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Abstract. We show that given a finitely presented group G with β1(G) ≥ 2
which is a mapping torus Γθ for Γ a finitely generated group and θ an automorphism
of Γ then if the Alexander polynomial of G is non-constant, we can take β1(Γ) to be
arbitrarily large. We give a range of applications and examples, such as any group G
with β1(G) ≥ 2 that is Fn-by-Z for Fn the non-abelian free group of rank n is also
Fm-by-Z for infinitely many m. We also examine 3-manifold groups where we show
that a finitely generated subgroup cannot be conjugate to a proper subgroup of itself.

1. Introduction.

Given a group Γ and an endomorphism θ of Γ, the (algebraic) mapping torus G = Γθ

is the quotient group of the free product of Γ and Z = 〈t〉 formed by adding the relations
tγt−1 = θ(γ) for all γ ∈ Γ, or equivalently for a generating set of Γ, so that if Γ is
finitely generated (respectively finitely presented) then Γθ will be too, but in general
such properties possessed by Γθ will not be inherited by Γ.

The name comes from the mapping torus construction in topology where we have a
continuous map f from a path-connected topological space to itself. The mapping torus
is then the space Y = (X × [0, 1])/ ∼ for the equivalence relation (x, 0) ∼ (f(x), 1), with
π1Y = (π1X)f∗ for f∗ the induced endomorphism of π1X obtained from f . We can also
go the other way: for any group Γ there is a CW-complex X with π1X = Γ that is
aspherical, which implies that any endomorphism of Γ is induced by a continuous map
of X to itself.

In this paper we generally restrict to the situation where our endomorphism θ is
injective, in which case Γθ naturally contains a copy of Γ, and if so then θ is an automor-
phism if and only if this copy of Γ is normal in Γθ. Then we have Γθ/Γ ∼= Z, so that if Γ
has a property P then Γθ is P-by-cyclic. Conversely if a group G has a homomorphism
onto Z with kernel K then we can lift the copy of Z up to G, so that we can set G = Kθ

for some automorphism θ.
Clearly any mapping torus G has its first Betti number β1(G) at least 1. If β1(G) =

1 then there are just two homomorphisms of G onto Z, both with the same kernel,
but we are interested in the case where β1(G) ≥ 2 so that there are a whole range of
surjective homomorphisms to examine. A question that can be asked is: if we have one
homomorphism χ giving rise to a decomposition of G as a mapping torus Kθ where
K = kerχ possesses an appropriate property, can we express G as a mapping torus using
other homomorphisms whilst still retaining our nice property? A fundamental example
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of such a result is in the paper [6] in 1987 introducing the Bieri-Neumann-Strebel (BNS)
invariant of a finitely generated group. This is used to generalise a theorem [28] of
W. D. Neumann in 1979 which shows that, on putting a natural topology on the set
of kernels of homomorphisms from the finitely generated group G to Z, the subset of
finitely generated kernels is open.

In this paper we combine the study of the BNS invariant of a finitely presented group
G along with its Alexander polynomial. Although both are well established objects, the
utility of this approach is that the BNS invariant carries important qualitative infor-
mation about the kernels of homomorphisms from G onto Z (such as finite generation)
but is hard to compute in practice, whereas the Alexander polynomial can be calculated
directly from any finite presentation of a group and gives us quantitative information, in
particular the first Betti numbers of the kernels.

We introduce these two invariants and properties required in Section 2, which gives us
our main general result in Corollary 2.4: if G is a finitely presented group with β1(G) ≥ 2
and G can be expressed as a mapping torus Γθ for Γ finitely generated (respectively
finitely presented) and θ an automorphism of Γ, then G has similar decompositions Hφ

where H is finitely generated (respectively finitely presented) and φ is an automorphism
of H with β1(H) being arbitrarily large, provided only that the Alexander polynomial
of G is non-constant.

This result would be of little use if we did not have a ready supply of such mapping
tori with non-constant Alexander polynomials to apply it to, but we give conditions in
Section 3 that ensure this, such as G having a deficiency 1 presentation and β1(G) ≥ 3.
We obtain Theorem 3.4 with the striking statement that if a group G has β1(G) ≥ 2 and
is Fn-by-Z for Fn the non-abelian free group of rank n then G is Fm-by-Z for infinitely
many m. In Example 1 we look at the group G in [24] which was shown there to be both
a mapping torus of F2 with respect to an injective but non-surjective endomorphism and
also to be F3-by-Z. We prove G is in fact Fk-by-Z for all k ≥ 3 and we also display,
given any n ≥ 2, a specific example of a free-by-cyclic group which is Fk-by-Z for exactly
k ≥ n.

Some time ago it was asked by G. P. Scott if groups of the form Fk-by-Z are
subgroup separable, with [11] giving the first example of one that is not. The group
G in [24] is shown using this non-surjective endomorphism to contain a non-free but
locally free group and to have a finitely generated free subgroup which is conjugate in
G to a proper subgroup of itself, thus G is Fk-by-Z but not subgroup separable. In
Section 4 we turn our attention to the fundamental groups of 3-manifolds (or 3-manifold
groups as we call them). The finitely generated 3-manifold groups are known to possess
symmetric BNS invariants and Alexander polynomials and on exploiting this symmetry
we show in Theorem 4.1 that no finitely generated subgroup of a 3-manifold group G

can be conjugate in G to a proper subgroup of itself, thus this method can never be used
to prove that a finitely generated 3-manifold group is not subgroup separable. We also
obtain very quickly the (known) fact that a 3-manifold group cannot contain non-trivial
Baumslag-Solitar groups.

