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Abstract. A word generated by coding of irrational rotation with respect to a

general decomposition of the unit interval is shown to have an inverse limit structure

directed by substitutions. We also characterize primitive substitutive rotation words, as

those having quadratic parameters.

1. Definitions and the results.

Let A ¼ f0; 1; . . . ;m� 1g be a finite set of letters and A � be the monoid over A

generated by concatenation, having the identity element �, the empty word. The set of

right infinite words over A is denoted by A N .

A sturmian word z is an element of A N characterized by the property that

pzðnÞ ¼ nþ 1, where pzðnÞ is the number of factors (i.e. subwords) of length n appears in

z. The function pzðnÞ is called the complexity of z. Since pzð1Þ ¼ 2, we have A ¼ f0; 1g.
The sturmian word is known to have the lowest complexity among aperiodic words. The

aperiodicity implies that exactly one of f00; 11g appears in z. Let us assume that 11 is

forbidden in z. Then the sturmian word z ¼ z0z1 � � � 2 f0; 1g with z0 ¼ 0 allows a

decomposition into a word over B ¼ f0; 01g. An important fact is that this new word

over B is again a sturmian word. This property is effectively used to recode sturmian

words by the continued fraction algorithm (see Chapter 6 in [18]). We wish to generalize

this combinatorial property.

Let us come back to a general A ¼ f0; 1; . . . ;m� 1g. An element z ¼ z0z1 � � � 2 A N

is k-renewable if there is a finite set B � A � with #B � k and B 6� A such that z is

decomposed into an infinite word over B. For a given k, if the element z 2 A N allows

infinitely many times this decomposition into k-blocks, then z is called recursively k-

renewable. To be more precise, z ¼ z0z1 . . . is recursively k-renewable when there is a

sequence of finite sets Bi ði ¼ 0; 1; . . .Þ with #Bi � k, Biþ1 � B�i , Biþ1 6� Bi, B0 ¼ A

and zðiÞ ¼ z
ðiÞ
0 z
ðiÞ
1 � � � 2 BN

i is k-renewable by Biþ1 and decomposed into zðiþ1Þ ¼
z
ðiþ1Þ
0 z

ðiþ1Þ
1 � � � 2 BN

iþ1 and the length of each z
ðiþ1Þ
j as a word in A � diverges1 as i!1.

Here we put z
ð0Þ
i ¼ zi for i ¼ 0; 1; . . .. We also say that z 2 A N is recursively renewable if

it is recursively k-renewable with some k.
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EXAMPLE 1. A purely periodic word vvv . . . with v 2 A � is recursively 1-renew-

able by taking Bi ¼ fv2
ig. An eventually periodic word uvvv . . . with u; v 2 A � is

recursively 2-renewable by Bi ¼ fuv2
i�1
; v2

ig.

EXAMPLE 2. The sturmian word is recursively 2-renewable.

Let C be a non empty finite set. A morphism � is a monoid homomorphism from A �

to C � that �ðaÞ 6¼ � for each a 2 A . Then � naturally extends to a map from A N to CN .

A morphism � is called letter to letter, if �ðaÞ 2 C for each a 2 A . A substitution is a

morphism from A � to itself.

EXAMPLE 3. Let � be a morphism from A � to C �. The image by � of a recursively

k-renewable word in A N is recursively k-renewable in CN .

EXAMPLE 4. Let � be a substitution on A �. If �ð0Þ ¼ 0w with w 6¼ �, then there is

a unique fix point z of � in A N which begins with the letter 0. The word z is successively

approximated by �nð0Þ ðn ¼ 1; 2; . . .Þ and we write z ¼ limn �
nð0Þ. The fix point z is

recursively m-renewable by Bi ¼ f�ið0Þ; . . . ; �iðm� 1Þg.

In other words, z is recursively k-renewable if there is a sequence f�igi¼1;2;... of
substitutions on f0; 1; . . . ; k� 1g that

z ��1
z2  �

�2
z3  �

�3
z4  �

�4
. . .

with zi 2 f0; 1; . . . ; k� 1gN and the length of �1�2 . . .�iðaÞ diverges for each letter a as

i!1, i.e., z lies in lim ��i

f0; 1; . . . ; k� 1gN , the inverse limit directed by f�ig.
We recall the definition of general rotation words. Take � 2 ½0; 1Þ nQ and � 2 ½0; 1Þ.

Start with a decomposition of the unit interval

I ¼ ½0; 1Þ ¼
[k�1
i¼0
½!i; !iþ1Þ ð1Þ

with 0 ¼ !0 < !1 < � � � < !k�1 < !k ¼ 1 and put Ii ¼ ½!i; !iþ1Þ. We identify ½0; 1Þ with
the torus T ¼ R=Z and define J : T ! f0; 1; . . . ; k� 1g by x 2 IJðxÞ for x 2 T. Then the

general rotation word of an angle � and an initial value � with respect to k-block

decomposition (1) is defined by

Jð�ÞJð�þ �ÞJð�þ 2�Þ � � � 2 f0; 1; . . . ; k� 1gN :

The classical rotation word comes from the decomposition ½0; 1Þ ¼ ½0; 1� �Þ [ ½1� �; 1Þ.
It is well known (cf. [30], [10], [28], [18]) that the set of all classical rotation word

coincides with that of all sturmian words.2 For classification of words of complexity 2n,

Rote [33] used the generalized rotation word with respect to 2-blocks and also gave

2Precisely, we need to consider another decomposition ð0; 1� ¼ ð0; 1� �� [ ð1� �; 1� in order to show the

equivalence to sturmian words.
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a combinatorial characterization of the words with respect to ½0; 1=2Þ [ ½1=2; 1Þ. Further
connection between general rotation words and sturmian words had been studied.

Didier [12] characterized the general rotation words in terms of sturmian words and

cellular automata. Berstel and Vuillon [3] showed a way to recode generalized rotation

words with respect to k-blocks into k-tuples of sturmian words.

In this paper, we first prove the following theorem.

THEOREM 1. A general rotation word of an angle � and an initial value � with

respect to k-block decomposition (1) is recursively ðkþ 1Þ-renewable.

There are recursively renewable words which can not be a general rotation word.

For examples, take a fix point z of the substitution

�ð0Þ ¼ 001; �ð1Þ ¼ 111

introduced by Rote [33] as a concrete word with pzðnÞ ¼ 2n. Example 4 says that z is

recursively 2-renewable but z contains factors 1n for all n � 1, which is impossible for a

general rotation word. Another example is the fix point g of the Rauzy substitution:

�ð0Þ ¼ 01; �ð1Þ ¼ 02; �ð2Þ ¼ 0;

having its complexity pgðnÞ ¼ 2nþ 1. Then g is recursively 3-renewable but not a

general rotation word. Indeed, g has arbitrary large special factors w that w0; w1; w2 are

also the factors of g, but general rotation words can not have this property. The

maximal pattern complexity also tells apart that g can not be a general rotation word

(cf. [23]). It is known that g is a coding of 6-interval exchange of T and moreover a

natural coding of a rotation on T2 (cf. [2], [32]). It remains a problem to characterize

generalized rotation words among recursively renewable words. In addition, authors got

to know a relevant result [29] with Theorem 1 after submission of this paper.

An element z 2 A N is primitive substitutive if it is an image of a morphism of a

fixed point of a primitive substitution.3 Among recursively renewable words viewed as

elements of the inverse limit, primitive substitutive words correspond to eventually

periodic sequences f�igi¼1;2;... of substitutions. Durand [14] and Holton-Zamboni [19]

independently4 gave a combinatorial characterization of primitive substitutive words

using return words. With the help of their result and the idea of the proof of Theorem 1,

we can characterize primitive substitutive rotation words;

THEOREM 2. A general rotation word of an angle � and an initial value � with

respect to the decomposition (1) is primitive substitutive if and only if � is quadratic

irrational, � 2 Qð�Þ and !i 2 Qð�Þ for all i.

Note that the last condition ‘� 2 Qð�Þ and !i 2 Qð�Þ for all i’ is equivalent to

‘!i � � 2 Qð�Þ for all i’.
3It is equivalent to being an image of a letter to letter morphism of a fixed point of a primitive substitution.

See Proposition 3.1 in [14].
4From p.13 and p.34 of [13].
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Theorem 2 generalizes Theorem 7.8 of [1], the same result for ½0; !1Þ [ ½!1; 1Þ under
a condition !1 =2 Z þ �Z, and Proposition 2.11 of [7] which treated all sturmian case,

i.e., ½0; 1� �Þ [ ½1� �; 1Þ. Theorem 2 may also be expected from number of quadratic

type results on characterization of sturmian words fixed by substitutions (cf. [11], [26],

[22], [37] and [31]). The proof of Theorem 2 seems more number theoretical than those

in [1] and [7], and Section 6–Section 10 are devoted to it. A basic idea is to show directly

that return words with respect to a long prefix give a coding of a certain three interval

exchange. Ostrowski’s numeration system in Section 9 is unconventionally used to

control induced discontinuities and to deduce unique ergodicity of three interval

exchanges in Section 10.

The authors wish to thank P. Arnoux, V. Berthé, J. Cassaigne, S. Ferenczi, T.

Komatsu, T. Kamae, H. Rao, M. Yoshida and L. Q. Zamboni for helpful discussion and

supplying relevant references.

2. Negative continued fraction and induced rotations.

Let bxc be the maximum integer not greater than x, and dxe ¼ �b�xc, i.e., the
minimum integer not less than x. Define a map S : ð0; 1Þ ! ð0; 1Þ by SðxÞ ¼ d1=xe � 1=x

and set an ¼ d1=Sn�1ðxÞe and xn ¼ SnðxÞ for x 2 ð0; 1Þ nQ. Then we have

x ¼
1

a1 �
1

a2 �
1

a3�
. .
.
�

1

an � xn

ð2Þ

with an � 2 and also an infinite continued fraction:

x ¼
1

a1 �
1

a2 �
1

a3� . .
.

: ð3Þ

Both of them are called the negative continued fraction of x. There are infinitely many

n’s such that an > 2 in the infinite continued fraction. Let �0 ¼ 1 and �1 ¼ �. We define

�nþ1 2 ½0; �nÞ inductively by:

�nþ1 ¼ an�n � �n�1

with a positive integer an. The choice of an is unique since �nþ1 2 ½0; �nÞ and � =2 Q

implies �n 6¼ 0. We can easily show
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� ¼
1

a1 �
1

a2 �
1

a3 � � � � �
1

an �
�nþ1

�n

ð4Þ

and an � 2. The expansion (2) of � clearly coincides with this expansion with

xn ¼ Snð�Þ ¼ �nþ1=�n. Define integer sequences by

Pnþ1 ¼ anPn � Pn�1

Qnþ1 ¼ anQn �Qn�1 ð5Þ

for n � 1 with initial values ðP0; P1; Q0; Q1Þ ¼ ð�1; 0; 0; 1Þ. A useful matrix representa-

tion:

�Pn Pnþ1

�Qn Qnþ1

 !
¼

0 1

�1 a1

 !
0 1

�1 a2

 !
� � �

0 1

�1 an

 !

allows us to show

x ¼ Pnþ1 � Pnxn

Qnþ1 �Qnxn

ð6Þ

with Pnþ1Qn �Qnþ1Pn ¼ 1. It is easily shown by induction that

Qn � Pn; Qn �Qn�1 � Pn � Pn�1 ð7Þ

for n � 1 and �n � Qn� (mod ZÞ. Qn is uniquely determined by this congruence. By

using (6) and (7), we have

0 < � �
Pn

Qn

¼
�n=�n�1

QnðQn � ð�n=�n�1ÞQn�1Þ
<

1

QnðQn �Qn�1Þ
ð8Þ

which gives an equality �n ¼ Qn� � Pn and also guarantees the convergence of (3).

