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Abstract. For a holomorphic map F : X −→ Y and a non-singular foliation
on Y , we give a residue formula which measures singularities of the lifted foliation on
X by applying the Baum-Bott residue formula.

1. Introduction.

In this paper we study residues for non-transversality of a holomorphic map to a
non-singular foliation. Let F : Xn → Y m be a holomorphic map between n and m-
dimensional compact complex manifolds, respectively, and assume that a non-singular
codimension one foliation on Y is given. In general, the pull-back of the foliation via
F is singular along the locus where F does not satisfy the transversality condition to
leaves in Y . This is one of the typical way of finding singular foliations, for instance, the
simplest case is the foliation given by level sets of a holomorphic function (the case where
Y is a curve with the point foliation). Usually the singularity of holomorphic foliation
F is analyzed in terms of the normal sheaf NF (cf. Baum-Bott [BB], Suwa [S2]), while
the conormal sheaf G attracts less attention so far. However, the conomal sheaf behaves
better than the normal sheaf with respect to the pull back operation. Thus, we focus on
the relation between NF and G to define a certain residue for the non-transversality of
F , precisely, the Baum-Bott residue for the lifted singular foliation on X. We then give
a simple residue formula for the top Chern class: for instance, when the singular locus
consists of isolated points pi’s, our residue is expressed by the sum of the Grothendieck
residue for local defining equations around pi (see Theorem 3.3, 3.4 below),

∫

X

cn(ΩX ⊗ G ∨) =
∑

i

Respi

[
df

(i)
1 ∧ · · · ∧ df

(i)
n

f
(i)
1 , . . . , f

(i)
n

]
.

This is actually a natural extension of multiplicity formulas for singularities of holo-
morphic functions (over a non-singular source space) studied in [IS]. The proof follows
directly from our definition and formal computation of the Chern character and the
Baum-Bott formula for the normal sheaf NF [BB]. Another proof without using the
Baum-Bott formula for NF is discussed in [I].

In Section 2, we state some basic notions of singular foliations. In Section 3, we
discuss residue formulas in terms of normal and conormal sheaves. The main formula of
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this paper is in this section. In the last two sections, a few applications and an example
are given.

I would like to thank T. Ohmoto, T. Suwa and the referee for their valuable com-
ments.

2. Preliminaries.

2.1. Singular holomorphic foliations.
In this subsection, we shall give some general notation and definitions on singular

holomorphic foliations. For details we refer to [BB] and [S2]. Let X be a complex
manifold and OX the structure sheaf of X. We define a singular holomorphic foliation F
on X to be a coherent subsheaf of the tangent sheaf ΘX which is an involutive differential
system. We call F the tangent sheaf of the foliation. We say F is of dimension p if a
generic stalk of F is a rank-p free OX,x-module. We also define the normal sheaf NF of
F by the exact sequence

0 −→ F −→ ΘX −→ NF −→ 0.

The singular set S(F ) of F is defined by S(F ) = {x ∈ X : NF ,x is not OX,x-free}.
We can also give a definition of a singular holomorphic foliation G on X to be a

coherent subsheaf of the cotangent sheaf ΩX which satisfies the Frobenius integrability
condition. We call G the conormal sheaf of the foliation. We also say G is of codimension
q if the generic rank is q. We denote by ΩG the quotient sheaf given by

0 −→ G −→ ΩX −→ ΩG −→ 0.

The singular set S(G ) of G is also defined by S(G ) = {x ∈ X : ΩG ,x is not OX,x-free}.
If F is reduced (or full) (see [S2] or [BB]), the tangent sheaf F and its annihilator

G define equivalent foliations such that S(F ) = S(G ).
From now on, we concentrate ourselves on codimension one locally free singular

foliations. (i.e., G is of rank one.) We may express G as follows. Let U = {Uα} be an
open covering of X and a collection ω of 1-forms ωa on Uα satisfying the integrability
conditions ωa∧dωα = 0. The forms ωa are patched by the transition relations ωβ = gαβωα

on Uα ∩ Uβ . Then, G is defined as the locally free subsheaf of ΩX given by the cocycle
(gαβ). We sometimes identify the collection ω of 1-forms with the conormal sheaf G of
ω as a codimension one foliation.