If M is a compact orientable irreducible 3-manifold then any expression of π1M as
a mapping torus Γθ for Γ finitely generated and θ an automorphism implies that M is
fibred over the circle by a surface with fundamental group Γ, using a well known and
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important theorem of Stallings (with an extension to the non-orientable case in [18]).
Thus if β1(M) ≥ 2, the openness property of finitely generated kernels means that if M

is fibred, it is fibred in infinitely many different ways. We can ask about the possible
topological types of the various fibres, with a result in [27] stating that for closed fibred
3-manifolds M with β1(M) ≥ 2, there are infinitely many non-homeomorphic fibres
(provided the original fibre is not one of the obvious small surfaces). The proof involves
differential geometry but we present an alternative proof in Theorem 4.2 which applies
without change for 3-manifolds fibred over the circle by a compact surface with boundary,
thus we obtain a generalisation of this result.

We then provide examples to illustrate the constructive nature of our approach, in
that if the BNS invariant of the fibred closed orientable 3-manifold is known, we can
determine the exact list of fibres. We give in Example 4 a specific hyperbolic 3-manifold
which is fibred by all closed orientable surfaces of genus 2 or more. Moreover we show
that we can determine all fibres in the case of 3-manifolds with boundary, even though
the topological type of a surface is not determined by its first Betti number, by Dehn
filling of the cusps. This easily proves that the list of fibres is all n-punctured tori for
the Whitehead link (where n ≥ 2) and for every once punctured torus bundle with first
Betti number at least two (here n ≥ 1). We can also apply this technique to trivial
fibre bundles where the fundamental group is a direct product, recovering old results for
closed fibre bundles and giving the full list of fibres where the trivial fibre has any genus
and one boundary component.

Acknowledgments. The author would like to thank the referee for a thorough
reading of the first version of this paper.

2. The BNS invariant and the Alexander polynomial.

Let G be a finitely generated group and suppose that b = β1(G) > 0. The Bieri-
Neumann-Strebel (BNS) invariant gives us information on when the kernels of homomor-
phisms from G onto Z are finitely generated. This is done in [6] by identifying non-zero
homomorphisms of G into R, up to multiplication by a positive constant, with the sphere
Sb−1. The BNS invariant of G is a subset Σ of Sb−1, with a homomorphism χ of G onto
Z having finitely generated kernel if and only if χ (which we think of as a rationally
defined point in Sb−1) is in both Σ and −Σ. The original definition of Σ was in terms of
finite generation over submonoids but an equivalent definition in [10] or in [6, Chapter
4] allows us to relate its use to mapping tori, as we now describe.

Given a finitely generated group G that has a decomposition of the form G = Γθ

for Γ any group and θ an endomorphism of Γ, we define the associated homomorphism
χ of the mapping torus Γθ = 〈Γ, t〉 by χ(t) = 1 and χ(Γ) = 0. Now given any surjective
homomorphism χ : G → Z, we say as in Proposition 3.1 of [10] that χ is in the BNS
invariant Σ of G if χ is the associated homomorphism of a decomposition of G into
the form Γθ where Γ is finitely generated and θ is an injective endomorphism of Γ.
Although there are in general many decompositions of this form with χ the associated
homomorphism, [10, Corollary 3.2] implies that χ has finitely generated kernel if and
only if it is associated to Γθ where θ is an automorphism (whereupon the decomposition
with Γ = kerχ is the only one having χ as associated homomorphism), as then −χ is
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associated to Γθ−1 , thus if and only if χ is in both Σ and −Σ.
If we are given a non-injective endomorphism θ of a group Γ, it is still possible to

form the mapping torus Γθ in the same way, but we do not need to concentrate on this
case. This is because under the natural map from Γ ∗ Z to the quotient group Γθ we
have, on setting the image of Γ to be Γ′,

Γ′ = Γ/
∞⋃

i=1

Ker θi.

Thus we can always think of Γθ as a mapping torus Γ′θ′ with θ′ injective after all, and
the associated homomorphisms will be the same.

One of the main results of [6] is that the BNS invariant Σ of G is an open subset
of Sb−1, so that once we have found a homomorphism χ onto Z with finitely generated
kernel then all “nearby” homomorphisms in Sb−1 (assuming b ≥ 2) have finitely generated
kernel too (this was also proved in [28]). Indeed this also works on replacing finitely
generated by finitely presented by [16]. The one drawback is that on being given a
particular group G, say by a finite presentation, it can be difficult to determine the exact
subset Σ. We will see some methods to do this in the examples later on, but let us now
look at the Alexander polynomial which although not able to give us so much information,
has the advantage that it is straightforward to work out from a finite presentation of a
group using Fox’s free differential calculus. Therefore we give a brief description adopting
the approach of Crowell and Fox in [12].

Let the finitely presented group G be 〈x1, . . . , xn|r1, . . . , rm〉 in terms of generators
and relators, and let its free abelianisation be ab(G), which will be isomorphic to Zβ1(G).
If Fn is the free group of rank n with free basis x1, . . . , xn then a derivation of the integral
group ring Z[Fn] is a map from Z[Fn] to itself satisfying

D(v1 + v2) = Dv1 + Dv2,

D(v1v2) = (Dv1)τ(v2) + v1Dv2

where τ is the trivialiser: namely the ring homomorphism from Z[Fn] to Z with τ(x) = 1
for all x ∈ Fn. It is a fact that for each free generator xj there exists a unique derivation
Dj , also written ∂/∂xj , such that ∂xi/∂xj = δij and this gives rise to the fundamental
formula for any element v of Z[Fn]:

v − τ(v) =
n∑

j=1

∂v

∂xj
(xj − 1).

