) + ;;((?) W, 7<0,z€R', (4.16)
Ve +a(z)V, = ;(d(az) - :l((:)))(U V) - ;y((?) W, 7<0, z€R', (417)

where W = A~ — B~. Moreover (4.9) gives
U@+ VNl < C+ )=+ =0, 7— —oco. (4.18)

In stead of (A4, B) we shall find (U, V) satisfying (4.16), (4.17) and (4.18). To do
so, we need the following lemma in the argument below.

LEMMA 4.2. Let 0 = min{og,01} > 1. Then there is a positive function
o= (7,y) such that

/ [+ a5 (5 )~ + (1 + |s))="}
I+ (7)

x {1+ ye (s, 25(5,9)) 7 + (1+ |y)) ™" }ds
< Cox(my)(1+Jy) ™7, (4.19)

and
/ (T )L+ y)2dy < C(AL+ )27, Fr >0, (4.20)
Rl

where I_(1) = (—00,7), I+(7) = (1,00) and p+(7,y) are bounded in R?.

Proor. Put

or(my) = [ {A+lz(s9)) 7 + A+ |y (s, 2 (s,9)) "7 pds + (L +|7[)' .

Iz

We can see easily that ¢+ (7,y) < C. To show (4.19) it suffices to check

(I + [zx(s,9)) 77 (1 + [y=(s,2x(s,9)))) 77
<O+ y) 7L+ lz(s, 1)) 77 + (1 + ly=(s, 25 (s,9))) 7},

which can be showed easily. Next we can show, for example



Scattering 681

e’} T 2
/ (/ (1 + |$(s,y)|)ads> 1+ Jy))~27dy < C(1 + |T|)_2(°'—1)7 7 <0.
T (4.21)

In fact, in the case of x_(7,y) > 0 we can see easily
[ @l s <00t e (ra)) T, <o

Hence taking account of the inequality (1 + |z_(7,y)|) > co(1+ |7])(1+ |y|) ! we
get

/x(w)ZO (/_;(1 + |x(87y)|)_"d8)2(1 +ly) 2 dy

§u+hwﬂ“”/ (1+ ly)2dy

z_(7,9)>0

<C(1+ \T|)_2("_1), T <0.

In the case of x_(7,y) <0, noting that |y| > co|7| if 7 <0, we see

/()@ﬂ+M)%@§C/ (1+ )2 dy
xTr— T,y S

ly|=col7|

<CA+ )27t r<o.

Thus we get (4.21). Besides we can estimate the other terms by the same way. O
Now we can prove the following proposition.

PROPOSITION 4.1.  Let 0 = min{og,01} > 1 and v be in X, 5. Assume
that a satisfies (1.3) and (1.4) and that (Ay, By ) satisfies (4.12). Then there is
8o > 0 such that if 69 > § > 0, (4.16)—(4.18) has a unique solution (U, V') satisfying

|0,U(r.2)| < C(1Ag i +1Bg 1) (1 + |y~ (7, 2))) 77,

. (4.22)
|0,V (r,2)] < C(1Ag |i + 1Bg [) (1 + [y (r,2)) 77,

Jor 7 <0 and i = 0,1, where we denote |Al; = sup,cp1 j<; (1 + |2|)7|0F A()].

PrROOF. Define a(r,y) = U(r,2_(1,y)), B(7,y) = V(1,24 (7,y)) and put
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ei=sup (L+[y)7(10)a(r, )| +10.8(r,y)l), i=0,1.
7<0,zeR?

Let (a, 3) be the solution of the following integral equation

o = [ {5 (e + 2 ) @lo.0) = o (5)

7' (s)
W s (s.0) . (1.29
I 7o)
s = [ {5 (st - T ) (@l s, = o)
- ;;((Z))W(S»m(s,y))}ds (4.24)

solves. Then U(r,z) = a(r,y_(7,2)) and V(r,z) = B(7,y+(7,z)) solves (4.16)—
(4.17). Taking account that V(s,z_(s,y)) = B(s,y+(s,2_(s,y))) and that (4.13)
gives

0, W (s,2—(s,9))| = [05,(B™ = A7)(s,2-(5,9))|

< (|45 i + 1By 1) { (1 + ly4- (s, 2 (s, 9)) ™7 + (L +[y]) =7},
i=0,1, (4.25)

we get from (4.23) by use of (4.19) with —,

el < [ 3O+ e+ 1))

x e (1+ly+(s,2—(s,9))) 77 + (1 + [y) =7}
+0(L+[s)""(|Aq i + 1Bg |:)

X {0+ lys(s,2-(s,))) 77+ (L + )77} |ds
< C{dei + (1A i + 1By o)} (1 + ) ™7, i=0,1.

