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Abstract. A bounded Euclidean domain R is said to be a Dirichlet domain if
every quasibounded harmonic function on R is represented as a generalized Dirichlet
solution on R. As a localized version of this, R is said to be locally a Dirichlet domain
at a boundary point y ∈ ∂R if there is a regular domain U containing y such that
every quasibounded harmonic function on U ∩R with vanishing boundary values on
R∩∂U is represented as a generalized Dirichlet solution on U ∩R. The main purpose
of this paper is to show that the following three statements are equivalent by pairs:
R is a Dirichlet domain; R is locally a Dirichlet domain at every boundary point
y ∈ ∂R; R is locally a Dirichlet domain at every boundary point y ∈ ∂R except for
points in a boundary set of harmonic measure zero. As an application it is shown
that if every boundary point of R is graphic except for points in a boundary set of
harmonic measure zero, then R is a Dirichlet domain, where a boundary point y ∈ ∂R
is said to be graphic if there are neighborhood V of y and an orthogonal (or polar)
coordinate x = (x′, xd) (or x = rξ) such that V ∩ R is represented as one side of a
graph of a continuous function xd = ϕ(x′) (or r = ϕ(ξ)).

1. Introduction.

In studying a harmonic function u on a bounded domain R in the Euclidean space
Rd of dimension d ≥ 2, it is very convenient in many instances if u is represented as
a generalized Dirichlet solution HR

f of a resolutive boundary function f on ∂R even if
the concrete properties of f are unknown. If u admits such a representation, then u

must be quasibounded on R (cf. (4.3) below). However there are a domain R and a
quasibounded harmonic function u on R such that u cannot be represented as a Dirichlet
solution on R (cf. (4.4) below). In view of this situation we are interested in finding
conditions on R under which every quasibounded harmonic function on R is represented
as a generalized Dirichlet solution. Such a domain will be referred to as a Dirichlet
domain. As a localization of this property, we say that a domain R is locally a Dirichlet
domain at a boundary point y ∈ ∂R with respect to a regular domain U containing y if
every quasibounded harmonic function u on R ∩ U with vanishing boundary values on
R ∩ ∂U is represented as a Dirichlet solution HR∩U

f on R ∩ U of a resolutive boundary
function f on ∂(R ∩ U). Here a domain U whose boundary points are all regular in the
sense of the generalized Dirichlet problem is said to be a regular domain. The primary
purpose of this paper is to give an easily applicable practical criterion for a given bounded
domain R to be a Dirichlet domain stated below as Theorem 1.3, which is an improvement
of our former result in [6]. This will be derived from the following main assertion of the
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present paper that a bounded domain R is a Dirichlet domain if and only if R is locally
a Dirichlet domain at every boundary point of R. Actually we will show by the following
two theorems a bit more than the fact mentioned above. Namely, the first result is as
follows.

Theorem 1.1. If R is locally a Dirichlet domain at a boundary point y with respect
to a regular domain U containing y, then R is locally a Dirichlet domain at y with respect
to any regular domain V containing y with V ⊂ U . In particular, if R is a Dirichlet
domain, then R is locally a Dirichlet domain at any boundary point y with respect to any
regular domain V containing y.

The above result is a more precise version of the statement that if R is a Dirichlet
domain, then R is locally a Dirichlet domain at every boundary point of R. The converse
of this, i.e. if R is locally a Dirichlet domain at every boundary point of R, then R is a
Dirichlet domain, is also generalized as follows.

Theorem 1.2. If R is locally a Dirichlet domain at every boundary point of R

except for points in a boundary set of harmonic measure zero with respect to R, then R

is a Dirichlet domain.

A boundary point y of R is said to be graphic if there are an open neighborhood V

of y, an orthogonal coordinate x = (x′, xd) or a polar coordinate x = rξ (r ≥ 0, |ξ| = 1),
and a continuous function xd = ϕ(x′) or r = ϕ(ξ) > 0 such that R∩V = {(x′, xd) : xd <

ϕ(x′)} ∩ V or R ∩ V = {rξ : r < ϕ(ξ)} ∩ V . If y ∈ ∂R is not graphic, then we say that
y is nongraphic. As an application of the above theorem 1.2, we will prove the following
result.

Theorem 1.3. If the set E of nongraphic boundary point of R is of harmonic
measure zero with respect to R, then R is a Dirichlet domain.

If E =∅, then R is referred to as a continuous domain ([4]). We have shown in our
former paper [6] that a continuous domain R is a Dirichlet domain. The above result is
therefore a generalization of this result, i.e. an extension from the case E = ∅ to the
case E may not be empty but at most has zero harmonic measure.

There are two interesting and important foregoing works [1] and [5] on the same
theme as ours in which the term Poissonian domain is used for regions what we are calling
Dirichlet domains. C. J. Bishop [1] gives a necessary and sufficient condition for a domain
to be Poissonian which is strikingly interesting but seems to be not too practical as to
derive our present criterion Theorem 1.3 above. Localization of the notion Poissonian
is one of the central leading ideas in the work [5] by T. S. Mountford and S. C. Port
in which closely related results to our Theorems 1.1 and 1.2 are found. In essence, our
results are partly contained in their results and also partly contains them. Allowing the
existence of exceptional sets of harmonic measure zero in our work (e.g. Theorem 1.2
above), which is actually a selling point of our present paper, is an essential distinction
with which the work [5] is not concerned.

The paper consists of 10 sections including this Section 1 Introduction. In Section 2
Dirichlet solutions, some of basic properties of generalized solutions of Dirichlet problem
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are stated. Harmonic functions u admitting the Jordan decomposition u = u+ − u−

are considered in Section 3 Vector lattice HP (W ), and the equivalence of u(y) = 0 and
u±(y) = 0 at any regular boundary point y is established. The notion of Dirichlet do-
mains is introduced and a criterion for being Dirichlet domains is given in Section 4
Quasiboundedness. In Section 5 Localization, the notion of Dirichlet domain and the
related criterion are localized. After these preliminary discussions in Section 2–5, Theo-
rem 1.1 is proved in Section 6 Proof of Theorem 1.1. As a useful tool to prove Theorem
1.2 in Section 8 Proof of Theorem 1.2, Wiener functions and their basic properties are
explained in Section 7 Wiener potentials. After a geometric notion of graphic points
for boundary points of domains is introduced in Section 9 Graphic points, we will prove
Theorem 1.3 in the final Section 10 Proof of Theorem 1.3.

2. Dirichlet solutions.

Throughout this paper we denote by R a bounded domain in the Euclidean space
Rd of dimension d ≥ 2. We also denote by W a nonempty bounded open set in Rd. In
addition to the basic function space H(W ) of harmonic functions on W , i.e. C2 solutions
of the Laplace equation ∆u = 0 on W , we consider the class S(W ) of superharmonic
functions on W . In general in this paper, for a class F of some functions, we set
F+ := {f ∈ F : f ≥ 0}. We also consider the class P(W ) of potentials p on W

characterized by that p ∈ S(W )+ and the greatest harmonic minorant of p is zero on W .
Hence 0 is included in P(W ).

