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Abstract. Let P(I) be the set of all operator monotone functions defined
on an interval I, and put P (I) = {h € P(I): h(t) 2 0,h # 0} and P;'(I) = {h: h
is increasing on I,h~! € P,(0,00)}. We will introduce a new set LP.(I)=
{h:h(t)>0 on I,logh € P(I)} and show LP,(I)-P;'(I) C P;'(I) for every
right open interval I. By making use of this result, we will establish an operator
inequality that generalizes simultaneously two well known operator inequalities.
We will also show that if p(¢) is a real polynomial with a positive leading
coefficient such that p(0) = 0 and the other zeros of p are all in {z: Rz < 0} and if
q(t) is an arbitrary factor of p(t), then p(A)* < p(B)? for A, B > 0 implies A2 < B?
and ¢(A)* < q(B)*.

1. Introduction.

This paper is the sequel to [11]. A and B stand for bounded selfadjoint
operators on a Hilbert space. Throughout the paper a function is assumed to be
real and continuous, and “increasing” means “strictly increasing”. A function f(t)
defined on an interval I in R is called an operator monotone function on I,
provided A £ B implies f(A) < f(B) for every pair A and B whose spectra o(A)
and o(B) lie in I. P(I) denotes the set of all operator monotone functions on I,
P (I)does {fe P(I): f#0, f=0}. When I is written in the concrete as [a,b)
we simply write PJa, ) instead of P([a,b)). Suppose I C J. Then the restriction of
f € P(J) to I belongs to P(I). So we consider P(J) as the subset of P(I); we also
consider as P, (J) C P, (I); in particular, P, [a,b) C P, (a,b). Since an operator
monotone function is non-decreasing, f € P (a,b) with —co < a < co has the
natural continuous extension to [a,b), which belongs to P.[a,b). This means
P,(a,b) C P[a,b). Thus P, (a,b) = P[a,b). But we remark that Pla,b) S
P(a,b); in fact, 1/(a —1t) € P(a,b) but 1/(a —t) ¢ Pla,b). Let us recall some
notations introduced in [11]. For —oo < a < b < o0
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P '[a,b) = {h| h is increasing on [a,b) and its range is [0, c0),

h~' € P[0,00)},
where h~! stands for the inverse function of h. Now we put, for —co < a < b < o0

P '(a,b) = {h| h is increasing on(a, b) and its range is (0, 00),

h~' € P(0,00)}.
If —co < a, by identifying h € P'(a,b) as its natural extension to [a,b) we have
P '(a,b) = P'[a,b).

Let h be a non-decreasing function on I and k an increasing function on J. Then h
is said to be majorized by k, in symbols

h=k

if JC I and hok ' is operator monotone on k(J). This definition is equivalent
with

o(A),a(B) C J, k(A) £ k(B) = h(A) < h(B).
If we need to make clear the domain J of k, we write as follows:
h=<k (J).
The following theorem was shown in [11].
THEOREM A. Suppose —oo < a < b < co. Then
P.[a,b)- P '[a,b) C P'[a,b), P.'[a,b) - P'[a,b) C P '[a,b).

Further, let g;(t) be a finite product of functions in P [a,b) for 1 < i < m, and let
h;(t) € P:Ll[a, b) for 1 < j < n. Then for every v, ¢; € P[0,00)

m n m n

Hd’i(gi) H¢j(hj) = ng‘ th € P 'a,b).
i1 =1 T
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By making use of this theorem we obtained an operator inequality for non-
negative operators (see Lemma 4.1). From P(—o00,00) = {at+ (: a2 0,6 € R}
it follows that P (—00,00) = {c: ¢ 2 0}. The first inclusion of the above theorem
therefore holds for (—oo, 00) as well. But it is meaningless. So we could not get an
operator inequality for operators which are not necessarily non-negative. In this
paper we will introduce a new class LP,(I) including P, (I) and extend
Theorem A to all right open intervals I, namely I = (a,b) or I = [a,b), by using
LP.(I) instead of P, (I). This will enable us to establish an operator inequality
for (not necessarily non-negative) operators, which generalizes simultaneously
two well known operator inequalities.

We will also show that if f(t) € P[a,00), then

exp< / %dt) € LP. [, 50);

moreover

tllﬂotfﬁ 1=ex p(/—dt) € P 'la,00) N LP,[a,c0).