To calculate the “partial derivative” ∂w/∂xj for any w ∈ Fn we can use the formal rules

∂xi

∂xj
= δij ,

∂x−1
i

∂xj
= −δijx

−1
i ,

∂(w1w2)
∂xj

=
∂w1

∂xj
+ w1

∂w2

∂xj
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where generally w2 will be the last letter in the word w = w1w2. Let γ be the natural map
from Z[Fn] to Z[G] and let α be the same from Z[G] to Z[ab(G)]. Then the Alexander
matrix A of the presentation is the m× n matrix with entries

aij = αγ

(
∂ri

∂xj

)
.

We define the kth elementary ideal Ek(A) to be the ideal of Z[ab(G)] generated by the
(n − k) × (n − k) minors of A if 0 < n − k ≤ m, thus under this notation k is the
number of columns that are deleted in forming the minors. If k ≥ n then we define
Ek(A) = Z[ab(G)] and if k < n − m then we let Ek(A) = 0. Finally we define the
Alexander polynomial ∆G to be the generator (up to units) of the smallest principal ideal
containing E1(A). To calculate it we can choose a basis (t1, . . . , tb) for ab(G), apply the
free differential calculus as above and then form our matrix by evaluating. From here
we can determine the minors and their highest common factor. Of course this would be
of little use if it depended on the presentation of G, but that it is invariant can be seen
directly, as shown in [12, VII 4.5], by observing that applying a Tietze transformation to
a presentation does not change the elementary ideals. Alternatively we have a topological
definition of the Alexander polynomial, as described in [26, Section 2] or [13, Section
3]: if X is a finite CW-complex with π1X = G and f : X̃ → X is the regular cover
corresponding to the homomorphism α from G to ab(G) = Zβ1(G) then, taking p ∈ X,
the Alexander module of X over the group ring Z[ab(G)] is H1(X̃, f−1(p);Z). The
connection between the two approaches is that by taking a free resolution of this module,
we obtain the Alexander matrix as above (or rather under our notation it is the transpose
of A). The Alexander polynomial ∆G is only defined up to units, thus we can think of
∆G as a Laurent polynomial in Z[t±1

1 , . . . , t±1
b ] up to multiplication by ±tk1

1 · · · tkb

b . Of
course the actual coefficients depend on this choice of basis, but we can make a change
of basis if necessary by putting ti = ski1

1 · · · skib

b with the vectors (ki1, . . . , kib) making up
an element of GL(b, Z).

A variant on the Alexander polynomial is obtained if, rather than taking the abelian-
isation map α from Z[G] to Z[ab(G)] as above, we replace α with any group homomor-
phism β of G onto a free abelian group freely generated by say e1, . . . , ek (where k ≤ b).
We can define the Alexander polynomial ∆G,β relative to β by exactly the same process.
As any β will factor through α, writing β = β̃α we have

∆G

(
β̃(t1), . . . , β̃(tb)

)
divides ∆G,β(e1, . . . , ek) ∈ Z

[
e±1
1 , . . . , e±1

k

]

because the left hand side is evaluation of ∆G (the highest common factor of the minors)
under β̃, whereas the right hand side is obtained by first evaluating the matrix A under
β̃ and then taking the highest common factor of these resulting minors. In particular we
can take any surjective homomorphism χ : G → Z and calculate ∆G,χ.

We need to see what form this Alexander polynomial takes when G is a mapping
torus of a finitely presented group. The proposition below can be thought of as the appro-
priate generalisation in algebraic terms that a fibred knot in S3 has a monic Alexander
polynomial.
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Proposition 2.1. Suppose G is a finitely presented group and χ : G → Z is
a surjective homomorphism with kerχ = K. Then the relative Alexander polynomial
∆G,χ ∈ Z[t±1] has degree β1(K;Q). Furthermore ∆G,χ is monic if K is finitely pre-
sented.

Proof. The first part is a well known fact, found for instance as Theorem 6.17 in
[25]. The proof there is only for a knot complement but it is applicable to the general
case without any change. Note that this result also includes ∆G,χ = 0 if and only if
β1(K;Q) is infinite.

Now suppose K has a presentation of the form 〈x1, . . . , xk|r1, . . . , rl〉 then we can
take for G the presentation

〈
x1, . . . , xk, t|tx1t

−1w−1
1 , . . . , txkt−1w−1

k , r1, . . . , rl

〉

for wi some word in x1, . . . , xk. Forming the (k + l) × (k + 1) matrix A from this
ordered presentation using the free differential calculus and evaluating with respect to
the homomorphism χ, we consider the top left k × k submatrix S = (sij). As these
entries are formed by taking the derivative of the relator txit

−1w−1
i with respect to xj ,

we obtain sij = tδij −mij , where mij ∈ Z is just the exponent sum of xj in wi. Now
∆G,χ is the highest common factor of all k×k minors of A so it must divide det S, which
is just the characteristic equation of (mij) and so is monic. ¤

This can also be adapted to any finitely presented mapping torus Γθ, regardless of θ,
despite the fact that if θ is not an automorphism then Γ is not unique.

Corollary 2.2. If G is a finitely presented group that is a mapping torus Γθ =
〈Γ, t〉 for θ any endomorphism and Γ any group, then β1(Γ) is at least β1(kerχ) where χ

is the associated homomorphism of Γθ. Moreover ∆G,χ is monic if Γ is finitely presented.

Proof. Although Γ 6= kerχ in general, let Γ′ be the natural image of Γ in G as
before in the case where θ is not injective (and equal to Γ otherwise), then

kerχ =
∞⋃

n=0

t−nΓ′tn

and so β1(kerχ) ≤ β1(Γ′) ≤ β1(Γ), where the first inequality follows because if ker χ

surjects onto Zk, we can take k elements in ker χ which are mapped onto a generating
set, and these will all lie in t−NΓ′tN for some N . Moreover the second part goes through
exactly as in Proposition 2.1 for any θ when Γ is finitely presented because we can take
the same presentation for G with wi = θ(xi), and so ∆G,χ is monic. ¤

We now wish to show how the Alexander polynomial allows us to find kernels with
arbitrarily high first Betti number.

