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Abstract. For any arrangement of hyperplanes in CP 3, we introduce the soul
of this arrangement. The soul, which is a pseudo-complex, is determined by the
combinatorics of the arrangement of hyperplanes. If the soul consists of a set of
points (0-simplices) and a set of planes (2-simplices), then the arrangement is called
point arrangement. In this paper, we give a sufficient combinatoric condition for two
point arrangements of hyperplanes to be diffeomorphic to each other. In particular
we have found sufficient condition on combinatorics for the point arrangement of
hyperplanes whose moduli space is connected.

1. Introduction.

An arrangement of hyperplanes A ∗ in CP n is a finite collection of hyperplanes
of dimension n − 1 in CP n. Associated with A ∗ is an open real 2n-manifold, the
complement M(A ∗) = CP n−⋃

H∗∈A ∗ H∗. One of the central problems in this area is to
decide to what extent the topology or differentiable structure of M(A ∗) is determined by
the combinatorial geometry of A ∗ and vice versa. It is well known that the combinatorial
data of A ∗ is coded by L(A ∗) which is the set of all intersections of elements of A ∗

partially ordered by reverse inclusion. In a series of papers, [Fa1], [Fa2] and [Fa3], Falk
studied the question whether L(A ∗) is a homotopic invariant. In [Fa3], Falk constructed
two arrangements of hyperplanes in CP 2, each of which has two triple points and nine
double points, but their combinatorial data are different. The homotopic equivalence of
their complements was shown in [Fa3]. Therefore L(A ∗) is not a homotopic invariant.
In 1993, Jiang and Yau ([Ja-Ya2], [Ja-Ya4]) proved that L(A ∗) is indeed a topological
invariant if A ∗ is an arrangement of hyperplanes in CP 2. In their proof, they made use
of some deep results of Waldhausen on three-manifolds. Indeed L(A ∗) is no longer a
topological invariant for arrangement of hyperplanes A ∗ in CP n, n ≥ 3, (cf. [Es-Fa]).

The difficult and still unsolved problem is whether the topological or diffeomorphic
type of complement M(A ∗) of an arrangement is combinatorial in nature. In a famous
preprint [Ry], G. Rybnikov announced the existence of two line arrangements A ∗

1 and
A ∗

2 in CP 2 which have the same combinatorics but whose complements M(A ∗
1 ) and

M(A ∗
2 ) are not homeomorphic. Unfortunately there is no detail proof of the above re-

sult. Recently Bartolo, Ruber, Agustin and Buzunariz ([B-R-A-B]) prove the existence
of complexified real arrangements with same combinatorics but different topology for
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complements of arrangements. The first step towards finding such pairs of arrangements
involves finding combinatorics whose moduli space is not connected. On the other hand,
if an arrangement A ∗ whose moduli space is connected, then Randell’s lattice-isotopic
theorem ([Ra]) implies that there is only one differentiable structure for any arrangement
lying in this moduli space. For a central arrangement of hyperplanes A in CP n+1, one
can define the underlying matroid G (A ) of A , (see for example [Fa-Ra]). Recall that
the moduli space of arrangements is the same as the realization space of the underlying
matroid (cf. [Fa-Ra]). In view of the result of Randell ([Ra]), the moduli space of
Rybnikov arrangements ([Ry]) and the moduli space of Bartolo, Ruber, Agustin and
Buzunariz ([B-R-A-B]) arrangements are nonconnected. Therefore there is enormous
interest of finding combinatorics for which the moduli space is connected. In 1994, Jiang
and Yau ([Ji-Ya]) first successfully described a large class of line arrangements in CP 2

whose moduli space are connected. Recently we ([Wa-Ya]) have described a much larger
class of line arrangements in CP 2 whose moduli spaces are still connected.

In this paper we consider the above question for arrangements of hyperplanes in
CP 3, which is obviously a more difficult problem. For any such arrangement A ∗ in
CP 3, we introduce a soul G (A ∗) which is a pseudo-complex completely determined by
the combinatoric data of the arrangement. If the soul consists of G (0) (a set of points
or 0-simplices) and G (2) (a set of planes or 2-simplices), then the arrangement is called
point arrangement. A point arrangement is called a nice arrangement if after removing
disjoint stars of G , the remaining pseudo-complex contains no loop (cf. Definition 2.7).

Reflection arrangements and Supersolvable arrangements have been studied exten-
sively by many authors. Many beautiful results were obtained. Unfortunately the basic
problem whether the diffeomorphic types of these arrangements are combinatorial is still
unknown. We conjecture that the diffeomorphic type of Supersolvable arrangements
are combinatorial in nature. As we can see from example 2.9 nice point arrangements
form a big class of arrangements. Although reflection arrangements and Supersolvable
arrangements may not be nice point arrangements, it is important to know whether the
diffeomorphic types of this big class of nice point arrangements are combinatorial in
nature. The following Theorem A gives an affirmative answer.

Theorem A. Let A ∗
0 and A ∗

1 be two nice point arrangements of hyperplanes in
CP 3. If L(A ∗

0 ) and L(A ∗
1 ) are isomorphic, then M(A ∗

0 ) and M(A ∗
1 ) are diffeomorphic

to each other.

In the course of proving Theorem A, we have proved the following Theorem.

Theorem B. Let A ∗ be a nice point arrangement of hyperplanes in CP 3. The
moduli space of A ∗ with fixed combinatorics L(A ∗) is connected.

Our paper is organized as follows. In section 2, for any arrangement A ∗ in CP 3,
we introduced a pseudo-complex G (A ∗) which is called the soul of A ∗. G (A ∗) is deter-
mined by the combinatorial data L(A ∗). We also introduce the definition of nice point
arrangement of hyperplanes. In section 3, we prove a sequence of lemmas which are
needed to prove Theorem A and Theorem B. These parts are much harder than those in
lower dimension obtained in [Ji-Ya]. In the final section, we shall prove Theorem A and
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Theorem B. We thank the referee for many useful suggestion to improve the presentation
of this paper.

2. Nice arrangements of hyperplanes in CP 3.

In this paper we denote A ∗ arrangement of hyperplanes in CP 3. Let L(A ∗) be the
set of all intersections of subsets of A ∗, partially ordered by reverse inclusion.

We give some definitions and examples of nice arrangements of hyperplanes in CP 3

for the following sections.

Definition 2.1. A point p in CP 3 is of multiplicity k, denoted by m(p), in A ∗

if p is the intersection of exactly k hyperplanes in A ∗. A line l in CP 3 is of multiplicity
k, denoted by m(l), in A ∗ if l is the intersection of exactly k hyperplanes in A ∗.

To study the combinatorial properties of A ∗ we need to consider all intersections
(lines and points) of A ∗ in CP 3. For an arrangement in CP 3, any two planes must
meet at a line. We only need to consider those intersection lines whose multiplicity is
not less than 3. For any plane and line, if the line does not lie on the plane, they must
intersect at a point with multiplicity 3 in the arrangement. We also know that a point
may be an intersection of two lines. So, we need to consider those intersection points
whose multiplicity is not less than 4. To get rid of the trivial situation that a point has
multiplicity at least 4 which is obtained by a plan and a line with multiplicity at least
3, we need to add a condition for the intersection points: there are four planes passing
through this point in the arrangement A ∗ such that every three of them are in general
position. Now we can give the following definition naturally.

Definition 2.2. Let pk(A ∗) be the number of points of multiplicity k(≥ 4) each
of which has the property that there are four planes passing through this point in the
arrangement A ∗ such that every three of them are in general position. Let lk(A ∗) be
the number of lines of multiplicity k(≥ 3) in the arrangement A ∗. Then the complexity
c(A ∗) of A ∗ is defined to be

∑
k≥4(k − 3)pk(A ∗) +

∑
k≥3(k − 2)lk(A ∗).

Definition 2.3. A soul G of an arrangement A ∗ of hyperplanes in CP 3 is a
pseudo-complex which is defined as follows:

Let G (0) be the set of 0-simplices of G defined by {p ∈ A ∗ is a point |m(p) ≥ 4
and there are four planes passing through p in A ∗ from which any three of them are in
general position.}. An element of G (0) is called a point.