In [11] we have also shown

THEOREM B.  For non-increasing sequences {a;};_, and {b;}!",, define the
positive and increasing functions u(t) and v(t) by

Then u(t) € P '[a1,00), and

This theorem signifies that the ‘majorization between functions’ defined
above is an extension of the classical submajorization between sequences, and
it has an application to orthonormal polynomials (see Corollary 3.4 of [11]).
It also follows from this theorem that for any factor u(t) of w(t)

ui(t) 2u(t)  ([a1,00)).
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In this paper we will deal with a real polynomial p(t) with a positive leading
coefficient such that p(0) = 0 and the zeros of p are all in {z: Rz < 0}, and show
that for a factor ¢(t) of p(t)

p(V1)* € P1'0,00), q(t)* = p(t)",

p(A)’ £p(B)? (0SA,B)= A< B, q(A)’ < q(B)>.
Further, if p(0) = p'(0) = 0, then

p(Vt) € P[0, 00), q(t) X p(t) ([0,00)).

2. Product Theorem.

We start by listing several properties of the majorization: (i) through (vi) are
stated in [11] and (v) was proved there; (vii) is clear.

(i) k* < k? for any increasing function k> 0 and 0 < o < 3;

(i) g=3h h=<k=g=k

(iii) if 7 is an increasing function whose range is the domain of k, then
h<k<=hort<koT,

(iv) ke P 'a,b) <t =2 k(t), k([a,b)) = [0,00);

(v) if the range of k is [0,00) and h 2 0, then
h<k= h>=<Ek*

(vi) if h and k are increasing and unbounded to the above, then
h =2k, k<X h<=h = ck+ d for real numbers ¢ > 0, d.

(vil) hy 2k, hg S k= h1 + hs < k.

REMARK 2.1. In (vi), the condition that h and k are unbounded to the
above is necessary: indeed, h(t)=1t, k(t)=(t/(t+1)) on [0,00) satisfies
h=<k=h, but h#ck+d for any real numbers ¢> 0, d. (vi) on page 225
of [11] misses this condition, though we have never used this property. So we
give the proof of (vi) again. Since h o k7! is operator monotone on a right half line,
it is operator concave and hence concave in the usual sense. ko h™! is concave
as well. Since these are increasing, we get h = ck + d.

Before proceeding to the main part of the paper we recall that a given
function is assumed to be continuous and “increasing” means “strictly increas-
ing”. The following Product Lemma was shown in the case where I = [a,b) with
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—00 < a < b= ooin Lemma 2.2 of [11]. We can prove it in the same way. So we
give just an outline of the proof.

LEMMA 2.2 (PRODUCT LEMMA). Let I be a right open interval with end
points a,b such that —oo < a <b< oo and h, g non-negative functions defined
on I. Suppose the product hg is increasing, (hg)(a+0) =0 and (hg)(b — 0) = co.
Then

g =hg = h = hg.

Moreover for every 1y, vy in P[0, 00)

g = hg = P1(h)2(g) X hg.

PROOF. Define the functions ¢; (0 <4 < 2) on (0,00) by

Po(h(t)g(t)) = g(t), d1(h(t)g(t)) = h(t),
P2(h(t)g(t)) = 1 (h(t))2(g(t)) (¢ € 1).

We express ¢ and ¢9, by putting s = h(t)g(t), as

S

R0

, a(s) =1 <¢%(s)> P2(do(s))-

¢1(s)
Since ¢y € P, (0,00), by the Lowner theorem we obtain ¢ € P,[0,00) and
62 € P, 0,00). 0

LEMMA 2.3. Let {h,} be a sequence of increasing functions defined on a
compact interval [a,b]. Suppose it converges pointwise to a continuous function h
on [a,b]. Then it converges uniformly on [a,b], and hence it is equicontinuous on
la,b]. Moreover, if h is increasing and hy,(a) < ¢ < d < h,(b) for every n, then h;*
converges uniformly to h™! on [c,d].

PROOF. Since h, are assumed to be continuous, the first assertion
follows from the monotonicity of h, and the uniform continuity of h. To see the
second one, it is sufficient to show h,'(sg) — h~!(sg) for each sy € [c,d]. Put
to = h™Y(sp) and take an arbitrary e > 0. Since h(ty — €) < h(tg) < h(ty + €), there
is N so that h,(to—e€) < h(ty) < hy(to+¢€) for all n= N, which implies
to — € < h,'(s0) < to + €. This means h,' converges pointwise (hence uniformly)
to h=! on [, d]. O
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The following theorem is an extension of Theorem 2.9 of [11], in which I is
confined to [a,b).