2.2. Transversality condition.
Let F : Xn −→ Y m be a holomorphic map, G̃ (the conormal sheaf of) a codimension

one non-singular foliation on Y . Put G = F−1G̃ , the inverse image of G̃ , which defines
a possibly singular foliation on X. In this case the transversality condition is described
as follows. By using the Frobenius integrability condition, non-singular foliation G̃ on Y

is locally given by a Pfaffian equation dym = 0 for some local coordinates (y1, . . . , ym) of
Y . For a local coordinate (x1, . . . , xn) of X, if we write F as a system of m functions
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y1

...
ym


 =




F1(x1, . . . , xn)
...

Fm(x1, . . . , xn)


 ,

then the lifted foliation G on X is given by the collection of 1 forms ω = (F ∗dym) =
(dFm). The non-transversal loci of F to G̃ is nothing but the singular set of G :

S(G ) = {x ∈ X : dFm(x) = 0}.

3. Residue formula.

3.1. Locally free resolution of NF ⊗ G .
Let ω = (ωα) be a codimension one locally free singular holomorphic foliation and G

the conormal sheaf of ω. We denote by F = {v ∈ ΘX : 〈v, ω〉 = 0} the annihilator of G .
To compute the Chern character of the coherent sheaf NF , we construct a locally free
resolution of NF . Since ω can be regarded as a homomorphism ιω : G −→ ΩX , it defines a
global section ιω ∈ H0(X, H om(G ,ΩX)) ' H0(X, ΩX⊗G ∨). Here G ∨ = H om(G ,OX)
is the dual sheaf of G . Let (x1, . . . , xn) be a local coordinate of X and let s∨α be a local
frame for G ∨ on Uα. Then the restriction ιωα

of ιω to Uα is written as ιωα
=

∑
fi(dxi⊗s∨α)

for some functions f1, . . . , fn. We refer (f1, . . . , fn) as the local coefficients of ω (or also
of ιω). We also regard ιω as the “contraction operator” ιω : ΘX ⊗G −→ OX . We denote
by Iω the ideal sheaf defined by the image Im(ιω : ΘX ⊗ G −→ OX). Let us relate the
above Iω and the normal sheaf NF . Since G is locally free, by applying ⊗G to the exact
sequence

0 −→ F −→ ΘX −→ NF −→ 0,

the following sequence

0 −→ F ⊗ G −→ ΘX ⊗ G −→ NF ⊗ G −→ 0

is also exact. Since the kernel of ιω : ΘX ⊗ G −→ OX is equal to F ⊗ G , we have

Iω ' (ΘX ⊗ G )/(F ⊗ G ) ' NF ⊗ G .

We assume that S(G ) consists of isolated points only. Since the local coefficients
(f1, . . . , fn) of ωα is a regular sequence near a singular point pα ∈ Uα, the Koszul complex
of sheaves

0 → ∧n(ΘX ⊗ G ) → ∧n−1(ΘX ⊗ G ) → · · · → ∧1(ΘX ⊗ G ) → OX → 0

is exact except for the last term with the boundary operator

dp(e1 ∧ · · · ∧ ep) =
p∑

i=1

(−1)i−1fie1 ∧ · · · ∧ êi ∧ · · · ∧ ep,



902 T. Izawa

where {e1, . . . , en} is a local frame of ΘX ⊗ G . (See [GH] or [FL].) Thus by replacing
the last term by Iω = NF ⊗ G , it gives the Koszul resolution of NF ⊗ G as

0 → ∧n(ΘX ⊗ G ) → ∧n−1(ΘX ⊗ G ) → · · · → ∧1(ΘX ⊗ G ) → NF ⊗ G → 0.

3.2. Chern classes of NF .
This subsection is devoted to a simple computation of cn(NF ). From the definition

of the characteristic classes of coherent sheaves, we write

ch(NF ⊗ G ) = ch
( n∑

i=1

(−1)i−1 ∧i (ΘX ⊗ G )
)

.