We consider the Dirichlet problem for a nonempty bounded open set W and a general
boundary function f on ∂W with respect to the Laplace equation ∆u = 0. We follow
the standard procedure of Perron-Wiener-Brelot (cf. e.g. [3, pp. 156–176]): we denote by
V W

f the class of lower bounded s ∈ S(W ) such that lim infx→y s(x) ≥ f(y) for every
y ∈ ∂W ; we set V W

f := −V W
−f ; we denote by HW

f (HW
f , resp.) the lower (upper,

resp.) envelope of V W
f (V W

f , resp.), which is either harmonic or identically ±∞ in each
component of W ; we see that HW

f ≥ HW
f = −HW

−f and, if HW
f = HW

f is harmonic, then
the common function is denoted by HW

f and f is said to be resolutive; HW
f is referred

to as the Dirichlet solution with the resolutive boundary function f ; a point y ∈ ∂W is
said to be regular if limx→y HW

f (x) = f(y) for every resolutive boundary function f on
∂W continuous at y.

For a bounded domain R we denote by dωR
x the harmonic measure on ∂R char-

acterized by HR
f (x) =

∫
∂R

fdωR
x for each x ∈ R and each f ∈ C(∂R). We fix a

point x0 ∈ R and use the simplified notation dω = dωR = dωR
x0

. There is a function
P (·, x) ∈ L1(∂R, dω) (and actually a Borel function P (·, x) such that c−1 ≤ P (·, x) ≤ c

dω-a.e. on ∂R with the Harnack constant c determined by x and x0 and R) such
that dωR

x = P (·, x)dω on ∂R. Then a function f on ∂R is resolutive if and only if
f ∈ L1(∂R, dω) and in this case HR

f (x) =
∫

∂R
f(y)P (y, x)dω(y) (x ∈ R).

We use the following fact which is an easy consequence of the definitions of HR
f

and HR
f : for any function f on ∂R for which HR

f (HR
f , resp.) is harmonic there is a

Borel function g (and actually a decreasing (increasing, resp.) limit of lower (upper,
resp.) semicontinuous functions) on ∂R such that f ≤ g ≤ ‖f ;L∞(∂R; dω)‖ ≤ ∞
(f ≥ g ≥ −‖f ;L∞(∂R; dω)‖ ≥ −∞, resp.) on ∂R with HR

f = HR
g (HR

f = HR
g , resp.).
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In particular we see that for any resolutive function f on ∂R there is a resolutive Borel
function g on ∂R with |g| ≤ ‖f ;L∞(∂R, dω)‖ ≤ ∞ on ∂R and g = f dω-a.e. on ∂R such
that HR

f = HR
g .

We denote by Hds(W ) the class of harmonic functions u expressible as Dirichlet
solutions HW

f with resolutive boundary functions f on ∂W so that in the case of a
bounded domain R simply

Hds(R) =
{
HR

f : f ∈ L1(∂R, dω)
}
.

The operator f 7→ HR
f : L1(∂R, dω) → Hds(R) is clearly surjective, linear, and positive.

That it is injective and the inverse operator HR
f 7→ f : Hds(R) → L1(∂R, dω) is linear

and positive follows from the following result (see [6] for its proof):

Proposition 2.1. If HR
f and HR

f are harmonic on R, then the inequalities

lim inf
x→y

HR
f (x) ≤ f(y) ≤ lim sup

x→y
HR

f (x) (2.1)

hold for dω-a.e. y in ∂R.

At the end of this section we state a technical lemma used later. We consider two
regular domains G and U with nonempty intersections with R such that U ⊂ G and a
bounded nonnegative function f on Rd with spt f ⊂ U ∩ ∂R such that f |∂(G ∩ R) is
a resolutive boundary function on ∂(G ∩ R) with respect to G ∩ R so that f |∂(U ∩ R)
is also a resolutive boundary function on ∂(U ∩ R) with respect to U ∩ R. Hence if we
write HG∩R

f (HU∩R
f , resp.), then the boundary function f is understood to be f |∂(G∩R)

(f |∂(U ∩ R), resp.). Since HU∩R
f has vanishing boundary values on R ∩ ∂U , HU∩R

f is
always understood to be subharmonic on G∩R by extending HU∩R

f to G∩R as HU∩R
f ≡ 0

on (G \ U) ∩ R. Observe that every point in ∂U ∩ ∂R is regular with respect to U ∩ R

since U is regular. One way to see this is to observe that the restriction to U ∩R of any
barrier on U of any point z in ∂U ∩ ∂R is also a barrier on U ∩ R of the point z. Then
we have the following result.

Lemma 2.1. Suppose HG∩R
f has vanishing boundary values on ∂U ∩ ∂R. Then

the least harmonic majorant of the subharmonic function HU∩R
f on G ∩ R is HG∩R

f , or
equivalently,

HG∩R
f −HU∩R

f ∈ P(G ∩R). (2.2)

Proof. For simplicity we set W := G ∩ R and V := U ∩ R. Define a Borel
function ϕ on ∂V given by ϕ = 0 on U ∩ ∂R and ϕ = HW

f on R ∩ ∂U . As a bounded
Borel function, ϕ is resolutive on ∂V with respect to V . We first note that

HW
f |V = HV

f+ϕ = HV
f + HV

ϕ .

In fact, take an arbitrary s ∈ V W
f . Since s ≥ HW

f on V , we have s ∈ V V
f+ϕ and a
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fortiori HW
f |V ≥ HV

f+ϕ = HV
f+ϕ. Similarly HW

−f |V ≥ HV
−f−ϕ = HV

−f−ϕ, which means
HW

f |V ≤ HV
f+ϕ. Thus we have deduced the above displayed identity.

In addition to HV
f being extended to W by setting HV

f ≡ 0 on W \V , we also extend
HV

ϕ to W by setting HV
ϕ = HW

f on W \ V = (G \ U) ∩R. Then by the above displayed
identity we still have HW

f = HV
f + HV

ϕ on W so that

HW
f −HV

f = HV
ϕ

on W . To deduce (2.2) we only have to show that the extended HV
ϕ is a potential on

W . Since every point in R∩ ∂U is regular with respect to V , the extended HV
ϕ ∈ C(W ).

Since HW
f ≥ HV

ϕ ≥ 0 and HW
f has vanishing boundary values on ∂U ∩ ∂R, we see that

HV
ϕ ∈ S(W ) and HV

ϕ has boundary values zero on the set of regular points in ∂W . This
with the boundedness of HV

ϕ assures that it is a potential on W . ¤

3. Vector lattice HP (W ).

Besides a bounded domain R we also take a nonempty bounded open set W in
Rd as before. Let u be a nonnegative subharmonic function on W and h be the least
harmonic majorant of u on W . If h has the vanishing boundary value at a boundary
point z ∈ ∂W , then the same is true of u but the converse is in general not true (if z is
irregular). However we have the following result.

Lemma 3.1. If z ∈ ∂W is a regular boundary point with respect to W , then u has
the vanishing boundary value at z if and only if h has the vanishing boundary value at z.