Let G (1) be the set of 1-simplices of G which is the set of lines of A ∗ with multiplicity
m(l) ≥ 3. An element of G (1) is called a line.

Let G (2) be the set of 2-simplices of G . Each element of G (2) is a hyperplane of A ∗

that passes through an element of G (0) ∪ G (1). This means that it contains a point or
line of G (0) ∪ G (1). An element of G (2) is called a plane.

We say that two different simplices of G intersect to each other in G if and only if
they contain a same element of G (0) ∪ G (1) (See Example 2.8 below).

A path in G is defined to be a finite sequence of simplices a0, h1, a1, h2, . . . , ak−1,

hk, ak(k > 0) of G where ai and ai+1 are distinct elements in G (0) ∪ G (1), hi+1 ∈ G (2),
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which contains both ai and ai+1 for i = 0, 1, . . . , k−1 and hj are distinct for j = 1, . . . , k.
k is called the length of the path from a0 to ak. When a0 = ak, k ≥ 3, we call this path
a loop.

For two elements a1 and a2 ∈ G (0)∪G (1), the distance from a1 to a2 is the minimum
length of the path among all paths from a1 to a2.

Say a1 to be a k-element of a2 if the distance from a1 to a2 is k. If a1 is a point, we
call a1 as a k-point of a2. If a1 is a line, we call a1 as a k-line of a2.

Remark 2.4. From the discussion and definitions above, we know that in CP 3,
each two planes must meet at a line and each plane and line must intersect at a point.
Hence we do not need to consider these trivial cases in our definition of the pseudo-
complex soul G . Thus, it is easy to see that for two souls G1 and G2, if G1 is isomorphic
to G2 and |A ∗

1 | = |A ∗
2 |, then A ∗

1 is isomorphic to A ∗
2 .

Definition 2.5. For an arbitrary u ∈ G (0) ∪ G (1), a star St(u) of u is {u} ∪
{2-simplices of G which contain u}.

A point v ∈ G (0)(6= u) is called an end point of the star St(u) if St(u) passes through
v.

A line l ∈ G (1)(6= u) is called an end line of the star St(u) if St(u) passes through l.
The end points and end lines of the star St(u) are all called the end elements of the

star St(u).

For the stars St(u1), . . . , St(um) in G (m > 0), let G ′ = G −{St(u1)∪· · ·∪St(um)}.
St(u1), . . . , St(um) are said to be simple joint in G if

(1) any end element of St(u1), . . . , St(um) can connect to at most one another end
element by a path in G ′,

(2) any two end elements of St(u1), . . . , St(um) can be connected by at most one path
in G ′.

Definition 2.6. An arrangement A ∗ of hyperplanes in CP 3 is said to be nice if
the soul G from A ∗ has the following properties:

(1) G (0) and G (1) are disjoint, i.e. for any p ∈ G (0) and any q ∈ G (1), p is not
contained in q.

(2) G has no loop, or
(3) there are simple joint stars St(u1), . . . , St(um) which are pairwise disjoint in G

such that G ′ = G − {St(u1) ∪ · · · ∪ St(um)} contains no loop where u1, . . . , um in
G (0) ∪ G (1).

Definition 2.7. An arrangement A ∗ of hyperplanes in CP 3 is called a point
arrangement of hyperplanes if the G (1) of A ∗ is empty. This means that G consists of
the set of the points (0-simplices) and the set of the planes (2-simplices).

If a point arrangement is nice it is called a nice point arrangement.
An arrangement A ∗ of hyperplanes in CP 3 is called a line arrangement of hyper-

planes if the G (0) of A ∗ is empty. This means that G consists of the set of the lines
(1-simplices) and the set of the planes (2-simplices).

If a line arrangement is nice it is called a nice line arrangement.
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In the following we give some examples to show the nice line arrangement and the
nice point arrangement in CP 3.

Example 2.8. Let A be an arrangement of hyperplanes in C4 consisting of the
elements

H1 : {(x, y, z, w) ∈ C4 : x = 0},
H2 : {(x, y, z, w) ∈ C4 : y = 0},
H3 : {(x, y, z, w) ∈ C4 : z = 0},
H4 : {(x, y, z, w) ∈ C4 : w = 0},
H5 : {(x, y, z, w) ∈ C4 : x = y},
H6 : {(x, y, z, w) ∈ C4 : w = z}.

The corresponding projective arrangement A ∗ is a nice arrangement in CP 3.
As shown in Figure 1, the pseudo-complex soul G of A ∗ consists of six 2-simplices
ABD, AED, ACD, ABC, FBC and DBC, and two 1-simplices AD and BC. We can
see that AD incidents with ABD, AED and ACD, BC incidents with ABC,FBC and
DBC. Also, we can see, two 2-simplices ABD and ADC intersect at a 1-simplex AD.
Notice, there is no 0-simplices because no point in the Figure 1 satisfies the condition
that any three of planes are in general position in Definition 2.3. G contains no loop.
Hence, it is a nice line arrangement.

Figure 1. A nice line arrangement in CP 3.

Example 2.8 is an example of a line arrangement and it is a nice arrangement. We
give another example of nice point arrangement as follows:

Example 2.9. Let A be an arrangement of hyperplanes in C4 consisting of the
elements

AOD : {(x, y, z, w) ∈ C4 : x = 0},
AOC : {(x, y, z, w) ∈ C4 : y = 0},
ACD : {(x, y, z, w) ∈ C4 : x + y + z − w = 0},
ABE : {(x, y, z, w) ∈ C4 : 2x + 6y + 7z − 7w = 0},
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AEF : {(x, y, z, w) ∈ C4 : 4x− 3y − z + w = 0},
ABF : {(x, y, z, w) ∈ C4 : x + 3y + 11z − 11w = 0},
BEF : {(x, y, z, w) ∈ C4 : x− 2y + z − 6w = 0},
BCH : {(x, y, z, w) ∈ C4 : 3x + y − 5z − 3w = 0},
BCG : {(x, y, z, w) ∈ C4 : x− 2y − 4z − w = 0},
BGH : {(x, y, z, w) ∈ C4 : 4x− y − 2z − 11w = 0},
COD : {(x, y, z, w) ∈ C4 : z = 0},
CGH : {(x, y, z, w) ∈ C4 : 8x− 2y − 11z − 8w = 0}.

The corresponding projective arrangement A ∗ is a point arrangement in CP 3. In
fact, we have written a computer program to check that the conditions of point arrange-
ment are satisfied. As shown in Figure 2, the soul G of A ∗ consists of twelve 2-simplices:

AOD, AOC, ACD, ABE, AEF, ABF,

BEF, BCH, BCG,BGH, COD,CGH,

and three 0-simplices:

A,B, and C.

Notice, there is no any 1-simplex because no line in the Figure 2 has the multiplicity
greater than 2.

G contains a loop:

A,ABE, B,BCH, C, AOC, A.

It is also a nice point arrangement since deleting St(A) (see Figure 3) gives a sub-
pseudo-complex G − St(A) (see Figure 4) with no loop.

Figure 2. A nice point arrangement in CP 3.

Here, St(A) = {AOD, AOC, ACD, ABE, AEF, ABF,A}.
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Figure 3. St(A) in CP 3.

G − St(A) = {BEF, BCH, BCG, BGH, COD,CGH,B, C}.

Figure 4. G − St(A) in CP 3.

