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Abstract. We find the asymptotic behavior for large time of solutions to the
dispersive equations of Schrödinger type

ut − i

ρ
|∂x|ρu = 0, (t, x) ∈ R×R,

where ρ ≥ 2. We obtain some estimates of solutions of linear problem and apply them
to nonlinear problems with power nonlinearities of order p ≥ 3. The nonexistence of
wave operator and existence of the modified wave operator for the critical nonlinearity
iλ|u|2u are studied.

1. Introduction.

We study the large time asymptotic behavior of solutions to the Cauchy prob-
lem for the following dispersive equation of the Schrödinger type





ut − i

ρ
|∂x|ρu = 0, (t, x) ∈ R×R,

u(t0, x) = u0(x), x ∈ R,

(1.1)

where ρ ≥ 2, |∂x|ρ = F−1|ξ|ρF , Fφ or φ̂ is the Fourier transform of φ defined
by Fφ(ξ) = 1√

2π

∫
R

e−ixξφ(x)dx and the inverse Fourier transformation F−1 is
given by F−1φ(x) = 1√

2π

∫
R

eixξφ(ξ)dξ. Then we apply the estimates of solutions
to problem (1.1) for studying the nonlinear final value problem





ut − i

ρ
|∂x|ρu = N (u, u), (t, x) ∈ R×R,

lim
t→∞

U(−t)u(t) = u+, x ∈ R,
(1.2)
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with a given final state u+, where U(t) = F−1 exp
(

i
ρ t|ξ|ρ)F .

When ρ = 2, equations (1.1) and (1.2) are the linear Schrödinger equation and
nonlinear Schrödinger equation respectively. Recently many works were devoted
to the study of large time asymptotic behavior of solutions of these equations. In
particular, in [9] it was proved the existence of the modified wave operator for
(1.2) with ρ = 2, N (u, u) = iλ|u|2u, λ ∈ R under the condition that the final
state u+ ∈ H0,2 and the norm ‖û+‖L∞ is sufficiently small, where we denote the
Lebesgue space Lp = {φ; ‖φ‖Lp < ∞}, with the norm ‖φ‖Lp = (

∫
R
|φ(x)|pdx)1/p

if 1 ≤ p < ∞ and ‖φ‖L∞ = ess. supx∈R |φ(x)| if p = ∞. The weighted Sobolev
space Hm,s

p is defined by Hm,s
p = {φ ∈ Lp; ‖〈x〉s〈i∂x〉mφ‖Lp < ∞}, m, s ∈ R with

〈x〉 =
√

1 + |x|2. The index 0 usually we omit if it does not cause a confusion.
The homogeneous Sobolev space is defined by Ḣs = {φ ∈ L2; ‖|∂x|sφ‖L2 < ∞}.
In [10] by applying the method of paper [9], the modified wave operator for (1.2)
with ρ = 4 in the case of the critical nonlinearity N (u, u) = iλ|u|2u, λ ∈ R was
constructed under the condition that

‖û+‖H4,0 +
4∑

k=0

∥∥|ξ|k−12∂k
ξ û+

∥∥
L2

is sufficiently small. They found some special asymptotic representation uw for
solutions and have checked that the function

R = L4uw − iλ|uw|2uw

is a remainder term in L2, where Lρ = i∂t − 1
ρ (−∂2

x)
ρ
2 denotes a linear part

of equation (1.2). Computation of L4uw implies at least fourth differentiability
‖û+‖H4,0 < ∞. This method can be applied to higher order ρ if we assume that
‖û+‖Hρ,0 < ∞. However a longer computation is needed to obtain that R is
remainder. By combining the method of papers [9] and [12], it was proved in [11]
that

R = L4uW − iλ|uW |2uW

is a remainder term, when Im λ > 0 under the condition that

‖û+‖H4,0 +
4∑

k=0

∥∥|ξ|−12+k∂k
ξ û+

∥∥
L2 < ∞.

The smallness condition on the data is removed due to the dissipation condition
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on the nonlinearity such that Imλ > 0. Our results in the present paper improve
those of the previous works [9], [10], [11] and [12]. Our method is also applicable
for the case of non integer order ρ.

To construct the modified scattering operator it is important to study the
Cauchy problem for nonlinear dispersive equation of Schrödinger type with critical
nonlinearity N (u, u) = iλ|u|2u, λ ∈ R





ut − i

ρ
|∂x|ρu = iλ|u|2u, (t, x) ∈ R×R,

u(0, x) = u0, x ∈ R.

(1.3)

In [5], the global existence and asymptotic behavior in time of small solutions
to (1.3) with ρ = 2 was shown in L2 ∩ L∞ sense if the initial data u0 ∈ Hγ ∩
H0,γ with γ > 1

2 have a sufficiently small norm ‖u0‖Hγ + ‖u0‖H0,γ . This result
yields the existence of the inverse modified wave operator. As far as we know
the construction of the modified scattering operator is an open problem for higher
order ρ > 2. Finally we note that some estimates for the linear dispersive equations
similar to (1.1) were shown in [7] in the case of Benjamin-Ono type equation
ut − 1

2∂x|∂x|u = 0 and in [6], [8] in the case of Kortweg-de Vries type equation
ut − 1

3∂3
xu = 0. Furthermore in [7], there were shown the global existence and

large time asymptotic behavior of small solutions in L2∩L∞ sense for the Cauchy
problem to the Benjamin-Ono type equation





ut − 1
2
∂x|∂x|u = ∂xu3, (t, x) ∈ R×R,

u(0, x) = u0, x ∈ R

under the condition that the initial data u0 ∈ H2,1 ∩ H1,2 are real valued and
have a sufficiently small norm ‖u0‖H2,1 + ‖u0‖H1,2 . However the existence of the
modified wave operator is an open problem due to the derivative of the unknown
function ux in the nonlinear term.