An interval exchange transform

x 7! xþ � if x 2 ½0; 1� �Þ
x 7! xþ � � 1 if x 2 ½1� �; 1Þ

(
ð9Þ

gives the rotation x 7! xþ � on the torus. The induced dynamics on ½0; �1Þ ’ R=�1Z is

given by the first return map
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x 7! xþ �2 if x 2 ½0; �1 � �2Þ
x 7! xþ �2 � �1 if x 2 ½�1 � �2; �1Þ

(
:

In the similar manner, we have successive induced systems acting on ½0; �nÞ:

�nþ1 :
x 7! xþ �nþ1 if x 2 ½0; �n � �nþ1Þ
x 7! xþ �nþ1 � �n if x 2 ½�n � �nþ1; �nÞ

(

with n ¼ 0; 1; . . . which give rotations of the smaller tori ½0; �nÞ ’ R=�nZ of an angle �nþ1
with an initial value 0. The first return is described as:

�nþ1ðxÞ ¼
�an

n ðxÞ if x 2 ½0; �n � �nþ1Þ
�an�1

n ðxÞ if x 2 ½�n � �nþ1; �nÞ

(

which gives a dynamical interpretation of the negative continued fraction. One may

confirm the orbit of 0 by:

�nþ1ð0Þ ¼ �nð�an�1
n ð0ÞÞ ¼ �nððan � 1Þ�nÞ ¼ ðan � 1Þ�n þ �n � �n�1 ¼ �nþ1

and the structure of successive induced systems reveals a dynamical meaning of

the number Qnþ1, that is, the smallest positive integer M such that M� (mod ZÞ falls
into ½0; �nÞ.

There is a simple way to convert the regular continued fraction

x ¼ b1 þ
1

b2 þ
1

b3þ . .
.

:

into (3) and vice versa (c.f. Proposition 1 in [27]). This is given by a rewriting rule of

infinite words which transforms b1b2 . . . into a1a2 . . . from left to right:

b1 ! b1 þ 1

b2j ! 2b2j�1

b2jþ1 ! b2jþ1 þ 2

8><
>:

where j � 1, 2k ¼ 2 . . . 2
zfflffl}|fflffl{k

and 20 indicates the empty word �. The converse rule is clearly:

a1 ! a1 � 1

2k ! kþ 1

an � 3 ! an � 2

8><
>:
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for n � 2. Especially, in view of the Lagrange theorem on regular continued fractions,

the negative continued fraction expansion of x is eventually periodic if and only if x

is real quadratic irrational.

The transformation S has an infinite invariant measure dx=ð1� xÞ on ½0; 1� and
consequently Diophantine approximation by negative continued fraction is slow, which

is also apparent from (8). However it matches better the induced system and the first

return map than the regular continued fraction algorithm.

3. The case � ¼ 0.

We first prove Theorem 1 for � ¼ 0. In this case the proof follows naturally by

successive recoding the orbit m� 2 T ðm ¼ 0; 1; . . .Þ into the induced rotation x 7!
xþ �nþ1 acting on ½0; �nÞ. The clue of the proof is the fact that the number of necessary

decomposition of intervals ½0; �nÞ does not increase for n � 1.

Set B0 ¼ A , J0 ¼ J and we recall that the rotation �2 : x 7! xþ �2 on ½0; �1Þ is an
induced system of the rotation �1 : x 7! xþ �1 on ½0; 1Þ by:

�2ðxÞ ¼
�a1

1 ðxÞ if x 2 ½0; �1 � �2Þ
�a1�1

1 ðxÞ if x 2 ½�1 � �2; �1Þ

(
:

Therefore we define the recoding map J1 : ½0; �1Þ ! A � by

J1ðxÞ ¼
J0ðxÞJ0ðxþ �1Þ . . . J0ðxþ ða1 � 1Þ�1Þ if x 2 ½0; �1 � �2Þ
J0ðxÞJ0ðxþ �1Þ . . . J0ðxþ ða1 � 2Þ�1Þ if x 2 ½�1 � �2; �1Þ

(

and put B1 ¼ J1ð½0; �1ÞÞ. We have B1 6� B0, since J1ð0Þ is of length a1 > 1 as a word

over B0. The function J1 naturally extends to J1 : R=�1Z ! B1 by periodicity. As the

map J0 is discontinuous5 at the set fwi j i ¼ 1; . . . ; kg, the set of discontinuity of J1 is

given as a set f!ð1Þj j j ¼ 0; 1; . . . ; k1 þ 1g with

0 ¼ !
ð1Þ
0 < !

ð1Þ
1 < !

ð1Þ
2 < � � � < !

ð1Þ
k1�1 < !

ð1Þ
k1

< !
ð1Þ
k1þ1 ¼ �1

and each !
ð1Þ
j ði ¼ 1; . . . ; k1Þ has a form !u �Nu�1 ðu ¼ 1; 2; . . . ; kÞ where Nu is the

non negative integer that !u �Nu�1 2 ½0; �1Þ. From the definition of the first return map,

this Nu is a unique non negative integer less than a1 that !�Nu�1 (mod 1Þ falls into

½0; �1Þ, that is, Nu ¼ b!u=�1c < a1. Note that there exists j such that !
ð1Þ
j ¼ �1 � �2.

Indeed !k � ða1 � 1Þ�1 ¼ �1 � ða1�1 � 1Þ ¼ �1 � �2. Thus we have k1 � k and the map J1
has at most k1 þ 1 images, i.e., #B1 � k1 þ 1.

According to the usual convention, interval ½!ð1Þj ; !
ð1Þ
j Þ is called IJ1ðyÞ for y 2

½!ð1Þj ; !
ð1Þ
jþ1Þ since the name J1ðyÞ does not depend on the choice of y. Then recalling that

�2 : x 7! xþ �2 on ½0; �1Þ is an induced system of the rotation �1 : x 7! xþ �1 on ½0; 1Þ.
The original rotation word

5This just means that its output word changes.
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J0ð0ÞJ0ð�1ÞJ0ð2�1Þ . . .

is decomposed into

J0ð0ÞJ0ð�1Þ . . . J0ðða1 � 1Þ�1ÞJ0ð�2ÞJ0ð�2 þ �1Þ � � � ¼ J1ð0ÞJ1ð�2ÞJ1ð2�2Þ � � � 2 BN
1 :

We proceed in the similar manner. Assume n � 2 and we already defined Jn�1, Bn�1 and

the decomposition of ½0; �n�1Þ into

0 ¼ !
ðn�1Þ
0 < !

ðn�1Þ
1 < !

ðn�1Þ
2 < � � � < !

ðn�1Þ
kn�1�1 < !

ðn�1Þ
kn�1

< !
ðn�1Þ
kn�1þ1 ¼ �n�1

with kn�1 � kn�2. Further we may assume that there is a j such that !
ðn�1Þ
j ¼ �n�1 � �n.

Since the rotation x 7! xþ �nþ1 on ½0; �nÞ is the induced system of the rotation x 7!
xþ �n on ½0; �n�1Þ through:

�nþ1ðxÞ ¼
�an

n ðxÞ if x 2 ½0; �n � �nþ1Þ
�an�1

n ðxÞ if x 2 ½�n � �nþ1; �nÞ,

(

we define the recoding map Jn : ½0; �nÞ ! B�n�1 by

JnðxÞ ¼
Jn�1ðxÞJn�1ðxþ �nÞ . . . Jn�1ðxþ ðan � 1Þ�nÞ if x 2 ½0; �n � �nþ1Þ
Jn�1ðxÞJn�1ðxþ �nÞ . . . Jn�1ðxþ ðan � 2Þ�nÞ if x 2 ½�n � �nþ1; �nÞ

(
ð10Þ

and put Bn ¼ Jnð½0; �nÞÞ. It follows Bn 6� Bn�1 from an � 2. Extend Jn to a function

from R=�nZ to Bn by periodicity. Now Jn�1 has kn�1 þ 1 points of discontinuity

f!ðn�1Þj j j ¼ 1; . . . ; kn�1 þ 1g. The discontinuity of Jn arises from these kn�1 þ 1 points

together with �n � �nþ1 and the end point �n. The number of point of discontinuity of Jn
might increase to kn�1 þ 3 but it turns out that one can save 2 points. In fact such

points are written down in a way:

0 ¼ !
ðnÞ
0 < !

ðnÞ
1 < !

ðnÞ
2 < � � � < !

ðnÞ
kn�1 < !

ðnÞ
kn

< !
ðnÞ
knþ1 ¼ �n

where each !
ðnÞ
j ði ¼ 1; . . . ; knÞ has a form !

ðn�1Þ
u �Nu�n ðu ¼ 1; 2; . . . ; kn�1 þ 1Þ and Nu is

the non negative integer that !
ðn�1Þ
u �Nu�n 2 ½0; �nÞ, i.e., Nu ¼ b!ðn�1Þu =�nc < an. Firstly

there is an index s such that !
ðnÞ
s ¼ �n � �nþ1 since �n � �nþ1 ¼ �n�1 � ðan � 1Þ�n ¼

!
ðn�1Þ
j � ðan � 2Þ�n. Secondly !

ðn�1Þ
j ¼ �n�1 � �n and !

ðn�1Þ
kn�1þ1 ¼ �n�1 gives the same

discontinuous point !
ðnÞ
s of Jn. These two coincidences show that kn � kn�1 and

#Bn � kn þ 1.

Set IJnðyÞ ¼ ½!
ðnÞ
j ; !

ðnÞ
jþ1Þ for y 2 ½!ðnÞj ; !

ðnÞ
jþ1Þ since the name JnðyÞ does not depend on

the choice of y. As �nþ1 : x 7! xþ �nþ1 on ½0; �nÞ is an induced system of �n : x 7! xþ �n
on ½0; �n�1Þ. The word
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Jn�1ð0ÞJn�1ð�nÞJn�1ð2�nÞ . . .

is decomposed into

Jn�1ð0ÞJn�1ð�nÞ . . . Jn�1ððan � 1Þ�nÞJn�1ð�nþ1ÞJn�1ð�nþ1 þ �nÞ . . .
¼ Jnð0ÞJnð�nþ1ÞJnð2�nþ1Þ � � � 2 BN

n :

The case � ¼ 0 is completed. �

For the later use, we study in detail the map Jn and the set Bn. Let us introduce an

order <lex in A � for two elements u ¼ u1 . . .us and v ¼ v1 . . . vt. If v is a proper prefix u

then u <lex v. When v is not a proper prefix of u and u is not a proper prefix of v, then

take the first i such that ui 6¼ vi whenever u 6¼ v. In this case if ui < vi (resp. ui > vi),

then we say u <lex v (resp. v <lex u). The order <lex is just a lexicographical order for

words of the same length. The symbol juj stands for the length of the word u and u �lex v

means u <lex v or u ¼ v. Then we can show a

PROPOSITION 1. The map Jn : ½0; �nÞ ! Bn preserves the order, i.e., JnðxÞ �lex

JnðyÞ for 0 � x � y � �n and consequently Jnð!ðnÞi Þ <lex Jnð!ðnÞiþ1Þ. Especially #Bn ¼
kn þ 1. Exactly two different lengths Qnþ1 and Qnþ1 �Qn appear in Bn for n � 1 and

Qnþ1 ¼ jJnð0Þj where Qn is defined by (5).

Hereafter we classify words in Bn into long words and short words by their lengths.

PROOF. By induction, we prove that jJnðxÞj decreases only once at x ¼ �n � �nþ1.

This is obvious for n ¼ 1. By the definition (10), jJnðxÞj decreases when either x ¼
�n � �nþ1 or xþ j�n ¼ �n�1 � �n for x 2 ½0; �nÞ and j ¼ 0; . . . ; an � 1. One can confirm that

the later case happens only when j ¼ an � 2 and x ¼ �n � �nþ1. In other words, it turns

out that discontinuities of jJnj and jJn�1j appear at the same point x ¼ �n � �nþ1. Thus,

only two different lengths appear in Bn. By the construction of the induced rotation,

jJnð0Þj-times iteration of �1 gives the first return map �n : ½0; �nÞ ! ½0; �nÞ through

x 7! xþ �nþ1. This implies jJnð0Þj ¼ Qnþ1. In (10) for x 2 ½0; �n � �nþ1Þ, xþ j�n 2
½0; �n�1 � �nÞ happens only when j ¼ an � 1. Thus the length of the short word of Bn�1 is

Qnþ1 � ðan � 1ÞQn ¼ Qn �Qn�1.
6 Now it is easy to show by induction that

JnðxÞ �lex JnðyÞ for 0 � x � y � �n. �

Before closing this section, we mention two extremal cases. As a general rotation

word with an initial value 0 with respect to the k-block decomposition is recursively

ðkþ 1Þ-renewable, there seems no chance to get recursively 2-renewable aperiodic

words. However having a closer look to the proof, if we start with the decomposition:

½0; 1Þ ¼ ½0; 1� �Þ [ ½1� �; 1Þ

then 1 ¼ k� 1 ¼ k1 ¼ k2 ¼ . . . and successive decompositions are

6One can also show this by induction.
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½0; �nÞ ¼ ½0; �n � �nþ1Þ [ ½�n � �nþ1; �nÞ n ¼ 1; 2; . . .

and it is recursively 2-renewable. This is nothing but the sturmian words.