Proof. We only have to show that h has the vanishing boundary value at z under
the assumption that u has the vanishing boundary value at z. Let U := B(z, r) be the
open ball with radius r > 0 centered at z such that 0 ≤ u ≤ 1 on B(z, 2r) ∩W and let
v := h + 1 on W . We set V := U ∩W . Consider a boundary function f on ∂V given by

f(y) := lim sup
x∈V,x→y

u(x)

for y ∈ U ∩ ∂W and f(y) := v(y) for y ∈ W ∩ ∂U . Since

lim inf
x∈V,x→y

v(x) ≥ 1 ≥ f(y)

for y ∈ U ∩ ∂W and

lim inf
x∈V,x→y

v(x) = v(y) = f(y)

for y ∈ W ∩ ∂U , we must conclude that v ∈ V V
f . Hence the Borel function f on ∂V is

resolutive and v ≥ HV
f on V . Therefore if we consider the function w on W such that

w := v on W \ V and w := HV
f on V , then we see that w ∈ S(W ) since, in addition to

v ≥ HV
f on V , w is continuous on W and harmonic on W \ ∂V .
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Next we show that u ≤ w on W . It is clear on W \ V because u ≤ h < v = w on
W \ V . Take an arbitrary s ∈ V V

f . Then

lim inf
x∈V,x→y

s(x) ≥ f(y) = lim sup
x∈V,x→y

u(x)

for every y ∈ U ∩ ∂W and

lim inf
x∈V,x→y

s(x) ≥ f(y) = v(y) > 1 ≥ lim sup
x∈V,x→y

u(x)

for every y ∈ W ∩ ∂U . Hence

lim inf
x∈V,x→y

(s(x)− u(x)) ≥ 0

for every y ∈ ∂V , which implies that the lower bounded superharmonic function s − u

on V is nonnegative on V or s ≥ u on V . This yields w = HV
f ≥ u on V . This completes

the proof for w ≥ u on W .
Since f is continuous on ∂V at z with f(z) = 0 and z is a regular boundary point

of W and hence of V , we have

lim
x→z

w(x) = lim
x∈V,x→z

HV
f (x) = f(z) = 0.

Clearly w ≥ h ≥ u on W , the above displayed relation assures that limx→z h(x) = 0. ¤

We denote by HP (W ) the space of every u ∈ H(W ) such that |u| admits a harmonic
majorant on W . Then we can consider the least harmonic majorant u∨v and the greatest
harmonic minorant u ∧ v of two functions u and v in HP (W ). With the usual linear
structure as a subspace of H(W ) and lattice operations ∨ and ∧, HP (W ) forms a vector
lattice. By considering the positive part u+ := u∨0 and the negative part u− := −(u∧0),
every u ∈ HP (W ) admits its Jordan decomposition u = u+ − u−. We will use the
following result, which is a direct consequence of the above Lemma 3.1.

Proposition 3.1. Take a regular point z ∈ ∂W and a u ∈ HP (W ). Then u has
the vanishing boundary value at z if and only if both of u+ and u− have the vanishing
boundary value at z.

Proof. Let h be the least harmonic majorant of the nonnegative subharmonic
function |u| on W . By Lemma 3.1, |u| (and hence u) has the vanishing boundary value
at z if and only if h has the vanishing boundary value at z. Since u± = (h ± u)/2, the
desired conclusion follows. ¤

Since |HW
f | of HW

f ∈ Hds(W ) admits a harmonic majorant HW
|f |, we see that

Hds(W ) ⊂ HP (W ). For two functions f and g we denote by (f∪g)(x) := max(f(x), g(x))
and (f ∩g)(x) := min(f(x), g(x)). Then L1(∂R, dω) forms a vector lattice with the usual
linear operations and the lattice operations ∪ and ∩. One should not be confused by
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these ∪ and ∩ with ∨ and ∧ used only for harmonic functions. Based upon the fact
that HW

f ∨HW
g = HW

f∪g and HW
f ∧HW

g = HW
f∩g on W , we see that Hds(W ) is a vector

sublattice of HP (W ) and moreover, by virtue of (2.1), we can conclude the following
result.

Proposition 3.2. The spaces Hds(R) and L1(∂R, dω) are isomorphic as vector
lattices.

4. Quasiboundedness.

A harmonic function u on a nonempty bounded open set W is quasibounded if
u ∈ HP (W ) and

u = lim
λ∈R,λ↑∞

(u ∧ λ) ∨ (−λ) (4.1)

almost uniformly on W , where R := R1 is the field of real numbers. We denote by
Hqb(W ) the space of every quasibounded harmonic function on W . Clearly (4.1) is
equivalent to

u± = lim
λ∈R,λ↑∞

u± ∧ λ, (4.2)

where the convergence is almost uniform on W . Hence Hqb(W ) is a vector sublattice of
HP (W ). If we denote by HB(W ) the space of bounded harmonic functions on W , then
it is also a vector sublattice of HP (W ) and HB(W ) ⊂ Hqb(W ) ⊂ HP (W ).

Observe that (HW
f )± = HW

f± on W for every resolutive function f on ∂W , where
f+ := f ∪ 0 and f− := −(f ∩ 0); HW

f± ∧ λ = HW
f±∩λ ↑ HW

f± as λ ↑ ∞. This means that

Hds(W ) ⊂ Hqb(W ). (4.3)

Let X = B \K with B the open unit ball Bd in Rd and K = {x = (x1, . . . , xd) :
x1 ≥ 0, xd = 0}. We denote by B+ the upper half ball, by π the plane xd = 0, and by w

the harmonic measure of (∂B+ \ (π \K)) ∩ π on B+. Then, by the reflection principle,
w is extended to X across (π \K) ∩B as an antisymmetric function on X about π ∩B

and the cluster set of the extended w at each point of (π \ (π \K))∩B is the two values
set {1,−1}. Suppose the extended w on X is represented as w = HX

f with a resolutive
boundary function f on ∂X = ∂B ∪K. Since w = HX

f has vanishing boundary values
on ∂B \ K, by Proposition 2.1, we may assume that spt f ⊂ K ∩ B. Then w = HX

f

must be symmetric about π ∩ B and the above cluster set has to be the one value set
{1}. This contradiction shows that w ∈ Hqb(X) \Hds(X) so that

Hds(X) < Hqb(X), (4.4)

where < means the proper inclusion: ⊂ and 6=. We are thus interested in finding con-
ditions on R under which Hds(R) = Hqb(R) holds, and we are naturally led to give the
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following notion.

Definition 4.1. A bounded domain R in Rd is referred to as a Dirichlet domain
if Hqb(R) = Hds(R).

In view of (4.3), the essence of the above condition is Hqb(R) ⊂ Hds(R). In checking
whether a given R is a Dirichlet domain or not, the following criterion is convenient.

Lemma 4.1. A domain R is a Dirichlet domain if and only if HB(R)+ ⊂ Hds(R).

Proof. We only have to show that HB(R)+ ⊂ Hds(R) implies Hqb(R) ⊂ Hds(R).
Since Hqb(R)+ linearly generates Hqb(R), it is sufficient to show Hqb(R)+ ⊂ Hds(R) in
order to conclude Hqb(R) ⊂ Hds(R). Take an arbitrary u ∈ Hqb(R)+ and we are to show
that u ∈ Hds(R). Note that u = limi↑∞ u ∧ i on R. By HB(R)+ ⊂ Hds(R), there is
a resolutive function fi on ∂R such that u ∧ i = HR

fi
on R for each i = 1, 2, . . . . By

Proposition 2.1, we may assume that the sequence (fi)i≥1 is increasing on ∂R. Hence we
can define f := limi↑∞ fi on ∂R. In view of