Theorem 2.3. If G is a finitely presented group with β1(G) = b ≥ 2 and the
multivariable Alexander polynomial ∆G is not constant then in any non-empty open set
U ⊆ Sb−1 there are homomorphisms χ from G onto Z with β1(kerχ;Q) arbitrarily high.
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Proof. Given such a χ in U , we can take a presentation 〈g1, . . . , gn|r1, . . . , rm〉
for G such that χ(g1) = 1, χ(gi) = 0 for i > 1 and such that each of g1, . . . , gb has zero
exponential sum in each relation ri. For instance this can be achieved by using Nielsen
transformations whose effect on the abelianised relation matrix of this presentation for
G converts it into standard form. Thus the images of g1, . . . , gb form a basis for ab(G)
which we denote as t1, . . . , tb.

We take the multivariable Alexander polynomial ∆G(t1, . . . , tb) which is non-
constant and consider the two variable polynomial ∆G(t1, t2, 1, . . . , 1). We require
that this has more than one non-trivial term. We can assume it is non-zero because
∆G(t, 1, . . . , 1) divides the polynomial ∆G,χ(t) so if it is zero then we already have
β1(kerχ;Q) = ∞. However it could be constant, in which case we make a change of
basis just amongst (t2, . . . , tb) so that the effect of χ is unchanged. We describe how to
do this for b = 3 and then the general result follows by reducing the dimension by one
each time.

Think of the monomial tn1
1 tn2

2 tn3
3 as the lattice point (n1, n2, n3) ∈ Z3 and consider

the finite subset L of Z3 which represents the non-trivial terms of ∆G. As we can
multiply by units, we can assume that L contains the origin and that all points in L

have n2 ≥ 0. We then choose another point m = (m1,m2,m3) ∈ L with m2 maximal
and m3 maximal subject to this. For k > 0 consider the change of basis where t2 goes
to s−k

2 s3 and t1, t3 go to s1, s2 respectively. Then on setting s3 = 1 we have (n1, n2, n3)
becoming (n1, n3 − kn2) so that if k > max(n3/n2) for those points in L with n2 6= 0
then no other point in Z2 can cancel out with the origin. Also if a point n were to cancel
with m under their projections in Z2 then we have m3−n3 = k(m2−n2) so also taking
k > max(m3 − n3)/(m2 − n2) where defined, we would have m = n. Thus ∆G(s1, s2, 1)
is non-constant.

Having made our change of basis so that ∆G(t1, t2, 1, . . . , 1) has at least two terms,
we adapt our notation and refer to this as δ(t1, t2), as well as setting u = g1 and v = g2

with images x = t1, y = t2 respectively in ab(G). We know that up to units δ(x, y) =
pr(y)xr + · · ·+p0(y) with pi ∈ Z[y±1], r ≥ 1 and p0(y), pr(y) not the zero polynomial (or
if r = 0 then δ(x, y) is purely a polynomial in y that is at least linear). We multiply by
an appropriate unit yk to make p0, and hence also δ(x, y), have a non-zero constant term.
We further assume that pr has a non-zero term in yl for l ≥ 0 which can be achieved by
replacing y with y−1 if necessary.

We are now going to construct homomorphisms χm for m ≥ 1 whose Alexander
polynomial ∆G,χm

has arbitrarily high degree. If F2 is the free group on u, v then there
exists a free basis (α, β) of F2 such that u is the same as αm2+1βm in homology and v is
equivalent to αmβ. Let χm : G → Z be defined by χm(α) = 1, χm(β) = 0, χm(gi) = 0
for i > 2, so that χm(u) = m2 +1, χm(v) = m. We have χm → χ in the natural topology
of Sb−1 so χm is eventually in U .

We now estimate β1(kerχm;Q) using the Alexander polynomial; it is the de-
gree of ∆G,χm

which is at least that of ∆G when evaluated at χm. But this is
∆G(tm

2+1, tm, 1, . . . , 1) which is δ(tm
2+1, tm), thus a term xk1yk2 of δ(x, y) is now

tk1(m
2+1)+k2m. Our non-zero constant term of δ remains constant and can only be

cancelled out by another term on evaluation if (m2 + 1) divides the power of y, which
will not happen for m large. Considering the ylxr term of δ(x, y), where we choose l
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maximal with non-zero coefficient, this is now tr(m
2+1)+lm and for large enough m no

other term can result in this high a power of t, because r > 0 was chosen as maximal
amongst the coefficients of x in the terms of δ(x, y) and l ≥ 0 chosen as maximal subject
to this (or l > 0 if only y terms appear). Thus no other term in δ(x, y) can cancel with
this one, so β1(kerχm;Q) is at least the degree of δ as a polynomial in t, which is in turn
at least r(m2 + 1) + lm and this tends to infinity with m. ¤

We now have our main result. By combining Theorem 2.3 with the results on
openness of finitely generated and finitely presented kernels mentioned at the beginning
of this section, we immediately obtain:

Corollary 2.4. If the finitely presented group G = Γθ is the mapping torus of
the finitely generated (respectively finitely presented) group Γ using the automorphism θ

such that β1(G) ≥ 2 and the multivariable Alexander polynomial ∆G is not constant then
G = Hφ for infinitely many finitely generated (respectively finitely presented) groups H

and corresponding automorphisms φ, with β1(H) being arbitrarily large.