Next we consider a general rotation word with an initial value 0 with respect to the

k-block decomposition (1) with an additional condition:

!i � !j ¼ A� þB ðA;B 2 ZÞ ¼) i ¼ j; A ¼ B ¼ 0:

(This condition is fulfilled when !i 2 Q.) In this case, two !
ðn�1Þ
i ; !

ðn�1Þ
j ði 6¼ jÞ produce

different !
ðnÞ
u ’s. In other words, kn does not decrease each step and k ¼ k1 ¼ k2 ¼ . . ..

In this case, we expect that the general rotation word is recursively ðkþ 1Þ-renewable
but not recursively k-renewable.

More detailed study on induced discontinuities is given in Section 9: with the help

of Ostrowski’s numeration system, we will be able to tell which discontinuities disappear

by coincidence.

4. The general case: � 6¼ 0.

If � ¼ !i for some i, the problem is transferred into a generalized rotation word of

an angle � and an initial value 0 with respect to the decomposition

T ¼
[k�1
i¼0
½!i � �; !iþ1 � �Þ: ð11Þ

Therefore the proof is exactly the same as that of the previous section.

For a general �, we first note that it is easy to show that the word is recursively

ðkþ 2Þ-renewable by the same technique. The problem is transferred into a generalized

rotation word of an angle � and an initial value 0 but the decomposition (11) needs to be

subdivided at the origin and produces the decomposition of T into kþ 1 subintervals.

Two generated subdivided intervals at the origin correspond to a same letter. However,

assigning different two letters to these subdivided intervals, this general rotation word

with respect to the ðkþ 1Þ-block decomposition is recursively ðkþ 2Þ-renewable by

Theorem 1. Therefore the general rotation word is recursively ðkþ 2Þ-renewable, since it
is an image of the ðkþ 2Þ-renewable word by a morphism which send the above two

letters into one and the others to themselves (see Example 3). To show ðkþ 1Þ-
renewability, we should choose subintervals cleverly to have one less subdivisions.

Take a general rotation word z of an angle � ¼ �1 and an initial value � with respect

to (1). Reviewing the proof for � ¼ 0, if � 2 ½0; �1Þ then the orbit �þ i�1 ði ¼ 0; 1; . . .Þ is
recoded by the function J1 and the word z is ðkþ 1Þ-renewable as a word over B1.

Joining the above cases � ¼ !i, if � 2
Sk�1

i¼0 ½!i; !i þ �1Þ then z is ðkþ 1Þ-renewable.
However the set

Sk�1
i¼0 ½!i; !i þ �1Þ may not exhaust T. We construct a covering of T by

such induced systems. It is sufficient to cover ½!i; !iþ1Þ. Assume that !iþ1 � !i > �1 since

otherwise we have nothing to do. Put q ¼ bð!iþ1 � !iÞ=�1c. Then for intervals ½!i þ ðj�
1Þ�1; !i þ j�1Þ for j ¼ 1; . . . ; q, the induced rotation is written as an interval exchange:
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x 7! xþ �2 if x 2 ½!i þ ðj� 1Þ�1; !i þ j�1 � �2Þ
x 7! xþ �2 � �1 if x 2 ½!i þ j�1 � �2; !i þ j�1Þ

(
:

For simplicity, take i ¼ 0 and consider the interval ½0; !1Þ with q ¼ b!1=�c. Then the

function J 01 is defined in the similar manner as J1:

J 01ðxÞ ¼
J0ðxÞJ0ðxþ �1Þ . . . J0ðxþ ða1 � 1Þ�1Þ if x 2 ½ðj� 1Þ�1; j�1 � �2Þ
J0ðxÞJ0ðxþ �1Þ . . . J0ðxþ ða1 � 2Þ�1Þ if x 2 ½j�1 � �2; j�1Þ

(
:

The set of discontinuity of J 01 is just a shifted set of those of J1:

f!ð1Þu þ ðj� 1Þ�1 j u ¼ 1; . . . ; k1 þ 1g

and we have

00 . . . 0
zfflfflffl}|fflfflffl{j�1

J 01ðxÞ ¼ J1ðx� ðj� 1Þ�1Þ 00 . . . 0
zfflfflffl}|fflfflffl{j�1

: ð12Þ

This means that if x 2 ½ðj� 1Þ�1; j�1Þ then z is ðk1 þ 1Þ-renewable ðk1 � kÞ over the

words 0�10�1 . . . 0�1
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{j�1

B1 00 . . . 0
zfflfflffl}|fflfflffl{j�1

where the symbol 0�1 indicates the removal of 0 from

the prefix. Now we have shown that if � lies in

[k�1
i¼0

[bð!iþ1�!iÞ=�c

j¼1
!i þ ðj� 1Þ�1; !i þ j�1½ Þ;

then z is ðk1 þ 1Þ-renewable. The remainder set to be covered is

[k�1
i¼0

!i þ
!iþ1 � !i

�1

� �
�1; !iþ1

� �
:

This job is completed by considering the induced system on ½!iþ1 � �1; !iþ1Þ for

i ¼ 0; . . . ; k� 1. The construction is done in the similar manner. The induced rotation

is given as an interval exchange:

x 7! xþ �2 if x 2 ½!iþ1 � �1; !iþ1 � �2Þ
x 7! xþ �2 � �1 if x 2 ½!iþ1 � �2; !iþ1Þ

(
:

Take i ¼ k for simplicity. We may assume !k�1 < 1� �1 since otherwise the covering is

already over. One can similarly define
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J 001 ðxÞ ¼
J0ðxÞJ0ðxþ �1Þ . . . J0ðxþ ða1 � 1Þ�1Þ if x 2 ½1� �1; 1� �2Þ
J0ðxÞJ0ðxþ �1Þ . . . J0ðxþ ða1 � 2Þ�1Þ if x 2 ½1� �2; 1Þ

(

and the set of discontinuity of J 001 is just a shifted set of those of J1:

f!ð1Þu � �1 2 T j u ¼ 1; . . . ; k1 þ 1g:

Similarly as (12), for each x 2 ½1� �1; 1Þ, we have b 2 A such that

J 001 ðxÞb ¼ ðk� 1ÞJ1ðxþ �1Þ

and b is determined by xþ �1 2 ½!b; !bþ1Þ. Thus in the same way, when � 2
½!iþ1 � �1; !iþ1Þ, z is ðk1 þ 1Þ-renewable and we have shown that for any � 2 T the

general rotation word z is ðkþ 1Þ-renewable. Note that this proof shows that there are

two choices of the set B1 � A � for

� 2 !iþ1 � !i; !i þ
!iþ1 � !i

�1

� �
�1

� �
:

Indeed, usually we have several choices of induced systems. The only requirement is

that the interval should be decomposed into at most kþ 1 parts.

Now we have shown that for any � the general rotation word z is ðkþ 1Þ-renewable.
However this procedure can be repeated recursively to the subinterval (strictly

speaking, the subsystem) to which � belongs. As we have seen that the set of

discontinuity of J 01 and J 001 are given by translations of those of J1, by the same reason as

the case � ¼ 0, the number of decomposition of subintervals does not exceed kþ 1.

Therefore z is recursively ðkþ 1Þ-renewable and the proof is finished. �

The recursive covering of ½0; 1Þ constructed in this Section 4 will be reused in

Section 10.

5. An Example.

Let us show a sample computation of a general rotation word of an angle � ¼ 2�2=3

and an initial value � ¼ 0 with respect to a decomposition ½0; 1Þ ¼ ½0; 1=3Þ [ ½1=3; 1Þ

0101101101011011011110110110101101101011011011110110110 . . .

following the proof of Theorem 1.

½0; �1Þ ¼ ½0; 1=3Þ [ ½1=3; 1� 2�2=3Þ [ ½1� 2�2=3; 2�2=3Þ ¼ I01 [ I11 [ I1

½0; �2Þ ¼ ½0; 4=3� 21=3Þ [ ½4=3� 21=3; 2� 3 � 2�2=3Þ [ ½2� 3 � 2�2=3;�1þ 21=3Þ
¼ I01011 [ I01111 [ I011
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½0; �3Þ ¼ ½0; 4=3� 21=3Þ [ ½4=3� 21=3; 2� 3 � 2�2=3Þ [ ½2� 3 � 2�2=3;�3þ 5 � 2�2=3Þ
¼ I01011011 [ I01111011 [ I011

½0; �4Þ ¼ ½0; 12� 19 � 2�2=3Þ [ ½12� 19 � 2�2=3; 19=3� 5 � 21=3Þ [
½19=3� 5 � 21=3;�5þ 4 � 21=3Þ

¼ I010110110101101101111011011 [ I0101101101011011011 [ I0101101101111011011

In fact, this method gives a rapid algorithm for computation of general rotation

words. The recursive construction algorithm for � 6¼ 0 in Section 4 may not be suitable

in reality because we have to switch to other systems, keeping in memory all systems

appear in the process. It is easier to shift the origin at the expense of one more

subdivision, as explained in the beginning of Section 4.

6. Quadratic rotations are primitive substitutive.

In this section, one direction of Theorem 2 is treated. We prove that a general

rotation word of a quadratic irrational angle � and an initial value � with respect to the

decomposition (1) is primitive substitutive provided !i � � 2 Qð�Þ for all i. By the same

technique stated in the beginning of Section 4, it is sufficient to prove this fact for � ¼ 0

and !i 2 Qð�Þ since it just amounts to increasing by 1 the number of subdivisions.

Moreover, we may assume that !i ¼ 1� � for some i by the same reason. Under these

assumptions, the proof of Theorem 1 reads that the irrational rotation x 7! xþ �1 on T

gives rise to induced rotations x 7! xþ �nþ1 on ½0; �nÞ for n ¼ 1; 2; . . . and the set of

discontinuity f!i j i ¼ 1; 2; . . . ; kg is transformed into f!ðnÞi j i ¼ 1; 2; . . . ; kg7 with !
ðnÞ
i ¼

�n � �nþ1 for some i. Each !
ðnÞ
i has a form !

ðn�1Þ
u � b!ðn�1Þu =�nc�n ðu ¼ 1; 2; . . . ; kÞ. Let us

renormalize the sizes of the rotations and observe the orbit of !i. The n-th induced

system ½0; �nÞ 3 x 7! xþ �nþ1 2 ½0; �nÞ is renormalized into:

½0; 1Þ 3 x 7! xþ xnþ1 2 ½0; 1Þ

with xnþ1 ¼ �nþ1=�n and the discontinuous points must be �
ðnÞ
i ¼ !

ðnÞ
i =�n. Therefore �

ðnÞ
i

should have a form �
ðn�1Þ
u =xn � b�ðn�1Þu =xnc for some u. Moreover, we have xn ¼

Snð�Þ ðn ¼ 0; 1; . . .Þ by the negative continued fraction map S as explained in Section 2.

For � > 1, we define the �-transform by

T� : ½0; 1Þ 3 x 7! �x� b�xc 2 ½0; 1Þ:

Then the set of discontinuity of n-th renormalized induced rotation is written as

T1=xn�1 . . .T1=x0ð!iÞ
��� i ¼ 1; 2; . . . ; k

n o
:

Let us denote by 	nðyÞ ¼ T1=xn�1 . . .T1=x0ðyÞ for n ¼ 1; 2; . . . with xn ¼ Snð�Þ. The clue of

the proof is to show a

7The cardinality of f!ðnÞi j i ¼ 1; 2; . . . ; kg could be less than k by coincidences !
ðnÞ
i ¼ !

ðnÞ
iþ1.
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PROPOSITION 2. If � 2 ð0; 1Þ is quadratic irrational and y 2 Qð�Þ then the

sequence ð	nðyÞÞn¼1;2;... is eventually periodic.