3. Regularity and lemmas for point arrangements of hyperplanes in
CP 3.

Basically our main theorem essentially asserts if two nice point arrangements of
hyperplane A ∗

0 = {G1, G2, . . . , Gn} and A ∗
1 = {H1,H2, . . . , Hn} in CP 3 have iso-

morphic L(A ∗
0 ) and L(A ∗

1 ), then A ∗
0 and A ∗

1 can be joined by a path in the mod-
uli spaces of arrangements with fixed combinatorics L(A ∗

0 ). For this purpose, we
shall construct a one-parameter family of arrangements A ∗(t) such that A ∗(0) = A ∗

0 ,
A ∗(1) = A ∗

1 and L(A ∗(t)) ≡ L(A ∗
0 ) for all t ∈ [0,1]. Assume that Gi corresponds to

Hi, 1 ≤ i ≤ n, under the combinatorics isomorphism. Consider arrangement A ∗ of the
form A ∗ = {F1, F2, . . . , Fn} where Fi = xiGi +yiHi and xi, yi ∈ C. Clearly xiGi +yiHi

and x′iGi + y′iHi define the same hyperplane if (xi, yi) is a constant multiple of (x′i, y
′
i).

Therefore we can think of (xi : yi) being a point in CP 1. The condition that L(A ∗)
is isomorphic to L(A ∗

0 ) can be translated to the condition that the parameters (xi : yi)
have to satisfy cubic equations of the form (3.1) below. Thus it remains to prove that
the variety defined by these cubic equations in (CP 1)n has an irreducible component
which contains both A ∗

0 and A ∗
1 . For this purpose we need to introduce the notions of

regular point with respect to equation (3.1). Let

U = (CP 1)p − {(
(x1 : y1), . . . , (xp : yp)

)
: for some 1 ≤ i ≤ p,

(xi : yi) is irregular of some equation of the form (3.1)
}
.
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Lemma 3.9 implies that U is an open connected in (CP 1)p. By solving the cubic equa-
tions of the form (3.1), one has an embedding f : U → (CP 1)n by Lemma 3.10. It
turns out that ((1 : 0), . . . , (1 : 0)) which corresponds to A ∗

0 and ((0 : 1), . . . , (0 : 1))
which corresponds to A ∗

1 are in f(U) and f(U) is irreducible. Our main theorem follows
immediately. Before showing the main theorem, we need the following definitions and
lemmas.

Consider the following equation
∑

aε(1)...ε(4)z
ε(1)
i z

ε(2)
j z

ε(3)
k z

ε(4)
l = 0 (3.1)

where ε(1), . . . , ε(4) are either 0 or 1 satisfying 0 < ε(1) + · · · + ε(4) < 4, z0
i = xi and

z1
i = yi, aε(1)...ε(4) 6= 0.

The left hand of the equation (3.1) has fourteen items. For convenience we write
(3.1) as the following extensive form

ayixjxkxl + bxiyjxkxl + cxixjykxl + dxixjxkyl

+ Axixjykyl + Bxiyjxkyl + Cxiyjykxl + Dyixjxkyl + Eyixjykxl + Fyiyjxkxl

+ exiyjykyl + fyixjykyl + gyiyjxkyl + hyiyjykxl

= 0

where abcdABCDEFefgh 6= 0.
Let (xi : yi), (xj : yj), (xk : yk) and (xl : yl) be the solution of (3.1). Because

(0 : 0) is always a solution of the homogeneous equation (3.1), we only consider non-zero
solution of (3.1). We assume that (xs : ys) 6= (0 : 0) for s = i, j, k, l below.

Definition 3.1. (xi : yi) ∈ CP 1 is called irregular for the equation (3.1):

(ayi)xjxkxl + (dxi + Dyi)xjxkyl + (cxi + Eyi)xjykxl + (Axi + fyi)xjykyl

+ (bxi + Fyi)yjxkxl + (Bxi + gyi)yjxkyl + (Cxi + hyi)yjykxl + (exi)yjykyl

= 0

if the following matrix of the coefficients has rank one.
(

ayi dxi + Dyi cxi + Eyi Axi + fyi

bxi + Fyi Bxi + gyi Cxi + hyi exi

)

Definition 3.2. Let (xk : yk) and (xl : yl) ∈ CP 1. The pair ((xk : yk), (xl : yl))
is an irregular pair for the equation (3.1):

[
(cyk)xl + (dxk + Ayk)yl

]
xixj +

[
(axk + Eyk)xl + (Dxk + fyk)yl

]
yixj

+
[
(bxk + Cyk)xl + (Bxk + eyk)yl

]
xiyj +

[
(Fxk + hyk)xl + (gxk)yl

]
yiyj

= 0
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if

|N | : =

∣∣∣∣∣
(cyk)xl + (dxk + Ayk)yl (axk + Eyk)xl + (Dxk + fyk)yl

(bxk + Cyk)xl + (Bxk + eyk)yl (Fxk + hyk)xl + (gxk)yl

∣∣∣∣∣
= 0.

Definition 3.3. Let (xk : yk) and (xl : yl) ∈ CP 1. The pair ((xk : yk), (xl : yl))
is a regular pair for the equation (3.1) if the pair ((xk : yk), (xl : yl)) is not an irregular
pair. (xi : yi) ∈ CP 1 is regular for the equation (3.1) if (xi : yi) is neither irregular nor
one of elements in an irregular pair.

Lemma 3.4.

P = axjxkxl + bxjxkyl + cxjykxl + dxjykyl + eyjxkxl + fyjxkyl + gyjykxl + hyjykyl

is reducible if and only if

a

e
=

b

f
=

c

g
=

d

h
.

i.e. the matrix

(
a b c d

e f g h

)

has a rank 1.

Proof. First, we prove that it is necessary. Assume P is reducible. Notice that
P is a homogeneous polynomial of degree three. Then we can write P as

P = (Axj + Bxk + Cxl + Dyj + Eyk + Fyl)(Gxkxl + Hxkyl + Iykxl + Jykyl).

Then, we get

B = C = E = F = 0.

Hence,

P = (Axj + Dyj)(Gxkxl + Hxkyl + Iykxl + Jykyl)

= AGxjxkxl + AHxjxkyl + AIxjykxl + AJxjykyl + DGyjxkxl

+ DHyjxkyl + DIyjykxl + DJyjykyl.

Comparing the coefficients of P , we have
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AG = a, AH = b, AI = c, AJ = d, DG = e, DH = f, DI = g, DJ = h.

a

e
=

b

f
=

c

g
=

d

h
.

It proves the necessity. Now, we prove the sufficiency.
Assume a

e = b
f = c

g = d
h , then

P = (axj + eyj)xkxl + (bxj + fyj)xkyl + (cxj + gyj)ykxl + (dxj + hyj)ykyl

= e

(
a

e
xj + yj

)
xkxl + f

(
b

f
xj + yj

)
xkyl + g

(
c

g
xj + yj

)
ykxl + h

(
d

h
xj + yj

)
ykyl

=
(

a

e
xj + yj

)
(exkxl + fxkyl + gykxl + hykyl). ¤

Lemma 3.5. (xi : yi) is irregular for the equation (3.1) if and only if

(ayi)xjxkxl + (dxi + Dyi)xjxkyl + (cxi + Eyi)xjykxl + (Axi + fyi)xjykyl

+ (bxi + Fyi)yjxkxl + (Bxi + gyi)yjxkyl + (Cxi + hyi)yjykxl + (exi)yjykyl (3.2)

is a reducible polynomial of the other three variables (xj : yj), (xk : yk) and (xl : yl).

Proof. If (xi : yi) is irregular for the equation (3.1). By the definition,

(
ayi dxi + Dyi cxi + Eyi Axi + fyi

bxi + Fyi Bxi + gyi Cxi + hyi exi

)

has rank one. This is equivalent to the following conditions:

∣∣∣∣∣
ayi dxi + Dyi

bxi + Fyi Bxi + gyi

∣∣∣∣∣ = 0,

∣∣∣∣∣
ayi cxi + Eyi

bxi + Fyi Cxi + hyi

∣∣∣∣∣ = 0,

∣∣∣∣∣
ayi Axi + fyi

bxi + Fyi exi

∣∣∣∣∣ = 0.