∫

∂R

fidω = HR
fi

(x0) = (u ∧ i)(x0) ≤ u(x0)

and the Lebesgue monotone convergence theorem, we see that

∫

∂R

fdω = lim
i↑∞

∫

∂R

fidω ≤ u(x0) < ∞

or f ∈ L1(∂R, dω) so that f is resolutive on ∂R and HR
f can be considered. Once again

by the Lebesgue monotone convergence theorem we have

u = lim
i↑∞

u ∧ i = lim
i↑∞

HR
fi

= lim
i↑∞

∫

∂R

fi(y)P (y, ·)dω(y) =
∫

∂R

f(y)P (y, ·)dω(y) = HR
f ,

i.e. u = HR
f on R so that u ∈ Hds(R), which is to be shown. ¤

5. Localization.

For a bounded domain R of Rd (d ≥ 2) we take a regular domain U containing a
point y ∈ ∂R. Since, in this section, we are mainly interested in the behavior of harmonic
functions on U ∩R at the part U ∩∂R of the boundary of U ∩R, eliminating the influence
of the part R∩∂U , we only consider those harmonic functions u on U ∩R with vanishing
boundary values on R ∩ ∂U . We denote by H(U ∩ R; ∂U) the class of such harmonic
functions u. Suppose a u ∈ H(U ∩R; ∂U) is represented as a Dirichlet solution HU∩R

f on
U ∩ R with resolutive boundary function f on ∂(U ∩ R). Then, by (2.1) applied to the
restriction of f on each boundary of each component of U ∩R, f may be assumed to be
zero on R∩∂U so that we may view that f is defined on Rd with f = 0 on Rd \(U ∩∂R).
We denote by Hds(U ∩R; ∂U) the set of such Dirichlet solutions HU∩R

f on U ∩R. Then
we also have the identity Hds(U ∩R; ∂U) = Hds(U ∩R) ∩H(U ∩R; ∂U). We denote by
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Hqb(U ∩R; ∂U) := Hqb(U ∩R) ∩H(U ∩R; ∂U). As a counterpart of (4.3) we easily see
that

Hds(U ∩R; ∂U) ⊂ Hqb(U ∩R; ∂U) (5.1)

is valid. By using the example X in (4.4) and taking any small ball U with radius less
than 1 centered at the origin 0 ∈ K ∩B ⊂ ∂X, we can also conclude that

Hds(U ∩X; ∂U) < Hqb(U ∩X; ∂U). (5.2)

In view of these we are naturally led to localize the definition 4.1 as follows.

Definition 5.1. A bounded domain R in Rd is said to be locally a Dirichlet
domain at y ∈ ∂R with respect to a regular domain U containing y if Hqb(U ∩R; ∂U) =
Hds(U ∩R; ∂U).

By virtue of (5.1) the essence of the above condition is Hqb(U ∩ R; ∂U) ⊂ Hds(U ∩
R; ∂U). Let HB(U ∩ R; ∂U) := HB(U ∩ R) ∩ H(U ∩ R; ∂U). As the counterpart of
Lemma 4.1, we have the following criterion.

Lemma 5.1. A domain R is locally a Dirichlet domain at y ∈ ∂R with respect to
a regular domain U containing y if and only if HB(U ∩R; ∂U)+ ⊂ Hds(U ∩R; ∂U).

Proof. We only have to show that HB(U ∩ R; ∂U)+ ⊂ Hds(U ∩ R; ∂U) implies
that Hqb(U ∩R; ∂U) ⊂ Hds(U ∩R; ∂U). Every point in R∩∂U is regular with respect to
the open set W := U ∩R because U is regular. One way to see this is to observe that the
restriction to W of any barrier on U of any point z in R∩∂U is again a barrier on W of the
point z. Hence, by Proposition 3.1, Hqb(U ∩R; ∂U)+ linearly generates Hqb(U ∩R; ∂U).
Therefore it is sufficient to show Hqb(U ∩R; ∂U)+ ⊂ Hds(U ∩R; ∂U) in order to conclude
Hqb(U ∩R; ∂U) ⊂ Hds(U ∩R; ∂U). Take an arbitrary u ∈ Hqb(U ∩R; ∂U)+ and we are to
show that u ∈ Hds(U ∩R; ∂U). Note that u = limi↑∞ u∧ i on W . Since 0 ≤ u∧ i ≤ u on
W , we see that u∧ i ∈ HB(U ∩R; ∂U)+. By HB(U ∩R; ∂U)+ ⊂ Hds(U ∩R; ∂U), there
is a resolutive function fi on ∂W such that fi|R∩∂U = 0 such that u∧ i = HW

fi
on W for

each i = 1, 2, . . . . By Proposition 2.1 applied to each component of W , we may assume
that the sequence (fi)i≥1 is increasing on ∂W . Hence we can define f := limi↑∞ fi on
∂W and f |R ∩ ∂U = 0. Arguing as in the proof of Lemma 4.1 upon f |∂Wj for each
component Wj of W , we see that f is resolutive on ∂W and u = HW

f on W so that
u ∈ Hds(U ∩R; ∂U), which is to be shown. ¤

6. Proof of Theorem 1.1.

We are ready to prove Theorem 1.1 stated in Section 1 Introduction. First we prove
the first half of Theorem 1.1. Let R be a bounded domain, y a point in ∂R, and U a
regular domain containing y. We assume that R is locally a Dirichlet domain at y with
respect to U , or equivalently, by virtue of Lemma 5.1, that

HB(U ∩R; ∂U)+ ⊂ Hds(U ∩R; ∂U). (6.1)
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Take any regular domain V such that y ∈ V ⊂ U . We are to show that R is locally a
Dirichlet domain at y with respect to V , or equivalently, again in view of Lemma 5.1,
that

HB(V ∩R; ∂V )+ ⊂ Hds(V ∩R; ∂V ). (6.2)

In order to show (6.2) we take an arbitrary v ∈ HB(V ∩R; ∂V )+. In the sequel we always
consider v to be defined on U ∩R by setting v ≡ 0 on (U \ V ) ∩R. Since the original v

has vanishing boundary values on R ∩ ∂V , we see that v is a nonnegative subharmonic
function on U ∩R. Let u be the least harmonic majorant of v on U ∩R. By Lemma 3.1,
u has vanishing boundary values on the set of regular points in ∂(U ∩R) \ V along with
v so that in particular u has vanishing boundary values on R ∩ ∂U . Hence we see that
u ∈ HB(U ∩R; ∂U)+ and a fortiori there exists a function f on Rd with spt f ⊂ U ∩∂R

such that f |∂(U ∩R) is resolutive and

u = HU∩R
f (6.3)

on U∩R. Since u has vanishing boundary values on the set of regular points in (U\V )∩∂R

and u is nonnegative and bounded on U ∩R, by applying (2.1) componentwise to U ∩R,
we may assume that spt f ⊂ V ∩∂R and f is bounded on Rd. Then, as a bounded Borel
function, f |∂(V ∩R) is resolutive and HV ∩R

f can be defined. We extend HV ∩R
f to U ∩R

by setting HV ∩R
f ≡ 0 on (U \ V ) ∩R. Since f |R ∩ ∂V = 0 and every point in R ∩ ∂V is

regular, HV ∩R
f thus extended is subharmonic on U ∩R. Then by Lemma 2.1 we see that

HU∩R
f −HV ∩R

f ∈ P(U ∩R). (6.4)

As u is the least harmonic majorant of v on U ∩R we have

u− v ∈ P(U ∩R). (6.5)

Since v −HV ∩R
f = (v − u) + (u−HU∩R

f ) + (HU∩R
f −HV ∩R

f ) on U ∩R, we see by (6.3)
that

∣∣v −HV ∩R
f

∣∣ ≤ (u− v) +
(
HU∩R

f −HV ∩R
f

)
,

i.e. by (6.4) and (6.5) the subharmonic function |v −HV ∩R
f | on U ∩ R is dominated by

the potential (u− v) + (HU∩R
f −HV ∩R

f ) on U ∩R. Hence |v−HV ∩R
f | ≡ 0 on U ∩R and

in particular v = HU∩R
f on V ∩R. In view of the boundary behavior of v on R∩ ∂V , we

conclude that v ∈ Hds(V ∩R; ∂V ), i.e. (6.2) has been thus established.
To prove the last half of Theorem 1.1, we assume that R is a Dirichlet domain and

take an arbitrary regular domain V containing an arbitrarily given point y in ∂R. Let
U be any regular domain such that U ⊃ R ∪ V . Then U ∩ R = R is locally a Dirichlet
domain at y ∈ U ∩ ∂R with respect to U if and only if R is a Dirichlet domain. Hence
in view of y ∈ V ⊂ U we see that R is locally a Dirichlet domain at y with respect to V ,
which is to be shown. ¤
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7. Wiener potentials.