THEOREM 2.4. Let I be a right open interval with end points a,b such that
—00 S a < b= oco. Suppose the sequence {h,} of functions in P '(I) converges
pointwise to h on I such that h(a+) =0, h(t) >0 for t > a, and h(b—0) = co.
Then

he P'(I).

Moreover, suppose the sequence {h,} of increasing functions converges pointwise
to a continuous function h on I. Then

By <hy (n=1,2,--) = h < h.

PROOF. We first assume I = (a,b). Since h,' is operator monotone on
(0, 00), it is operator concave and hence concave in the usual sense and increasing.
Therefore h, is increasing and convex. Thus h is non-decreasing and convex; it is
therefore continuous. From h(a+) = 0 and h(t) > 0 for ¢ > a it follows that h is
increasing and its range is (0,00), because of h(b—0) = co. By Lemma 2.3 the
sequence {h; 1} of operator monotone functions converges uniformly to h~! on
every compact subinterval of (0,00). This implies h~' € P(0,00), that is to say,
he P(I).

Suppose hy, < h, (n =1,2,---). Then hy, o h;' € P(0,00). By Lemma 2.3 {h,,}
is equicontinuous and converges uniformly to h on every compact interval. Thus,
by

l{nohgl—ﬂoh_l:l{noh;Ll—f;noh_1+f7,~n0h_1—ﬁoh_1

By © h;l converges uniformly to hoh ! on every compact subinterval of (0, 00),
which implies hoh'e P(0,00). We consequently get h =< h.

We next assume I = [a,b), where —oo < a. By the above result we get h €
P !(a,b) and hoh™!' € P(0,00). The assumption h, € P;(I) implies h,(a) =0
and hence h(a) =0. Thus h is continuous on [a,b) and so is h~! on [0,00).
We therefore obtain h € P;'[a,b) and hoh' € P[0,00), which implies
h=h ([a,b)). O

REMARK 2.5. In the preceding theorem, we may assume more simply
that h is continuous and increasing with the range [0,00) or (0,00) instead of
the condition h(a+) =0, 0 < h(t) (a <t),h(b—0) =oc0. We remark that the
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condition “h(t) >0 for ¢>a” is necessary. In fact, there is a sequence
h,(t) € P;'[0,00) such that {h,} converges uniformly to (t—1), ¢ P;'[0,00)
(see [6], [2]).

DEFINITION. Let h(t) be an increasing and continuous function on an
interval I. Then h(t) is called a logarithmic operator monotone function on I
and denoted by h € LP(I) if h(t) > 0 and logh is operator monotone on the
interior of I.

It is evident that for every o > 0, t* € LP.[0,00) and e** € LP,(I) for any I,
and that h € LP,.(I) if h € P.(I) and h # 0. It is also clear that h, g € LP(I)
implies h"g* € LP.(I) for r,s > 0; especially, LP,(I)- LP,(I) C LP,(I), and
that LP[a,b) = LP(a,b) if —0o < a < b < oo. Note that a logarithmic operator
monotone function is increasing unless it is constant, and that if h,(t) € LP.(I),
h(t) is continuous on I, and h,(t) — h(t) > 0 in the interior of I as n — oo, then
h(t) € LP,(I) too.

PROPOSITION 2.6.

LP,(—00,00) = {c1e®:¢; >0, ¢u = 0}.

PROOF.  Suppose g(t) € LP(—00,00). Then logg(t) € P(—00,00). There-
fore logg(t) = ct +d (c = 0), which implies g(t) = c;e®'. O

If I# (—00,00), then LP.(I) includes a lot of functions in contrast to
LP,(—00,00). The following is a useful tool for the study of LP.,(I) with
I # (—00,00).

LEMMA 2.7.  Suppose —co < a < b < oo. Let g(t) be a function on [a,b) such
that g(t) > 0 for a <t <b. Then g € LP[a,b) if and only if there is a sequence
{gn} such that each g, is a finite product of functions in P.[a,b) and {g,}
converges pointwise to g on [a,b).