That is

ayi

bxi + Fyi
=

dxi + Dyi

Bxi + gyi
=

cxi + Eyi

Cxi + hyi
=

Axi + fyi

exi
. (3.3)

By Lemma 3.4, (3.2) is reducible.
On the other hand, if (3.2) is reducible, then (3.3) holds. This implies that the

matrix of (3.2) has rank one. By the definition, (xi : yi) is irregular for the equation
(3.1). ¤
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Corollary 3.6. If (xi : yi) is irregular, then xi 6= 0 and yi 6= 0.

Proof. Assume yi = 0. Then (3.1) becomes

dxixjxkyl + cxixjykxl + Axixjykyl + bxiyjxkxl

+ Bxiyjxkyl + Cxiyjykxl + exiyjykyl = 0

which is irreducible by Lemma 3.3. Hence, (xi : yi) is not irregular by Lemma 3.4. This
is a contradiction. So, yi 6= 0.

The proof of xi 6= 0 is similar. ¤

Lemma 3.7. Let (xk : yk) and (xl : yl) ∈ CP 1. The pair ((xk : yk), (xl : yl)) is
irregular for the equation (3.1) if and only if

For some (xj , yj) 6= (0, 0), either

(ayi)xkxl + (dxi + Dyi)xkyl + (cxi + Eyi)ykxl + (Axi + fyi)ykyl = 0

for yj 6= 0, (3.4)

or

(bxi + Fyi)xkxl + (Bxi + gyi)xkyl + (Cxi + hyi)ykxl + (exi)ykyl = 0

for xj 6= 0. (3.5)

Proof. Let the pair ((xk : yk), (xl : yl)) be an irregular pair for the equation
(3.1). By Definition 3.2,

∣∣∣∣∣
(cyk)xl + (dxk + Ayk)yl (axk + Eyk)xl + (Dxk + fyk)yl

(bxk + Cyk)xl + (Bxk + eyk)yl (Fxk + hyk)xl + (gxk)yl

∣∣∣∣∣ = 0.

Hence, the equations

[
(cyk)xl + (dxk + Ayk)yl

]
xi +

[
(axk + Eyk)xl + (Dxk + fyk)yl

]
yi = 0 (3.6)

[
(bxk + Cyk)xl + (Bxk + eyk)yl

]
xi +

[
(Fxk + hyk)xl + (gxk)yl

]
yi = 0 (3.7)

have non-zero solution (xi, yi). That is:

(ayi)xkxl + (dxi + Dyi)xkyl + (cxi + Eyi)ykxl + (Axi + fyi)ykyl = 0 (3.8)

(bxi + Fyi)xkxl + (Bxi + gyi)xkyl + (Cxi + hyi)ykxl + (exi)ykyl = 0. (3.9)

It proves the necessity. Now we prove the sufficiency.
Assume

(ayi)xkxl + (dxi + Dyi)xkyl + (cxi + Eyi)ykxl + (Axi + fyi)ykyl = 0
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holds for some (xj , yj), yj 6= 0, we have

[
(ayi)xkxl + (dxi + Dyi)xkyl + (cxi + Eyi)ykxl + (Axi + fyi)ykyl

]
xj = 0.

Hence, (3.1) becomes

[
(bxi + Fyi)xkxl + (Bxi + gyi)xkyl + (Cxi + hyi)ykxl + exiykyl

]
yj = 0, (3.10)

which implies

(bxi + Fyi)xkxl + (Bxi + gyi)xkyl + (Cxi + hyi)ykxl + exiykyl = 0. (3.11)

Thus, we imply the system of equations (3.6) and (3.7) has non-zero solution (xi, yi).
Hence,

∣∣∣∣∣
(cyk)xl + (dxk + Ayk)yl (axk + Eyk)xl + (Dxk + fyk)yl

(bxk + Cyk)xl + (Bxk + eyk)yl (Fxk + hyk)xl + (gxk)yl

∣∣∣∣∣ = 0.

This means that pair ((xk : yk), (xl : yl)) is irregular for the equation (3.1).
Similarly one can prove that if

(bxi + Fyi)xkxl + (Bxi + gyi)xkyl + (Cxi + hyi)ykxl + (exi)ykyl = 0

for some (xj , yj), xj 6= 0, then that pair ((xk : yk), (xl : yl)) is an irregular pair for the
equation (3.1). ¤

Lemma 3.8. Assume ((x1 : y1), (x2 : y2), (x3 : y3), (x4 : y4)) ∈ (CP 1)4 is a
solution of (3.1). If (x1 : y1) is irregular, then there is at least one irregular or irregular
pair in (x2 : y2), (x3 : y3), (x4 : y4) for (3.1). If (x1 : y1) is regular, then (x2 : y2), (x3 : y3)
and (x4 : y4) are either all regular or at least two are irregular or one irregular pair for
(3.1). In other words, the number of irregularity cannot be 1.

Proof. Assume (x1 : y1) is irregular. Write (3.1) as a polynomial of (x2 : y2),
(x3 : y3) and (x4 : y4)

P = (ay1)x2x3x4 + (dx1 + Dy1)x2x3y4 + (cx1 + Ey1)x2y3x4

+ (Ax1 + fy1)x2y3y4 + (bx1 + Fy1)y2x3x4 + (Bx1 + gy1)y2x3y4

+ (Cx1 + hy1)y2y3x4 + (ex1)y2y3y3. (3.12)

From Corollary 3.6, we know x1 6= 0 and y1 6= 0.
By Lemma 3.5, (x1, y1) is irregular if and only if (3.12) is reducible. By Lemma 3.4,

(3.12) is reducible if and only if
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ay1

bx1 + Fy1
=

dx1 + Dy1

Bx1 + gy1
=

cx1 + Ey1

Cx1 + hy1
=

Ax1 + fy1

ex1
. (3.13)

That is

(ay1)(Bx1 + gy1) = (bx1 + Fy1)(dx1 + Dy1),

(ay1)(Cx1 + hy1) = (bx1 + Fy1)(cx1 + Ey1),

(ay1)(ex1) = (bx1 + Fy1)(Ax1 + fy1).

We get

(bd)x2
1 + (bD + dF − aB)x1y1 + (DF − ag)y2

1 = 0, (3.14)

(bc)x2
1 + (bE + Fc− aC)x1y1 + (FE − ah)y2

1 = 0, (3.15)

(bA)x2
1 + (bf + AF − ae)x1y1 + (fF )y2

1 = 0, (3.16)

which has at most two roots of (x1 : y1). Because (x2, y2) is a non-zero solution of (3.1),
we assume x2 6= 0 first. Then (3.1) can be written as

P =
[
(ay1)x2 + (bx1 + Fy1)y2

]
x3x4 +

[
(dx1 + Dy1)x2 + (Bx1 + gy1)y2

]
x3y4

+
[
(cx1 + Ey1)x2 + (Cx1 + hy1)y2

]
y3x4 +

[
(Ax1 + fy1)x2 + (ex1)y2

]
y3y4

= (bx1 + Fy1)
[

(ay1)
(bx1 + Fy1)

x2 + y2

]
x3x4 + (Bx1 + gy1)

[
(dx1 + Dy1)
(Bx1 + gy1)

x2 + y2

]
x3y4

+ (Cx1 + hy1)
[

(cx1 + Ey1)
(Cx1 + hy1)

x2 + y2

]
y3x4 + (ex1)

[
(Ax1 + fy1)

(ex1)
x2 + y2

]
y3y4

=
[

(ay1)
(bx1 + Fy1)

x2 + y2

]

· [(bx1 + Fy1)x3x4 + (Bx1 + gy1)x3y4 + (Cx1 + hy1)y3x4 + (ex1)y3y4

]

= 0. (3.17)

If (ay1)
(bx1+Fy1)

x2 + y2 = 0, then

by2x1 + (ax2 + Fy2)y1 = 0.