Applying the sharp large time asymptotics of solutions to nonlinear problems
we can show the nonexistence of usual wave operator. Therefore it is impossible
to apply our method to the case of subcritical nonlinearity such that |u|p−1u with
1 < p < 3. We note here that in the case of the usual nonlinear Schrödinger
equations with a gauge invariant nonlinearity iλ|u|p−1u, 1 < p < 3, λ < 0, the
nonexistence of the usual wave operator was shown in [1] by making use of a sharp
Lq-time decay estimates of solutions for q > 2 which was shown in [4] through the
pseudo-conformal conservation law.
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We denote by C(I;H) the space of continuous functions from a time interval
I to a Banach space H. Different positive constants might be denoted by the
same letter C.

The rest of this paper is organized as follows. In Section 2 we obtain large
time asymptotics and some L∞-L1 estimates for the free evolution group of the
Schrödinger type U(t) = F−1 exp

(
i
ρ t|ξ|ρ)F . Section 3 is devoted to the study of

the final problem (1.2) in the supercritical case. Theorem 3.1 deals with the case of
sufficiently general nonlinearity N (u, u), however its order is far from the critical
value. In the case of a gauge invariant nonlinearity iλ|u|p−1u, λ ∈ R we treat all
powers 3 < p < 1+2ρ in Theorem 3.2. In Section 4 we consider the modified final
problem for dispersive equation of Schrödinger type with a critical nonlinearity
iλ|u|2u, where Im λ ≥ 0. Finally in Section 5 we prove the nonexistence of the
usual wave operator in the case of critical nonlinearity iλ|u|2u, λ ∈ R.

2. Estimates for the free evolution group.

In this section we study the large time asymptotic behavior for the free evo-
lution group of the Schrödinger type U(t) = F−1 exp

(
i
ρ t|ξ|ρ)F , where ρ ≥ 2.

Denote the norm

‖v‖Zα ≡ ∥∥{ξ}−αv(ξ)
∥∥

L∞ +
∥∥{ξ}1−αv′(ξ)

∥∥
L∞ , {ξ} =

|ξ|
〈ξ〉 .

Theorem 2.1. The estimate is true

‖U(t)v‖L∞ ≤ Ct−
1+α

ρ

∥∥|∂x|−αv
∥∥

L1 (2.1)

for all t > 0 provided that the right-hand side is finite, where α ∈ [
0, ρ

2 −1
]
, ρ ≥ 2.

Furthermore the asymptotic formula for large time t holds

U(t)v = A(t, χ)v̂(χ) + R(t, x), (2.2)

where

A(t, χ) = t−
1
2

√
1

i(ρ− 1)
|χ|1− ρ

2 e−i(1− 1
ρ )|χ|ρt

and χ = − x
|x|

( |x|
t

) 1
ρ−1 . The reminder R(t, x) satisfy the estimates

‖R(t)‖L∞ ≤ Ct−
α
ρ− 1

ρ ‖v̂‖Zα
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for 0 < α < ρ− 1 and

‖R(t)‖L2 ≤ Ct−
α
ρ− 1

2ρ ‖v̂‖Zα

for 0 < α < ρ−1
2 .

Remark 2.1. Note that the first estimate (2.1) was shown in [2] for ρ = 4,
in [6] for ρ = 3 and in [8] for ρ > 3. We need estimate (2.1) for the proof of the
Strichartz type estimates (see Lemma 2.2 below). Note that the L2 norm of the
remainder R(t, x) decay faster than t

1
2ρ− 1

2 under the conditions α > ρ
2 − 1, ρ ≥ 2.

Proof. We write

U(t)v = (2π)−1t−
1+α

ρ

∫

R

Gα

(
(x− y)t−

1
ρ

)
|∂y|−αv(y)dy

with a kernel

Gα(η) =
∫

R

|ξ|αeiξη+ i
ρ |ξ|ρdξ.

To estimate the L∞-norm of Gα(η) we define

Gα(η) = G−(η) + G+(η) ≡
∫ ∞

0

ξαe−iξη+ i
ρ ξρ

dξ +
∫ ∞

0

ξαeiξη+ i
ρ ξρ

dξ.

We only consider η > 0 since the case of η ≤ 0 can be treated similarly. We denote
µ = η

1
ρ−1 , therefore we have for all η ≥ 1

G−(η) =
∫ 2µ

0

ξα

1− i(ξ − µ)(µρ−1 − ξρ−1)
∂ξ

(
(ξ − µ)e−iξη+ i

ρ ξρ
)
dξ

+
∫ ∞

2µ

iξα

µρ−1 − ξρ−1
∂ξe

−iξη+ i
ρ ξρ

dξ.

Hence the integration by parts yields

|G−(η)| ≤ Cµα

∫ 2µ

0

dξ

1 + (ξ − µ)2µρ−2
+ C

∫ ∞

2µ

ξα−ρdξ + Cµα+1−ρ

≤ Cµα+1− ρ
2

∫

R

〈y〉−2dy + Cµα+1−ρ ≤ C
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for all η ≥ 1 if ρ ≥ 2 and 0 ≤ α ≤ ρ
2 − 1. In the same manner we obtain

|G+(η)| ≤ C for all η ≥ 1. Therefore we get ‖Gα‖L∞ ≤ C. Now the application
of the Young inequality implies estimate (2.1).

We now show the asymptotic formula (2.2). We only consider the case x > 0
and write the identity

U(t)v ≡ 1√
2π

∫ ∞

−∞
eiξη+ i

ρ |ξ|ρ v̂
(
ξt−

1
ρ

)
dξ

=
1√

2πt
1
ρ

(
v̂(χ)

∫ ∞

0

e−iξη+ i
ρ ξρ

dξ +
∫ ∞

0

eiξη+ i
ρ ξρ

v̂
(
ξt−

1
ρ

)
dξ

+
∫ ∞

0

e−iξη+ i
ρ ξρ

(
v̂
(
− ξt−

1
ρ

)
− v̂(χ)

)
dξ

)
, (2.3)

where η = xt−
1
ρ , χ = −µt−

1
ρ = − x

|x| (
|x|
t )

1
ρ−1 , and µ = η

1
ρ−1 > 0.