By using Theorem 10.1.1 of [H], we have

ch
( n∑

i=1

(−1)i−1 ∧i (ΘX ⊗ G )
)

= ch
(
−

( n∑

i=0

(−1)i ∧i (ΘX ⊗ G )
)

+ OX

)

= ch(OX)− ch
( n∑

i=0

(−1)i ∧i (ΘX ⊗ G )
)

= 1− td−1(ΩX ⊗ G ∨)cn(ΩX ⊗ G ∨)

= 1− cn(ΩX ⊗ G ∨),

where the last equality holds for dimensional reason. Now we have the Chern character
of NF as

ch(NF ) =
(
1− cn(ΩX ⊗ G ∨)

)
ch(G ∨).

Next, we compute the Chern classes of NF . We denote by chi the terms of i-th
degree in ch. We see from the above equality that chi(NF ) = 1

i!c1(G ∨)i for i ≤ n − 1
and chn(NF ) = 1

n!c1(G ∨)n − cn(ΩX ⊗ G ∨).
First, c1(NF ) = c1(G ∨) is obvious. Next we show that c2(NF ) = 0. From the

Newton formula

2! ch2(NF )− ch1(NF )c1(NF ) + 2c2(NF ) = 0,

we see that

2!
1
2!

c1(G ∨)2 − c1(G ∨)c1(G ∨) + (−1)22c2(NF ) = 0,

which implies c2(NF ) = 0.
In the same way, we see ci(NF ) = 0 for 2 ≤ i ≤ n − 1. Indeed, assuming that

c2(NF ) = · · · = ci−1(NF ) = 0, we have
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0 = i! chi(NF )− chi−1(NF )c1(NF ) + chi−2(NF )c2(NF ) + · · ·+ (−1)i i ci(NF )

= i!
1
i!

c1(G ∨)i − c1(G ∨)i−1c1(NF ) + (−1)i i ci(NF )

= (−1)i i ci(NF ).

Finally we also see

0 = n! chn(NF )− chn−1(NF )c1(NF ) + chn−2(NF )c2(NF ) + · · ·+ (−1)n n cn(NF )

= n!
(

1
n!

c1(G ∨)n − cn(ΩX ⊗ G ∨)
)
− c1(G ∨)n−1c1(NF ) + (−1)n n cn(NF )

= (−1)n n cn(NF )− n!cn(ΩX ⊗ G ∨)

which implies cn(NF ) = (−1)n(n− 1)! cn(ΩX ⊗ G ∨).
We summarize the above computations as follows.

Proposition 3.1.

c1(NF ) = c1(G ∨)

c2(NF ) = · · · = cn−1(NF ) = 0

and

cn(NF ) = (−1)n(n− 1)! cn(ΩX ⊗ G ∨).

3.3. Residue formula.
As observed in Proposition 3.1, for a codimension one foliation we only have

α cn(NF ) + β c1(NF )n as the n-th symmetric polynomial ϕ(NF ). Thus by applying
the Baum-Bott residue formula we have

∫

X

(
α cn(NF ) + β c1(NF )n

)
= α Rescn

(NF , S(F )) + β Rescn
1
(NF , S(F )),

where Rescn
and Rescn

1
are the Baum-Bott residues.

Let us also compute the local residues. For ϕ = cn, we can see that Rescn
is given

by the Grothendieck residue. First we assume that the singular set S(G ) consists only
of p. Here we recall the following result in [S1].

Proposition 3.2 ([S1]). For an (n− 1)-dimensional locally free foliation F , the
Baum-Bott residue is given by

Rescn(NF , p) = (−1)n(n− 1)! dim Ext1Op
(ΩG ,p,Op).

We can observe the dimension of Ext1Op
(ΩG ,p,Op) more precisely as follows. Let us

consider the dual of the exact sequence
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0 −→ G −→ ΩX −→ ΩG −→ 0.

Then we have

0 −→ F −→ ΘX −→ G ∨ −→ E xt1OX
(ΩG ,OX) −→ 0.

Thus by applying ⊗G , we also have

0 −→ Iω −→ OX −→ E xt1OX
(ΩG ,OX)⊗ G −→ 0.