We have a solution

x1

y1
= −ax2 + Fy2

by2
. (3.18)

Put (3.18) into (3.14), (3.15) and (3.16), it yields
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(bd)
(
a2x2

2 + 2aFx2y2 + F 2y2
2

)

− (bD + dF − aB)
(
abx2y2 + bFy2

2

)
+ (DF − ag)b2y2

2 = 0,

(bc)
(
a2x2

2 + 2aFx2y2 + F 2y2
2

)

− (bE + Fc− aC)
(
abx2y2 + bFy2

2

)
+ (FE − ah)b2y2

2 = 0,

(bA)
(
a2x2

2 + 2aFx2y2 + F 2y2
2

)

− (bf + AF − ae)
(
abx2y2 + bFy2

2

)
+ (fF )b2y2

2 = 0.

Combining the like terms we get

(bda2)x2
2 + (abdF + a2bB − ab2D)x2y2 + (abBF − ab2g)y2

2 = 0,

(a2bc)x2
2 + (abcF + a2bC − ab2E)x2y2 + (abFC − ab2h)y2

2 = 0,

(a2bA)x2
2 + (abAF + a2be− ab2f)x2y2 + (abeF )y2

2 = 0,

which is equivalent to

(ad)x2
2 + (dF + aB − bD)x2y2 + (BF − bg)y2

2 = 0, (3.19)

(ac)x2
2 + (cF + aC − bE)x2y2 + (FC − bh)y2

2 = 0, (3.20)

(aA)x2
2 + (AF + ae− bf)x2y2 + (eF )y2

2 = 0. (3.21)

We claim that (3.19), (3.20) and (3.21) are necessary and sufficient conditions for
(x2 : y2) being irregular of (3.1). To see this, write (3.1) as a polynomial of (x1 : y1),
(x3 : y3) and (x4 : y4)

P = (by2)x1x3x4 + (dx2 + By2)x1x3y4 + (cx2 + Cy2)x1y3x4 + (Ax2 + ey2)x1y3y4

+ (ax2 + Fy2)y1x3x4 + (Dx2 + gy2)y1x3y4 + (Ex2 + hy2)y1y3x4 + (fx2)y1y3y4

= 0. (3.22)

By Lemma 3.4 and Lemma 3.5, (x2, y2) is irregular for (3.1) if and only if (3.22) is
reducible if and only if

by2

ax2 + Fy2
=

dx2 + By2

Dx2 + gy2
=

cx2 + Cy2

Ex2 + hy2
=

Ax2 + ey2

fx2
. (3.23)

That is

(by2)(Dx2 + gy2) = (ax2 + Fy2)(dx2 + By2),

(by2)(Ex2 + hy2) = (ax2 + Fy2)(cx2 + Cy2),

(by2)(fx2) = (ax2 + Fy2)(Ax2 + ey2),
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which are exactly (3.19), (3.20) and (3.21).
If [(bx1 + Fy1)x3x4 + (Bx1 + gy1)x3y4 + (Cx1 + hy1)y3x4 + (ex1)y3y4] = 0, because

x2 6= 0, by Lemma 3.7, the pair ((x3 : y3), (x4 : y4)) is irregular for (3.1).
Now, we consider y2 6= 0. Then (3.1) can be written as

P =
[
(ay1)x2 + (bx1 + Fy1)y2

]
x3x4 +

[
(dx1 + Dy1)x2 + (Bx1 + gy1)y2

]
x3y4

+
[
(cx1 + Ey1)x2 + (Cx1 + hy1)y2

]
y3x4 +

[
(Ax1 + fy1)x2 + (ex1)y2

]
y3y4

= (ay1)
[
x2 +

(bx1 + Fy1)
(ay1)

y2

]
x3x4 + (dx1 + Dy1)

[
x2 +

(Bx1 + gy1)
(dx1 + Dy1)

y2

]
x3y4

+ (cx1 + Ey1)
[
x2 +

(Cx1 + hy1)
(cx1 + Ey1)

y2

]
y3x4 + (Ax1 + fy1)

[
x2 +

(ex1)
(Ax1 + fy1)

y2

]
y3y4

=
[
x2 +

(bx1 + Fy1)
(ay1)

y2

]

· [(ay1)x3x4 + (dx1 + Dy1)x3y4 + (cx1 + Ey1)y3x4 + (Ax1 + fy1)y3y4

]

= 0. (3.24)

If x2 + (bx1+Fy1)
(ay1)

y2 = 0, then by2x1 + Fy2y1 + ax2y1 = 0. We get

x1

y1
= −ax2 + Fy2

by2
,

which is (3.18). Same as above, we can prove that (x2 : y2) is irregular of (3.1).
If (ay1)x3x4 + (dx1 + Dy1)x3y4 + (cx1 + Ey1)y3x4 + (Ax1 + fy1)y3y4 = 0, because

y2 6= 0, by Lemma 3.7, the pair ((x3 : y3), (x4 : y4)) is irregular for (3.1). ¤

From the argument above we also have

Lemma 3.9. Assume ((xi : yi), (xj : yj), (xk : yk), (xl : yl)) ∈ (CP 1)4 is a solution
of (3.1). Then there are at most finite irregular (xm : ym) and irregular pair ((xm : ym),
(xn : yn)) of (3.1) for each m,n = i, j, k, l. Therefore, the set of irregularity of (3.1) is
finite.

(0 : 1) and (1 : 0) are regular of (3.1).

Proof. Assume i = 1. From the proof above, the necessary and sufficient condi-
tions that (x1 : y1) is irregular of (3.1) are that equations (3.14), (3.15) and (3.16) hold,
which have at most two solutions.

Similarly, we can consider (xi : yi), (xj : yj), (xk : yk) and (xl : yl).
From lemma 3.7 and Definition 3.2, there are at most finite irregular pair ((xm : ym),

(xn : yn)) of (3.1) for each m,n = i, j, k, l.
It is clear that (0 : 1) and (1 : 0) do not satisfy (3.16). Hence, (0 : 1) and (1 : 0) are

regular of (3.1). ¤

Lemma 3.10. For each fixed regular pair ((xk : yk), (xl : yl)) of (3.1), the following
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relation produces an automorphism of CP 1

(
xj

yj

)
= K

(
−(bxk + Cyk)xl − (Bxk + eyk)yl −(Fxk + hyk)xl − (gxk)yl

(cyk)xl + (dxk + Ayk)yl (axk + Eyk)xl + (Dxk + fyk)yl

)(
xi

yi

)

≡ KM

(
xi

yi

)
, K ∈ C∗, (3.25)

which sends regular values to regular values of (3.1). In particular, if (xk : yk) = (xl : yl)
= (0 : 1) (respectively (1 : 0)), then (3.25) sends (0 : 1) (respectively (1 : 0)) to (0 : 1)
(respectively (1 : 0)).

Proof. Since ((xk : yk), (xl : yl)) are a regular value, |M | = |N | (c.f. Definition
3.2) is non-zero by Definition 3.3. Hence (3.25) is an automorphism of CP 1. Clearly
(3.25) is

(
xj

yj

)
= K

(
−[

(bxk + Cyk)xl + (Bxk + eyk)yl

]
xi −

[
(Fxk + hyk)xl + (gxk)yl

]
yi[

(cyk)xl + (dxk + Ayk)yl

]
xi +

[
(axk + Eyk)xl + (Dxk + fyk)yl

]
yi

)

which implies

[
(cyk)xl + (dxk + Ayk)yl

]
xixj +

[
(axk + Eyk)xl + (Dxk + fyk)yl

]
yixj

+
[
(bxk + Cyk)xl + (Bxk + eyk)yl

]
xiyj +

[
(Fxk + hyk)xl + (gxk)yl

]
yiyj = 0.