Consider the asymptotic behavior with respect to µ → ∞ for the first sum-
mand in the right-hand side of (2.3)

∫ ∞

0

e−iξµρ−1+ i
ρ ξρ

dξ = e−i(1− 1
ρ )µρ

∫ ∞

0

eiS(ξ,µ)dξ

where S(ξ, µ) = 1
ρ (ξρ − µρ − ρµρ−1(ξ − µ)). We can define a new variable

z(ξ, µ) = µ + µ1− ρ
2

√
2

ρ− 1
S(ξ, µ)sign(ξ − µ).

Note that zξ(µ, µ) = 1 and (see [3])

∫ ∞

z(0,µ)

ei ρ−1
2 µρ−2(z−µ)2dz =

√
2π

i(ρ− 1)
µ1− ρ

2 + O(µ1−ρ)

for µ →∞, where z(0, µ) = µ(1−
√

2
ρ ). Then applying the identity

eiS(ξ,µ) =
1

1 + i(ξ − µ)(ξρ−1 − µρ−1)
∂ξ

(
(ξ − µ)eiS(ξ,µ)

)

we integrate by parts in the second summand
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∫ ∞

0

eiS(ξ,µ)(1− zξ(ξ, µ))dξ

=
∫ ∞

0

(ξ − µ)eiS(ξ,µ)∂ξ

(
1− zξ(ξ, µ)

1 + i(ξ − µ)(ξρ−1 − µρ−1)

)
dξ + O(µ1−ρ).

Hence

∣∣∣∣
∫ ∞

0

eiS(ξ,µ)(1− zξ(ξ, µ))dξ

∣∣∣∣

≤ Cµ−1

∫ 2µ

0

|ξ − µ|dξ

1 + (ξ − µ)2µρ−2
+ Cµ1− ρ

2

∫ ∞

2µ

ξ−1− ρ
2 dξ + O(µ1−ρ)

= O(µ1−ρ lnµ).

Therefore

1√
2πt

1
ρ

v̂(χ)
∫ ∞

0

e−iξη+ i
ρ ξρ

dξ = A(t, χ)v̂(χ) + O
(
t−

1
ρ v̂(χ)µ1−ρ lnµ

)
,

where the remainder term O
(
t−

1
ρ v̂(χ)µ1−ρ lnµ

)
satisfies the estimates of the the-

orem.
Now we consider the second term in the right-hand side of (2.3). By applying

the identity

eiξη+ i
ρ ξρ

=
1

1 + iξ(ξρ−1 + µρ−1)
∂

∂ξ

(
ξeiξη+ i

ρ ξρ
)

the integration by parts with respect to ξ yields

∫ ∞

0

eiξη+ i
ρ ξρ

v̂
(
ξt−

1
ρ

)
dξ = − t−

1
ρ

∫ ∞

0

ξ

1 + iξ(ξρ−1 + µρ−1)
eiξη+ i

ρ ξρ

v̂′
(
ξt−

1
ρ

)
dξ

− i

∫ ∞

0

ξµρ−1 + ρξρ

(1 + iξ(ξρ−1 + µρ−1))2
eiξη+ i

ρ ξρ

v̂
(
ξt−

1
ρ

)
dξ.

Therefore we get

∥∥∥∥
∫ ∞

0

eiξη+ i
ρ ξρ

v̂
(
ξt−

1
ρ

)
dξ

∥∥∥∥
L∞x

≤ Ct−
α
ρ ‖v̂‖Zα

∫ ∞

0

ξαdξ

1 + ξρ
≤ Ct−

α
ρ ‖v̂‖Zα (2.4)
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if 0 < α < ρ− 1 and

∥∥∥∥
∫ ∞

0

eiξη+ i
ρ ξρ

v̂
(
ξt−

1
ρ

)
dξ

∥∥∥∥
L2

x

≤ Ct−
1
2ρ

∥∥∥∥
∫ ∞

0

ξµ
ρ
2−1

1 + ξ(ξρ−1 + µρ−1)

∣∣∣v̂′
(
ξt−

1
ρ

)∣∣∣dξ

∥∥∥∥
L2

µ

+ Ct
1
2ρ

∥∥∥∥
∫ ∞

0

µ
ρ
2−1

1 + ξ(ξρ−1 + µρ−1)

∣∣∣v̂
(
ξt−

1
ρ

)∣∣∣dξ

∥∥∥∥
L2

µ

≤ Ct
1
2ρ−α

ρ ‖v̂‖Zα

∥∥∥∥
∫ ∞

0

ξαµ
ρ
2−1dξ

1 + ξ(ξρ−1 + µρ−1)

∥∥∥∥
L2

µ

≤ Ct
1
2ρ−α

ρ

∥∥∥〈µ〉α− ρ
2

∥∥∥
L2

µ

‖v̂‖Zα ≤ Ct
1
2ρ−α

ρ ‖v̂‖Zα (2.5)

if 0 < α < ρ−1
2 .

For the third summand in the right-hand side of (2.3) we apply the identity

e−iξη+ i
ρ ξρ

=
1

1 + i(ξ − µ)(ξρ−1 − µρ−1)
∂

∂ξ

(
(ξ − µ)e−iξη+ i

ρ ξρ
)
,

then the integration by parts yields

∫ ∞

0

e−iξη+ i
ρ ξρ

(
v̂
(
− ξt−

1
ρ

)
− v̂(χ)

)
dξ

=
µ

1 + iµρ
v̂(χ) + t−

1
ρ

∫ ∞

0

(ξ − µ)e−iξη+ i
ρ ξρ

v̂′
(
− ξt−

1
ρ

)
dξ

1 + i(ξ − µ)(ξρ−1 − µρ−1)

+ i

∫ ∞

0

(ξ − µ)(ξρ−1 − µρ−1) + (ρ− 1)(ξ − µ)2ξρ−2

(1 + i(ξ − µ)(ξρ−1 − µρ−1))2

×
(
v̂
(
− ξt−

1
ρ

)
− v̂

(
− µt−

1
ρ

))
e−iξη+ i

ρ ξρ

dξ ≡
3∑

j=1

Ij(t, x).