PrROOF. Take g€ LP.[a,b). We first assume g¢g(a)>0. Then (14
(1/n)logg(t)) € P,la,b) for sufficiently large n. Hence g,:= (1 + (1/n)logg(t))"
satisfies the required condition. We next assume g(a) = 0. Since g is increasing, for
sufficiently large n there is an {e,} such that logg(t) > —n for t = a + ¢, and
€n 1 0. Put h,(t)=g(t+e,) if b=o00, or put h,(t) =g((1— (e,/(b—a)))t+
(bep/(b—a))) if b<oo. Then h, € LPi[a,b), hy(a)=gla+e€,) >0 and
hn(t) | g(t) on [a,b). Thus we have (1+ (1/n)logh,(t)) € P.la,b). Take an
arbitrary ¢y € (a,b) and an m so that a+ €, <t;. Then for n >m we have
1+ (1/n)log g(ty) > 0,
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n

1 n 1 1 n
<1+—1ogg<to>> < (1 +—1oghn<to>) < (1 +—1oghm<to>) < ho(to),
n n n

and hence

n

1 n 1
g(to) < liminf<1 + —log hn(to)> < limsup <1 + —log hn(to)> < hp(to)-
n n

Since hp,(to) | g(to), (1 + (1/n)logh,(ty))" converges to g(ty). By

n

0< (1 Jr%log hn(a)> < hla) (m<n),

we also get (1+ (1/n)logh,(a))" — 0=g(a). So g.(t):=(1+ (1/n)logh,(t))"
satisfies the required condition.

We show the converse statement. By the definition of P [a,b), g,(t) > 0 for
a <t<band logg, € P(a,b). Thus logg € P(a,b), and hence g € LP,[a,b). O

REMARK 2.8. The above lemma does not hold for the case (—o00,00):
in fact, by Proposition 2.6 LP,(—o00,00)={cie®?:¢; >0, c; =20}, but
P (—00,00) = {c: ¢ 2 0}.

From now on we will extend Theorem A to every right open interval I =
[a,b) or I = (a,b), by considering LP, (I) instead of P, (I). We first deal with the
case —o0o<a<b<Zoo. In this case we may suppose I =[a,b), because
LP.[a,b) = LP,(a,b) and P.'[a,b) = P'(a,b).

LEMMA 2.9.  Suppose —00 < a < b < co. Then
P 'la,b) - P '[a,b) C P.'[a,b), LP.[a,b) - P.'[a,b) C P;'[a,b).

Further, let g; € LP,[a,b) (1 <i<m) and h; € P '[a,b) (1 <j<n). Then for
every v, ¢; € P[0, 00)

m m n

1T ¢i9) |1 ¢i(hs) = [TaI1n

=1 J=1 =1 j=1

=

PROOF. The first inclusion is the same as Theorem A. Suppose
g€ LP.[a,b), h € P;l [a,b), and ,¢ € P, [0,00). Then by Lemma 2.7, there is
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a sequence {k,} such that each k, is a finite product of functions in P, [a,b) and
{k,} converges pointwise to g on [a,b). Theorem A says k,h € P '[a,b) and
h = knh. k,h converges pointwise to gh on [a, ), and gh is increasing and the range
is [0, 00). By Theorem 2.4, we get gh € P;l[a, b), namely the second inclusion, and
h =< gh. Product Lemma deduces 1(g)¢(h) =< gh. Thus we have shown

gh € P'[a,b), (g9)p(h) = gh. (1)

Suppose g;(t) € LP.[a,b) and h;(t) € P.'[a,b). By Theorem A, [[j= hj €
P '[a,b) and

n

ﬁ j(h;) = H hj.

J=1

The function ¢ defined on [0,00) by ([}, 2;(t)) = [Tj=; ¢;(h;(t)) is therefore in
P [0,00). Thus by (1)

n n

a th e Plab), ¢i(g) [[ i) 2o [0

j=1 j=1 J=1

This means that the last statement of the lemma holds for m = 1. One can see it
by induction on m. ([

We next deal with the case of I = (—o0,b).
LEMMA 2.10. Suppose —oo < b < oo. Then

P '(—00,b) - P '(—00,b) C P;'(—00,b),
LP_(—00,b) - P;'(—00,b) C P;'(—00,b).