Consider a real valued function f on a nonempty bounded open set W in Rd. We
denote by W W

f the class of functions s ∈ S(W ) having compact subsets Ks ⊂ W such
that s ≥ f on W \Ks. We denote by hW

f the lower envelope of the class W W
f and set

hW
f := −hW

−f . The functions hW
f and hW

f are either harmonic or identically ±∞ on each
component of W and satisfy hW

f ≥ hW
f on W . If hW

f = hW
f on W and the common

function is harmonic on W , then we say that f is harmonizable on W and we denote the
common function by hW

f (cf. [2, pp. 54–55]).
We denote by W (W ) the class of bounded continuous functions f on W which

are harmonizable on every open subset of W . Each function in W (W ) is said to be a
(bounded continuous) Wiener function on W and W (W ) is referred to as the Wiener
algebra on W . It is known that W (W ) forms a Banach algebra having the multiplicative
identity 1 equipped with the supremum norm and also W (W ) is a vector lattice under
the lattice operations ∪ and ∩ (cf. [7, pp. 223–227]). We once more stress that W (W ) is
closed under multiplication and complete with respect to the uniform convergence. The
operator f 7→ hW

f : W (W ) → HB(W ) is seen to be a homomorphism as vector lattices.
Thus we have e.g. hW

f∩g = hW
f ∧ hW

g on W .
We denote by Cb(W ) the class of bounded continuous functions on W . It is not

difficult to see that any function f in S(W )∩Cb(W ) or in C(W ) is harmonizable on any
open subset V of W . In fact, the proof for the former case is found in [6]. In the latter
case, let f ∈ C(W ) and U be a bounded open set with W ⊂ U . As is well known there
are sequences (s′i)i≥1 and (s′′i )i≥1 in S(U) ∩ C(U) such that (si)i≥1 with si = s′i − s′′i
converges uniformly to f on W . By the above, s′i and s′′i and hence si belong to W (W ).
By the completeness of W (W ) in the uniform convergence we conclude that f ∈ W (W ).
Hence we have the following relation:

(S(W ) ∩ Cb(W )) ∪ C(W ) ⊂ W (W ). (7.1)

The above relation (7.1) implies the following (see [4]): if u ∈ HB(W ) and ϕ ∈ C∞0 (Rd),
then ϕu ∈ W (W ).

A function f ∈ W (W ) is said to be a (bounded continuous) Wiener potential on W

if hW
f = 0 on W . We denote by W0(W ) the totality of Wiener potentials f ∈ W (W ). A

necessary and sufficient condition for an f ∈ W (W ) to belong to W0(W ) is that there is
a potential p on W such that |f | ≤ p on W (cf. [2, p. 56]). The set W0(W ) forms a closed
(with respect to the uniform convergence on W ) ideal of W (W ) (i.e. if ϕ ∈ W0(W ) and
f ∈ W (W ), then ϕf ∈ W0(W )) and at the same time a vector sublattice of W (W ). The
direct sum decomposition

W (W ) = HB(W )⊕W0(W ) (7.2)

is referred to as the Wiener decomposition: any f ∈ W (W ) is uniquely decomposed as
the sum u + ϕ (u ∈ HB(W ), ϕ ∈ W0(W )). Here u is nothing but u = hW

f . We use this
in the following fashion: if u and v are in HB(W ) and q ∈ W0(W ) such that u = v + q

on W , then u = v on W . We will use the following result.
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Lemma 7.1 (Constantinescu-Cornea [2, p. 64]). Let f ∈ W (W ) and W ′ be an open
subset of W such that f |W ′ ∈ W0(W ′) and f |W \W ′ = 0. Then f ∈ W0(W ).

Let V be an open subset of W . We say that V is regular in W if every point in
W ∩ ∂V is regular with respect to V . Take a regular open subset V in a bounded open
set W and a function u ∈ W (W ). We denote by HV

u the Dirichlet solution HV
f on V ,

where f is the boundary function on ∂V such that f = u on W ∩ ∂V and f = 0 on
(∂V ) \W . Since V is regular in W , the boundary values of HV

u := HV
f on W ∩ ∂V is u

and therefore if we extend HV
u to W by setting HV

u = u on W \ V , then HV
u ∈ Cb(W ).

Actually we know that HV
u ∈ W (W ) for any u ∈ W (W ) and for any regular open set V

in W (cf. [2, p. 57]). As a corresponding assertion for hV
u we have the following result.

Lemma 7.2. Let V be a regular open subset in a bounded open set W . If u ∈ W (W ),
then hV

u ∈ W (W ), where hV
u is extended to W by setting hV

u = u on W \ V .

Proof. Set v := u−HV
u . Then v ∈ W (W ) and v|W \ V = 0 since HV

u ∈ W (W )
and HV

u = u on W \ V . Let χ be 0 on W ∩ ∂V and χ = supW |v| on (∂V ) \W . Take an
arbitrary s ∈ V V

χ and an arbitrary positive number ε > 0. Then clearly s + ε ≥ v on V

except for a compact subset of V so that s + ε ∈ W V
v . Hence s + ε ≥ hV

v on V . Thus
HV

χ + ε ≥ hV
v and thus, on letting ε ↓ 0, HV

χ ≥ hV
v on V . Similarly, HV

χ ≥ hV
−v on V and

finally |hV
v | ≤ HV

χ . Since every point in W ∩ ∂V is regular and χ = 0 there continuously,
we see that hV

v on V has boundary values zero on W ∩ ∂V . Hence hV
v ∈ Cb(W ) if hV

v is
extended to W by setting hV

v = 0 on W \ V . Let h be the least harmonic majorant of
|hV

v | on V . By Lemma 3.1, h has vanishing boundary values on W ∩ ∂V . If we extend
h to W by setting h = 0 on W \ V , then h is subharmonic on W and hence, by (7.1),
h ∈ W (W ). Similarly h− hV

v ∈ H(V )+ and h− hV
v = 0 on W \ V imply that h− hV

v is
subharmonic on W so that h− hV

v ∈ W (W ). Hence hV
v = h− (h− hV

v ) ∈ W (W ). From
v = u−HV

u it follows that hV
v = hV

u −HV
u or hV

u = hV
v + HV

u so that hV
u ∈ W (W ). ¤

8. Proof of Theorem 1.2.

We prove here Theorem 1.2 stated in Section 1 Introduction. By the assumption of
Theorem 1.2, there exists a subset E of ∂R with harmonic measure zero relative to R

such that for every y ∈ ∂R \E there is a regular domain Uy containing y such that R is
locally a Dirichlet domain at y with respect to Uy. We fix an arbitrary positive integer
m. Since the harmonic measure dω = dωR

x0
(x0 ∈ R) on ∂R is regular and

∫
E

dω = 0,
there is an open set G in Rd such that G ⊃ E and

∫
G∩∂R

dω < 1/m. Then

w(x) :=
∫

G∩∂R

P (x, y)dω(y) ≤ c(x)
m

(x ∈ R), (8.1)

where P (x, ·)dω = dωR
x and c(x) is the Harnack constant for {x, x0} with respect to the

domain R. The function w(x) is the harmonic measure of G ∩ ∂R on R evaluated at
x ∈ R and we also have the expression w = HR