Analogously
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st < [ [5Ha e+ (41

x e { (14 ly—(s,24(s,9))) "7+ (1 + [y) =7}
+0(1+[s)™7(|Ag i + By |2)

<A+ ly—(s,24(5,9))) 77 + (L + [y) =7} |ds
< CQei+|Agli + By [) A+ [y)™7, i=0,1.
Thus we get
ei < Cde; + C(|Ag |i +1Bq i),

which implies (4.22), if we take Cd < 1. Next we prove (4.18) holds. In fact, we
see from (4.23) and (4.24) by use of (4.22) and (4.20)

@I+ IVEIE < Cla@P + 186)1P)
<cf Z o(r,y)2(1+ [y]) 22 dy
<CA+|r)72"Y 50, 7 — —c0,
which implies (4.18).

Finally we shall show the existence of solutions of the integral equation (4.23)—
(4.24). We seek a solution (a, B)(7,y) as

o(r,y) = Zaﬂ(Tv y), B(ry) = Zﬁn(77y)7
n=0 n=0

where

and for n > 1
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Y V(s
antr) = [ 5 (¢4 T @ua(oin) = Buoas -G

and

ulr) = [ (00 = ) (@nma (s (50 = o).

We can show easily by induction
| (7, 9)| 4 [Bn (1, 9)] < C1(|Ag o + [By [0)(C20)" (1 + [y)) =7,

for n = 0,1,.... U(r,2) = a(r,y—_(1,2)) and V(r,z) = B(r,y4+(7,x)) solves
(4.16)—(4.18). Thus we have proved Proposition 4.1. O

The solution (U, V') of (4.16)—(4.18) depends on v € X, 5. p. So we denote it
by (Uy, V5).

PROPOSITION 4.2. Let 0 = min{og,01} > 1 and v1,72 be in Xy 5. As-
sume that (Ag , By ) satisfies (4.12). Then there is o > 0 such that if 5o > 6 > 0,
(U'Yl ’ V’Yl) and (U’qu V’Y2) SatiSfy

Ha;(UM (T’ ) - U‘Yz(T’ ))H + ||8;(V'Yl (7—7 ) - V’Yz (7—7 ))H
<C(4 h + 1By [)Im —72lx, i=0,1. (4.26)

Proor. Put
a(Tv y) = (UM - U.YQ)(T,SL',(T, y))7 5(Ta (E) = (VM - V’YQ)(T7 er(Tv y))

Then («, 3) satisfies

OZ(T, y) = /T (F’Yl - F%)(s,x_(s,y))ds,
(4.27)

5r) = [ (G G s (5.,

(“%x) T WT))(UV Ve + 2 By (428)
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and

(Fyy — P32 (3.9)
*1 1 S /.Yé S — — S, T_(S
5 (B - B - vy - s )
# 3 (@ + B0, — v, - v+ Vs ()
and
(G% GVz)(‘S?‘TJr(S y))
1A B v e
- 2< 71<5> + 72(8)>(U’)’1 V’Yl W)( ’ +( 7y))
g () = ) W = U =V + V(s (s)
Define

e;= sup (1+1y)7(10za(s, y)| +10;6(s, 1)), i=0,1.

Noting that (V
Uy, )(s,24(s,y)) = a(s,y—(s,24(s,y))) and taking account of Lemma 4.1, Propo-
sition 4.1 and (4.19), we get from (4.27)

1T V"/z)(s’x—(&y)) = ﬁ(s,y+(s,x_(s,y))) and (U’Yl -

@ a(r.y)| s[ (14 (s~ + (14 [s) =)

X ((1+[ys (s, (s,9))) "7 4+ (L+|y[)~7)ds
x (0e; + (|Ag o + |Bg o)l — 72lx)
< C{bei + (|Ag i + 1By 1) — yalx F(A+ [y~

and analogously
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|5Zﬁ(77 y)| < C{be; + (|Ag 11 + |By 1)l — valx b1+ y) ™7

which imply that e; < Cl|y1 — y2|x if ¢ is sufficiently small, that is, we get
0y a(m,y)| +10,8(m,y)| < C(|Ag [1 + 1By [1)lm — r2lx (L4 |y[)77, i = 0,1 which
yields (4.26). O