The first integral I1(t, x) is estimated for all t ≥ 1 by

‖I1(t)‖L∞x ≤
∥∥∥∥

µ

〈µ〉ρ v̂
(
− µt−

1
ρ

)∥∥∥∥
L∞x

≤ Ct−
α
ρ

∥∥{ξ}−αv̂(ξ)
∥∥

L∞ (2.6)



Dispersive equation of Schrödinger type 639

if 0 < α < ρ− 1 and

‖I1(t)‖L2
x
≤ Ct

1
2ρ

∥∥∥∥
µ

ρ
2

〈µ〉ρ v̂
(
− µt−

1
ρ

)∥∥∥∥
L2

µ

≤ Ct
1
2ρ−α

ρ

∥∥{ξ}−αv̂(ξ)
∥∥

L∞

∥∥∥∥
µα+ ρ

2

〈µ〉ρ
∥∥∥∥

L2
µ

≤ Ct
1
2ρ−α

ρ ‖v̂‖Zα (2.7)

if 0 < α < ρ−1
2 . For the second term we find

‖I2(t)‖L∞x ≤ t−
1
ρ

∥∥∥∥
∫ ∞

0

(ξ − µ)e−iξη+ i
ρ ξρ

1 + i(ξ − µ)(ξρ−1 − µρ−1)
v̂′

(
− ξt−

1
ρ

)
dξ

∥∥∥∥
L∞µ

≤ Ct−
α
ρ

∥∥|ξ|1−αv̂′(ξ)
∥∥

L∞ξ

∥∥∥∥
∫ ∞

0

|ξ|α−1|ξ − µ|dξ

1 + |ξ − µ||ξρ−1 − µρ−1|

∥∥∥∥
L∞µ

≤ Ct−
α
ρ ‖v̂‖Zα (2.8)

since we have the estimate

∫ ∞

0

|ξ|α−1|ξ − µ|dξ

1 + |ξ − µ||ξρ−1 − µρ−1|

≤ C〈µ〉1−ρ

∫ µ
2

0

|ξ|α−1dξ + Cµα−1

∫ 2µ

µ
2

|ξ − µ|dξ

1 + (ξ − µ)2µρ−2

+ C

∫ ∞

2µ

|ξ − µ|αdξ

1 + |ξ − µ|ρ ≤ C (2.9)

for all µ > 0 if 0 < α < ρ− 1. Similarly to the proof of (2.7) we also obtain

‖I2(t)‖L2
x
≤ Ct−

1
2ρ

∥∥∥∥
∫ ∞

0

µ
ρ
2−1(ξ − µ)e−iξη+ i

ρ ξρ

1 + i(ξ − µ)(ξρ−1 − µρ−1)
v̂′

(
− ξt−

1
ρ

)
dξ

∥∥∥∥
L2

µ

≤ Ct
1
2ρ−α

ρ

∥∥|ξ|1−αv̂′(ξ)
∥∥

L∞

∥∥∥∥
∫ ∞

0

µ
ρ
2−1|ξ|α−1|ξ − µ|dξ

1 + |ξ − µ| |ξρ−1 − µρ−1|

∥∥∥∥
L2

µ

≤ Ct
1
2ρ−α

ρ ‖v̂‖Zα (2.10)

if 0 < α < ρ−1
2 , since as in (2.9) we have
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∥∥∥∥
∫ ∞

0

µ
ρ
2−1|ξ|α−1|ξ − µ|dξ

1 + |ξ − µ| |ξρ−1 − µρ−1|

∥∥∥∥
L2

µ

≤ C
∥∥∥〈µ〉α− ρ

2

∥∥∥
L2

µ

≤ C.

The third integral I3 is estimated as follows

‖I3(t)‖L∞ ≤ C

∫ ∞

0

1
1 + |ξ − µ| |ξρ−1 − µρ−1|

∣∣∣∣
∫ −ξt

− 1
ρ

−µt
− 1

ρ

v̂′(y)dy

∣∣∣∣dξ

≤ Ct−
α
ρ

∥∥|ξ|1−αv̂′(ξ)
∥∥

L∞

∫ ∞

0

|ξα − µα|
1 + |ξ − µ| |ξρ−1 − µρ−1|dξ

≤ Ct−
α
ρ ‖v̂‖Zα (2.11)

since

∫ ∞

0

|ξα − µα|
1 + |ξ − µ| |ξρ−1 − µρ−1|dξ

≤ C〈µ〉1+α−ρ + Cµα−1

∫ 2µ

µ
2

|ξ − µ|dξ

1 + (ξ − µ)2µρ−2
+ C

∫ ∞

2µ

|ξ − µ|αdξ

1 + |ξ − µ|ρ ≤ C

for all µ > 0 if 0 < α < ρ− 1. In the same way as in the proof of (2.10) we have

‖I3(t)‖L2
x
≤ Ct

1
2ρ−α

ρ

∥∥|ξ|1−αv̂′(ξ)
∥∥

L∞

∥∥∥∥
∫ ∞

0

µ
ρ
2−1|ξα − µα|

1 + |ξ − µ| |ξρ−1 − µρ−1|dξ

∥∥∥∥
L2

µ

≤ Ct
1
2ρ−α

ρ

∥∥∥〈µ〉α− ρ
2

∥∥∥
L2

µ

‖v̂‖Zα ≤ Ct
1
2ρ−α

ρ ‖v̂‖Zα (2.12)

if 0 < α < ρ−1
2 . Therefore by (2.1)–(2.12) we obtain the result of the theorem for

the case of x > 0. The case of x < 0 is considered in the same way. This completes
the proof of Theorem 2.1. ¤