Thus we now need criteria to tell us when the multivariable Alexander polynomial
of a finitely presented mapping torus is non-constant and this is the subject of the next
section.

3. Deficiency.

Given a finitely presented group G, recall that the deficiency of a finite presentation
of G is the number of generators minus the number of relators. We can clearly add
relators so we are interested in the maximum deficiency over all presentations of G,
which is bounded above by β1(G), and we call this the deficiency d(G) of the group G.
In applying the results of the last section it is handy to divide up the cases according to
d(G).

A. Deficiency at least two.

If d(G) ≥ 2 then the results only apply in a negative sense. We have that the mul-
tivariable Alexander polynomial ∆G is identically zero, so the kernel K of any surjective
homomorphism χ : G → Z has β1(K;Q) infinite and thus is certainly infinitely gener-
ated. Indeed we see by Corollary 2.2 that G is not even a mapping torus with respect to
any finitely generated group Γ and any endomorphism θ.

B. Deficiency one.

It is here that the theory is most complete. We assume that G = 〈x1, . . . , xn|
r1, . . . , rn−1〉 and work out when ∆G is non-constant by using a theorem of McMullen
in [26] where it was applied to 3-manifolds with boundary. The proof appeared there in
outline; here we reproduce it more fully in order to emphasise that the result applies to
any deficiency 1 presentation.

Theorem 3.1. If G has a deficiency 1 presentation with β1(G) = b > 1 then,
taking (t1, . . . , tb) as any basis for ab(G) so that G has multivariable Alexander polynomial
∆G(t1, . . . , tb), for any surjective homomorphism χ : G → Z (which factors as χ̃α for α
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the natural map from G to ab(G)) we have

∆G,χ(t) = (t− 1)∆G

(
tχ̃(t1), . . . , tχ̃(tb)

)
.

Proof. Given our presentation 〈x1, . . . , xn| r1, . . . , rn−1〉 we can change it as in
Theorem 2.3 so that the image of the generators (x1, . . . , xb) under the natural ring
homomorphism αγ is our basis (t1, . . . , tb) and that for j > b we have αγ(xj) = 1 ∈
Z[ab(G)]. We form the Alexander matrix A of the presentation which has size (n−1)×n,
so let mk be the minor of A obtained by deleting the kth column. We find an alternative
expression for mk by choosing another column, say the jth for 1 ≤ j ≤ b and j 6= k, and
multiplying each term in the jth column by 1 − tj . Thus the determinant of this new
matrix is ±(1 − tj)mk. But now we can replace the entries in the jth column by using
the fundamental formula in Section 2 which when applied here with v = ri for any of the
relators ri tells us that for any i we have (1− xj)∂ri/∂xj equal in Z[Fn] to

τ(ri)− ri + (x1− 1)
∂ri

∂x1
+ · · ·+ (xj−1− 1)

∂ri

∂xj−1
+ (xj+1− 1)

∂ri

∂xj+1
+ · · ·+ (xn− 1)

∂ri

∂xn

where τ(ri) = 1. But on mapping this expression to Z[ab(G)] by αγ, we have that ri

goes to 1 too, with x1, . . . , xb going to t1, . . . , tb and xb+1, . . . , xn going to 1. Thus if we
replace (1− xj)∂ri/∂xj by the above expression in each entry of the jth column, we can
now use linear multiples of each column to remove all terms appearing in the entries of
the jth column except the image of (xk−1)∂ri/∂xk. But the determinant of the resulting
matrix is just zero for k > b and ±(1 − tk)mj for 1 ≤ k ≤ b thus we have mk = 0 for
k > b and

mk(1− tj) = ±mj(1− tk) for 1 ≤ k ≤ b.

In the latter case mj = δj(1 − tj) for some δj ∈ Z[ab(G)] because this is a unique
factorisation domain. Thus δk = ±δj = ∆ (say) for 1 ≤ j, k ≤ b, meaning that the
Alexander polynomial ∆G = hcf(m1, . . . , mb) is ∆.

Now in calculating the Alexander polynomial with respect to χ, let
(χ(x1), . . . , χ(xb)) = (k1, . . . , kb) so we evaluate the minors at χ̃ and then take the highest
common factor of

∆G(tk1 , . . . , tkb)(tk1 − 1), . . . ,∆G(tk1 , . . . , tkb)(tkb − 1)

so we need hcf(tk1 − 1, . . . , tkb − 1) which is t − 1 because the irreducible factors of the
ith term are the cyclotomic polynomials dividing ki, but hcf(k1, . . . , kb) is 1 as χ is onto.

¤

We can now make some general applications.

Corollary 3.2. Suppose G has deficiency 1. If β1(G) ≥ 3 then β1(kerχ;Q)
is unbounded over homomorphisms χ from G onto Z. If β1(G) = 2 then either
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β1(kerχ;Q) = 1 for all χ or β1(kerχ;Q) is unbounded, as determined by whether ∆G is
non-zero and constant or not.

Proof. We see that ∆G = k 6= 0 implies that β1(kerχ;Q) = 1 for all χ by
Theorem 3.1 and Proposition 2.1, and if ∆G is non-constant then Theorem 2.3 applies.
If β1(kerχ;Q) = 1 then β1(G) ≤ 2 so for β1(G) ≥ 3 the former case cannot hold. ¤

Corollary 3.3. If G = Γθ is a group of deficiency 1 with β1(G) ≥ 3 and is a
mapping torus of the finitely generated group Γ with respect to the automorphism θ then
we can take β1(Γ) to be arbitrarily large.

Now we look at free-by-cyclic groups.

Theorem 3.4. If Fn is the free group of rank n and G is Fn-by-Z where β1(G) ≥ 2
and n ≥ 2 then G is Fm-by-Z for infinitely many m.