This is exactly the equation (3.1). By Lemma 3.8, the mapping (3.25) sends regular
values of (3.1) to regular values of (3.1). The last statement of the lemma is obvious. ¤

Remark 3.11. Equation (3.25) is equivalent to equation (3.1). If we write (3.1)
as

{[
(cyk)xl + (dxk + Ayk)yl

]
xi +

[
(axk + Eyk)xl + (Dxk + fyk)yl

]
yi

}
xj

+
{[

(bxk + Cyk)xl + (Bxk + eyk)yl

]
xi +

[
(Fxk + hyk)xl + (gxk)yl

]
yi

}
yj = 0,

then

(xj , yj) = K
(− [

(bxk + Cyk)xl + (Bxk + eyk)yl

]
xi −

[
(Fxk + hyk)xl + (gxk)yl

]
yi,

[
(cyk)xl + (dxk + Ayk)yl

]
xi +

[
(axk + Eyk)xl + (Dxk + fyk)yl

]
yi

)

which is (3.25). Hence, if ((xk : yk), (xl : yl)) is a regular pair for (3.1), and (xi : yi) is
regular for (3.1), then there is a unique (xj : yj) solved in terms of (xi : yi), (xk : yk)
and (xl : yl). We call such procedure “fixing three variables to solve the another” and
call (xi : yi), (xj : yj), (xk : yk), (xl : yl) “solved variables”.
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Lemma 3.12 (Lattice-Isotopy Theorem [Ra2]). If two arrangements are connected
by a one-parameter family of arrangements {A (t)} which have the same L(A ), then the
complements are diffeomorphic, hence of the same homotopy type.

In order to simplify the proof of our main theorem, the following lemmas are useful.

Lemma 3.13. Let A ∗ be a point arrangement. Then for each two points of G =
G (A ∗), there are at most two planes passing through both of them.

Proof. Because A ∗ is a point arrangement, G does not contain any line. For
two points in G , if there are more than two planes passing through them, then the
intersection line of the planes, say l, has multiplicity m(l) ≥ 3. It implies that l must be
in the pseudo-complex soul G of A ∗. It contradicts that A ∗ is a point arrangement. ¤

Lemma 3.14. Let G be a soul, St(v1), . . . , St(vm) be simple joint stars of G and
G ′ = G − ⋃m

i=1 St(vi). If u is a point of G ′, then u cannot connect to more than
two end points of St(v1), . . . , St(vm) by paths in G ′. If u connects two end points of
St(v1), . . . , St(vm) by two paths in G ′ respectively, then the two paths are unique.

Proof. Assume u connects to three end points u1, u2 and u3 of St(v1), . . . , St(vm)
by paths in G ′. Then u1 connects to other two end points u2 and u3 through u. It is a
contradiction because St(v1), . . . , St(vm) are simple joint.

If u connects two end points of St(v1), . . . , St(vm) by more than two paths in G ′,
assume that P1 and P2 connect an end point u1 to u, P3 connects u to another end
point u2, then there are two paths:

(u1)P1, (u)P3(u2),

(u1)P2, (u)P3, (u2),

which connect u1 and u2. It is also a contradiction because St(v1), . . . , St(vm) are simple
joint. ¤

Corollary 3.15. Let G be a soul, St(v1), . . . , St(vm) be simple joint stars of G .
G ′ = G −⋃m

i=1 St(vi). If u is a point in G ′ connecting to St(v1), . . . , St(vm), then only
one of the following cases occurs:

(1) u connects to only one end point of St(v1), . . . , St(vm) by path in G ′.
(2) u connects to two end points w1 and w2 of St(v1), . . . , St(vm). Moreover, the path

in G ′ from u to wi, i = 1, 2 is unique.

Proof. It is obvious from Lemma 3.13. ¤

Lemma 3.16. Let G be a soul, v1, v2 and v3 be three points of G . If v1, v2 and
v3 are pairwise connected to each other by paths and each of the paths does not pass all
three points, then there is a loop in G .

Proof. Assume that v1 and v2 are connected by the path P1, v2 and v3 are
connected by the path P2, and v3 and v1 are connected by the path P3. Then there is
a loop:
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(v1)P1, (v2)P2, (v3)P3, (v1). ¤

Corollary 3.17. Let G be a soul. If G has no loop, then any three points in G
can not be pairwise connected each other by the paths, each of which does not pass all
three points.

Proof. It is obvious from Lemma 3.16. ¤

4. Diffeomorphic types for nice point arrangement in CP 3.

Theorem A. Let A ∗
0 and A ∗

1 be two nice point arrangements of hyperplanes in
CP 3. If L(A ∗

0 ) and L(A ∗
1 ) are isomorphic, then the complements M(A ∗

0 ) and M(A ∗
1 )

in CP 3 are diffeomorphic to each other.

Proof. We represent the two arrangements as A ∗
0 = {G1, G2, . . . , Gn} and A ∗

1 =
{H1,H2, . . . , Hn} where Gi = (gi1, gi2, gi3, gi4) and Hi = (hi1, hi2, hi3, hi4) are in CP 3.
We shall construct a one-parameter family of arrangements A ∗(t) such that A ∗(0) = A ∗

0 ,
A ∗(1) = A ∗

1 and L(A ∗(t)) ≡ L(A ∗
0 ) for all t ∈ [0, 1].

Let A ∗ = {F1, F2, . . . , Fn} where Fi = xiGi + yiHi for some xi, yi ∈ C such that Fi

is in CP 3, i = 1, 2, . . . , n. Let I = {(i, j, k, l) : 1 ≤ i < j < k < l ≤ n}. So |I| = C(n, 4),
where C(n, 4) =

(
n
4

)
. Consider any quadruple {Fi, Fj , Fk, Fl}, (i, j, k, l) ∈ I. Denote the

matrix



xigi1 + yihi1 xigi2 + yihi2 xigi3 + yihi3 xigi4 + yihi4

xjgj1 + yjhj1 xjgj2 + yjhj2 xjgj3 + yjhj3 xjgj4 + yjhj4

xkgk1 + ykhk1 xkgk2 + ykhk2 xkgk3 + ykhk3 xkgk4 + ykhk4

xlgl1 + ylhl1 xlgl2 + ylhl2 xlgl3 + ylhl3 xlgl4 + ylhl4




by (FiFjFkFl) and its determinant by |FiFjFkFl|. Now we can write

|FiFjFkFl| = |GiGjGkGl|xixjxkxl + |HiGjGkGl|yixjxkxl + |GiHjGkGl|xiyjxkxl

+ |GiGjHkGl|xixjykxl + |GiGjGkHl|xixjxkyl + |GiGjHkHl|xixjykyl

+ |GiHjGkHl|xiyjxkyl + |GiHjHkGl|xiyjykxl + |HiGjGkGl|yixjxkyl

+ |HiGjHkGl|yixjykxl + |HiHjGkGl|yiyjxkxl + |GiHjHkHl|xiyjykyl

+ |HiGjHkHl|yixjykyl + |HiHjGkHl|yiyjxkyl + |HiHjHkGl|yiyjykxl

+ |HiHjHkHl|yiyjykyl. (4.1)

Since it is a point arrangement we only need to consider the case: four planes meet
exactly at one point. Replacing A ∗ by φ(A ∗) if necessary where φ : CP 3 → CP 3 is a
complex analytic automorphism, we assume without loss of generality that any one (two,
or three) plane(s) in A ∗

0 and any three(two or one) plane(s) in A ∗
1 do not intersect at

a point. Thus, to get L(A ∗) ≡ L(A ∗
0 ), it is sufficient to have the following: For any

(i, j, k, l) ∈ I,
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rank(Fi, Fj , Fk, Fl) = 3 if and only if rank(Gi, Gj , Gk, Gl) = 3.

It is equivalent to

(1) |FiFjFkFl| = 0 if and only if |GiGjGkGl| = 0, (4.2)

and
(2) there exists one non-zero 3-subdeterminant D3(FiFjFkFl) of |FiFjFkFl| if and

only if there exists one non-zero 3-subdeterminant D3(GiGjGkGl) of |GiGjGkGl|.
Let m =

∑
j≥4 C(j, 4)pj(A ∗

0 ). To show (1), we need to consider m equations and
C(n, 4)−m inequalities

P1 = 0, . . . , Pm = 0, (4.3)

Q1 6= 0, . . . , QC(n,4)−m 6= 0, (4.4)

and to show (2), for each i < j < k < l we have to consider a 3-subdeterminant
D3(FiFjFkFl) in |FiFjFkFl| such that

D3(FiFjFkFl) 6= 0 if and only if D3(GiGjGkGl) 6= 0. (4.5)

Here both Pi and Qj have the forms like (4.1). But for Pi, the first term and last term
are zero since |GiGjGkGl| = |HiHjHkHl| = 0 by (4.2).