In view of Proposition 4 given in Section 9, this is a generalization of the result

in [21] on Ostrowski expansions. Once Proposition 2 is established, it is easy to see that

the quadratic rotation word is primitive substitutive. Indeed, taking the least common

multiple L of periods of k sequences ð	nð!iÞÞn¼0;1;..., there exists an integer m � 0

such that the m-th renormalized induced system and ðmþ L� 1Þ-th renormalized

induced system is exactly the same. Hence the associated rotation word zðmÞ 2 BN
m is

successively decomposed ðL� 1Þ-times into k-blocks and gives rise to zðmþL�1Þ 2 BN
mþL

which has the same structure as zðmÞ. Therefore zðmÞ is a fixed point of the substitution

on Bm. This substitution is primitive, because repeated application of the substitution

to Bm yields sufficiently long words generated by the induced rotation x 7! xþ �mþ1,

each of which must contain all letters of Bm, by the minimality of the irrational

rotation. This shows that zð1Þ is primitive substitutive.

We give two proofs of Proposition 2. A technical difficulty arises from the fact that

each 1=xi is not necessary an algebraic integer. In the first proof, we choose periodically

varying Z-bases to overcome it.

6.1. The first proof.

According to the last remark of Section 2, ðxnÞn¼0;1;... is eventually periodic.

Without loss of generality, we may assume that the negative continued fraction of � is

purely periodic, i.e., there is a positive integer L that xn ¼ xnþL for n � 0. By (6), there

is ðPL; PLþ1; QL;QLþ1Þ 2 N 4 depending on xn such that

xn ¼ ðPLþ1 � PLxnÞ=ðQLþ1 �QLxnÞ: ð13Þ

Put hðyÞ ¼ QLy
2 � ðQLþ1 þ PLÞyþ PLþ1. By (7), we see hðxnÞ ¼ 0; hð0Þ ¼ PLþ1 >

0; hð1Þ ¼ ðPLþ1 � PLÞ � ðQLþ1 �QLÞ � 0 and the conjugate x0n can not be less than 1.

x0n =2 Q implies x0n > 1. Let 
 ¼ minn x
0
n > 1. The general term of the sequence is

	nðyÞ ¼
y�

Pn�1
k¼0b	kðyÞ=xkcx0x1 . . .xk

x0x1 . . .xn�1
: ð14Þ

Note that by periodicity of ðxnÞn¼0;1;..., b	kðyÞ=xkc � b1=xkc are uniformly bounded by a

positive constant L. Therefore

jð	nðyÞÞ0j �
jy0j

n
þ
Xn�1
k¼0

L


n�k�1
� jy0j þ

L

1� 

:

This shows that ð	nðyÞ; ð	nðyÞÞ0Þ 2 R2 is bounded. On the other hand there exist a

positive integer M and ðpn; qnÞ 2 Z2 such that 	nðyÞ ¼ ðpn þ qnxnÞ=M. Indeed, the case

n ¼ 0 is trivial and
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	nþ1ðyÞ ¼
	nðyÞ
xn

� cn ¼
1

M

pn

xn

þ qn

� �
� cn

¼
1

M
ðpnðan � xnþ1Þ þ qnÞ � cn ¼

pnþ1 þ qnþ1xnþ1

M

with cn ¼ b	nðyÞ=xnc. Again by periodicity of ðxnÞn¼0;1;... and the boundedness of

ð	nðyÞ; ð	nðyÞÞ0Þ, we see that ðpn; qnÞ 2 Z2 is bounded and this implies that the sequence

ð	nðyÞÞn¼1;2;... is eventually periodic. �

The second proof is based on [8] and [34] where they treated beta expansions in a

Pisot number base.

6.2. The second proof.

We may assume that there is a positive integer L that xn ¼ xnþL for n � 0. By (6),

x ¼ PLþ1 � xPL

QLþ1 � xQL

with PLþ1QL �QLþ1PL ¼ 1. Putting � ¼ QLþ1 � xQL, we have

�2 � ðQLþ1 � PLÞ�þ 1 ¼ 0:

From (5) and an ¼ xn þ 1=xn�1, we deduce

Qnþ1 � xnQn ¼
Qn � xn�1Qn�1

xn�1
¼ � � � ¼

Q1 � x0Q0

x0x1 . . .xn�1
¼

1

x0x1 . . .xn�1
:

Therefore

� ¼ QLþ1 � xQL ¼
1

x0x1 . . .xL�1
ð15Þ

is a quadratic unit with � > 1 and j�0j < 1, i.e., a quadratic Pisot unit. Take a finite set

D ¼ f
PL�1

k¼0 ckx0 . . .xk j 1=xk > ck 2 Zg and choose a positive integer U such that all dU

are algebraic integers for d 2 D. Then in view of (14), we can write

	ML�1ðyÞ ¼ �My�
XM�1
i¼0

di�
i

with di 2 D. Then ðU	ML�1ðyÞÞM¼1;2... is a sequence of algebraic integers and one can

easily show that ðU	ML�1ðyÞ; ðU	ML�1ðyÞÞ0Þ is bounded in R2 in a similar manner as in

the first proof. Therefore the sequence ð	ML�1ðyÞÞM¼1;2;... is eventually periodic and this

proves that ð	nðyÞÞn¼1;2;... is eventually periodic. �
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In his undergraduate text book ([35, p.212]), Takagi emphasized that the

denominator like � of the modular equivalence equation (13) becomes a unit. The

product relation (15) seems interesting in its own right.

7. Recovering parameters of rotation words.

From a given general rotation word z on f0; 1; . . . ; k� 1g with k � 2, there is a way

to recover all parameters, i.e, the angle �, the initial value �, and the decomposition of

the unit interval ½0; 1Þ. For the later use, we briefly describe this method in this section.

A lot of methods had been discussed for sturmian words in relation to continued fraction

expansions. One can find a nice survey in Chapter 6 of [18] in which a dynamical and

algorithmic way of this recoding is discussed in detail. Here we only mention a

‘transcendental’ way to recover such parameters, which might be a folklore.

First of all, from unique ergodicity of the irrational rotation, the decomposition of

½0; 1Þ is recovered immediately since it amounts to computing frequencies of letters of

f0; 1; . . . ; k� 1g. Thus we have given (1) with 0 ¼ !0 < !1 < � � � < !k�1 < !k ¼ 1 and we

may assume that the angle � is in ½�1=2; 1=2Þ. Choose an arbitrary j 2 f1; 2; . . . ; k� 1g
and recode the word z ¼ z0z1 . . . into z0 ¼ z00z

0
1 . . . where z0i ¼ 0 for zi < j and z0i ¼ 1 for

zj � j. Assume first that !j > 1=2. Then we observe in this rotation word z0 at most two

different longest runs of 0’s, say, 0M and 0Mþ1. This implies that !j=ðM þ 1Þ � � �
!j=M with M � 1. We get frequencies of 0M and 0Mþ1 which are denoted by �M and

�Mþ1 (one of them could be zero). When � 2 ½0; 1=2Þ, consider a decomposition

½0; �Þ ¼ ½0; !j �M�Þ [ ½!j �M�; �Þ ¼ IMþ1 [ IM:

Then �þ n� (mod 1Þ 2 IMþ1 is the beginning of the M þ 1 runs of zeroes and

�þ n� (mod 1Þ 2 IM is the beginning of the M runs of zeroes. Therefore, we have

�Mþ1

�M

¼
!j �M�

ðM þ 1Þ� � !j

:

From this equality, we got to know the angle:

� ¼ !jð�M þ �Mþ1Þ
ðM þ 1Þ�Mþ1 þM�M

:

The case � 2 ½�1=2; 0Þ is likewise and the final formula is the same. Secondly if !j < 1=2,

then we observe in z0 at most two different runs of 1’s. The later discussion is the

similar and we obtain:

� ¼ ð1� !jÞð�M þ �Mþ1Þ
ðM þ 1Þ�Mþ1 þM�M

:

Our final task is to get the initial value. For z ¼ z0z1 . . ., take an increasing integer

sequence of occurrences of the letter 0, i.e., 0 ¼ n0 < n1 < . . . with znj
¼ 0. Then we have
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�þ nj� (mod 1Þ 2 ½0; !1Þ

and hence

� 2
\1
j¼0
½�nj�; !1 � nj�Þ (mod 1Þ
� 	

The intersection should be a single point, since it is non empty and n� (mod 1Þ
for n ¼ 1; 2; . . . are uniformly distributed in T . Therefore we finally recovered the

parameter �. �

It might be a problem that without information of the natural order of letters, this

recovered parameters are unique or not.

8. Uniqueness of decomposition.

As we stated in the last part of Section 4, the choice of kþ 1 blocks of general

rotation words is not unique. On the other hand, in this section we show that once we

have chosen kþ 1 blocks as in the proof of Theorem 1, the way to decompose the general

rotation word into these blocks Bn is unique when n is large. Such Bn is called a code.

This uniqueness will be used in the proof of the remaining direction of Theorem 2.

PROPOSITION 3. Let Jnð!ðnÞu Þ ¼ s1 . . . sQnþ1 2 Bn be a long word in the sense of

Proposition 1. Assume that there are i; j such that si 6¼ sj. The we have

½!ðnÞu ; !
ðnÞ
uþ1Þ ¼

\Qnþ1

i¼1
ðJ�1ðsiÞ � ði� 1Þ�Þ ¼

\Qnþ1

i¼1
½!si � ði� 1Þ�; !siþ1 � ði� 1Þ�Þ in T :

Clearly, if n is sufficiently large, the long word will contain two letters and satisfy

the assumption of Proposition 3.

PROOF. Note that y 2
T‘

i¼1ðJ�1ðsiÞ � ði� 1Þ�Þ is equivalent to Jðyþ ði� 1Þ�Þ ¼
si for i ¼ 1; . . . ; ‘. Hence by construction of !

ðnÞ
i , the inclusion

½!ðnÞu ; !
ðnÞ
uþ1Þ �

\Qnþ1

i¼1
ðJ�1ðsiÞ � ði� 1Þ�Þ

is obvious. By the assumption, ðJ�1ðsiÞ � ði� 1Þ�Þ \ ðJ�1ðsjÞ � ðj� 1Þ�Þ is an interval,

since the sum of length of two intervals does not exceed 1. Thus we can put

\Qnþ1

i¼1
ðJ�1ðsiÞ � ði� 1Þ�Þ ¼ ½t1; t2Þ; t1 � !ðnÞu � !

ðnÞ
uþ1 � t2:
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Let us show t2 ¼ !
ðnÞ
uþ1. Recall that !

ðnÞ
uþ1 is a discontinuous point of the n-th induced

rotation on ½0; �nÞ and Jnð!ðnÞu Þ <lex Jnð!ðnÞuþ1Þ. If jJnð!ðnÞu Þj ¼ jJnð!ðnÞuþ1Þj then t2 � !
ðnÞ
1

since Jnð!ðnÞu Þ and Jnð!ðnÞuþ1Þ ¼ s01 . . . s
0
Qnþ1

are different words of the same length and

hence

\Qnþ1

i¼1
ðJ�1ðsiÞ � ði� 1Þ�Þ

 !
\

\Qnþ1

i¼1
ðJ�1ðs0iÞ � ði� 1Þ�Þ

 !
¼ ;

which implies t2 � !
ðnÞ
uþ1. Next assume that jJnð!ðnÞu Þj > jJnð!ðnÞuþ1Þj. Reviewing the proof

of Theorem 1, this happens only when !
ðnÞ
uþ1 ¼ �n � �nþ1 and pðJnð!ðnÞu ÞÞ �lex Jnð!ðnÞuþ1Þ.

In this case, consider words

JðxÞJðxþ �Þ . . . Jðxþ ðQnþ1 � 1Þ�Þ

for x 2 ½!ðnÞu ; !
ðnÞ
uþ1�. If x 2 ½!

ðnÞ
u ; !

ðnÞ
uþ1Þ, the words are the same and

Jð!ðnÞuþ1 þ ðQnþ1 �QnÞ�Þ ¼ Jð�n � �nþ1 � ð�nþ1 � �nÞÞ ¼ Jð0Þ ¼ 0

and therefore

k� 1 ¼ Jð!ðnÞuþ1 þ ðQnþ1 �QnÞ� � "Þ 6¼ Jð!ðnÞuþ1 þ ðQnþ1 �QnÞ�Þ ¼ 0

for a sufficiently small positive ".8 This shows that

Jð!ðnÞu ÞJð!ðnÞu þ �Þ . . .Jð!ðnÞu þ ðQnþ1 � 1Þ�Þ

6¼ Jð!ðnÞuþ1ÞJð!
ðnÞ
uþ1 þ �Þ . . . Jð!ðnÞuþ1 þ ðQnþ1 � 1Þ�Þ

and t2 � !
ðnÞ
uþ1.