Proof. We know G certainly has a deficiency 1 presentation as in Proposition
2.1 with l = 0 (which gives the deficiency of G). By Corollary 3.2 ∆G is non-constant
for n ≥ 2 so we can now apply Corollary 2.4 to get that G has homomorphisms onto
Z with finitely presented kernels K having β1(K) arbitrarily large. To show that K

is always free, observe that G has cohomological dimension cd(G) = 2 because we can
build a 2 dimensional CW-complex X with fundamental group G whose universal cover
X̃ = T×R where T is a tree, thus X̃ is contractible. By Shapiro’s Lemma, K a subgroup
of G means that cd(K) ≤ 2. Then by [4, Corollary 8.6] as K £ G and both are finitely
presented, we conclude that either K is free or it must have finite index in G. ¤

Note that [15] proves that mapping tori of free group injective endomorphisms are
coherent, that is all finitely generated subgroups are finitely presented.

Example 1. In [24] the group

G = 〈a, b, t|Tat = b, T bt = abA〉

(where we use A,B, T as inverses) is discussed. This is Γθ for θ the injective (but not
surjective) endomorphism of F2 = 〈a, b〉 given by θ(a) = b, θ(b) = abA (with t and T

swapped compared to the notation in our paper). It is pointed out that kerχ, where
χ : G → Z is given by χ(t) = 1, χ(a) = χ(b) = 0 is infinitely generated, non-free
and locally free but that G is F3-by-Z. We therefore have from Theorem 3.4 that G is
Fm-by-Z for other m, and here we can give an exact description.

Proposition 3.5. This group G is Fm-by-Z for exactly m ≥ 3.

Proof. We can eliminate b so that G = 〈a, t〉 is a 2 generator group with 1 relator.
This then allows us to use the algorithm of K. S. Brown which is Theorem 4.4 in [10]
to determine exactly which surjective homomorphisms onto Z have finitely generated
kernel. The relator is r = T 2at2aTAtA so we draw it out on a grid and discover that Σ
contains all homomorphisms except the original homomorphism χ1(a) = 0, χ1(t) = 1; the
homomorphism χ2(a) = −1, χ2(t) = 0 and the homomorphism χ3(a) = 1, χ3(t) = −1.
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Thus all kernels except those of the three homomorphisms above are finitely generated
and free. We now calculate the Alexander polynomial ∆G; using a, t also to stand for
the obvious basis of ab(G), we have

∂r

∂a
= t−2(1− t)(1 + t− at)

∂r

∂t
= t−2(a− 1)(1 + t− at)

so ∆G = 1 + t − at. Now suppose we have a homomorphism χ(a) = p, χ(t) = q for
p, q coprime and (without loss of generality) p 6= 0, q > 0 then to find ∆G,χ we can
replace a = sp and t = sq in the above (or use Theorem 3.1) to conclude that ∆G,χ(s) =
(s − 1)(1 + sq − sp+q) which has degree 1 + q + p for p > 0, 1 + q for q > −p > 0 and
1− p for −p > q, thus any integer at least 3 can be obtained. ¤

We have many variations on this example. For instance we can proceed in exactly
the same way as in Example 1 but with the relation rn = TnatnaTAtA for n ≥ 2.
This allows us to conclude that the group Gn = 〈a, t|rn〉 (which again has three excep-
tional homomorphisms) is Fk-by-Z for exactly k > n and contains a non-free locally free
subgroup (see Examples 6 and 7 for groups that are Fk-by-Z for exactly k > 1).

It was also shown in [24] that Example 1 is not subgroup separable. Of the many
equivalent definitions (and alternative names as it is also called LERF) we say that a
finitely generated group G is subgroup separable if for all g ∈ G and for all finitely
generated subgroups H of G with g /∈ H, we can find N normal and of finite index in G

such that gN /∈ HN/N . It was pointed out by Blass and P. M. Neumann in [8] that if
G has a finitely generated subgroup H which is conjugate to a proper subgroup of itself,
so in particular if Σ 6= −Σ (when restricted to the rationally defined points), then G is
not subgroup separable.

Example 2. We can answer Problem 5 in [28] (see the concluding remarks for
statements of these problems) by taking the family of examples Gn = 〈x, y|(xyXY )n〉.
An easy calculation gives ∆Gn

= n so that ∆G,χ(t) = n(t − 1) and β1(kerχ) = 1 for
all χ, with Brown’s algorithm again showing there are no finitely generated kernels for
n ≥ 2. Note that Gn is a Fuchsian group with a closed surface subgroup of finite index,
but this subgroup has deficiency more than two so all the kernels of the subgroup have
infinitely generated abelianisation.

C. Deficiency at most zero.

The groups here that most interest us are the fundamental groups of closed 3-
manifolds (which have deficiency at least zero, and exactly zero if they have no prime
factors that are S2 bundles over S1 by [14, Theorem 2.5]). In this case we have:

Theorem 3.6. Let M be a closed orientable 3-manifold with β1(M) = b > 1 and
G = π1M with (t1, . . . , tb) as any basis for ab(G). Then for any surjective homomorphism
χ : G → Z (which factors as χ̃α for α the natural map from G to ab(G)) we have

∆G,χ(t) = (t− 1)2∆G

(
tχ̃(t1), . . . , tχ̃(tb)

)
.
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Proof. This is essentially Theorem 5.1 of [26] which shows that for such an
M there exists a balanced presentation 〈g1, . . . , gn|r1, . . . , rn〉 for G (with the images
t1, . . . , tb of g1, . . . , gb a basis for ab(G) and those of the other generators trivial) such that
on calculating the minors mij obtained from the Alexander matrix of the presentation,
there is ∆ with

mij = ±(1− ti)(1− tj)∆ for 1 ≤ i, j ≤ n.