Now we state the Strichartz estimate. It can be proved by the duality ar-
gument from [13] and by estimates of Theorem 2.1. Denote the ordering of the
norms

‖φ‖Lq
t Lr

x
=

∥∥‖φ(t)‖Lr
x(R)

∥∥
Lq

t (I)
,

where I is a bounded or unbounded time interval.
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Lemma 2.2. For any time interval I and for any s ∈ I the Strichartz
estimate is true

∥∥∥∥
∫ t

s

U(t− τ)φ(τ)dτ

∥∥∥∥
Lq

t Lr
x

≤ C‖φ‖
Lq′

t Lr′
x

with a constant C independent of I and s, where 0 ≤ ρ
q = 1

2 − 1
r < 1 and 0 ≤ ρ

q′ =
1
2 − 1

r′ < 1, 1
r′ + 1

r′ = 1, and 1
q′ + 1

q′ = 1.

3. Supercritical case.

In this section we study the final problem in the supercritical case





ut − i

ρ
|∂x|ρu = N (u, u), (t, x) ∈ R×R,

lim
t→∞

U(−t)u(t) = u+, x ∈ R,
(3.1)

where the free evolution group U(t) = F−1 exp
(

i
ρ t|ξ|ρ)F . We can write problem

(3.1) in the form of the integral equation

U(−t)u = u+ +
∫ ∞

t

U(−τ)N (u, u)(τ)dτ. (3.2)

As above we use the norm ‖v‖Zα ≡ ‖{ξ}−αv(ξ)‖L∞ + ‖{ξ}1−αv′(ξ)‖L∞ .
We prove the following result.

Theorem 3.1. Let the final data u+ ∈ L2 satisfy the estimate ‖û+‖Zα < ∞
with ρ−2

2 ≤ α < ρ−1
2 . Assume that the nonlinearity N (u, u) satisfies the growth

condition
∣∣N (v, v)−N (u, u)

∣∣ ≤ C|v − u|p + C|v − u||u|p−1

with 1+8ρ
1+2ρ < p < 1 + 2ρ. Then there exists a time T > 1 and a unique global

solution u ∈ C([T,∞);L2) of the final problem (3.1) such that

‖u(t)− U(t)u+‖L2 + ‖u(·)− U(·)u+‖L2ρ
t (t,∞)L∞x

≤ Ct−b

for all t > T , where 2ρ+1−p
4ρ < b < p−3

2 .

In the case p > 2 + ρ, the L∞-L1 estimates for the linear problem obtained
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in Theorem 2.1 (2.1) yields the global existence of solutions of (1.2) in the usual
Sobolev spaces. So we concentrated on the case 1 + 2ρ > 2 + ρ ≥ p in the above
theorem.

Proof. We define the following function space

X =
{
ϕ ∈ C([T,∞);L2); ‖ϕ‖X < ∞}

,

where

‖ϕ‖X = sup
t∈[T,∞)

tb
(‖ϕ‖L∞t (t,∞)L2

x
+ ‖ϕ‖L2ρ

t (t,∞)L∞x

)

and 2ρ+1−p
4ρ < b < p−3

2 . This implies the condition on p > 1+8ρ
1+2ρ . Denote the first

approximation u1(t) = U(t)u+, and the second approximation

u2(t) =
∫ ∞

t

U(t− τ)N (u1, u1)dτ.

Let Xr be a closed ball in X with a radius r > ‖û+‖Zα and a center u1. Let
v ∈ Xr and define the mapping M by

M (v) = u1(t) + u2(t) +
∫ ∞

t

U(t− τ)(N (v, v)−N (u1, u1))dτ. (3.3)

Since ‖û+‖Zα < ∞ with ρ−2
2 ≤ α < ρ−1

2 by Theorem 2.1

‖u1(t)‖L∞x ≤ Crt−
1
2 .

We also get by the Strichartz estimate (see Lemma 2.2) if b < p−3
2

‖u2‖X ≤ sup
t∈[T,∞)

tb
∥∥|u1|p

∥∥
L1

t (t,∞)L2
x
≤ CrpT b− p−3

2 . (3.4)

Again by the Strichartz estimate we obtain

∥∥∥∥
∫ ∞

t

U(t− τ)
(
N (v, v)−N (u1, u1)

)
dτ

∥∥∥∥
X

≤ C sup
t∈[T,∞)

tb
(∥∥|v − u1|p

∥∥
L

2ρ
2ρ−1
t (t,∞)L1

x

+
∥∥|v − u1||u1|p−1

∥∥
L1

t (t,∞)L2
x

)
. (3.5)
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By the Hölder inequality we get

∥∥|φ|p
∥∥

L
2ρ

2ρ−1
t (t,∞)L1

x

≤ C
∥∥∥‖φ‖

4ρ
2ρ−1

L2
x
‖φ‖

2ρ(p−2)
2ρ−1

L∞x

∥∥∥
2ρ−1
2ρ

L1
t (t,∞)

≤ C
∥∥∥‖φ‖

4ρ
2ρ+1−p

L2
x

∥∥∥
2ρ+1−p

2ρ

L1
t (t,∞)

‖φ‖p−2

L2ρ
t (t,∞)L∞x

.

Hence for the first summand in (3.5) we find

sup
t∈[T,∞)

tb
∥∥|v − u1|p

∥∥
L

2ρ
2ρ−1
t (t,∞)L1

x

≤ sup
t∈[T,∞)

tb
∥∥∥
∥∥v − u1

∥∥ 4ρ
2ρ+1−p

L2
x

∥∥∥
2ρ+1−p

2ρ

L1
t (t,∞)

‖v − u1‖p−2

L2ρ
t (t,∞)L∞x

≤ Crp sup
t∈[T,∞)

t−b(p−3)

( ∫ ∞

t

τ−
4ρb

2ρ+1−p dτ

) 2ρ+1−p
2ρ

≤ CrpT−b(p−3) (3.6)

since 2ρ+1−p
4ρ < b < p−3

2 . Then for the second summand in (3.5) we obtain

sup
t∈[T,∞)

tb
∥∥|v − u1| |u1|p−1

∥∥
L1

t (t,∞)L2
x
≤ CrpT−

p−3
2 . (3.7)

By (3.4), (3.5)–(3.7) we get

‖M (v)− u1‖X ≤ CrpT−ε (3.8)

with some ε > 0. Via (3.8) we see that there exists a time T such that M (v) ∈ Xr.
We now consider v1, v2 ∈ Xr, then in the same way as in the proof of (3.8) it
follows that there exists T such that

‖M (v1)−M (v2)‖X ≤ 1
2
‖v1 − v2‖X .