Finally we prove that t1 ¼ !
ðnÞ
u . Note that !

ðnÞ
0 ¼ 0 for all n. Therefore if u ¼ 0, then

by using J�1ð0Þ ¼ ½0; !1Þ, we have t1 � 0 ¼ !
ðnÞ
0 and the proof is completed for u ¼ 0.

When u > 0 by the proof of Proposition 1, the predecessor of a long word in Bn must be

long and we have jJnð!ðnÞu�1Þj ¼ jJnð!
ðnÞ
u Þj. Thus we have Jnð!ðnÞu�1Þ 6¼ Jnð!ðnÞu Þ and t1 � !

ðnÞ
u

in a similar manner. �

Let us extend general rotation words to bi-infinite words. Fix � 2 ½0; 1Þ nQ, � 2
½0; 1Þ and the decomposition (1). Then a bi-infinite general rotation word is naturally

defined by

z ¼ . . . Jð�� 2�ÞJð�� �ÞJð�ÞJð�þ �ÞJð�þ 2�Þ � � � 2 f0; 1; . . . ; k� 1gZ :

Then z is ðkþ 1Þ-renewable by blocks Bn ¼ Jnð½0; �nÞÞ in the similar manner.

8Considering the order <lex on these words, there should be some j < Qnþ1 �Qn such that Jð!ðnÞu þ j�Þ <
Jð!ðnÞuþ1 þ j�Þ indeed.
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THEOREM 3. Assume that each long word of Bn has at least two letters of A ,

k � Qnþ1 �Qn and �n � !v � 1� �n þ �nþ1 with some v 2 f1; . . . ; k� 1g. Then there is

only one way to decompose a generalized rotation word z into Bn.

From this Proposition, the decomposition of the original rotation word is unique,

because for a given one-sided general rotation word, the extension to a bi-infinite

rotation word is unique (cf. Section 7).

The length of short words of Bn is not less than
Qn

i¼1ðai � 1Þ. Hence assumptions of

Theorem 3 are fulfilled9 for a sufficiently large n. The condition k � Qnþ1 �Qn assures

that the length of the short word is not less than the cardinality of short words. This

condition is necessary. For instance, B1 ¼ f01; 0; 1g holds for the decomposition

½0; 1=2Þ [ ½1=2; 1Þ with � > 1=2.

PROOF. We say that two words ziziþ1 . . . ; ziþ‘ and zjzjþ1 . . . ; zjþ‘0 overlapped if

there are i; j such that i < j < iþ ‘. Write

z ¼ . . . z�2z�1z0z1z2 . . .

with zi ¼ Jð�þ i�Þ 2 A . First we give a standard algorithm to decompose z into Bn.

Put ‘ ¼ Qnþ1 � 1 for simplicity. Consider a set

L ¼ fi 2 Z j ziziþ1 . . . ; ziþ‘ is a long word of Bng � Z :

Since ziziþ1 . . . ; ziþ‘ ¼ s is a long word, by Proposition 3 we have �þ i� (mod 1Þ 2
½!ðnÞu ; !

ðnÞ
uþ1Þ with s ¼ Jnð!ðnÞu Þ. This implies that �þ i� (mod 1Þ 2 ½!ðnÞu ; !

ðnÞ
uþ1Þ � ½0; �nÞ

and the first return map to the interval ½0; �nÞ is realized by x! xþ ð‘þ 1Þ�. This

means that �þ k� (mod 1Þ =2 ½0; �nÞ for k ¼ 1; 2; . . . ; ‘ and hence j 6¼ k for k ¼ 1; 2; . . . ; ‘.

Therefore there are no overlap of long words in z. In this manner we can first decide

all locations of long words in z. Let zi . . . ziþ‘ and zj . . . zjþ‘ be above decided two

long words with iþ ‘ < j and assume that there are no k such that iþ ‘ < k < j

and k 2 L. If iþ ‘þ 1 6¼ j, consider the word ziþ‘þ1 . . . zj�1. �þ ðiþ ‘þ 1Þ� 2 ½0; �nÞ
implies that Jnð�þ ðiþ ‘þ 1Þ�Þ is a prefix of ziþ‘þ1 . . . and we must have iþ ‘þ
jJnð�þ ðiþ ‘þ 1Þ�Þj � j� 1 since otherwise this short word Jnð�þ ðiþ ‘þ 1Þ�Þ
and the long word zj . . . zjþ‘ overlap and we would have �þ ðiþ ‘þ jJnð�þ
ðiþ ‘þ 1Þ�Þj þ 1Þ� (mod 1Þ 2 ½0; �nÞ, contradicting the property of the first return

map again. Iterating this, ziþ‘þ1 . . . zj�1 is decomposed into short words. Therefore we

have a decomposition of z into Bn: z ¼ . . .x�2x�1x0x1x2 . . . with xk 2 Bn. Let us say

that this is the standard decomposition.

We claim that any decomposition z ¼ . . . y�2y�1y0y1y2 . . . with yi 2 Bn and any

K > 0, there exist i � �K and j � K such that yi and yj are long words of Bn. In fact,

for e.g., assume that yi is a short word for all i � �K and y�K ¼ zj . . . zjþ‘. This would

mean that any factor of length ‘þ 1 appears in the left infinite word . . . zjþ‘�1zjþ‘ must

be a short word, since

9Recall that there are infinitely many i’s with ai > 2.

Recursively renewable words and coding of irrational rotations 1217



f�þ ðj� ð‘þ 1ÞtÞ� (mod 1Þ j t ¼ 0; 1; . . .g

is dense in ½0; 1Þ. However, because the cardinality of short words is not greater than

‘þ 1, the word . . . zjþ‘�1zjþ‘ must be periodic (for e.g., see Proposition 1.1.1. in [18]).

Then � would be rational, a contradiction. This proves the claim. Define

Cð. . .x�2x�1x0x1x2 . . .Þ ¼ fi 2 Z j 9t xt ¼ zi . . . zj is a long wordg

and

Cð. . . y�2y�1y0y1y2 . . .Þ ¼ fi 2 Z j 9t yt ¼ zi . . . zj is a long wordg:

By the above claim, Cð. . . y�2y�1y0y1y2 . . .Þ is neither bounded from below nor from

above. From the definition of the standard decomposition,

Cð. . . y�2y�1y0y1y2 . . .Þ � Cð. . .x�2x�1x0x1x2 . . .Þ:

It is sufficient to show that these two sets are equal. Indeed, if yi ¼ zi1 . . . zi2 and yj ¼
zj1 . . . zj2 are adjacent long words with i < j, the decomposition of word zi2þ1 . . . zj1�1 into

short words is trivially unique.

Assume that there exists

k 2 Cð. . .x�2x�1x0x1x2 . . .Þ n Cð. . . y�2y�1y0y1y2 . . .Þ:

Choose i 2 Cð. . . y�2y�1y0y1y2 . . .Þ with i < k and find a minimum

k1 2 Cð. . .x�2x�1x0x1x2 . . .Þ n Cð. . . y�2y�1y0y1y2 . . .Þ

with i < k1. Then the decomposition of ziþ‘þ1 . . . zk1�1 2 A � into Bn is unique, since

there are no occurrence of long words any more. This shows that the long word

zk1 . . . zk1þ‘ has a short word prefix zk1 . . . zk1þ‘0 . In view of Proposition 1, this happens

only when zk1 . . . zk1þ‘ is a long word JnðxÞ with x 2 ½0; �n � �nþ1Þ and zk1 . . . zk1þ‘0 is the

smallest short words with respect to the order <lex. Thus zk1þ‘0þ1 ¼ Jðxþ ‘0�Þ is the

prefix of a short word. Since ‘0 ¼ Qnþ1 �Qn, we have

Jðxþ ‘0�Þ ¼ Jðxþ ðQnþ1 �QnÞ�Þ ¼ Jðxþ �nþ1 � �nÞ � v

because xþ �nþ1 � �n 2 ½��n þ �nþ1; 0Þ. However by the assumption, each short word of

Bn begins with a letter less than v, which gives a contradiction. �

9. Ostrowski’s numeration system and induced discontinuities.

Ostrowski’s numeration system has deep connection to the distribution of

ðn�Þn¼1;2;... in T and combinatorics on words: a survey is found in [4]. It is extensively
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used in recoding sturmian words in Chapter 6 of [18]. A generalization to the

decomposition ½0; !1Þ [ ½!1; 1Þ is studied in Section 5 of [5] to deduce an ergodic invariant

of the rotation. In this section, we introduce Ostrowski’s type numeration system

associated to the negative continued fraction of � to analyze induced discontinuities.

One understands what happens when !1 2 Z þ �Z in [1] from the result of this section.

Recall that an is the digit of the negative continued fraction of � and Qn is defined

by Qnþ1 ¼ anQn �Qn�1 with Q0 ¼ 0 and Q1 ¼ 1.

LEMMA 1. Each element m 2 N is uniquely expanded in a form:

m ¼
X‘
i¼1

miQi

with mi 2 f0; 1; . . . ; ai � 1g and ðm‘;m‘�1; . . . ;m1Þ is a label10 of a finite walk of the next

graph:

��◦0,...,ai−2 ��
ai−1

��◦
0,...,ai−3

�� ai−2��
ð16Þ

A word ðm‘;m‘�1; . . . ;m1Þ 2
Q‘

i¼1f0; 1; . . . ; aig is admissible if this is a label of a walk

on this graph. Conversely, for an admissible ðm‘;m‘�1; . . . ;m1Þ, m ¼
P‘

i¼1 miQi gives a

greedy expansion of m.

PROOF. The expansion of m 2 N is computed by a greedy algorithm;

(1) x m

(2) Find k � 1 with Qk � x < Qkþ1
(3) mk  bx=Qkc
(4) x x�mkQk

(5) If x ¼ 0 then stop. Otherwise go back to (2).

We find an expression m ¼
P‘

i¼1 miQi with mi 2 f0; . . . ; ai � 1g. Let us prove that

this expression is admissible. Reading the graph (16), a word ðm‘;m‘�1; . . . ;m1Þ 2Q‘
i¼1f0; 1; . . . ; aig is admissible if and only if there are no forbidden subwords of the

form:

ðap � 1; ap�1 � 2; . . . ; aqþ1 � 2; aq � 1Þ:

To be precise, ðm‘;m‘�1; . . . ;m1Þ is admissible if and only if it has no suffix of the form:

ðap � 1; ap�1 � 2; . . . ; aqþ1 � 2; aq � 1;mq�1; . . . ;m1Þ:

One can easily prove an equality:
10Read from left to right. Each move in (16) decreases the index i by one.
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ðap � 1ÞQp þ ðaq � 1ÞQq þ
Xp�1
i¼qþ1
ðai � 2ÞQi ¼ Qpþ1 þQq�1 ð17Þ

for 1 � q < p. Therefore the words of forbidden form do not appear by the greedy

algorithm. This proves that above obtained expansion is admissible. To prove the

remaining part, it suffices to show if m ¼
P‘

i¼1 miQi is admissible, then m�P‘
i¼kþ1 miQi ¼

Pk
i¼1 miQi < Qkþ1, since this means that the admissible expansion must

coincides with the greedy one. The digits vector ðmi; . . . ;mjþ1;mjÞ is an admissible

block if mj < aj � 2 (mj � aj � 2 for j ¼ 1 or i ¼ j) and for k 2 N with j < k < i we have

mk ¼ ak � 2 and mi ¼ ai � 1. In other words, we cut the digit vector into blocks

whenever we come back to the left vertex of (16). Note that a length one vector ðmjÞ
with mj � aj � 2 is an admissible block by this definition. The admissibility of

ðmk;mk�1; . . . ;m1Þ allows us to decompose this digits vector into admissible blocks:

ðmk1�1; . . . ;mk2Þ; ðmk2�1; . . . ;mk3Þ; . . . ; ðmk	�1; . . . ;m1Þ with k1 ¼ kþ 1 and k	þ1 ¼ 1.