Even though this does not hold for every balanced presentation of G (for instance the one
given in Proposition 4.3), we can argue exactly as in Theorem 3.1 to get ∆G(t1, . . . , tb) =
∆ and

∆G,χ(t) = (t− 1)2∆G

(
tχ̃(t1), . . . , tχ̃(tb)

)
. ¤

We now look at a more general example just to show that no equivalent will hold
for all groups of deficiency zero.

Example 3. In the hypothesis of Theorem 2.3 we assumed that the full Alexander
polynomial ∆G of G was not constant, but all that is required for the proof to work is a
non-constant relative Alexander polynomial ∆G,β where β is a homomorphism of G onto
Zk for k ≥ 2. The example of G = F2×F2 shows that this can occur even when ∆G = 1.
Moreover this is an important example because it is well known that the homomorphism
χ : G → Z that sends each generator to 1 has finitely generated but not finitely presented
kernel. The obvious presentation is

G = 〈a, b, c, d|acAC, bcBC, adAD, bdBD〉

from which we obtain the Alexander matrix, which has entries consisting of zeros and
terms of the form a − 1 and the like. On taking a few 3 × 3 minors, we readily see
that ∆G = 1. However if we now set β : G → Z2 given by β(a) = β(b) = (1, 0) and
β(c) = β(d) = (0, 1), which we write as s and t respectively in the group ring of Z2,
we find that all minors of the relative Alexander matrix with respect to β are (ignoring
signs) (s − 1)2(t − 1) or (s − 1)(t − 1)2 so that ∆G,β = (s − 1)(t − 1). Thus by putting
s = t we have β1(kerχ) = 3 (and G must have deficiency zero by Theorem 3.1), showing
that Theorem 3.6 does not hold for this group.

We can also answer Problem 2 in [28] as stated at the end of this paper. Let Gk be
the direct product of k copies of Fn for n ≥ 2.

Proposition 3.7. For k ≥ 2 there are finitely generated kernels of homomorphisms
of Z ×Gk onto Z with cohomological dimension k and k + 1.

Proof. We know Z ×Gk has cohomological dimension k + 1 so this is an upper
bound for all subgroups. The kernel of any homomorphism that sends every element in
a free generating set for each direct factor of Gk to 1 but the Z factor to 0 must have
cohomological dimension k + 1, because by taking a non-trivial element in the kernel
from each factor we see that it contains Zk+1. But this kernel is finitely generated for
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k ≥ 2; see [9, Exercise 5.2.2]. But a homomorphism that sends a generator of the Z

factor to 1 has its kernel isomorphic to Gk. ¤

Many other examples of mapping tori with deficiency at most zero can be created
by starting with a finitely presented group Γ and producing an automorphism θ of Γ. If
β1(Γθ) ≥ 2 (for which we will need β1(Γ) ≥ 1) and if the Alexander polynomial of Γθ is
non-constant then Corollary 2.4 can be applied. Moreover if the conclusion of Theorem
3.1 fails then Γθ has non-positive deficiency.

4. Applications to 3-manifold groups.

Any 3-manifold M (possibly with boundary but always assumed connected) has
a countable fundamental group (we refer to π1M as a 3-manifold group) and if M is
compact then π1M is finitely presented. Although no complete characterisation of 3-
manifold groups is known, they have important properties: two of these which are often
used to provide examples of finitely presented groups that are not 3-manifold groups are:

(1) Every finitely generated subgroup of π1M is finitely presented.
(2) If M is compact then the deficiency of π1M is at least zero.

Property (1) follows from the Scott compact core theorem: if M is a non-compact 3-
manifold with π1M finitely generated then there exists a compact submanifold MC in
M with π1MC = π1M , thus a finitely generated subgroup of a 3-manifold group is the
fundamental group of a compact 3-manifold.

Another established but less well known property that is most useful to us here is
that if M is compact then G = π1M has to be in some sense a “symmetric” group: both
the Alexander polynomial ∆G and the BNS invariant Σ of G are symmetric. This means
that ∆G(t1, . . . , tb) = ∆G(t−1

1 , . . . , t−1
b ) up to units, see [32], and that Σ = −Σ which is

Corollary F in [6]. (Incidentally it is readily seen that in general symmetry of one does
not imply symmetry of the other by playing with Brown’s algorithm.) This allows us to
give many examples of finitely presented non 3-manifold groups, and often it is easier to
determine the non-symmetry of ∆G than the failure of (1) or (2). Moreover we can use
these symmetry properties to establish quickly two general facts about any 3-manifold
group G. The Baumslag-Solitar group Bk,l is given by the presentation 〈a, t|takt−1 = al〉
and we say that it is a non-trivial Baumslag-Solitar group if k, l 6= 0 and |k| 6= |l|. It is
known that the trivial Baumslag-Solitar groups do occur as 3-manifold groups whereas
the non-trivial ones cannot ([20], [22]). One can also show this by computing ∆Bk,l

(t) =
kt− l which is not symmetric.

The next property we establish is to do with subgroup separability of 3-manifold
groups and does not appear to be known. If G is a finitely generated 3-manifold group
then we cannot use the non-symmetry of the BNS invariant Σ to show that G is not
subgroup separable as we did in Section 3 for other groups. In fact we cannot even use
the Blass-Neumann argument which needs a finitely generated subgroup that is conjugate
to a proper subgroup of itself.

Theorem 4.1. If G = π1M for M any 3-manifold and H is a finitely generated
subgroup of G with t ∈ G such that tHt−1 ⊆ H then tHt−1 = H.