Further, let g; € LP.(—00,b) (1 i <m) and h; € P.'(—00,b) (1 < j < n). Then
for i, ¢; € P1(0,00)

PROOF. For hj € P,'(—o0,b) and for an arbitrary a with —a < b, define hj,
on [—a,b) by hj,(t) = hj(t) — hj(—a). Then hj, € P;'[—a,b). By Lemma 2.9,
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interval of (—oo,b) is included in [—a,b) for sufficiently large a. We can directly
see that hy,(t)hee(t) converges uniformly to hy(t)he(tf) on every compact
subinterval of (—o0,b) as a — oo. It is not difficult to see, in a fashion similar to
Lemma 2.3, that (hlﬂ,hg,a)il and hyq 0 (hl,,u,hzya)fl converge uniformly to (h1h2)71
and hy o (hlhg)fl, respectively, on every compact subinterval of (0, 00) as a — oo.
These imply (hihy) ' € P(0,00), hy o (hihy)™" € P(0,00); hence

highoa € Pjrl[—a, b) and hy, < hi4he,. Note that an arbitrary compact sub-

hihs € Pf(—oo,b), h1 =< hihs.

Product Lemma says ¢1(h1)¢2(he) < hihe. By induction we can see II¢p;(h;) <
ITh;. The same argument leads from Lemma 2.9 to

LP.(—00,b) - P '(—00,b) C P;'(—00,b), Iii(gi)lg;(h;) < IgIlh;.
O

Now we can get, by putting Lemma 2.9 and Lemma 2.10 together, the main
theorem:

THEOREM 2.11 (PRODUCT THEOREM). For every right open interval I,

P(I)- PZNI) c PTI(I), LP.(I)-P(I) c PI(I).

Further, let g;(t) € LP.(I) for 1 <i < m and hj(t) € P;'(I) for 1 £ j < n. Then
for every ¢, ¢; € P,[0,00)

3. Applications to concrete functions.

In this section we apply Product Theorem to concrete functions. We first deal
with t*e" defined on (0,00): the author was asked by S. Pereverzev and U.
Tautenhahn if it belongs to Pf(O,oo). Let a,3>0. Then t®¢'" has the
continuous extension to [0,00) and its range is [0, 00).

PROPOSITION 3.1. For0< 3=«

<% (]0,00)).
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Moreover, if 1 £ a,

e e P[0, 00).
PROOF. Put c¢=(B/a). Since te€ P;'[0,00) and e'" € LP,(0,00)
(= LP.[0,00)), Product Theorem says te~" € P.'[0,00), which implies that
t < te~"". The substitution of t* for ¢, by the property (iii) in the previous section,
vields t® <%’ If o> 1, we have t <t®. Thus, the transitive property
(ii) gives t < t*¢~"", which implies t*¢~* " € P7[0,00). O

We next deal with a real polynomial with imaginary zeros. Before we do so,
recall that a function f defined on [0,00) is said to be semi-operator monotone
if f(v/t)? is operator monotone. It is evident that h(v%)* € P'0,00) if and
only if the range of h is [0,00) and h~! is semi-operator monotone there.

THEOREM 3.2. Let p(t) be a real polynomial with a positive leading
coefficient such that p(0) = 0 and zeros of p are all in {z: Rz < 0}. Let ¢(t) be a
factor of p(t). Then

p(Vt)* € P[0,00), q(t)’ < p(t)%,
that is
p(A)’ <p(B)? (0L A,B)=A*< B, q(A) <qB)

Furthermore, if p(0) = p'(0) = 0, then

p(vVt) € P[0,00), q(t) < p(t),
that is
p(A) Sp(B) (0SS A B)=A*< B, q(A) < q(B).

PROOF. There is no loss of generality in assuming that the leading
coefficient of p(t) is 1. That p~" is semi-operator monotone on [0, 00), i.e. p(v/#)? €
P'[0,00), has been shown in Theorem 4.1 of [10]. However we now give a
simple and direct proof of it by making use of Product Theorem. Note that p(t)
can be represented as

p(t) = [[{t+ar)® + b} (ak br 2 0),
k
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where A, = 1if b, > 0, or A\, = 1/2if b = 0, and X = 1. Since t* € P;l[O,oo) and
{(Vt+a)” + bi}’\" € LP.[0,00), by Product Theorem

p(V1)? t’\H{ (VE+ ar)? —l—b}Q’\keP [0, 00),
H¢k {(VE+a)’ + b1 <t/\H{\/‘+ak )
where ¢ € P[0, ) ince q(v/1)? is represented as the left hand side of the above
relation with ¢ (t) = t*, where 0 < a < 1, we get ¢(vt)* < p(v/1)*. By considering
the mapping 7(¢) = ? on [0, 00), in virtue of the property (iii), we get q(t)* < p(t)*.