By (17),

mki�1Qki�1 þ � � � þmkiþ1Qkiþ1 � Qki þQkiþ1�1 � 2Qkiþ1

for i > 	 and the last �2Qkiþ1 is substituted with �Qkiþ1 for i ¼ 	. This inequality is valid

for the block of length one with ki ¼ kiþ1 þ 1. Summing up we have

Xk
i¼1

miQi � Qkþ1 �Qk2 þQk2�1 �Qk3 þQk3�1 � � � � �Q1 þQ0 < Qkþ1

which shows the result. �

For a given x 2 ½0; 1Þ, we have another expansion:

x ¼
X1
i¼1

xi�i

with xi 2 f0; 1; . . . ; ai � 1g. In this case, since 0 < �nþ1 < �n, the algorithm works in the

opposite direction11, that first we subtract x1�1 and then x2�2 and so on by the greedy

choice of digits x1; x2; . . .. The fact that Qi and �i satisfies the recurrence of the same

shape with symmetric forbidden words, the infinite vector ðx1; x2; . . .Þ is a label of the

infinite walk on the graph (16). An infinite vector ðx1; x2; . . .Þ 2
Q1

i¼1f0; 1; . . . ; ai � 1g is
admissible if it is a label of an infinite walk of the graph (16) which visit the left vertex

infinitely many times.

LEMMA 2. Each element x > 0 is uniquely expanded in a form:

x ¼
X1
i¼1

xi�i

11In this case, transition to the next vertex in (16) increases the index i by one.
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with xi 2 f0; 1; . . . ; ai � 1g and ðx1; x2; . . .Þ is admissible. Conversely, for an admissible

vector ðx1; x2; . . .Þ,
P‘

i¼1 xi�i is a greedy expansion in the above sense.

It is interesting that the numeration system works by the same greedy algorithm but

in two different directions. We call this expansion of x, the dual Ostrowski expansion.

PROOF. The expansion of x is computed by a greedy algorithm;

(1) i 1

(2) xi  bx=�ic
(3) x x� xi�i
(4) i iþ 1 and return to (1).

Clearly xi 2 f0; . . . ; ai � 1g. Let us show that for an expression x ¼
P1

i¼1 xi�i, ðx1; x2; . . .Þ
is admissible. Reading the graph (16), a word ðx1; x2; . . .Þ is admissible if and only if

there are no subwords of the form:

ðxp; . . . ; xqÞ ¼ ðap � 1; apþ1 � 2; . . . ; aq�1 � 2; aq � 1Þ

with q > p and no suffix of the form

ðxp; xpþ1; . . .Þ ¼ ðap � 1; apþ1 � 2; apþ2 � 2; . . .Þ:

We start with an equality analogous to (17):

ðap � 1Þ�p þ ðaq � 1Þ�q þ
Xq�1
i¼pþ1

ðai � 2Þ�i ¼ �p�1 þ �qþ1 ð18Þ

for p < q which proves that the above expansion contains no words of the form

ðap � 1; apþ1 � 2; � � � ; aq�1 � 2; aq � 1Þ. Taking q!1 in (18), we have

ðap � 1Þ�p þ
X1
i¼pþ1

ðai � 2Þ�i ¼ �p�1

which shows the there are no suffix of the form ðap � 1; ap�1 � 2; ap�2 � 2; . . .Þ. Thus we
have shown that ðx1; x2; . . .Þ is admissible.

We will show that if ðx1; x2; . . .Þ is admissible, then x�
Pk

i¼1 xi�i ¼
P1

i¼kþ1 xi�i < �k,

since this means that the admissible expansion must coincides with the greedy one. The

digits vector ðxi; . . . ; xjÞ is a dual admissible block if xj < aj � 2 (xj � aj � 2 for i ¼ j)

and for k 2 N with i < k < j we have xk ¼ ak � 2 and xi ¼ ai � 1. In short, from

the opposite direction of Lemma 1, we cut the digit vector into blocks whenever we come

to the left vertex of (16). The admissibility of ðxkþ1; xkþ2; . . .Þ allows us to decompose

this digits vector into dual admissible blocks: ðxk1 ; . . . ; xk2�1Þ; ðxk2 ; . . . ; xk3�1Þ; . . . ;
ðxk	 ; . . . ; xk	�1Þ; . . . with k1 ¼ kþ 1. An infinite sequence ðxkþ1; xkþ2; . . .Þ can not stay

eventually in the right vertex of (16), the dual admissible block decomposition is always
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possible. By (17),

xki�ki þ � � � þ xkiþ1�1�kiþ1�1 � �ki�1 þ �kiþ1 � 2�kiþ1�1

for each i. This inequality is valid for the block of length one with kiþ1 ¼ ki þ 1.

Therefore we have

X1
i¼kþ1

xi�i � �k1�1 � �k2�1 þ �k2 � �k3�1 þ �k3 � � � � < �k:

�

For the proof of the remaining direction of Theorem 2 in Section 10, it is important

to understand how the set of discontinuities vary when the n-th rotation in ½0; �nÞ is
induced to the ðnþ 1Þ-th. Let !½0� be one of the discontinuities of the original rotation

x 7! xþ � in ½0; 1Þ. Then the recurrence

!½k� ¼ !½k� 1� � !½k� 1�
�k

� �
�k ð19Þ

gives a point of discontinuity of k-th induced rotation x 7! xþ �kþ1 in ½0; �kÞ arose

from !½0�.

PROPOSITION 4. Let !½0� ¼
P1

i¼1 xi�i be the dual Ostrowski expansion associated

with �. Then we have

!½k� ¼
X1
i¼kþ1

mi�i

PROOF. This is obvious from the greedy algorithm of the dual Ostrowski

expansion. �

The point of discontinuity of the form m� (mod 1Þ with m 2 Z plays an

exceptional role; for positive m it eventually disappears, and for negative m it

eventually corresponds to the point �k � �kþ1:

PROPOSITION 5. Let m 2 Z and !½0� ¼ m� (mod 1Þ. If m � 0, then the Ostrowski

expansion m ¼
P‘

i¼1 miQi gives rise to a finite dual Ostrowski expansion

m� (mod 1Þ ¼
X‘
i¼1

mi�i:

Thus !½k� ¼
P‘

i¼kþ1 mi�i and especially !½‘� ¼ 0. If m < 0, then we have an infinite dual

Ostrowski expansion
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m� (mod 1Þ ¼
X1
i¼1

xi�i

and xi ¼ ai � 2 for sufficiently large i. Especially, !½k� ¼
P1

i¼kþ1ðai � 2Þ�i ¼ �k � �kþ1 for

sufficiently large k. Conversely, if x > 0 has an expansion x ¼
P1

i¼1 xi�i with xi ¼ ai � 2

for sufficiently large i, then x ¼ m� (mod 1Þ with a negative integer m.

PROOF. The case m � 0 follows from Lemma 1 and 2 since finite forbidden words

for two greedy expansions coincide. By this correspondence of Ostrowski expansions and

their duals, the positive x’s having finite dual Ostrowski expansions are characterized.

We prove by induction that for any integer m � 1 there exists k � 0 such that its

dual Ostrowski expansion has a form:

�m� (mod 1Þ ¼
X1
i¼1

xi�i

with xi ¼ ai � 2 for i > k. The equality (18) implies
P1

i¼kþ1ðai � 2Þ�i ¼ �k � �kþ1 for any

integer k � 0. Taking k ¼ 0, we have

� � (mod 1Þ ¼
X1
i¼1
ðai � 2Þ�i ð20Þ

which shows the case m ¼ 1. Assume that

�m� (mod 1Þ ¼
X1
i¼1

xi�i

with xi ¼ ai � 2 for i > k and ðx1; x2; . . .Þ is admissible. Take the largest integer s � 0

such that xi ¼ 0 for i � s. If s ¼ 0, then x1 > 0 and ðx1 � 1; x2; . . .Þ is admissible. This

implies that �ðmþ 1Þ� (mod 1Þ has the required form. If s > 0, then we use the relation

(18) in a form

ða1 � 1Þ�1 þ ðas � 1Þ�s þ
Xs�1
i¼2
ðai � 2Þ�i ¼ 1þ �sþ1: ð21Þ

Thus we have

�ðmþ 1Þ� ¼ �� þ
X1
i¼sþ1

xi�i

¼
Xs�1
i¼1
ðai � 2Þ�i þ ðas � 1Þ�s þ ðxsþ1 � 1Þ�sþ1 þ

X1
i¼sþ2

xi�i in T
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and ða1 � 2; . . . ; as�2 � 2; as�1 � 1; xsþ1 � 1; xsþ2; xsþ3; . . .Þ is easily shown to be admis-

sible. Conversely assume that x > 0 has an expansion x ¼
P1

i¼1 xi�i with xi ¼ ai � 2 for

i > k and choose a minimum k. If k ¼ 0, then (20) shows that x ¼ ��. If k > 0, then

xk � ak � 3 since ðx1; x2; . . .Þ is admissible.

X1
i¼1

xi�i ¼ �k � �kþ1 þ
Xk
i¼1

xi�i

¼ Qk �Qkþ1 þ
Xk
i¼1

xiQi

 !
� (mod 1Þ:

By the admissibility of ðx1; . . . ; xk�1; xk þ 1Þ, we have

�Qkþ1 þ ðxk þ 1ÞQk þ
Xk�1
i¼1

xiQi < Qk �Qkþ1 < 0

by Lemma 1. �

Define !0½i� ði ¼ 0; 1; . . .Þ by the same recurrence (19) as !½i� with an initial value

!0½0�. Using the dual Ostrowski expansion, one can discuss when two points of

discontinuity coincide in the k-th induced rotation:

PROPOSITION 6. Assume that !½0� 6¼ m� (mod 1Þ for all m 2 Z and there is an

integer u such that !0½0� � !½0� ¼ u� in T. Then there is an integer k > 0 such that

!0½k� ¼ !½k�. Conversely if there exist an integer k > 0 and !0½k� ¼ !½k�, then there exists

an integer u such that !0½0� � !½0� ¼ u� in T.

The assumption !½0� 6¼ m� (mod 1Þ is necessary. Consider the case !½0� ¼ 0 and

!0½0� ¼ 1� � ¼ �� (mod 1Þ in Proposition 5.

PROOF. In view of Proposition 4 and �i ¼ Qi� (mod 1Þ, the later assertion is

obvious. Assume that !0½0� � !½0� ¼ u� in T for an integer u. Without loss of generality,

we may assume that u > 0. By the assumption and Proposition 5, both !½0� and !0½0�
have infinite dual Ostrowski expansions !½0� ¼

P1
i¼1 xi�i and !0½0� ¼

P1
i¼1 x

0
i�i and

both of them do not have a suffix of the form ðap � 2; apþ1 � 2; . . .Þ. We wish to show

that there exist k > 0 such that xi ¼ x0i for i > k. It suffices to show this in the case u ¼ 1

since we can iterate u-times the procedure. Therefore our goal is to show that

�1 þ
P1

i¼1 xi�i can be rewritten into
P1

i¼1 x
0
i�i without infinite carries. Let k1 ¼ 1 and

ðxk1 ; . . . ; xk2�1Þ; ðxk2 ; . . . ; xk3�2Þ; . . . is the dual admissible block decomposition as in the

proof of Lemma 2. When ðx1 þ 1; x2; x3; . . .Þ is admissible, we have nothing to prove.

If not, then x1 þ 1 ¼ a1 or x1 þ 1 ¼ a1 � 1.

Case x1 ¼ a1 � 1. By the admissibility of ðx1; x2; . . .Þ the first dual admissible

block is of length greater than one, i.e., k2 > 2. Since a1�1 ¼ 1þ �2, we have
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a1�1 þ
X1
i¼2

xi�i ¼ ðx2 þ 1Þ�2 þ
X1
i¼2

xi�i in T :

If k2 � 4 then x2 þ 1 ¼ a2 � 1 and we have a new dual admissible block decomposition

ð0Þ; ðx2 þ 1; x3; . . . ; xk2�1Þ; ðxk2 ; . . . ; xk3�2Þ; . . .

which shows that xi ¼ x0i for i � 3. If k2 ¼ 3 then x2 � a2 � 3. In this case, the same

computation gives a new decomposition

ð0Þ; ðx2 þ 1Þ; ðxk2 ; . . . ; xk3�2Þ; . . .

which shows the same xi ¼ x0i for i � 3.