χG∩∂R
, where χG∩∂R is the characteristic

function on Rd of the set G ∩ ∂R.
Since ∂R \ G is compact, we can easily find a finite system of points y1, . . . , yn ∈
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∂R\G and a finite system of open sets U0, U1, . . . , Un, Un+1 in Rd satisfying the following
7 conditions: U1, . . . , Un are regular domains and yi ∈ Ui (1 ≤ i ≤ n); R is locally a
Dirichlet domain at yi with respect to Ui (1 ≤ i ≤ n); Un+1 = G; U0 ⊂ R;

⋃
1≤i≤n+1 Ui ⊃

∂R;
⋃

0≤i≤n+1 Ui ⊃ R; there is a partition {ϕi}0≤i≤n+1 of unity by functions ϕi ∈
C∞0 (Rd) with 0 ≤ ϕi ≤ 1 on Rd such that the support of ϕi spt ϕi ⊂ Ui (0 ≤ i ≤ n + 1)
and

∑
0≤i≤n+1 ϕi = 1 on R. For simplicity we set Vi = R ∩ Ui (1 ≤ i ≤ n).

To show that R is a Dirichlet domain, we take an arbitrary u ∈ HB(R)+. By Lemma
4.1, we only have to show that u ∈ Hds(R): we are to find a resolutive function f on ∂R

such that u = HR
f on R. Without loss of generality we can assume that 0 ≤ u ≤ 1 on R.

Observe that

u = 1 · u =
( ∑

0≤i≤n+1

ϕi

)
u =

∑

0≤i≤n+1

ϕiu

on R. On setting ui := ϕiu, we see by the remark right after (7.1) that ui ∈ W (R) (0 ≤
i ≤ n + 1) so that we have the decomposition

u =
∑

0≤i≤n+1

ui (ui ∈ W (R), spt ui ⊂ Vi). (8.2)

Fix an arbitrary 1 ≤ i ≤ n and, for simplicity, we set v := ui, U := Ui, V := Vi :=
R∩Ui for the time being. Take a regular domain U ′ = U ′

i such that yi ∈ U ′, U ′ ⊂ U , and
spt v ⊂ U ′. Let χ := χU ′∩∂V be the characteristic function on Rd of U ′∩∂V . Let s ∈ V V

χ

be arbitrary and choose any positive number ε > 0. Clearly s + ε ≥ v on V except for
a compact subset of V . Then s + ε ∈ W V

v and hence s + ε ≥ hV
v or HV

χ + ε ≥ hV
v . By

letting ε ↓ 0 we obtain on V that

0 ≤ hV
v ≤ HV

χ . (8.3)

Since every point in R ∩ ∂U is regular and χ = 0 there, HV
χ has zero boundary

values on R ∩ ∂U , so does hV
v as a consequence of (8.3). Extend hV

v to R by setting
hV

v = 0 on R \ V . Then hV
v is subharmonic on R and thus, by (7.1), hV

v ∈ W (R). This
also follows directly from Lemma 7.2. Since v ∈ W (R), we see that v− hV

v ∈ W (R). On
the other hand, v − hV

v ∈ W0(V ) and v − hV
v = 0 on R \ V . By Lemma 7.1, we see that

v − hV
v ∈ W0(R). Then with the trivial relation v − hR

v ∈ W0(R), we deduce that

hR
v − hV

v =
(
v − hV

v

)− (
v − hR

v

) ∈ W0(R).

Since this is true for every i, we can conclude that

hR
ui
− hVi

ui
∈ W0(R) (1 ≤ i ≤ n). (8.4)

In view of the assumption that R is locally a Dirichlet domain at yi with respect to
U = Ui, there exists a resolutive Borel function g = gi such that hV

v = HV
g , i.e.
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hVi
ui

= HVi
gi

(1 ≤ i ≤ n). (8.5)

By (8.3) we see that 0 ≤ HV
g ≤ HV

χ on V . Hence by Proposition 2.1 applied to each
component of V we may assume that

0 ≤ gi ≤ χU ′i∩∂Vi
(8.6)

on ∂Vi (1 ≤ i ≤ n). Hence we can view g = gi is a bounded Borel function defined on
Rd with spt g ⊂ U ∩ ∂R. Hence g|∂R is resolutive on ∂R and HR

g can be considered.
Since every point in ∂R∩ ∂U is regular and g is continuous on ∂R∩ ∂U and g = 0 there,
HR

g has the vanishing boundary values on ∂R∩ ∂U . By Lemma 2.1, HR
g −HV

g ∈ P(R),
so that we have deduced

HR
gi
−HVi

gi
∈ W0(R) (1 ≤ i ≤ n). (8.7)

We next examine hR
u0

and hR
un+1

. Choose any s ∈ V R
0 and any positive number

ε > 0. Since s + ε ≥ u0 on R \U0 and hence s + ε ∈ W R
u0

so that s + ε ≥ hR
u0
≥ 0. Then

HR
0 + ε ≥ hR

u0
≥ 0 and on letting ε ↓ 0 we conclude that

hR
u0
≡ 0 (8.8)

on R. Next, let γ := χUn+1∩∂R = χG∩∂R, the characteristic function on Rd of G ∩ ∂R.
Choose any s ∈ V R

γ and any positive number ε > 0. We see that s + ε ≥ un+1 on R

except for a compact subset of R so that s + ε ∈ W R
un+1

. Then s + ε ≥ hR
un+1

≥ 0 and
hence HR

γ + ε ≥ hR
un+1

on R. On letting ε ↓ 0, we deduce HR
γ ≥ hR

un+1
on R. Since

HR
γ = HR

χG∩∂R
= w, we conclude that

hR
un+1

(x) ≤ w(x) (x ∈ R). (8.9)

We consider the function ϕ ∈ W0(R) and the bounded Borel function fm on Rd

given by

ϕ :=
∑

1≤i≤n

(
hR

ui
− hVi

ui

)
+

∑

1≤i≤n

(
HVi

gi
−HR

gi

)
, (8.10)

which is certainly in W0(R) by (8.4) and (8.7), and

fm :=
∑

1≤i≤n

gi, (8.11)

which is bounded and Borel as desired by the choice of gi and (8.6) (1 ≤ i ≤ n). By
(8.2), (8.8), and (8.5) we see that
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u = hR
u =

∑

0≤i≤n+1

hR
ui

= hR
u0

+
∑

1≤i≤n

hR
ui

+ hR
un+1

=
∑

1≤i≤n

hR
ui

+ hR
un+1

=
∑

1≤i≤n

HR
gi

+
∑

1≤i≤n

(
HVi

gi
−HR

gi

)
+

∑

1≤i≤n

(
hR

ui
− hVi

ui

)
+ hR

un+1

on R. This with (8.10) and (8.11) implies that u = HR
fm

+hR
un+1

+ϕ on R. By (7.2): the
uniqueness of the Wiener decomposition, we conclude that

u = HR
fm

+ hR
un+1

(8.12)

on R. This in particular implies that 0 ≤ HR
fm

≤ u ≤ 1, or 0 ≤ HR
fm

≤ 1, on R and by
Proposition 2.1

0 ≤ fm ≤ 1 (m = 1, 2, . . . ) (8.13)

dω-a.e. on ∂R or as functions in L∞(∂R, dω).
By (8.12) and (8.9), we see that 0 ≤ u−HR

fm
= hR

un+1
≤ w on R and a fortiori, by

(8.1), we deduce

0 ≤ u(x)−HR
fm

(x) ≤ c(x)
m

(x ∈ R; m = 1, 2, . . . ). (8.14)