We note that the supports of the sheaves OX/Iω and E xt1OX
(ΩG ,OX) are the singular

set of G . Thus in the isolated singular case, they are sky-scraper sheaves. Therefore the
isomorphism OX/Iω ' E xt1OX

(ΩG ,OX)⊗ G gives

dimExt1Op
(ΩG ,p,Op) = dim(Op/Iω,p) = Resp

[
df1 ∧ · · · ∧ dfn

f1, . . . , fn

]
,

where (f1, . . . , fn) is the local coefficient of ω and Resp

[
df1∧···∧dfn

f1,...,fn

]
is the Grothendieck

residue symbol (see [O] or Chapter 5 of [GH]). The Baum-Bott residue formula for NF

[BB] is translated as follows.

Theorem 3.3 (Baum-Bott residue formula for codimension one foliations). Let ω

be a codimension one foliation with conormal sheaf G , and F the annihilator of G . We
suppose that S(G ) = {p1, . . . , pk} and we write ιω =

∑
f

(j)
i (dxi ⊗ s∨) as a section of

ΩX ⊗ G ∨ near pj with a local frame s∨ of G ∨. Then we have

∫

X

cn(ΩX ⊗ G ∨) =
k∑

j=1

Respj

[
df

(j)
1 ∧ · · · ∧ df

(j)
n

f
(j)
1 , . . . , f

(j)
n

]
,

and for the Baum-Bott residue Rescn
1
(NF , S(F )),

∫

X

c1(G ∨)n = Rescn
1
(NF , S(F )).

Proof. This is given by

∫

X

cn(ΩX ⊗ G ∨) =
(−1)n

(n− 1)!

∫

X

cn(NF )

=
k∑

j=1

dimExt1Opj
(ΩG ,pj

,Opj
)

=
k∑

j=1

Respj

[
df

(j)
1 ∧ · · · ∧ df

(j)
n

f
(j)
1 , . . . , f

(j)
n

]
. ¤
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Now we give the main result of this paper. Let F : Xn −→ Y m, G̃ , G = F−1G̃ be
as in Subsection 2.2.

We assume that S(G ) consists of isolated points {p1, . . . , pk}. Let F
(j)
m be a function

with which dF
(j)
m defines G near pj as above and set f

(j)
i = ∂F (j)

m

∂xi
so that dF

(j)
m =

f
(j)
1 dx1 + · · ·+ f

(j)
n dxn. Then we have

∫

X

cn(ΩX ⊗ G ∨) = (−1)n

( ∫

X

cn(X) +
n∑

l=1

∫

X

cn−l(ΘX)c1(G )l

)

=
k∑

j=1

Respj

[
df

(j)
1 ∧ · · · ∧ df

(j)
n

f
(j)
1 , . . . , f

(j)
n

]
.

Here we have the main result.

Theorem 3.4 (residue formula for non-transversality). Let F : Xn −→ Y m be a
holomorphic map of generic rank-r and G̃ a codimension one non-singular foliation on
Y . We assume that the non-transversal points of F to G̃ are {p1, . . . , pk}, then we have

χ(X) +
r∑

l=1

∫

F∗(cn−l(X)_[X])

c1(G̃ )l = (−1)n
k∑

j=1

Respj

[
df

(j)
1 ∧ · · · ∧ df

(j)
n

f
(j)
1 , . . . , f

(j)
n

]
.

Proof. We denote by X∗ the set of generic points where the rank of F is r. By
using the projection formula,

∫

X

cn−l(ΘX)c1(G )l =
∫

X∗
cn−l(ΘX)F ∗(c1(G̃ )l) =

∫

F∗(cn−l(X)_[X])

c1(G̃ )l.

It is obvious that the above terms are zero for r ≤ l. ¤

4. Application.

4.1. Multiplicity formula.
As an example, let us consider the case where F : Xn −→ C is a map for a curve C

and G̃ = ΩC . Then the above formula implies the multiplicity formula [IS], [F], [IV].