Case x1 ¼ a1 � 2. By the assumption on ðx1; x2; . . .Þ, there exists a maximum integer

s � 2 such that xi ¼ ai � 2 for i < s. If xs � ai � 3 then ðx1 þ 1; x2; . . . ; xs�1; xsÞ forms

the first dual admissible block and ðx1 þ 1; x2; . . .Þ is admissible. This was excluded at

the beginning. Therefore we must have xs ¼ ai � 1, which is the beginning of an dual

admissible block ðxs; . . . ; x‘Þ with ‘ > s. Using (21), we have

ðx1 þ 1Þ� þ
X1
i¼2

xi�i ¼ ðxsþ1 þ 1Þ�sþ1 þ
X1
i¼sþ2

xi�i in T:

If ‘ � sþ 2 then xsþ1 ¼ asþ1 � 2 and the last expression gives rise to a dual admissible

block decomposition:

ð0Þ; . . . ; ð0Þ; ððasþ1 � 1Þ; xsþ2; . . . ; x‘Þ; . . .

which shows that xi ¼ x0i for i � sþ 2. If ‘ ¼ sþ 1 then xsþ1 � asþ1 � 3 and the

decomposition is:

ð0Þ; . . . ; ð0Þ; ðxsþ1 þ 1Þ; . . .

and we also have xi ¼ x0i for i � sþ 2. �

10. Primitive substitutive rotation words are quadratic.

We prove that if the general rotation words is primitive substitutive, then � is

quadratic and !i � � 2 Qð�Þ, and complete the proof of Theorem 2.

Let z ¼ z0z1 � � � 2 A N be uniformly recurrent, i.e., for each factor v of z there exists

k > 0 that all factor of length k must contain v as a factor. Clearly, each general rotation

word is uniformly recurrent. Take a prefix u ¼ z1 . . . zn. One can decompose z into blocks

as z ¼ x0x1 . . . with xi 2
Sk

i¼1 A
k such that u is a prefix of all xixiþ1 . . . and all the factor

u of z appear as a prefix of xixiþ1 . . . for some i. Such xi is called the return words of u.
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Put u ¼ #fxi j i ¼ 0; 1; . . .g and define a map �z;u from fxi j i ¼ 0; 1; . . .g to f0; 1; . . . ;
u� 1g by the rank of first occurrence of xi in z. The word �z;uðx0Þ�z;uðx1Þ�z;uðx2Þ . . . is
the derived word of z by the prefix u. Then

THEOREM 4 ([14], [19]). A uniformly recurrent word z is primitive substitutive if

and only if its derived words by all prefixes form a finite set.

Note that once this theorem is established, the map �z;u could be replaced by any

bijection from fxi j i ¼ 0; 1; . . .g to f0; 1; . . . ; u� 1g. This change would at most M! times

enlarge the number of different derived words, where M is the maximum of the

cardinality of return words with respect to a prefix of z.

Consider a general rotation word z ¼ z0z1 . . . with respect to a decomposition (1)

with an angle � 2 ½0; 1Þ nQ and assume that z is primitive substitutive. Take a

sufficiently large positive integer n0, so that for n � n0, the presumptions of Proposition

3, Proposition 5, Theorem 3 and Proposition 6 are fulfilled, that is,

. Each long word of length Qn contains two different letters.

. Decomposition into Bn is unique.

. If !
ðnÞ
i � !

ðnÞ
j ¼ u� (mod 1Þ with i 6¼ j for some integer u then f!ðnÞi ; !

ðnÞ
j g �

f0; �n � �nþ1; �ng.

10.1. The case � ¼ 0.

First let us show that � is quadratic. Choose m � n0. From Proposition 3, an

occurrence of zi . . . ziþQmþ1�1 ¼ Jmð0Þ is equivalent to i� (mod 1Þ 2 ½0; !ðmÞ1 Þ. Find a

unique n � m such that �nþ1 < !
ðmÞ
1 < �n, which is always possible under our

assumption. We write n ¼ nðmÞ when it is necessary. Let z ¼ z
ðnÞ
0 z

ðnÞ
1 . . . with z

ðnÞ
i 2

Bn be the n-th renewed word by Theorem 1. Define a map fn : fzðnÞi j i ¼ 0; 1; . . .g !
f0; 1; . . . ; kng with #Bn ¼ kn þ 1 having the order preserving property

x �lex y ¼) fnðxÞ � fnðyÞ:

Then by construction, fnðzðnÞ0 Þfnðz
ðnÞ
1 Þ . . . is a coding of the rotation x 7! xþ �nþ1 of the

torus ½0; �nÞ with respect to the decomposition

0 ¼ !
ðnÞ
0 < !

ðnÞ
1 < � � � < !

ðnÞ
kn

< !
ðnÞ
knþ1 ¼ �n:

There is an index 1 � q � kn such that !
ðmÞ
1 ¼ !

ðnÞ
q . Hence in this setting, the return word

of z with respect to the prefix Jmð0Þ is a coding of the induced system ½0; !ðmÞ1 Þ of the n-th
rotation x! xþ �nþ1 on ½0; �nÞ. The first return map gm : ½0; !ðmÞ1 Þ ! ½0; !

ðmÞ
1 Þ becomes

an exchange of three intervals, which is explicitly given as follows:

gmðxÞ ¼
xþ �nþ1; x 2 ½0; !ðmÞ1 � �nþ1Þ

xþ ðbm þ 1Þ�nþ1 � �n; x 2 ½!ðmÞ1 � �nþ1; �n � bm�nþ1Þ

xþ bm�nþ1 � �n; x 2 ½�n � bm�nþ1; !
ðmÞ
1 Þ

8>><
>>:
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with bm ¼ dð�n � !
ðmÞ
1 Þ=�nþ1e. Define a natural coding Jm : ½0; !ðmÞ1 Þ ! B�n by:

JmðxÞ ¼
JnðxÞ; x 2 ½0; !ðmÞ1 � �nþ1Þ

JnðxÞJnðxþ �nþ1Þ . . . Jnðxþ bm�nþ1Þ; x 2 ½!ðmÞ1 � �nþ1; �n � bm�nþ1Þ

JnðxÞJnðxþ �nþ1Þ . . . Jnðxþ ðbm � 1Þ�nþ1Þ; x 2 ½�n � bm�nþ1; !
ðmÞ
1 Þ.

8>><
>>:

The discontinuities f!ðnÞi j i ¼ 0; 1; . . . ; kn þ 1g are transformed into discontinuities

f
ðmÞi j i ¼ 0; 1; . . . ;m0 þ 1g of Jm:

0 ¼ 

ðmÞ
0 < 


ðmÞ
1 < � � � < 


ðmÞ
m0þ1 ¼ !

ðmÞ
1 :

Obviously we have

f
ðmÞi g \ ½0; !
ðmÞ
1 � �nþ1Þ ¼ f!ðnÞi g \ ½0; !

ðmÞ
1 � �nþ1Þ

and other elements are of the form !
ðnÞ
j � p�nþ1 2 ½!ðmÞ1 � �nþ1; !

ðmÞ
1 Þ with an integer p

with 0 � p � bm. By the assumption, the correspondence between f
ðmÞi g and f!
ðnÞ
i g is

one to one and we have m0 ¼ kn. Each JmðxÞ with x 2 ½0; !ðmÞ1 Þ is a return word having

the prefix Jmð0Þ and the decomposition of z into return words is written as

z ¼Jmð0ÞJmðgmð0ÞÞJmðg
2
mð0ÞÞ . . .

which clearly gives a dynamical interpretation of the return word. The discontinuities of

the interval exchange gm satisfies the i.d.o.c. (infinite distinct orbit condition) of [24]. In

fact, the denseness of gm-orbits of each 

ðmÞ
i follows from the minimality of the irrational

rotation x 7! xþ �nþ1 on ½0; �nÞ. The assumption m � n0 guarantees that two negative

orbits of !
ðnÞ
i and !

ðnÞ
j with 1 � i < j � kn do not intersect in the irrational rotation

x 7! xþ �nþ1. This implies that no two negative orbits by gm of discontinuities f
ðmÞi g
intersect. Note that in the case !

ðmÞ
1 ¼ �n � �nþ1, three interval exchange gm is

degenerated into two interval exchange; the irrational rotation. Anyway gm satisfies

i.d.o.c. and therefore ð½0; !ðmÞ1 Þ; gmÞ is minimal and uniquely ergodic (see12 [25], [17],

Section 5.4.1 in [6]). As a result, 1-dimensional Lebesgue measure is the unique

invariant measure of gm.

In what follows, we fix a bijection �m from Jmð½0; !
ðmÞ
1 ÞÞ to f0; 1; . . . ; kng by

�mðxÞ ¼ i for x 2 ½
ðmÞi ; 

ðmÞ
iþ1Þ. Then the derived word of z by the prefix Jmð0Þ is

�mðJmð0ÞÞ�mðJmðgmð0ÞÞÞ�mðJmðg
2
mð0ÞÞÞ � � � 2 f0; 1; . . . ; kng

N :

By the definition of �m, we have

12This is an unpublished result in the thesis of M. Boshernitzan (due to S. Ferenczi). Unique ergodicity of a

minimal three interval exchange follows from the fact that it is an integral automorphism of an irrational

rotation with bounded return time (c.f. [20, Chapter 1, Section 5]).
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0 � x � y < !
ðmÞ
1 ¼) �mðJmðxÞÞ �lex �mðJmðyÞÞ:

Note that such a derived word is uniquely determined for each m � n0. We claim that

from a derived word, the value �nðmÞþ1=!
ðmÞ
1 is retrieved uniquely. From a derived word,

Theorem 3 and unique ergodicity of gm allow us to recover the set:



ðmÞ
iþ1 � 


ðmÞ
i

!m
1

����� i ¼ 0; . . . ; kn

( )

by computing frequencies of letters in f0; 1; . . . ; kng.13 We have to know which letters

correspond to the interval ½0; !ðmÞ1 � �nþ1Þ. By the definition of �m, these letters should

be consecutive integers including 0. Let us denote this set by f0; . . . ; rg. From dynamics

of the three interval exchange, we observe that in the derived word, there is a successor

letter of r larger than a successor letter of rþ 1. Moreover r is the minimum letter

having this property. Therefore one can compute

�nðmÞþ1

!
ðmÞ
1

¼ 1�
Xr
i¼0



ðmÞ
iþ1 � 


ðmÞ
i

!
ðmÞ
1

as claimed. This gives a well defined map to ½0; 1Þ from the set of derived words of z

with respect to prefixes Jmð0Þ with m � n0. Theorem 4 says that the set f�nðmÞþ1=!ðmÞ1 j
m � n0g must be finite. The same technique allows us to retrieve uniquely the value

ð�nðmÞ � bnðmÞ�nðmÞþ1Þ=!ðmÞ1 from the derived word. In other words, we uniquely retrieve

ratios of three intervals from the derived word and the set

�nðmÞþ1

!
ðmÞ
1

;
�nðmÞ � bnðmÞ�nðmÞþ1

!
ðmÞ
1

 !
2 R2

����� m � n0

( )

is finite. We deduce that

�nðmÞ

�nðmÞþ1
� bnðmÞ

���� m � n0

( )

is also a finite set. One can take two distinct positive integers m1;m2 such that

�nðm1Þ

�nðm1Þþ1
� bnðm1Þ ¼

�nðm2Þ

�nðm2Þþ1
� bnðm2Þ: ð22Þ

Therefore

13Approximate by continuous functions the characteristic function of an interval and apply a variant of

Theorem 6.19 in [36] for measure theoretical dynamical systems.
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Qnðm1Þ� � Pnðm1Þ

Qnðm1Þþ1� � Pnðm1Þþ1
¼

Qnðm2Þ� � Pnðm2Þ

Qnðm2Þþ1� � Pnðm1Þþ2
þ bnðm1Þ � bnðm2Þ: ð23Þ

If

Qnðm1Þ

Qnðm1Þþ1
6¼

Qnðm2Þ

Qnðm2Þþ1
þ bnðm1Þ � bnðm2Þ;

then (23) is a quadratic equation of �. If

Qnðm1Þ

Qnðm1Þþ1
¼

Qnðm2Þ

Qnðm2Þþ1
þ bnðm1Þ � bnðm2Þ;

then from 0 < Qn < Qnþ1 we have bnðm1Þ � bnðm2Þ ¼ 0. From (22), this implies that

�nðm1Þþ1

�nðm1Þ
¼

�nðm2Þþ1

�nðm2Þ

which shows that � has an eventually periodic continued fraction. In both cases, we have

proven that � is quadratic.