To prove the theorem, we need to find a one parameter family of arrangements
{F1, F2, . . . , Fn} with isomorphic L(A ∗

0 ). If we can show (1) and show that points
((1 : 0), (1 : 0), . . . , (1 : 0)) and ((0 : 1), (0 : 1), . . . , (0 : 1)) lie on the same irreducible
component of {P1 = 0, . . . , Pm = 0} but not in varieties

⋃C(n,4)−m
i=1 {Qi = 0} and not in

the intersection of all {D3(FiFjFkFl) = 0}, then the one parameter family of arrange-
ments with required property can be constructed.

Among P1, . . . , Pm at most c(A ∗
0 ) =

∑
j≥4(j − 3)pj(A ∗

0 ) of them are independent.
To see this, we consider a j-tuple point v (j ≥ 4). Let F1, . . . , Fj be the planes of
A ∗ passing though v. We have C(j, 4) equations (|FiFjFkFl| = 0, . . . , etc.). Since
{F1, . . . , Fj} can be linearly generated by three planes, say F1, F2 and F3, the C(j, 4)
equations are reduced equivalently to j − 3 equations |F1F2F3Fk| = 0 for i = 4, . . . , j.
Now consider all j−tuple points (j ≥ 4). We have a system of c(A ∗

0 ) equations, say
{P1 = 0, . . . , Pc(A ∗

0 ) = 0} which is equivalent to {P1 = 0, . . . , Pm = 0}.
As we observed before, each Pr can be written as

Pr = aryirxjrxkrxlr + brxiryjrxkrxlr + crxirxjrykrxlr + drxirxjrxkrylr

+ Arxir
xjr

ykr
ylr + Brxir

yjr
xkr

ylr + Crxir
yjr

ykr
xlr + Dryir

xjr
xkr

ylr

+ Eryir
xjr

ykr
xlr + Fryir

yjr
xkr

xlr + erxir
yjr

ykr
ylr + fryir

xjr
ykr

ylr

+ gryir
yjr

xkr
ylr + hryir

yjr
ykr

xlr

= 0, (4.6)
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where ar = |Hir
Gjr

Gkr
Glr |, br = |Gir

Hjr
Gkr

Glr |, etc. and
arbrcrdrArBrCrDrErFrerfrgrhr 6= 0 for all r = 1, . . . , c(A ∗

0 ).
Note that Pr is viewed as a polynomial in ((x1 : y1), . . . , (xn : yn)) ∈ (CP 1)n. For

each r, indices ir, jr, kr, lr are pairwise distinct and (ir, jr, kr, lr) 6= (is, js, ks, ls) for r 6= s

where 1 ≤ ir, jr, kr, lr, is, js, ks, ls ≤ n and 1 ≤ r, s ≤ c(A ∗
0 ).

Since A ∗
0 is a nice point arrangement in CP 3, then G has no loop or there are

simple joint stars, say St(v1), . . . , St(vs) in G such that they are disjoint and

G ′ = G −
s⋃

i=1

St(vi)

has no loop, where all vi ∈ G (0).
We shall prove that we can solve all variables in terms of some variables (in the sense

of Remark 3.11) without ambiguity. Here we shall use the notation in Definition 2.5.

Case 0: Assume G has no loop. We pick a point v0 with multiplicity k in G . By
Definition of G , k ≥ 4. There are k variables appearing in k − 3 equations of (4.6).
Without loss of generality we suppose that these variables are (x1 : y1), . . . , (xk : yk) and
(x1 : y1), (x2 : y2) and (x3 : y3) appear in each of these k − 3 equations. Thus, we can
fix (x1 : y1), (x2 : y2) and (x3 : y3) to solve (x4 : y4), . . . , (xk : yk). Hence, we can solve
all variables at v0.

From the discussion we know, at each point there are k variables appearing in k− 3
equations of (4.6). If at most three variables are solved at this point, then we can use
these three variables to solve all others. Hence, in the following discussion, we only need
to show that at most three variables are solved at each point.

Now, we use induction on the distance from the points to v0. We consider all 1-points
of v0 which correspond to the end points of St(v0). Then we shall consider 2-points of
v0, and so on.

Assume we first pick an end point of St(v0), u1,1, it is a 1-point of v0. By Lemma
3.13 there are at most two planes in the star St(v0) passing through u1,1, which means
that at most two variables corresponding to these two planes are solved. Hence we can
solve all other variables at u1,1. Next we pick another end point of St(v0), u1,2, which
does not connect to u1,1 by a path that does not pass v0 from Corollary 3.17. Hence there
are at most two planes in the star St(v0) passing through u1,2 by Lemma 3.13. Thus,
we can solve all variables at u1,2. Continuing this procedure, we can solve all variables
at all 1-points of St(v0).

Assume we can solve all variables at the (k − 1)-points uk−1,1, . . . , uk−1,m. Then
consider the k-points. Without loss the generality we assume that k-point uk,1 is an end
point of St(uk−1,1). From induction assumption, all variables at uk−1,1 are solved. For
uk,1, there are at most two planes in St(uk−1,1) passing through it by Lemma 3.13 and
uk,1 can not connect to another j-point (j < k) by the path that does not pass uk−1,1

by Corollary 3.17. Hence at most two variables are solved at uk,1. Thus, we can solve all
variables at uk,1. Similarly, we can solve other variables at all k-points. By the induction
principle, we can solve all variables at all points of G .
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Case 1: Assume s = 1 and v1 is a point of multiplicity k in A ∗
0 and St(v1) is

simple joint.
Since k ≥ 4 by definition of G , there are k variables appearing in k− 3 equations of

(4.6). Similar to Case 0, we can fix three variables and solve all variables at v1.

The rest of the unsolved variables of equations in (4.6) correspond to the pseudo-
complex G ′ which has no loop and is a set of the stars.

We also use induction on the distance from the points to v1.
First, we consider the end points of St(v1), they are 1-points of v1.
Case 1.1: If any of the two end points of St(v1) is not connected by the path in

G ′ = G −St(v1), we can pick each end point of St(v1) separately. Assume we first pick an
end point of St(v1), u1,1. By Lemma 3.13 there are at most two planes in the star St(v1)
passing through u1,1, which means that at most two variables corresponding to these two
planes are solved. Hence, we can use these variables and solve all other variables at u1,1.
Next we pick another end point of St(v1), u1,2, which does not connect to u1,1 by a path
in G ′. Hence we can solve all variables at u1,2 by the same reason of solving variables at
u1,1. Continuing this procedure, we can solve all variables at all 1-points of v1.

Case 1.2: If there are two end points of St(v1) which are connected by a path in
G ′, we can choose an end point of St(v1), say u1,1, such that u1,1 connects to another
end point u1,2 of St(v1). By Lemma 3.13 there are at most two planes, say P1 and P2,
in the star St(v1) passing through u1,1. We can use the two variables corresponding to
P1 and P2 and choose another variable, then solve all variables at u1,1. Since St(v1) is
simple joint, there is only one path in G ′ which connects u1,1 and u1,2. Assume the plane
passing through u1,2 in the path is P3. By Lemma 3.13 there are at most two planes,
say P4 and P5, in the star St(v1) passing through u1,2. Then we can fix three variables
corresponding to P3, P4 and P5, and solve other variables at u1,2. Next, consider another
end point u1,3 of St(v1). Similarly, since St(v1) is simple joint, only one of u1,1 and u1,2

can connect to u1,3 by a path in G ′. Hence there are at most three variables solved at
u1,3. Using these three variables we can solve all other variables at u1,3. Continuing this
procedure, we can solve all variables at all 1-points of v1.