Therefore M is a contraction mapping in Xr, hence we have the result of Theorem
3.1. ¤

In the case of the nonlinearity N (u, u) = iλ|u|p−1u, λ ∈ R we can consider
final problem (3.1) with any powers 3 < p < 1 + 2ρ.
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Theorem 3.2. Let the final data u+ ∈ L2 satisfy the estimate ‖û+‖Zα < ∞
with ρ−2

2 ≤ α < ρ−1
2 . Assume that the nonlinearity N (u, u) = iλ|u|p−1u, with

λ ∈ R, 3 < p < 1 + 2ρ. Then there exists a time T > 1 and a unique global
solution u ∈ C([T,∞);L2) of the final problem (3.1) such that for some positive
constants C1, C2

C2t
− p−3

2 ≤ ‖u(t)− U(t)u+‖L2 ≤ C1t
− p−3

2

for all t > T .

Proof. We define

ŵ(t, ξ) = û+(ξ) exp
(

2iλ

p− 3
t−

p−3
2 |B(ξ)û+(ξ)|p−1

)
,

where B(ξ) =
√

1
i(ρ−1) |ξ|1−

ρ
2 . Then by equation (3.1) we have

(FU(−t)u− ŵ(t, ξ))t

= iλFU(−t)|u|p−1u− iλt−
p−1
2 |B(ξ)û+(ξ)|p−1ŵ(t, ξ)

= iλFU(−t)
(
|u|p−1u− U(t)F−1

∣∣∣t− 1
2 B(ξ)û+(ξ)

∣∣∣
p−1

ŵ(t, ξ)
)
. (3.9)

By Theorem 2.1 we can write

U(t)F−1
∣∣∣t− 1

2 B(ξ)û+(ξ)
∣∣∣
p−1

ŵ(t, ξ)

= A(t, χ)
∣∣∣t− 1

2 B(χ)û+(χ)
∣∣∣
p−1

ŵ(t, χ) + R1 = |h|p−1h + R1, (3.10)

where h(t, x) = A(t, χ)ŵ(t, χ), χ = − x
|x|

( |x|
t

) 1
ρ−1 and

A(t, χ) = t−
1
2 B(χ)e−i(1− 1

ρ )|χ|ρt.

The remainder R1 satisfies the estimates of Theorem 2.1

‖R1(t)‖L2 ≤ Ct−
α
ρ− 1

2ρ

∥∥∥
∣∣∣t− 1

2 B(ξ)û+(ξ)
∣∣∣
p−1

ŵ(t, ξ)
∥∥∥

Zα
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for 0 < α < ρ−1
2 . We have

∥∥∥
∣∣∣t− 1

2 B(ξ)û+(ξ)
∣∣∣
p−1

ŵ(t, ξ)
∥∥∥

Zα

=
∥∥∥{ξ}−α

∣∣∣t− 1
2 B(ξ)û+(ξ)

∣∣∣
p−1

û+(ξ)
∥∥∥

L∞

+
∥∥∥{ξ}1−α∂ξ

(∣∣∣t− 1
2 B(ξ)û+(ξ)

∣∣∣
p−1

ŵ(t, ξ)
)∥∥∥

L∞

≤ Ct−
p−1
2 ‖û+‖p−1

Z
ρ
2−1‖û+‖Zα + Ct2−p‖û+‖2p−2

Z
ρ
2−1‖û+‖Zα

if ρ
2 − 1 ≤ α. Therefore

‖R1(t)‖L2 ≤ Ct−
α
ρ− 1

2ρ− p−1
2

(‖û+‖p
Zα + ‖û+‖2p−1

Zα

)
.

Substitution of (3.10) into (3.9) yields

(FU(−t)u− ŵ(t, ξ))t = iλFU(−t)
(|u|p−1u− |h|p−1h−R1

)
. (3.11)

Note that by Theorem 2.1

U(t)F−1ŵ(t, ξ) = h(t, x) + R2,

hence we get from (3.11)

∂t(FU(−t)(u− h−R2)) = iλFU(−t)
(|u|p−1u− |h|p−1h−R1

)
, (3.12)

where the reminder R2(t, x) satisfy the estimates

‖R2(t)‖L2 + t
1
2ρ ‖R2(t)‖L∞ ≤ Ct−

α
ρ− 1

2ρ ‖ŵ(t)‖Zα

≤ Ct−
α
ρ− 1

2ρ

(
‖û+‖Zα + t−

p−3
2 ‖û+‖p

Zα

)
(3.13)

for ρ−2
2 ≤ α < ρ−1

2 since

‖ŵ(t)‖Zα =
∥∥{ξ}−αû+(ξ)

∥∥
L∞ +

∥∥{ξ}1−αŵξ(t, ξ)
∥∥

L∞

≤ C‖û+‖Zα + Ct−
p−3
2 ‖û+‖p−1

Z
ρ
2−1‖û+‖Zα .
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As in the proof of Theorem 3.1 we define the function space

X = {ϕ ∈ C([T,∞);L2); ‖ϕ‖X < ∞},

where

‖ϕ‖X = sup
t∈[T,∞)

tb
(‖ϕ‖L∞t (t,∞)L2

x
+ ‖ϕ‖L2ρ

t (t,∞)L∞x

)

with b = α
ρ + 1

2ρ ∈ [
ρ−1
2ρ , 1

2

)
. Let Xr be a closed ball in X with a radius r >

C‖û+‖Zα and a center h(t). We write (3.12) as the integral equation

u− h−R2 = iλ

∫ ∞

t

U(t− τ)
(|u|p−1u− |h|p−1h−R1

)
dτ,

and solve it by the contraction mapping principle in Xr. Define the mapping for
v ∈ Xr

M (v) = h + R2 + iλ

∫ ∞

t

U(t− τ)
(|v|p−1v − |h|p−1h−R1

)
dτ.