We continue to prove Theorem 4.1. For v € X, 5 we define

3

() =1+

1U5(7) = Vo (r) + W ()|,

where (U,,V,) denotes the solution of (4.16)-(4.18) and W(r,z) = (A~ —
B7)(1,x). We shall prove that ®(y) is in X, 5 by the similar way as that
of the proof of Theorem 2.1. It is trivial that 1 < ®(v)(7)? < 1+ C(M)e < M?,
if £ is small, because U, V., and W are bounded in L?(R') from Proposition 4.1.
Next we shall prove that [®(y)'(7)| < (1 + |7|)~°. Differentiating ®2(v)(r) with
respect to 7

20(2)(r)2(1) (1) = ot SN, (1) = Vi () + W)

Tt follows from (4.16), (4.17)

R((U,(7) = Vo(7) + W(7))r, Uy(7) = V5 (7) + W (7))
= R(a(@)(Uy + V3)o(7) + W(T)r + Fy = Gy, Uy(7) = V4 (7) + W (7))

= LR @)U, (1), U (7)) - R(@ (@) V4 (), Vi (7))}

2
= R(a(@)Usa(7), Vo (7)) + R(a(2)Vya(7), Uy (7))
+ §R(W(7')T +F,— G, Uy(r) = V(1) + W(T))
where F.,, G, is given by (4.28), (4.29). Using Proposition 4.1 and 4.2 we can
estimate from (1.4)
|5 (7, 2)] + G (7, @)
<C{@+1a)™ 7+ A+ 1) HA +ly-(r.2)) ™7 + A + [y (7, 2)) "7}



Scattering 687

Therefore we can show |®(v) ()] < 6(1 4 |7])~7 analogously to (3.4), if we take
¢ > 0 small. Moreover we can show similarly to (4.3)-(4.5) by use of Proposition
4.1 and Proposition 4.2,

[®(71) — ®(72)|x < Celm —72lx (4.30)

for any v1, 72 € X 5,1, which implies that ® is a contraction mapping in X, 5 s,
if ¢ is small. Denote by v(7) € X, s.ar the fixed point ® and by (U,, V;)(7, x) the
solution of (4.16)—(4.18

).
Define T'(1) = fOT v(s)"tds and denote by S(t) the inverse function of ¢ =

T(7). Put c(t) = v(S(¢)). Then we get the relation S(t) = fot c¢(s)ds. Moreover
A(r,z) = U, + A~ (1,2) and B(r,z) = V,(7,2) + B~ (7, ) solve (4.7) and (4.9).
Therefore A;(t,x) = A(S(t),z), B1(t,z) = B(S(t), z) solves (4.4) and (4.9) implies

[A1(t) = AT (e S| + || B1(#) = By (e S@®)[| = O(|t|~7*) — 0, ¢ — —c0.
(4.31)

We define

t
u(t,x):/ Al(s’x);Bl(S’x)ds, t<0 (4.32)

which solves (1.1) for ¢ < 0 and satisfies (4.2) and (4.3) for ¢t < 0 from (4.9) and
(4.11) respectively. Moreover we can extend u(t,x) to t > 0 by use of Theorem
1.1 as a solution of (1.1) for ¢ > 0, because (u(0,x),us(0,z)) satisfies the decay
condition (1.5) from Lemma 4.1 and Proposition 4.1.

Next we shall prove that there is (f,¢g7) € C?(R!) x C1(R!), that is, u™* (¢, z)
a solution of (4.1) and (4.2). Let A1 = us+acu,, By = ug—acuy, AT = u tacoouf
and B = uj” — acoouf as above and also define A(7,2) = Ay (T(7),x), B(1,z) =
Bi(T(7),z), AT(r,2) = Af (cZ!7,x), BY(1,2) = B (cZ!7,x), U = AT — A, and
V = BT — B. Then (U, V) satisfies like (4.16) and (4.17)

U, — a(z)U, = ;(d(x) + 18) U-V)-— :/((:))W, >0, z€R', (4.33)
1/, 7'(1) 7'(7) 1
Vi +a(x)V, = 2<a (z) — 7 >(U— V) + ) W, 7>0, x€ R, (4.34)

where W = A — B. Moreover (4.2) is equivalent to

U@+ V)| <e@+ )" =0, 7— 0. (4.35)
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Set U(r,z) = a(r,y—(1,2)) and V(1,24 (1,y)) = B(7,y+ (7, x)), where («, 3) sat-
isfies the following integral equation

s e

LGy }ds, (4.36)
) et
}

(5, y+(s,2-(5,9))))