By (8.13) the sequence (fm)m≥1 is contained in the unit ball of the Banach space
L∞(∂R, dω) = (L1(∂R, dω))∗, the dual space of L1(∂R, dω). By the Alaoglu theorem,
there is a net (fm(ι))ι and an f ∈ L∞(∂R, dω) such that m(ι) are positive integers with
m(ι) → ∞ as integers and fm(ι) → f in the weak * topology in L∞(∂R, dω). Hence,
since P (x, ·) ∈ L1(∂R, dω) (and in reality P (x, ·) ∈ L∞(∂R, dω)) (cf. Section 2), we see
that

HR
fm(ι)

(x) =
∫

∂R

P (x, y)fm(ι)(y)dω(y) →
∫

∂R

P (x, y)f(y)dω(y) = HR
f (x)

for every x ∈ R. By (8.14) we have

0 ≤ u(x)−HR
fm(ι)

(x) ≤ c(x)
m(ι)

,

and, on taking the limit in the above, we see that u(x) = HR
f (x) (x ∈ R), i.e. u = HR

f

on R.
The proof of Theorem 1.2 is herewith complete. ¤

9. Graphic points.

We call a coordinate system on Rd a Cartesian coordinate (polar coordinate, resp.)
if it is obtained from the standard Cartesian coordinate (i.e. orthogonal coordinate)
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x = (x1, . . . , xd) = (x′, xd) (the standard polar coordinate x = rξ = (r, ξ) with r ≥ 0 and
|ξ| = 1, resp.) by translation and rotation on Rd.

For a Cartesian coordinate x = (x1, . . . , xd) = (x′, xd) we use the following notation:
for any positive number a > 0 we set

β(a) =
{
x′ ∈ Rd−1 : |x′| =

√
(x1)2 + · · ·+ (xd−1)2 < a

}

and, for any a, b > 0 and any real number c we consider a cylinder

U(c; a, b) := {x = (x′, xd) : x′ ∈ β(a), |xd − c| < b}.

The point with coordinate (0′, c) will be referred to as the center of the cylinder U(c; a, b),
where 0′ = (0, . . . , 0) is the origin of Rd−1 in this coordinate.

For a polar coordinate x = rξ = (r, ξ) we use the similar notation as above: for any
a ∈ (0, 2) we set

β(a) := {ξ ∈ Sd−1 : |ξ − e1| < a}

with Sd−1 = {ξ ∈ Rd : |ξ| = 1} and e1 = (1, 0, . . . , 0) ∈ Sd−1 and, for any 0 < a < 2 and
c > 0 and b ∈ (0, c) we consider a sectorial ring

U(c; a, b) := {x = rξ : ξ ∈ β(a), |r − c| < b},

for which the point with coordinate ce1 is referred to as its center.
Consider a bounded domain R in Rd. A point p ∈ ∂R is said to be a Cartesian

graphic point for R if there exist a Cartesian coordinate x = (x′, xd) for which the
coordinate of p is (0′, c) (c > 0) and there exist two positive numbers a and b and a
continuous function xd = ϕ(x′) defined on β(a) such that supβ(a) |ϕ− c| < b and

U(c; a, b) ∩R = {x = (x′, xd) : x′ ∈ β(a), c− b < xd < ϕ(x′)}

and at the same time we have

U(c; a, b) ∩ ∂R = {x = (x′, xd) : x′ ∈ β(a), xd = ϕ(x′)}.

In this case the neighborhood U(c; a, b) of p is said to be an admissible neighborhood
of p and the function xd = ϕ(x′) is called the local representing function of R (or ∂R)
associated with U(c; a, b).

A point p ∈ ∂R is said to be a polar graphic point for R if there exist a polar
coordinate x = rξ for which the coordinate of p is ce1 (c > 0) and there exist two
numbers 0 < a < 2 and 0 < b < c and a continuous function r = ϕ(ξ) > 0 defined on
β(a) such that supβ(a) |ϕ− c| < b and

U(c; a, b) ∩R = {x = rξ : ξ ∈ β(a), c− b < r < ϕ(ξ)}
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and in this case it holds that

U(c; a, b) ∩ ∂R = {x = rξ : ξ ∈ β(a), r = ϕ(ξ)}.

In such a case the neighborhood U(c; a, b) of p is referred to as an admissible neighborhood
of p and the function r = ϕ(ξ) is said to be the local representing function of R (or ∂R)
associated with U(c; a, b).

In either of the above two parallel definitions of graphic points we assumed that ϕ is
continuous. However this is not a thing to be assumed but the consequence of the very
definitions: if we simply assume that ϕ is merely a single valued function in either of the
above two definitions, then we can prove that ϕ must be automatically continuous. It
should also be noted that there are a lot of examples of R and p ∈ ∂R such that p is
a Cartesian (polar, resp.) graphic point but not polar (Cartesian, resp.) graphic point;
that there exist many examples of R such that ∂R contains both of Cartesian graphic
points and polar graphic points. We state here an open problem. It may be of some
interest in connection with Theorem 1.3 to resolve the question, one step further than
the above remark, whether there exists a domain R such that ∂R contains a subset of
positive harmonic measure consisting of points which are Cartesian (polar, resp.) graphic
points but not polar (Cartesian, resp.) graphic points.

Finally a point p in ∂R is referred to simply as a graphic point for R if p is either a
Cartesian graphic point or polar graphic point. A point q ∈ ∂R is said to be a nongraphic
point if q is not a graphic point. We denote by E = ER the set of nongraphic points in
∂R. If p ∈ ∂R is a graphic point and U(c; a, b) is its admissible neighborhood, then every
point in U(c; a, b)∩∂R is a graphic point so that ∂R\E is open and E is closed (compact)
in ∂R. A bounded domain R with E = ∅ is called a continuous domain (cf. e.g. [4]).
Convex domains, star shaped domains, C1 domains or more generally Lipschitz domains
are examples of continuous domains.

At the end of this section we add an explanation why we consider graphic points
both in the Cartesian and also in the polar coordinate. Let u be a harmonic function on
the upper half space Rd

+ := {(x′, xd) : xd > 0} (the unit ball Bd := {|x| < 1}, resp.) in
Rd, i.e. u ∈ H(Rd

+) (u ∈ H(Bd), resp.). The function

x = (x′, xd) 7→ uc(x) := u(x′, xd + c) (c > 0) (x 7→ ur(x) := u(rx) (r < 1), resp.)

is also harmonic on the closure of Rd
+ (Bd, resp.) based on the translation (dilation,

resp.) invariance of harmonicity. If

u | ∂Rd
+ = lim

c↓0
uc | ∂Rd

+ (u | ∂Bd = lim
r↑1

ur | ∂Bd, resp.)

can be defined in some sense, then, by using uc (ur, resp.) in place of u, u may be
treated as if it is continuous on the closure of Rd

+ (Bd, resp.). This trick is often
used effectively and conveniently. The intention we introduce Cartesian (polar, resp.)
graphic points is to make the localized version of the above technique corresponding
to the translation (dilation, resp.) method applicable. For this reason we naturally
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need to consider graphic points not only in the Cartesian coordinate but also in the
polar coordinate. In connection with the above explanation one might suspect that
subdomains of Rm+n of the product form X ×Y with X Cartesian Dirichlet domains in
Rm and with Y polar Dirichlet domains in Rn are also worth to consider. However the
harmonicity of u(x, y) with respect to (x, y) ∈ X × Y has in general nothing to do with
the harmonicity of x 7→ u(x, y) on X and also that of y 7→ u(x, y) on Y not like the case
of analytic functions of several complex variables. Because of this the above expectation
seems to be hopeless.