By (3.13) we have ‖R2‖X ≤ C‖û+‖Zα . Then as in (3.5)–(3.7) by the Strichartz
estimate we obtain

‖M (v)− h‖X ≤
∥∥∥∥R2 + iλ

∫ ∞

t

U(t− τ)
(|v|p−1v − |h|p−1h−R1

)
dτ

∥∥∥∥
X

≤ ‖R2‖X + C sup
t∈[T,∞)

tb
∥∥|v − h|p∥∥

L
2ρ

2ρ−1
t (t,∞)L1

x

+ C sup
t∈[T,∞)

tb
∥∥|v − h| |h|p−1

∥∥
L1

t (t,∞)L2
x

+ C sup
t∈[T,∞)

tb‖R1‖L1
t (t,∞)L2

x

≤ C‖û+‖Zα + CrpT−b(p−3) + CrpT−
p−3
2 ≤ r (3.14)

since 2ρ+1−p
4ρ < b, if T is sufficiently large. As in the proof of (3.14) we get

‖M (v1)−M (v2)‖X ≤ 1
2
‖v1 − v2‖X

for any v1, v2 ∈ Xr, which shows that M is a contraction mapping in Xr. Theorem
3.2 is proved. ¤
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4. Critical case.

In this section we study the modified final problem for dispersive equation of
Schrödinger type with critical nonlinearity N (u, u) = iλ|u|2u





ut − i

ρ
|∂x|ρu = iλ|u|2u, (t, x) ∈ R×R,

lim
t→∞

(FU(−t)u(t)− ŵ(t)) = 0, x ∈ R,
(4.1)

where we define the modified final state

ŵ(t, ξ) = û+(ξ) exp
(

iλ

1− ρ
|ξ|2−ρ|û+(ξ)|2 log t

)

if λ ∈ R and in the case of the dissipative nonlinearity N (u, u) = iλ|u|2u with
Im λ > 0, we define a modified final state

ŵ(t, ξ) = û+(ξ) exp
(

iλ

Im λ
ϕ(t, ξ)

)
,

where

ϕ(t, ξ) =
1
2

log
(

1 +
2 Im λ

ρ− 1
|ξ|2−ρ|û+(ξ)|2 log t

)
.

Note that

ŵt(t, ξ) = iλ
∣∣∣t− 1

2 B(ξ)ŵ(t, ξ)
∣∣∣
2

ŵ(t, ξ).

As above we use the norm ‖v‖Zα ≡ ‖{ξ}−αv(ξ)‖L∞ + ‖{ξ}1−αv′(ξ)‖L∞ .
We first prove the following result.

Theorem 4.1. Let the final data u+ ∈ L2 satisfy the estimate ‖û+‖Zα < ε,
where ε > 0 is sufficiently small and ρ−2

2 < α < ρ−1
2 . Assume that Im λ ≥ 0.

Then for some T ≥ 1 there exists a unique global solution u ∈ C([T,∞);L2) of
the modified final problem (4.1) such that

‖u− h‖L∞t (t,∞)L2
x

+ ‖u− h‖L2ρ
t (t,∞)L∞x (R) ≤ Ct−b,

where ρ−1
2ρ < b < α

ρ + 1
2ρ < 1

2 and h(t, x) = A(t, χ)ŵ(t, χ), χ = − x
|x|

( |x|
t

) 1
ρ−1 and
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A(t, χ) = t−
1
2

√
1

i(ρ− 1)
|χ|1− ρ

2 e−i(1− 1
ρ )|χ|ρt.

Proof. As in the proof of Theorem 3.2 by virtue of Theorem 2.1 we obtain
from (4.1)

∂t(FU(−t)u− ŵ(t, ξ)) = iλFU(−t)
(|u|2u− |h|2h−R1

)
(4.2)

where R1 satisfies the estimates

‖R1(t)‖L2 ≤ Ct−
α
ρ− 1

2ρ

∥∥∥
∣∣∣t− 1

2 B(ξ)ŵ(t, ξ)
∣∣∣
2

ŵ(t, ξ)
∥∥∥

Zα

≤ Ct−
α
ρ− 1

2ρ−1
∥∥{ξ}−α|ξ|2−ρ|ŵ(t, ξ)|2û+(ξ)

∥∥
L∞

+ Ct−
α
ρ− 1

2ρ−1
∥∥{ξ}1−α∂ξ

(|ξ|2−ρ|ŵ(t, ξ)|2ŵ(t, ξ)
)∥∥

L∞

≤ Ct−
α
ρ− 1

2ρ−1 log t
(‖û+‖3Zα + ‖û+‖5Zα

)

since ρ−2
2 < α < ρ−1

2 . By Theorem 2.1

U(t)F−1ŵ(t, ξ) = h(t, x) + R2.