Assume we can solve all variables at the (k−1)-points uk−1,1, . . . , uk−1,m of v1. Then
consider the k-points of v1. Without loss of the generality we assume that k-point uk,1 is
an end point of St(uk−1,1) which connects to an end point u1,1 of St(v1). From induction
assumption, all variables at uk−1,1 are solved. For uk,1, there are at most two planes in
St(uk−1,1) passing through it by Lemma 3.13. uk,1 cannot connect to another point that
connects to u1,1 by Corollary 3.17, and uk,1 cannot connect to other two j-point (j < k)
by the path in G ′ by Corollary 3.14. Hence at most three variables are solved at uk,1.
Thus, we can solve all variables at uk,1. Similarly, using this procedure, we can solve
other variables at all k-points.

By induction, we can solve all variables at all points of G .

Case 2: s = 2. By the same procedure as above we can solve all variables at v1

and v2. If St(v1) and St(v2) are not connected by a path in G ′, we can solve all variables
from them separately. Hence, we only need to consider the case when they are connected.

First, we choose an end point of St(v1), say u1,1. It is a 1-point of v1. By Lemma
3.13, there are at most two planes in St(v1) passing through u1,1, hence, we can solve
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the variables at u1,1. For other end points of St(v1), we can solve the variables by the
same discussion in Case 1.

Now we consider an end point of St(v2), say w1,1, which connects to an end point
of St(v1), say u1,1. We know from Definition 3.6 that w1,1 only connects to u1,1 by one
unique path. Assume the plane passing through w1,1 in the path is P1. Also, by Lemma
3.13, there are at most two planes in St(v2) which passes through w1,1. Assume the
planes are P2 and P3. Then we use these three solved variables corresponding to P1, P2

and P3 to solve other variables at w1,1.
Next, we pick another end point, say w1,2. Because w1,2 connects to at most one

end point of St(v1) or St(v2) by Definition 2.6, and at most two planes in St(v2) pass v2

and its end point by Lemma 3.13, we know that there are at most three solved variables
at w1,2. Hence we can use these three solved variables to solve other variables at w1,2.
Continuing the same procedure, we can solve all variables at the end points of St(v1) or
St(v2).

Since G ′ has no loop, any three points cannot be connected pairwise in G ′ by Corol-
lary 3.17 and any point can connect to only one end point or connect to two end points
of St(v1) and St(v2) by two unique paths in G ′ from Corollary 3.15, we can continue this
procedure and solve all variables without ambiguity.

Similarly, we can consider the case of s > 2.
Thus we can solve all variables in terms of some variables without ambiguity since

G ′ has no loop.
Now, there are p variables such that all variables are presented as

(
(x1 : y1), . . . , (xn : yn)

)
= f

(
(x1 : y1), . . . , (xp : yp)

)
,

where each component of f is a composition by some maps as (3.25). So they are
homogeneous polynomial of (x1 : y1), . . . , (xp : yp). Let

U := (CP 1)p − {(
(x1 : y1), . . . , (xp : yp)

)
: for some 1 ≤ i ≤ p,

(xi : yi) is irregular of some equation of (4.6)
}
.

By Lemma 3.9, U is an open connected set of (CP 1)p. By Lemma 3.10, f defines an
embedding from U ⊂ (CP 1)p to (CP 1)n. Since U is irreducible, so is f(U) irreducible.
Observe that (0 : 1)n = ((0 : 1), . . . , (0 : 1)) and (1 : 0)n = ((1 : 0), . . . , (1 : 0)) are
contained in f(U). We deduce that (0 : 1)n and (1 : 0)n are in the same irreducible
component of {P1 = 0, . . . , Pc(A ∗

0 ) = 0}. In fact, put (1 : 0)n ((0 : 1)n, respectively) to
(4.6), we can see that

Pr = 0 for all r = 1, . . . , c(A ∗
0 ),

and Qs = |GsiGsjGskGsl| 6= 0 (|HsiHsjHskHsl| 6= 0, respectively) for all s =
1, . . . , C(n, 4)− c(A ∗

0 ).
Moreover, let Vr be the variety defined by the zero set of all 3× 3 subdeterminants

D3(FriFrjFrkFrl) of |FriFrjFrkFrl|.
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To simplify we consider a 3-subdeterminant D3(FiFjFkFl) of |FiFjFkFl| as follows,

D3(FiFjFkFl) =

∣∣∣∣∣∣∣∣

xigi1 + yihi1 xigi2 + yihi2 xigi3 + yihi3

xjgj1 + yjhj1 xjgj2 + yjhj2 xjgj3 + yjhj3

xkgk1 + ykhk1 xkgk2 + ykhk2 xkgk3 + ykhk3

∣∣∣∣∣∣∣∣

=D3(GiGjGkGl)xixjxk + D3(HiGjGkGl)yixjxk

+ D3(GiHjGkGl)xiyjxk + D3(GiGjHkGl)xixjyk

+ D3(GiHjHkHl)xiyjyk + D3(HiGjHkHl)yixjyk

+ D3(HiHjGkHl)yiyjxk + D3(HiHjHkHl)yiyjyk, (4.7)

where D3(GiGjGkGl) is the left top 3-subdeterminant of |GiGjGkGl|, and so on.
Put (1 : 0)n ((0 : 1)n, respectively) to (4.7), we can see

D3(FiFjFkFl) = D3(GiGjGkGl) ( D3(HiHjHkHl), respectively).

Hence, D3(FiFjFkFl) 6= 0 if and only if D3(GiGjGkGl) 6= 0 (D3(HiHjHkHl) 6= 0).
From Definition 2.3 we know that for each point in G there are three planes passing

through it which are in general position. Hence, there exist Gi, Gj and Gk,(Hi,Hj and
Hk, respectively) such that

D3(FiFjFkFl) 6= 0

Similarly, we can consider other cases.
Thus, we can see that (1 : 0)n and (0 : 1)n are not in Vr for r = 1, . . . , c(A ∗

0 ).
Now we have shown that (1) and (2) hold in

f(U)−
{(C(n,4)−c(A ∗

0 )⋃
s=1

{Qs = 0}
)
∪

( c(A ∗
0 )⋃

r=1

Vr

)}

which contains the points (1 : 0)n and (0 : 1)n.
Recall that irreducible variety minus a subvariety is still a connected set. Hence, the

irreducible component of {Pr = 0 for r = 1, . . . , c(A ∗
0 )} minus the subvariety of {Qs = 0

for all s = 1, . . . , C(n, 4) − c(A ∗
0 )} and the subvarieties Vr for r = 1, . . . , c(A ∗

0 ) is still
connected. So there is a curve from ((1 : 0), . . . , (1 : 0)) to ((0 : 1), . . . , (0 : 1)) such that
(4.3), (4.4) and (4.5) are satisfied for any point lying in the curve. This means that we
have constructed a one-parameter family of arrangements A ∗(t) such that A ∗(0) = A ∗

0 ,
A ∗(1) = A ∗

1 and L(A ∗(t)) ≡ L(A ∗
0 ) for all t ∈ [0, 1].

Now we can apply Lemma 3.12 (Lattice-Isotopy Theorem) and finish the proof of
the Theorem. ¤

In the course of proving Theorem A, we have proved the following Theorem.
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Theorem B. Let A ∗ be a nice point arrangement of hyperplanes in CP 3. The
moduli space of A ∗ with fixed combinatorics L(A ∗) is connected.

Proof. For given two nice point arrangements A ∗
0 and A ∗

1 of hyperplanes in
CP 3 with fixed combinatorics L(A ∗), in the proof of Theorem A, we have constructed
a one-parameter family A ∗(t) of hyperplanes in CP 3 with fixed combinatorics L(A ∗)
connecting A ∗

0 and A ∗
1 . Therefore the moduli space of A ∗ with fixed combinatorics

L(A ∗) is connected. ¤

Theorem C. The homotopy groups of the complement M(A ∗) of a nice point
arrangement of hyperplanes in CP 3 depend only on L(A ∗) (or the lattice L(A )).

Proof. Since the topology of M(A ∗) is determined by L(A ∗), by Theorem A,
the homotopy groups of the complement M(A ∗) are determined by L(A ∗). ¤
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