10. Proof of Theorem 1.3.

In this final section we prove Theorem 1.3 stated in Section 1 Introduction as an
application of Theorem 1.2 also stated in the same place. We take as before a bounded
domain R in Rd. The essence of the proof lies in the following result.

Lemma 10.1. If p ∈ ∂R is a graphic point and U := U(c; a, b) is any admissible
neighborhood of p (which is of course a regular domain), then R is locally a Dirichlet
domain at p with respect to U .

Proof. There is a γ ∈ (0, b) such that even U(c; a, b − γ) is admissible, which
we fix throughout the proof. According to whether p is a Cartesian or polar graphic
point, the coordinate of the center p of U = U(c; a, b) is (0′, c) in the case of Cartesian
coordinate or ce1 in the case of polar coordinate. In view of Lemma 5.1, we only have
to show that HB(U ∩R; ∂U)+ ⊂ Hds(U ∩R; ∂U), i.e. for any v ∈ HB(U ∩R; ∂U)+ we
only have to find a resolutive function f on ∂(U ∩ R) such that v = HU∩R

f on U ∩ R.
Here without loss of generality we may assume that 0 ≤ v ≤ 1 on U ∩R. For simplicity
we set V := U ∩ R, which is a domain. We define Vi and vi for i ≥ i0 below separately
according as p is a Cartesian graphic point or p is a polar graphic point.

In the case p is a Cartesian graphic point we set i0 := 1 + [1/γ], where [ · ] is
the Gaussian symbol. For each i ≥ i0 we set Vi := {x + (1/i)ed : x ∈ V }, where
ed = (0, . . . , 0, 1) ∈ Rd. Consider a function vi ∈ H(Vi ∩ R) ∩ C(V ) given by vi(x) :=
v(x− (1/i)ed) for x ∈ Vi∩R and vi(x) = 0 for x ∈ V \Vi. In the case p is a polar graphic
point we set i0 := 1 + [(c − b)/γ]. For each i ≥ i0 we set Vi := {(1 + (1/i))x : x ∈ V }.
Consider a function vi ∈ H(Vi∩R)∩C(V ) given by vi(x) := v((1+(1/i))−1x) for x ∈ Vi∩R

and vi(x) = 0 for V \ Vi. In either case we set wi := HV
fi

, where fi := vi|∂V ∈ C(∂V )
and satisfies 0 ≤ fi ≤ 1 on ∂V .

We denote by dωV
x the harmonic measure on ∂V evaluated at x ∈ V ; fixing an

arbitrary point x0 ∈ V we set dω = dωV
x0

; there is a function P (·, x) ∈ L∞(∂V, dω)
such that dωV

x = P (·, x)dω (cf. Section 2). We denote, as in the last part of Section 8,
by (L1(∂V, dω))∗ the dual space of L1(∂V, dω), which is nothing but L∞(∂V, dω). By
the Alaoglu theorem, the closed unit ball B in L∞(∂V, dω) = (L1(∂V, dω))∗ is weakly *
compact, which is characterized by the fact that every generalized sequence in B has a
cluster point in B. Hence the particular generalized sequence (fi)i≥i0 in B has a cluster
point f in B. We will show that

v(x) = HV
f (x) (x ∈ V ). (10.1)
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For this purpose we only have to show that

∣∣v(x)−HV
f (x)

∣∣ < ε (10.2)

for every positive number ε > 0 and any point x ∈ V chosen arbitrarily and then fixed
in advance.

If i ≥ i0 is sufficiently large, then x ∈ Vi∩R and hence vi(x)−v(x) = v(x−(1/i)ed)−
v(x) or v((1 + (1/i))−1x) − v(x), according as p is a Cartesian or polar graphic point,
tends to zero as i ↑ ∞ by the continuity of v on V . Therefore there is a number j1 > i0
such that

|vi(x)− v(x)| < ε

3
(i ≥ j1). (10.3)

We take an auxiliary function w := HV
ϕ , where the boundary function ϕ on ∂V is

given by ϕ|R∩∂V = 0 and ϕ|V ∩∂R = 1. Then w has boundary values zero on R∩∂V and
one at every regular point in ∂V \R ∩ ∂V . Clearly 0 ≤ w ≤ 1 on V . Choose a sufficiently
large ball B(p, ρ) := {x : |x−p| < ρ} ⊃ R and a function q ∈ H(B(p, ρ)\(∂R∩∂V ))+ such
that q has boundary values 0 on ∂B(p, ρ) and +∞ at each irregular point of ∂R∩∂V with
respect to V . By examining the boundary values of the harmonic function w−wi +δq on
∂V for an arbitrary positive number δ we see that w + δq ≥ wi on V so that w ≥ wi on
V by letting δ ↓ 0. In particular 0 ≤ wi ≤ supV \Vi

w on V \Vi. Once again by examining
the boundary values on ∂(Vi ∩R) of the harmonic function wi − vi − supV \Vi

w − δq on
Vi ∩ R for an arbitrary positive number δ, we see that it is nonpositive on Vi ∩ R and
then on V so that, by letting δ ↓ 0,

0 ≤ wi − vi ≤ sup
V \Vi

w

on V . The rightmost term of the above tends to zero as i ↑ ∞. Therefore we can find a
number j2 > i0 such that

|wi(x)− vi(x)| < ε

3
(i ≥ j2). (10.4)

Finally, since f is a cluster point of the generalized sequence (fi)i≥i0 in the dual
space (L1(∂V, dω))∗ = L∞(∂V, dω), for the number j3 := max(j1, j2) > i0, there is a
number i1 > j3 such that fi1 is contained in the given neighborhood of f in the dual
space determined by P (·, x) ∈ L1(∂V, dω) and the positive number ε/3, i.e.

∣∣∣∣
∫

∂V

P (y, x)fi1(y)dω(y)−
∫

∂V

P (y, x)f(y)dω(y)
∣∣∣∣ <

ε

3
,

which means that

∣∣wi1(x)−HV
f (x)

∣∣ <
ε

3
. (10.5)
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Since i1 > j1 and j2, from (10.3) with i = i1, (10.4) with i = i1, and the above
(10.5), the desired relation (10.2) follows so that we can conclude (10.1): v = HU∩R

f on
U ∩R with f ∈ L∞(∂(U ∩R), dω) ⊂ L1(∂(U ∩R), dω), which is resolutive on ∂(U ∩R).

¤

Proof of Theorem 1.3. Suppose that the set E of nongraphic boundary points
of a bounded domain R in Rd is of harmonic measure zero with respect to R. Then by
Lemma 10.1, R is locally a Dirichlet domain at every point y ∈ ∂R\E (i.e. every y ∈ ∂R

except for points in the set E of harmonic measure zero) with respect to its admissible
neighborhood U(cy; ay, by). Then Theorem 1.2 assures that R is a Dirichlet domain,
which was to be shown. ¤
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