Hence we get from (4.2)

∂t(FU(−t)(u− h−R2)) = iλFU(−t)
(|u|2u− |h|2h−R1

)
, (4.3)

where the reminder R2(t, x) satisfies the estimates

‖R2(t)‖L2 + t
1
2ρ ‖R2(t)‖L∞ ≤ Ct−

α
ρ− 1

2ρ ‖ŵ(t)‖Zα

≤ Ct−
α
ρ− 1

2ρ
(‖û+‖Zα + log t‖û+‖3Zα

)
(4.4)

for ρ−2
2 < α < ρ−1

2 . As in the previous section we define the following set

X =
{
ϕ ∈ C([T,∞);L2); ‖ϕ‖X < ∞}

,

where

‖ϕ‖X = sup
t∈[T,∞)

tb
(‖ϕ‖L∞t (t,∞)L2

x(R) + ‖ϕ‖L2ρ
t (t,∞)L∞x (R)

)
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with ρ−1
2ρ < b < α

ρ + 1
2ρ < 1

2 . Let Xr be a closed ball in X with a small radius
r > 0 and a center h(t). We solve (4.3) by the contraction mapping principle in
Xr. Define the mapping for v ∈ Xr

M (v) = h + R2 + iλ

∫ ∞

t

U(t− τ)
(|v|2v − |h|2h−R1

)
dτ.

By (4.4) we have ‖R2‖X ≤ C‖û+‖Zα since the data u+ are sufficiently small.
Then by the Strichartz estimate we obtain

‖M (v)− h‖X ≤
∥∥∥∥R2 + iλ

∫ ∞

t

U(t− τ)
(|v|2v − |h|2h−R1

)
dτ

∥∥∥∥
X

≤ ‖R2‖X + C sup
t∈[T,∞)

tb
∥∥|v − h|3

∥∥
L

2ρ
2ρ−1
t (t,∞)L1

x

+ C sup
t∈[T,∞)

tb
∥∥|v − h| |h|2∥∥

L1
t (t,∞)L2

x
+ C sup

t∈[T,∞)

tb‖R1‖L1
t (t,∞)L2

x

≤ C‖û+‖Zα + Cr3 + Cr3 ≤ r (4.5)

since ρ−1
2ρ < b and the data u+ are sufficiently small. Similarly to (4.5) we get

‖M (v1)−M (v2)‖X ≤ 1
2
‖v1 − v2‖X

for v1, v2 ∈ Xr, which shows that M is a contraction mapping in Xr. Thus there
exists a unique global solution u ∈ C([1,∞);L2) of the modified final problem
(4.1) such that u ∈ Xr. This completes the proof of Theorem 4.1. ¤

Remark 4.1. When Imλ > 0 we do not need the smallness condition on
the data since we can easily see that the approximate solution has an additional
time decay

‖U(t)w‖∞ ≤ Ct−
1
2 (log t)−

1
2

from which the estimate (4.5) can be written as

‖M (v)− h‖X ≤ C(log t)−
1
2 ≤ r

for all t ≥ T , if T ≥ 1 is sufficiently large.
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5. Nonexistence of the wave operator.

In this section we prove the nonexistence of the usual wave operator for the
final problem for dispersive equation of Schrödinger type with a critical nonlinear-
ity





ut − i

ρ
|∂x|ρu = iλ|u|2u, (t, x) ∈ R×R,

lim
t→∞

U(−t)u(t) = u+, x ∈ R,
(5.1)

where λ ∈ R.

Theorem 5.1. Let the final data u+ ∈ L2 satisfy the estimate ‖û+‖Zα < ∞
and ρ−2

2 < α < ρ−1
2 . Assume that λ ∈ R. We also assume that there exists a

solution u ∈ C([T,∞);L2) to final problem (5.1) such that

lim
t→∞

‖u(t)− U(t)u+‖L2 = 0,

then u = 0.

Proof. Multiplying equation (5.1) by U(−t) and integrating with respect
to time we find

U(−t)u(t)− U(−s)u(s)

= iλ

∫ t

s

U(−τ)
(|u|2u− τ−1U(τ)F−1|ξ|2−ρ|û+|2û+(ξ)

)
dτ

+ iλF−1|ξ|2−ρ|û+|2û+(ξ)
∫ t

s

τ−1dτ.

Hence by Theorem 4.1

‖U(−t)u(t)− U(−s)u(s)‖L2

≥ |λ|∥∥|ξ|2−ρ|û+|2û+(ξ)
∥∥

L2

∫ t

s

τ−1dτ − C

∫ t

s

‖R1‖L2dτ

− C

∫ t

s

‖u(τ)− h(τ)‖L∞‖u(τ)− h(τ)‖L2‖A(τ)û+(τ)‖L∞dτ

− C

∫ t

s

‖u(τ)−A(τ)û+(τ)‖L2‖h(τ)‖2L∞ dτ.
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Then as in (3.6) by the Hölder inequality we get

∫ t

s

‖u(τ)− h(τ)‖L∞‖u(τ)− h(τ)‖L2‖A(τ)û+(τ)‖L∞dτ

≤ C
∥∥∥τ−b− 1

2 ‖u(τ)− h(τ)‖L∞

∥∥∥
L1

τ (s,t)

≤ C‖τ−b− 1
2 ‖

L
2ρ

2ρ−1
t (t,∞)

‖u(τ)− h(τ)‖L2ρ
τ (s,t)L∞x

≤ Cs−b

( ∫ t

s

τ−(b+ 1
2 ) 2ρ

2ρ−1 dτ

) 2ρ−1
2ρ

≤ Cs−b

since ρ−1
2ρ < b. Hence we have

‖U(−t)u(t)− U(−s)u(s)‖L2

≥ |λ|
∥∥|ξ|2−ρ|û+|2û+(ξ)

∥∥
L2

∫ t

s

dτ

τ
− Cs−b − C

∫ t

s

‖u(τ)− U(τ)u+‖L2
dτ

τ
.

(5.2)

Estimate (5.2) along with the condition of the theorem imply that for any ε > 0
there exists T (ε) such that for any t > s > T (ε)

‖U(−t)u(t)− U(−s)u(s)‖L2 ≥ (|λ|∥∥|ξ|2−ρ|û+|2û+(ξ)
∥∥

L2 − ε
) ∫ t

s

dτ

τ
.

Consequently u+ = 0. Since the solution satisfies the conservation of L2-norm, we
have u ≡ 0. Theorem 5.1 is proved. ¤

Acknowledgments. This work was completed when the first author
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