Theorem 4.1 (the multiplicity formula). Let F : Xn −→ C be a holomorphic map
onto a compact complex curve C with the generic fiber MF . If F has finite number of
isolated critical points {p1, . . . , pk}, then for n ≥ 2, we have

χ(X)− χ(MF )χ(C) = (−1)n
k∑

j=1

µ(F, pj)

where µ(F, pj) is the Milnor number of F at pj.
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Proof. It is clear that the residues which appear in the right hand side of the
Theorem 3.4 are dim(O/IdF ) = µ(F, pi). The left hand side of the Theorem 3.4 is
written by

χ(X) +
(
cn−1(ΘX)c1(G ) _ [X]

)
.

We have

cn−1(ΘX)c1(G ∨) =
(

cn−1(ΘF ) +
∑

l≥2

cn−l(ΘF )c1(G ∨)l−1

)
c1(G ∨)

= −cn−1(ΘF )c1(F−1ΩC) +
∑

l≥2

(−1)lcn−l(ΘF )c1(F−1ΩC)l

= −cn−1(ΘF )F ∗c1(ΩC) +
∑

l≥2

(−1)lcn−l(ΘF )F ∗(c1(ΩC)l)

= cn−1(ΘF )F ∗c1(ΘC).

Hence

cn−1(ΘX)c1(G ) = −cn−1(ΘF )F ∗c1(ΘC).

Since the regular leaves of G are the generic fibers (ι : MF −→ X), we see that ι−1ΘF is
the tangent sheaf of MF . Thus by applying the projection formula for ι∗F : MF −→ p,
we have

∫

MF

cn−1(ΘF ) = χ(MF )1C(p)

for almost everywhere p ∈ C. Now we obtain

∫

X

cn−1(ΘF )F ∗c1(ΘC) = χ(MF )
∫

C

c1(ΘC)

= χ(MF )χ(C)

which prove the formula. ¤

Remark 4.2.

1. In the above proof, arguments on the application of the projection formula is a little
bit rough. We can give a concrete proof on the projection formula without measure
zero sets also by applying the Čech-de Rham techniques (see [IS]).

2. The above arguments cannot be applied to the case that X is a Riemann surface since
one dimensional foliations defined as the annihilator of codimension one foliations are
always non-singular.
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4.2. The surface case.
Let F : X2 −→ Y m be a map from a compact complex surface. In this case we write

down the formula in Theorem 4.1 into geometric form. We set that ym = F
(j)
m (x1, x2)

to be the m-th entry of a local representation of F near pj and write dF
(j)
m = f

(j)
1 dx1 +

f
(j)
2 dx2. Then the above formula is

χ(X) + F∗(c1(X) _ [X]) _ c1(G̃ ) + F∗[X] _ c1(G̃ )2 =
k∑

j=1

Respj

[
df

(j)
1 ∧ df

(j)
2

f
(j)
1 , f

(j)
2

]
.

If the generic rank of F is one, the last term in the left-hand side of the above vanishes
and we have

χ(X) + χ(MF )
(
F∗[X] _ c1(G̃ )

)
=

k∑

j=1

Respj

[
df

(j)
1 ∧ df

(j)
2

f
(j)
1 , f

(j)
2

]
,

where MF is the generic fiber of F .

Remark 4.3. In [T], Torii gave the above results by computing c(NF ) = c(ΘX −
F ) directly using the exact sequence

0 −→ F −→ ΘX −→ NF −→ 0

of the annihilator F of G = F−1G̃ . Then c2(NF ) = c1(ΘX)c1(F ) + c2(ΘX) is given
and by applying the adjunction formula G = F ⊗KX on surfaces, the formula for the
surface cases are also proved.

5. Example.

Let Y = CP 3 × CP 1. We set ([X0 : X1 : X2 : X3], [Y0 : Y1]) the homogeneous
coordinates of Y . We give a non-singular foliation G̃ = π−1ΩCP 1 as the trivial extension
via the natural projection π : CP 3 ×CP 1 −→ CP 1. Let

X = V
(
X0

l + X1
l + X2

l + X3
l
) ∩ V (X0Y0 + X1Y1)

be the non-singular subvariety of Y . We consider the inclusion map F = ι : X ↪→ Y .
To see the non-transversal points, we take the inhomogeneous coordinates over X0 6=