Suppose p(0) = p (()) =0, that is A = 2. Since t2 € P;l, by a similar argument
as the above, we have

Vi) = 1 H{(\/Z+ ar)? + 03 e PTY (Vi) < p(VE),
k

which implies ¢(t) < p(t). The operator inequalities are obvious. O

It is evident that ¢ € P,[0,00), [}dt=logte P(0,00), and exp(logt) =
t € P.'0,00) N P.[0,00). This fact deserves some notice. In Theorem 3.5 we
will generalize it. To do so, we need the following lemma, whose first assertion
was stated in Remark 1 of [9] and the second one was essentially proved in the
proof of Theorem 3.2 of [10]. But for the sake of completeness we give a proof.

LEMMA 3.3. Let f(t) be an increasing and differentiable function defined
on (a,00). Then

—J'(t) € P(a,00) = f(00) = o0, f(t) € P(a,00).
Furthermore,

yi= lim (t—a)f'(t) > 0= fla+) = —00, 0> —f'(t) + —— € P(a,0).
t—a+0 t—a

PROOF. By considering f(t + a), we may assume a = 0. Since — f/(t) is non-
positive and operator monotone on (0,00), by Lemma 2 of [9] it is represented as

- f'(t)

reo- [ T L ), 2)

where
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*© s
——dv(s) < o0.
0 82 + ].

From this formula it follows that for an arbitrary € > 0 and for z = €

fo) - 10 =1 -a+ [ ([

¢ +s

du(s)) dt.

Since 0 < 1/(t + s) is continuous on 0 £ s < 00,e < t < z, by Fubini’s theorem

m+Sdl/(5).
€+ S

@)= £0) = Foa)o =0+ [ tog
Since f is not constant, f'(cc) > 0 or v([0,00)) > 0 because of (2). Thus, by the
above equality, we obtain f(co) = co. Notice that log((z + s)/(e + s)) is integrable
w.r.t. dv(s) and that it is operator monotone, as a function of z, on € < z < oo for
each s. Thus f(zx) is operator monotone on € < z < oo, that is, f € P(0, 00).
Assume lim; g1 tf'(t) =y > 0. Since f/(¢) 2 0 is decreasing on (0,00), f'(0+)
and f’(00) both exist. Since v > 0, we have f'(0+) = co and f(0+) = —oo; indeed,
the former fact is evident and the latter follows from ¢f'(¢) < f(t) — f(0+), for f(t)
is concave. Since 0 = f'(00) < o0, by (2) we get

¢
1 / 1
v = tlirfotf (t) = lim

dv(s).
t=+0 Jo T+S v(s)

Since v is finite on each bounded Borel set and s/(s*> + 1) is integrable with
respect to v(s),

1 if0<s<,
He=01 1<

is integrable with respect to v. Since t/(s+t) < k(s) for 0 <t < 1, we have

y = / T~ du(s) = v({0)).

Denote the Dirac measure by ¢ and put 4 = v — 6. Then p is a positive Borel
measure on [0,00) and s/(1 + s?) is integrable with respect to u. Hence 1/(s +t) is
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integrable with respect to p for each ¢t > 0. Thus

~(o0) /OOO Lo =—ry+ Y ¢ >o0).

s+t

~ =2

Since the left hand side is negative and operator monotone on 0 < ¢t < o0, so is the
right hand side. O

REMARK 3.4. We will not use f(co) = oo nor f(a+) = —oco in this paper.
But this says the range of exp f(¢) is (0,00), so it might be helpful when we
check if exp f(t) € P;'[a, 00).

THEOREM 3.5.  Suppose f(t) € Py[a,o0). Then

/—dte P(a,0) exp(/—dt) € LP.[a,0).

Furthermore,

tliﬂotfzt)a =21= exp(/f(lt)dt> € P.'[a,00) N LP.[a,c0).

PROOF. Since f(t) is positive and operator monotone, —(1/f(¢)) € P(a, o0).
By the first assertion of Lemma 3.3, [(1/f(t))dt € P(a,oc). This implies

Y= ex p</—dt> € LP,[a,0).