(s,74(5,9))) — B(s,1))

) W(s,z+(s,y)) pds. (4.37)

Since W = A — B satisfies the estimate (4.25) from (4.22), we can find similarly
to the argument in proof of Proposition 4.1 (o, §) satisfying (4.36) and (4.37) and
consequently we get (U, V) the solution of (4.33)—(4.34) satisfying (4.35). Then

ut(t,r) = —

/°° Af(s,ac) + Bfr(s,:c) ds
2
t

solves (4.1) and moreover we can prove similarly that u and u* satisfy (4.2) and
(4.3) for t > 0. Thus we finished the proof of Theorem 4.1.

5. Wave operators among linear perturbed equations and free
equations.

In this section we shall prove the existence of wave operators among the
following linear equation

wyy — ¢ (a(x)’wy)e =0, t,z € RY, (5.1)

and the free equation (1.8). Let ug (¢,x) a solution of (1.8) with — and as-
sume (fy ,g, ) satisfies (1.5). Then we shall show that there are w(t,z) €
C%(R?) N C°((—o00,00); L2(RY)) a solution of (5.1) and ug (t,r) € C?(R?) N
C°([0,0); L?(R')) satisfying (1.8) such that

[Jwe(t) = uge (]| + [|wa(t) —ug, ()] = O(t]7H), £t =00, (5.2)

Let A~ = wi + eoa(z)wz, BT = wy — cooa(z)w, be a solution of the following
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equations
— — ]- 12 — —
Ay —exa(x)A, = 3@ (£)(A~ — B7),

) (5.3)
B, + coca(z)B, = §a’(x)(A_ - B7)

for t < 0 and Ay (t,x) = ug; + Coolocly, and By (t, ) = Uy, — Cooloolly, Which
satisfy the following equations,

Ay — GooCocAg, =0, Ay (0,2) = (gg + aoocoof(;/)(x),

By, + asoCo By, =0, By (0,2) = (90_ - aoocoofo_/)(x).
Put U=A" —A;,V =B~ — B . Then (5.2) is equivalent to
[T +IVE = Ot=7), t— —o, (5-4)
and (U, V) solves
U — a(r)co Uy = %a'(x)coo(U —V+A) —By) + cola(x) — as)Ag,,
7<0, € R, (5.5)

1
Vi + a(x)coo Vi = ia'(x)coo(U —V+ Ay — By) + cola(x) — ano) By,

7<0, z€ R (5.6)

Put Ck(t,y) = U(tvxf,oo(tvy)) and ﬁ(tvy) = V(taer,oo(tvy))v where T4 o is a
solution of % = +ca(z), 2(0) = y. (5.4)-(5.6) yields

at) = [ {50 men (as.0) = o5 ()

— 00

+Ag (5,2 00(s,9) = By (5,2 00(5,9)))

T oo (@(z— e (53)) — am>Ao<s,x,m<s,y>>}ds,
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8 = [ {30 mlmen(alo (e nls) - 8s)

+ A5(5a$+,oo(37y)> - B&(va+7oo(5ay))>

1 oo (@405, 9)) — 100) By (5,24 005 y>>}ds.

Denote eg = sup,<q ,ert (1 + [y)7(Ja(s,y)| + [8(s,y)|). Taking account that it
follows from the assumptions (1.4) and lim,_, 1+ a(2) = as that we have |a(x) —
o] < C(1+ |z|)~o0F! for z € R, we see
la(t,y)] <
t
C/ [6(1+ 2 o0 (s, ) )77 {0 (1 + [+ (5, 2— oo (5,9))) 77 + (L + Jy)) =7

+ CO(]- + |x7,oo(8ay) - aoos|)_o + (1 + |$f,oo(87y) + aooSD_U}

+ Co(1+ |2 o0 (5,9) )T (A + |2 o0 (s, y) — aces]) ™7 ds, (5.7)

where Cy = C(|4y o + |Bg lo). Put

Pt = [ {04l (o (o)~ anes])
+ (L (5,2 o0 (5,9))) 77 heds + (14 [e]) 77T

Noting that it holds analogously to Lemma 4.2

/ [+ |2 oo (5, D77 { (1 + [y (5,2 00 (5,9)) 77 + (14 [y)) ™7

+ (142 00(8,9) = aoos)) ™7+ (14 |2- 00(5,y) + aoes|) ™7}
+ (14 ]7- 0o (s, )) 7T (1 + |2— 0o (5,Y) — ases|) 7] ds
SCo_(ty) (X +y)™7 <COA+y))~°, (5.8)

because of 0g — 1 > 0 > 1 and |2_ oo (S, ¥y) + aoos| > coly| — 1 for s < 0, we get

la(t,y)] < Cdeo + Co)(1 + [y)~7, ¢ <0.
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Similarly we have

18(t,y)] < C(deo + Co)(1 +[y))=7, ¢ <0.