0 and Y0 6= 0 as (s, x, y) =
(

X1
X0

, X2
X0

, X3
X0

)
and z = Y1

Y0
. Then a local coordinate of X are

given by (x, y) such that the local defining equations of X are 1 + sl + xl + yl = 0 and
1 + sz = 0. For the function z = (−1)−

1
l (1 + xl + yl)−

1
l , we set that

ϕ =
∂z

∂x
= (−1)−

1
l xl−1(1 + xl + yl)−

l+1
l

ψ =
∂z

∂y
= (−1)−

1
l yl−1(1 + xl + yl)−

l+1
l .
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Since z-axis is the transversal direction for the leaves, the non-transversal conditions are
given by ϕ = ψ = 0 such that (x, y) = (0, 0). Thus, with the defining equations, we see
that the non-transversal points are

(s, x, y; z) = (ωk, 0, 0;−ωl−k−1)k=0,...,l−1,

where we denote by ωk the l-roots of −1. It is easily check that the non-transversal
points never appear on the hyperplane X0 = 0.

Now we compute the local residue. We see

dϕ ∧ dψ

ϕψ
=

(
(l − 1)2 + (l2 − 1)

xl + yl

1 + xl + yl

)
dx

x
∧ dy

y
,

which implies

Res =
1

(2π
√−1)2

∫

|x|=|y|=ε

dϕ ∧ dψ

ϕψ
= (l − 1)2.

Indeed, this number coincides the Milnor number µz of the function z at the origin. Since
the number of non-transversal points is l, we have

∑
Res = l(l − 1)2.

On the other hand, we also compute the global index. For the hyperplane bundle
[Hn] on CPn, we set On(k) = OCP n

(
[Hn]⊗k

)
. (On this notations, see Chapter 1 of

[GH].) We recall that the associate line bundles of V (X0
l + X1

l + X2
l + X3

l) and
V (X0Y0 + X1Y1) are O3(l) and O3(1)⊗ O1(1) respectively. Thus E = O3(l)⊕ (O3(1)⊗
O1(1)) is a global extension of the normal sheaf of X in Y :

0 −→ ΘX −→ ΘY |X −→ E |X −→ 0.

Here we use the following interpretation:

χ(X) +
∫

F∗(c1(X)_[X])

c1(G̃ ) =
∫

X

c2

(
ΩX ⊗ F−1π−1G̃ ∨

)

=
∫

M

c2(E )c2

(
(ΩY − E ∨)⊗ G̃ ∨

)
.

We remark that we omit the term of c1(G̃ )2 in 4.2 since this vanishes by dimensional
reason. Let h = c1([H3]) and p = c1([H1]) be the generators of H∗(CP 3 × CP 1) with
the relation h4 = p2 = 0. We note that the total Chern classes of locally free sheaves
appears in the above integration are c(ΩM ) = (1+h)4(1+p)2, c(E ) = (1+ lh)(1+h+p)
and c(G̃ ) = (1− 2p). Then the quadratic terms of
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c
(
(ΩY − E ∨)⊗ G̃ ∨

)
=

c(ΩM ⊗ G̃ ∨)
c(E ∨ ⊗ G̃ ∨)

=
1 + (6p− 4h) + (6h2 − 16ph) + (higher terms)

(1 + (2p + lh))(1 + (p− h))

are

c2

(
(ΩY − E ∨)⊗ G̃ ∨

)
= (l − 2)ph + (l2 − 3l + 3)h2.

We also have

c2(E ) = lh(p + h).

Therefore we see

c2(E )c2

(
(ΩY − E ∨)⊗ G̃ ∨

)
= lh(p + h)

(
(l − 2)ph + (l2 − 3l + 3)h2

)

= l(l − 1)2h3p

such that we obtain

χ(X) +
∫

F∗(c1(X)_[X])

c1(G̃ ) = l(l − 1)2h3p _ [Y ]

= l(l − 1)2.

This coincides with the sum of the local residues.
We note that the Euler number χ(X) of X is l(l2−4l+7) and

∫
F∗(c1(X)_[X])

c1(G̃ ) =∑
Res−χ(X) = 2l(l − 3). Thus the Euler number of the generic leaf on X is l(l − 3).
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