We remark that y is defined on (a, 00), but it has the natural extension to [a, 00).
Assume

t—a

tllgo f(t) L

v

=7

Then by the second assertion of Lemma 3.3 we gain

o>—<fgt)—t7a) € P(a,0).

From the fact shown above, it follows that
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exp</<f(1t) - tja>dt) € LP,[a,0),

which yields

y
(t—a)

€ LP_[a,c0).
Since (t—a)” € P;'[a,00) and y = (t —a)?(y/(t —a)”), Product Theorem says
y € P 'a,00). O

COROLLARY 3.6 (cf. THEOREM 3.2 of [9]). Let wu(t) be an increasing
function defined on [a, 00) with the range [0,00) and differentiable on (a,0). Then

t
u) € P.(a,00) = u € LP.[a,0).
u'(t)
Furthermore,
lim (t —a) i) =y21=u€ P 'la,00)N LP[a,c0).
t—a-+0 u(t) - T ’

PROOF. Since

= exn( [ £00)

we deduce the required result from Theorem 3.5. O

EXAMPLE 3.7.  Let us consider 5 € P,[0,00). Since lim; oy t((t +1)/t) =
1, by Theorem 3.5 we get

texpt € P;'[0,00) N LP[0,00).
We note that this directly follows from Product Theorem too. We give another

example: log(t+ 1) € P,[0,00) and lim; 4 (t/(log(t+1)) =1, so Theorem 3.5
says
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exp </ log(t:l)dt> € P.'[0,00) N LP.[0,00).

4. Simultaneous generalization of two operator inequalities.

This section is devoted to applying Product Theorem to operator inequal-
ities. The next lemma for non-negative operators was shown in Theorem 4.4
of [11] by using Theorem A.

LEMMA 4.1.  Let h(t) € P;'[0,00), and let h(t) be a non-decreasing function
on [0,00) such that

0<h=<h.

[IA

Let g,(t) be a finite product of functions in P,[0,00) for each n, and let the
sequence {gn(t)} converge pointwise to g(t). Suppose g(0+) = g(0) and g(t) > 0 for

t > 0. Then the function ¢ on [0,00) defined by @(h(t)g(t)) = h(t)g(t) belongs to
P [0,00) and satisfies

0SA<SB=

0SA<B= . . . . (3)
¢(9(B)?h(A)g(B)?) = »(9(B)*h(B)g(B)?)
We note that (3) is a generalization of the Furuta inequality [5]:
forp=1,r>0
ABDP AR > (ABAPAR)i
2 2 )ptr > P 2)ptr
0SA<B= )1 = ) (4)

In fact, put h(t) = t* € P;'[0,00), g.(t) = g(t) =" and h(t) =t. Then 0 < h < h
and ¢ defined by p(h(t)g(t)) = h(t)g(t) is t+7/®+) Thus (3) yields (4).
The following inequality relevant to (4) was shown by Ando [1], M.Fujii-
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T.Furuta-E.Kamei [4] (also see [7]):
for p,r >0

(34ePBeiA)i > (eBAePAcA)im,

A<B=>{ (5)

(eéBepAe%B)# < (e%Be"Be%B)Pﬁ.

Here A,B are not assumed to be non-negative. So we could not get a
generalization of (5), for Theorem A is useless for the case I = (—00,00). The
aim of this section is to extend Lemma 4.1 to every I by using LP(I) instead of
P_ (I) so that the extended operator inequality is a simultaneous generalization of
(4) and (5). Precisely, we will show

THEOREM 4.2.  Let I be a right open interval. Suppose h(t) € P '(I), g(t) €
LP.(I) and h(t) is a non-decreasing function on I such that

0

A

h < h.

Then the function ¢ on [0,00) defined by

A< 5o | AOAIREIAR) 2 gA3RE)AL, o
P(9(B)2h(A)g(B)?) £ g(B)h(A)g(B):
Furthermore, if h € P.(I), then
A< po | POARBINAY) 2 elo(A) (gAY, -

PROOF. That ¢ belongs to P[0,00) follows from Product Theorem. We
will only show the first inequality of (6), for the second one can be shown in
the same way, and (7) follows from (6).

Assume first I = [0,00). Lemma 4.1 and Lemma 2.7 say Theorem 4.2 holds
for I =[0,00).