Therefore we obtain eg < C for t < 0, if 6 > 0 is small. Moreover using again (5.7)
and (5.8) we can show

| lattalPay <0 [ ooty o)y < o+ ) o,

— 00

t — —0o0

and @ has also the same property as «. Thus we showed (5.4) and there-
fore we obtain w(t,z) = ffoo 1(A™ + B7)(s,x)ds € C?*((—00,0] x R') N
C%((—00,0]; L2(RY)) satisfying (5.1) for t < 0. Now we can define the wave
operator W_(f~,97) = (w(0),w;(0)). We can define W, analogously. More-
over it follows from Theorem 1.1 that we can extend w to [0,00) as a solution of
(5.2), because (w(0),w:(0)) satisfies the decay condition (1.5). Thus we obtain
w € C*(R?) N C%((—o0, 00); L2(RY)) satisfying (5.1).

Next conversely we shall prove the existence of the inverse of the wave operator
W,. Let w(t,z) € C*(R%) N C%((—o00,00); L*(R')) a solution of (5.1) such that
(w(0, ), w(0,z)) satisfies the decay condition (1.5). Then we shall show that
there is ug (t,x) a solution of (1.8) satisfying (5.2) instead of initial data. Let
A = ud, + cootootit,, BT = ud, — cootoouy, which satisfies

Al — aooCooAg, =0, B, + asecooBa, =0 (5.9)

and denote by (AT (t,z), B*(¢,2)) a solution of the following equation,

COOaI(x)(AJr - B+)a A+<0’x) = (g+ + aoocoof+l)(x)’

B + a(2)es B = Seood! (1)(AT = BY), BT(0,2) = (g% ~ tootee [T )(2).

Put U = Af —A*,V = Bf —B~. We can show the existence of (AJ (¢, ), By (¢, 7))
satisfying

AT = AF || +|[BY = By || = lUOI + IV = Ot} "), t— o0, (5.10)

if (f,g™") satisfies (1.5). In fact, (U, V) solves
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U; — aooCooUy = f%a'(x)coo(U —V 4+ AT — B +coo(a(x) — ase) A,

x

t>0, z€ R, (5.11)

x

1
Vi 4+ GooCoo Ve = —§a’(x)coo(U ~V+ A" — BT) + coo(a(n) — aso) B,

t>0, z€ R (5.12)

Taking account that |a(x) — as| < C(1 + |z])~%0FL, |0LAT (¢, 2)| < C(1 +
ly_(t,2)|)~° and |0L BT (t,z)| < C(1+ |y, (t,7)|)~° hold for i = 0,1, we can show
the existence of (U, V') satisfying (5.10), (5.11) and (5.12) analogously to the above
argument and consequently we have AS’ =U+ AT, BS‘ =V + BS‘ the solution
of (5.9)-(5.10). We define uf (t,2) = — [ 1/2(AJ + Bf)(s,z)ds which is in
C?([0,00) x RY) N CY([0, 00]; L2(RY)) satisfying (1.8)—(5.2) with +. Therefore we
can define the inverse W;'(f¥,g%) = (ug (0),ug;(0)). Thus we have proved the
following theorem.

THEOREM 5.1.  Assume that a satisfies (1.3), (1.4) and limy_, 4o a(z) = oo
Moreover suppose that (fy ,gy) satisfies (1.5) and ¢ = min{oy — 1,01} > 1 is
valid. Let ug € C*((—00,0] x RY)NCO((—o0,0]; L%(R')) the solution of (1.8) with
—. Then there are w € C*(R?) N CY((—o0,00); L2(RY)) a solution of (5.1) and
ug € C?([0,00) x RY) N CO([0,00); L2(RY)) a solution of (1.8) with + satisfying
(5.2).

PrROOF OF THEOREM 1.2. Theorem 4.1 and Theorem 5.1 imply Theorem
1.2 directly.
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