Now we wish to show that !i 2 Qð�Þ for each i. There are integers Nm;Mm such

that !
ðmÞ
1 ¼ !i �Nm� �Mm with i 2 f�1; 0; 1; . . . ; k� 1g where we put !�1 ¼ 1� � for

simplicity.14 From the finiteness of f�nðmÞþ1=!ðmÞ1 j m � n0g, one can take an increasing

sequence ðmiÞi¼1;2;... of integers such that

!ð1Þmi
¼ !v �Nmi

� �Mmi

with a fixed v 2 f�1; 0; . . . ; k� 1g and a constant s > 0 that

s ¼
Qnðm1Þ� � Pnðm1Þ

!v �Nm1
� �Mm1

¼
Qnðm2Þ� � Pnðm2Þ

!v �Nm2
� �Mm2

¼ . . . :

This gives

s ðNmj
�Nm1

Þ� � ðMmj
�Mm1

Þ
� 	

¼ ðQnðmjÞ �Qnðm1ÞÞ� � ðPnðmjÞ � Pnðm1ÞÞ

for j ¼ 2; 3; . . .. Since Nmj
> Nm1

, we have shown that s 2 Qð�Þ. This proves that both !v

and !
ð1Þ
mi are in Qð�Þ. Switching to a subsequence corresponding to the same derived

word, we may assume that



ðm1Þ
iþ1 � 


ðm1Þ
i

!
ðm1Þ
1

¼


ðm2Þ
iþ1 � 


ðm2Þ
i

!
ðm2Þ
1

¼ . . .

14It is possible that !�1 ¼ !i holds for some i � 0.
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for i ¼ 0; 1; . . . ; kn, which is equivalent to



ðm1Þ
i

!
ðm1Þ
1

¼


ðm2Þ
i

!
ðm2Þ
1

¼ . . .

for i ¼ 1; 2; . . . ; kn, since 

ðmÞ
0 ¼ 0. As 


ðmjÞ
i � !�ði;jÞ �R�ði;jÞ� (mod 1Þ, we can choose for

each j a vector

ð!�ð1;jÞ; !�ð2;jÞ; . . . ; !�ðkn;jÞÞ

from a finite set f!�1; !0; . . . ; !k�1gkn . Thus taking a subsequence again, we may

additionally assume that



ðmjÞ
i � !�ðiÞ � R�ði;jÞ� (mod 1Þ

where �ðiÞ does not depend on the choice of j. Thus there are integers S�ði;jÞ such that

!�ðiÞ � R�ði;1Þ� � S�ði;1Þ

!v �Nm1
� �Mm1

¼
!�ðiÞ � R�ði;2Þ� � S�ði;2Þ

!v �Nm2
� �Mm2

which shows that !�ðiÞ 2 Qð�Þ. According to the discussion in Section 9, we know that

each !j is congruent to some !�ðiÞ modulo �Z which finishes the proof for � ¼ 0.

10.2. The case � 6¼ 0.

We shall skip the details in parts where the analogy to the case � ¼ 0 works. In

Section 4, we gave a covering the torus ½0; 1Þ by induced systems of the shape ½�; �þ �Þ.
The value � was carefully chosen in a form � � !i (mod �Þ for some i, not to destroy

the combinatorial structure of the assertion. To treat the case � 6¼ 0, we need a similar

but more flexible covering so that every points on the torus correspond to long words.

We explain the construction only for ½0; 1Þ, i.e., the first step of the recursive

construction as in Section 4.

The original rotation is the interval exchange on ½0; 1Þ given by (9) with

discontinuities f!i j i ¼ 0; 1; . . . ; k� 1g as general rotation words. Its induced system

on ½�; �þ �Þ with � 2 ½0; 1Þ is

x 7! xþ �2 if x 2 ½�; �þ � � �2Þ
x 7! xþ �2 � � if x 2 ½�þ � � �2; �Þ

(

and discontinuities are written as

� ¼ !
ð1;�Þ
0 < !

ð1;�Þ
1 < � � � < !

ð1;�Þ
k < !

ð1;�Þ
kþ1 ¼ �þ �:

Each !
ð1;�Þ
i has either a form �þ � � �2 or !j �Njð�Þ� where Njð�Þ is the smallest non

negative integer that � � !j �Njð�Þ� < �þ � with j � 0. The later discontinuities are
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step functions on �. The interval ½0; � � �2Þ already corresponds to long words. Hence if

� 2 ½0; � � �2Þ then there is an interval ½!ð1Þi ; !
ð1Þ
iþ1Þ 3 � which exactly corresponds to a

long word J1ð�Þ ¼ J1ð!ð1Þi Þ in the sense of Proposition 3. However this is not flexible

enough for the later purpose. For a general � 2 ½0; �Þ, we choose � such that � 2
½�; �þ � � �2Þ and consider an induced system on ½�; �þ �Þ. Then we find consecutive

discontinuities !
ð1;�Þ
i and !

ð1;�Þ
iþ1 in this system having the property

½!ð1;�Þi ; !
ð1;�Þ
iþ1 Þ ¼

\a1
i¼1
ðJ�1ðsiÞ � ði� 1Þ�Þ ð24Þ

where s1 . . . sa1 ¼ J0ð�ÞJ0ð�þ �Þ . . . J0ð�þ ða1 � 1Þ�Þ is a long word for this shifted

system. From the shape of the right side of (24), we see that the interval ½!ð1;�Þi ; !
ð1;�Þ
iþ1 Þ

does not depend on the choice of � 2 ð�� � þ �2; ��. This explains that if � 2 ½0; �Þ, then
there is a canonical way to associate an interval ½!ð1;�Þi ; !

ð1;�Þ
iþ1 Þ � ½�; �þ �Þ which exactly

correspond to a long word.

Recall that we had constructed a covering of ½0; 1Þ by induced systems ½�; �þ �Þ
with � � !i (mod �Þ in Section 4. The induced systems gives a decomposition of the

rotation word z into blocks of the shape like b�1B1b or ðk� 1ÞB1b
�1 with some b 2 A �.

For each � 2 ½0; 1Þ, there is such an � with � 2 ½�; �þ �Þ. An advantage of this choice of

� is that it only requires minor changes of renewed words, and consequently we may use

three assumptions at the beginning of Section 10 as there are.

Shifting � in an appropriate way, we can associate an interval ½!ð1;�Þi ; !
ð1;�Þ
iþ1 Þ

containing � which exactly correspond to a long word which satisfies (24). One can

iterate this procedure recursively to cover the ðn� 1Þ-th induced system ½�n�1; �n�1 þ
�n�1Þ by the n-th system ½�n; �n þ �nÞ such that � 2 ½�n; �n þ �n � �nþ1Þ for all n. Thus
we find an interval ½!ðn;�nÞ

i ; !
ðn;�nÞ
iþ1 Þ ending at consecutive discontinuities of the n-th

induced system on ½�n; �n þ �nÞ which satisfies:

� 2 ½!ðn;�nÞ
i ; !

ðn;�nÞ
iþ1 Þ ¼

\Qnþ1

i¼1
J�1ðsiÞ � ði� 1Þ�
� 	

with the long word Jð�ÞJð�þ �Þ . . . Jð�þ ðQnþ1 � 1Þ�Þ ¼ s1s2 . . . sQnþ1 produced by this

system. Note that the choice of �n does not affect the three assumptions because shifting

of �n are performed within the covering of Section 4.

Let us prove that � is quadratic. Choose m � n0 and find a unique n ¼ nðmÞ and
i ¼ iðmÞ such that �nþ1 < !

ðm;�mÞ
iðmÞþ1 � !

ðm;�mÞ
iðmÞ < �n. Write !

ðmÞ
i ¼ !

ðm;�Þ
iðmÞ for simplicity. As

stated above, we have some freedom of choice of �m and it is possible to take �m ¼ !
ðmÞ
i

for simplicity. Following the same argument as Section 10.1, the return word is a coding

of a three interval exchange transform acts on ½!ðmÞi ; !
ðmÞ
iþ1Þ:

gmðxÞ ¼
xþ �nþ1; x 2 ½!ðmÞi ; !

ðmÞ
iþ1 � �nþ1Þ

xþ ðbm þ 1Þ�nþ1 � �n; x 2 ½!ðmÞiþ1 � �nþ1; !
ðmÞ
i þ �n � bm�nþ1Þ

xþ bm�nþ1 � �n; x 2 ½!ðmÞi þ �n � bm�nþ1; !
ðmÞ
iþ1Þ

8>><
>>:
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with bm ¼ dð�n � !
ðmÞ
iþ1 þ !

ðmÞ
i Þ=�nþ1e. The set of discontinuities of gm is written as f
ðmÞi j

i ¼ 0; . . . ; kn þ 1g and each 

ðmÞ
i has a form !j � t� where j 2 f�1; 0; . . . ; kg and t 2 N . In

the similar manner as Section 10.1, one can define a natural coding function Jm and an

appropriate ordering among return words and show that the set

�nðmÞþ1

!
ðmÞ
iþ1 � !

ðmÞ
i

;
�nðmÞ � bnðmÞ�nðmÞþ1

!
ðmÞ
iþ1 � !

ðmÞ
i

 !
2 R2

����� m � n0

( )

is finite and therefore � is quadratic.

Our final task is to show that !i � � 2 Qð�Þ for all i. By a proof analogous to Section

10.1, there exists a sequence ðmjÞj¼1;2;... that !
ðmjÞ
iþ1 � !

ðmjÞ
i 2 Qð�Þ. Further we may

assume that derived words by the prefix of length mj are identical and



ðm1Þ
iþ1 � 


ðm1Þ
i

!
ðm1Þ
iþ1 � !

ðm1Þ
i

¼


ðm2Þ
iþ1 � 


ðm2Þ
i

!
ðm2Þ
iþ1 � !

ðm2Þ
i

¼ . . .

for i ¼ 0; 1; . . . ; kn. This implies that up to renormalization, three interval exchanges

ð½!ðmjÞ
i ; !

ðmjÞ
iþ1 Þ; gmj

Þ with j ¼ 1; 2 . . . have exactly the same shape including the relative

location of discontinuities of Jmj
. Let us call three intervals appear in the above

systems as Ii ði ¼ 1; 2; 3Þ and define GðxÞ ¼ i for x 2 Ii. Then we claim that the map f

from x 2 ½!ðmjÞ
i ; !

ðmjÞ
iþ1 Þ to f1; 2; 3g

N defined by

fðxÞ ¼ GðxÞGðgmj
ðxÞÞGðg2mj

ðxÞÞ . . .

is injective. Indeed similarly as in the last part of Section 7, one can show that the

intersection of inverse images becomes a single point, using the fact that the three

interval exchange satisfies i.d.o.c., and the gm-orbit of each discontinuity 

ðmjÞ
i is dense

in ½!ðmjÞ
i ; !

ðmjÞ
iþ1 Þ.

Since derived words by the prefix of length mj are identical and fð�Þ is an image of a

morphism of the derived word, fð�Þ is independent of j. Thus we see that � must be

located in the same relative position in the interval ½!ðmjÞ
i ; !

ðmjÞ
iþ1 Þ, i.e.,

�� !
ðm1Þ
i

!
ðm1Þ
iþ1 � !

ðm1Þ
i

¼
�� !

ðm2Þ
i

!
ðm2Þ
iþ1 � !

ðm2Þ
i

¼ . . .

holds. By using the same technique as Section 10.1, we can show that �� !
ðmjÞ
i 2 Qð�Þ

and �� 

ðmjÞ
i 2 Qð�Þ. This implies that !i � � 2 Qð�Þ as desired.

11. Open questions.

Theorem 1 and 2 are devoted to coding of k interval exchange transforms which are

degenerated into two intervals. A natural question is to generalize these result to

genuine interval exchange transforms. Ferenczi, Holton and Zamboni showed in [15]
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and [16] that an i.d.o.c. three interval exchange gives a primitive substitutive system if

and only if the parameters are in the same quadratic field. A related result for k intervals

is found in [9].

Let us say a word z ¼ z0z1 � � � 2 A N is primitive substitutive in arithmetic

progression (PSAP), if zazaþbzaþ2b . . . are primitive substitutive for all a � 0 and b > 0.

Theorem 2 implies that a primitive substitutive rotation word is PSAP. Can we

characterize PSAP words among primitive substitutive words? Durand had shown in

Proposition I.6 of [13] that zazaþbzaþ2b . . . is an image of the morphism of the fixed point

of the substitution, not necessarily primitive. Their primitivity seem to be a subtle

question.
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