Assume secondly I = [a,b), where —0o < a < b < co. Consider the bijective
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mapping 7 from [a, b) to [0, 00) defined by 7(t) = ( —a)/(b—t)— 1. For a function
f on [a,b) define the function F on [0,00) by F(r (t)) f(t) for t € [a,b). The
operator monotonicity of 7(t) and that of 7~ ( YJ=b—(b—a)/(1+1) yield

f € Pyla,b) (or LP,[a,b)) < F € P.[0,00) (or LP,[0,00)),
f€P'ab) & FeP'0,00).

Suppose h € P;l[a,b), g€ LP_[a,b),0=< h=<h ([a, b)), and

Put  H(r(t)) = h(t), G(7(1)

)= for t €la,b). Then H €
P'0,00), G € LP'[0,00), 0 S H =

Suppose a £ A < B<b. Since 0= 7(A) < 7(B) < 00, by the fact shown above
we have

5
Q
—
\]
—
=
et
=
\‘
—~
%
Q
\]
—
'
~—
~—
Bol—
1\
Q
/-\
/‘\
=
et
~—
o
/\
/-\
Q
=
'
~—
~—
Bl

Thus we get the first inequality of (6).

Assume thirdly I = [a,00), where —oco < a < co. Then by considering the
bijective mapping 7(¢) =t — a from I to [0, c0) and by using the inequality for the
case of [0,00) we can easily gain the first inequality of (6).

Assume last I = (—o00,b), where —oco <b<o0. Let h€ P;l(—oo,b),g €
LP,(—00,b) and 0 < h < h. Define the function h,,(t) on [—n,b) by

ha(t) = h(t) = h(—n) (—n <t <b)

for each n. Then h, € P.'[-n,b) and 0 < h < h, ([~n,b)). Since g € LP,[-n,b),
where we consider g as a function on [—n, b), the function ¢, defined by
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eu(ha(D)g(t)) = h(t)g(t) (—n =t <b)

belongs to P[0, 00). Since the function h,(t)g(t) is well defined on every compact
subinterval of (—oo, b) for sufficiently large n and h(—n) — 0 as n — o0, h,(t)g(t)
converges uniformly to h(t)g(t) on every compact subinterval of (—oo,b), from
which it follows that the sequence of the inverses of h,,(t)g(t) converges uniformly
to the inverse of h(t)g(t) on every compact subinterval of (0,00). We can
consequently see that ,, converges uniformly to ¢ on every compact subinterval
of (0,00); therefore {¢,} is equicontinuous there. Suppose A £ B < b. Take n so
that n = ||A]|, || B||. Then h,(B) is well defined, and by (6) for the case of [-n,b)

1

Pn(9(A)2hn(B)g(A)

Nl

H\/
o~
Nl

h(B)g(A)2.

) 2 9(4)

(8)
[lhn(B) — h(B)|| = h(—n) — 0 implies
lg(A)?h, (B)g(A)? — g(A)h(B)g(A)Z| — 0 (n — o0).

Since {¢,} converges uniformly to ¢ on every compact subinterval of (0,0c0)
as we mentioned above,

o (g(A)2ha(B)g(A)?) — w(g(A)Zh(B)g(A)2))|
< (pn — @) (g(A)2ha(B)g(A)7)]
+ [l (9(A)2ha (B)g(A)?) — o(g(A)h(B)g(A)D)]| — 0 (n — o),

[

Thus, by letting n — oo in (8), we arrive at the first inequality of (6). O

Needless to say, (7) is a generalization of (4) To see that it is also
a generalization of (5), consider = (—o00,00), e € P;'(—00,00), e €
LP. (—00,00). Since 1 < €' and the function ¢ on [O, 00) deﬁned by

cp(eptert) — 1ert

is /1) (7) yields (5).

COROLLARY 4.3. Suppose h € P;l(l) NLP,(I), p=z1l,r>0and 0 <a =
r/(p+r). Then for A, B with 0(A),o(B) C I



310

M. UCHIYAMA

A< B=

PROOF. One can see that h(t)” € P'(I) for p=1, h(t)" € LP.(I) for

r>0, 1 2 h(t)? and that the function ¢ on [0,00) defined by @(h(t)’h(t)") =
h(t)" (t € I) is t"/®*7). So the above inequalities follow from (7) in the case
of a=r/(p+r), and then from the Lowner-Heinz inequality in the case of
O<a<r/(p+7). O
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