Proof. Taking K = 〈t,H〉, we have that conjugation by t is an injective endo-
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morphism θ of H and also there is a surjective homomorphism φ from the mapping torus
Hθ to K. If φ is injective then the decomposition of K as Hθ has its associated homo-
morphism χ in the BNS invariant Σ of K, but K is a finitely generated 3-manifold group
thus −χ is in Σ and hence θ is an automorphism. Otherwise we must have tn ∈ H for
n > 0 by [17, Lemma 3.1], but if tHt−1 ⊂ H we would have tnHt−n $ H. ¤

If M is a compact 3-manifold then we can ask the same question of π1M as we have of
other groups in the previous sections: does it have a homomorphism onto Z with finitely
generated kernel? This is not just of independent interest but is of major geometric
importance because of a famous theorem [29] of Stallings: if M is compact, orientable,
irreducible and possesses a surjective homomorphism to Z with finitely generated kernel
K then M is fibred over the circle with the fibre having fundamental group K. Indeed
even without the conditions of orientability and irreducibility, the conclusion still holds
provided we remove any fake 3-cells from M and cap off any 2-spheres in its boundary, as
shown in [18, Theorem 11.6(i)], with the sole exception that M might only be homotopy
equivalent to P 2 × S1 if π1M = Z2 ×Z.

Conversely a 3-manifold M which is the topological mapping torus of a compact
surface S constructed from a self-homeomorphism f of S is compact and (unless S =
S2) irreducible, with M orientable if and only if S is orientable and f is orientation
preserving, so that π1M is equal to the algebraic mapping torus Γθ for Γ = π1S and
θ the automorphism of Γ induced by f . Thus we can see how the machinery built up
previously applies in this case: knowing the BNS invariant Σ of π1M means we know
all the homomorphisms χ onto Z that represent fibres. Then for such a χ the degree of
the Alexander polynomial ∆π1M,χ gives us the first Betti number of the surface that M

is fibred by with respect to χ; indeed ∆π1M,χ(t) is the characteristic polynomial of the
monodromy matrix.

If M is a compact oriented 3-manifold then alongside the BNS invariant we have
another important concept introduced by Thurston in [30], that of the Thurston norm
on the second homology group H2(M ;R) or on H2(M, ∂M ;R) if M has boundary. A
(semi-)norm is put on this space by defining for a given a ∈ H2(M ;Z) or H2(M, ∂M ;Z)
the value x(a) which is the minimum of χ−(S) for S an embedded surface representing
the class a (there will exist such a surface, which can be taken as oriented although it
might be disconnected). Here χ−(S) is the sum of max(0,−χ(Sj)) where the Sj ’s run
over the connected components of S. The function x is then extended to H2(M ;R)
or H2(M, ∂M ;R) thus obtaining a unit ball B for the norm, which is shown to be a
polyhedron with vertices that are lattice points. By duality this space can be thought
of as H1(M ;R) and some of the top dimensional faces of ∂B are defined as fibred faces,
meaning that they have the property that any ray defined in H1(M ;Z) passing through
the interior of a fibred face of ∂B has a point p on it in H1(M ;Z) represented by a fibre
S of M . This gives us by [6, Theorem E] that the BNS invariant Σ of π1M is exactly the
projection to the unit sphere in H1(M ;R) of the fibred faces of ∂B. Moreover in this
case we have x(p) = −χ(S), so that if χ(S) < 0 then by taking rays which pass through
a fibred face and whose intersection with H1(M ;Z)\{0} is non-empty but arbitrarily
far from the origin, we obtain the following theorem in the oriented case. This theorem
generalises [27] which shows it for a 3-manifold M fibred by a closed surface.
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Theorem 4.2. If M is a 3-manifold fibred over the circle by a compact surface
that is not the sphere, torus, projective plane, Klein bottle, disc, annulus or Möbius strip
(the small surfaces) with β1(M) ≥ 2 then M is fibred by surfaces which have arbitrarily
high first Betti number.

Proof. If M is non-orientable then let M̂ → M be the oriented double cover,
with G = π1(M) and Ĝ = π1(M̂). Then the inclusion i : Ĝ → G induces an injective
homomorphism i∗ : Hom(G;Z) → Hom(Ĝ;Z). Let χ ∈ Hom(G;Z) be the homomor-
phism given by the fibration in the theorem. Then i∗χ corresponds to a point in the
Thurston fibred face. If χn ∈ Hom(G;Z) are distinct and [χn] → [χ] in the space
Hom(G;R)\{0}/R+ then [i∗χn] is in the same Thurston fibred face as in [i∗χ] and the
Thurston norm of i∗χn tends to∞, i.e. β1(ker(χn◦i)) →∞. This shows β1(kerχn) →∞
since the surface which corresponds to ker(χn ◦ i) is at most a double cover of the surface
corresponding to kerχn. ¤

However the proof of Theorem 4.2 does not answer the question of exactly which
surfaces a given 3-manifold is fibred by. For this purpose Theorems 2.3 and 4.2, together
with accurate knowledge of Σ are useful.

Example 4. We would like a closed hyperbolic 3-manifold that has every ori-
entable surface of genus 2 or more as a fibre. A place to look for closed hyperbolic
3-manifolds which have manageable group presentations is in the census. However there
is only one 3-manifold M in this list which has β1(M) > 1. Fortunately this 3-manifold
v1539(5,1) will do.

Proposition 4.3. The closed orientable hyperbolic 3-manifold v1539(5,1) is fibred
by every closed orientable surface of genus 2 or more.

Proof. We have for G = π1v1539(5, 1) the 2 generator 2 relator presentation

〈a, b|aBab3aBaBAbAbABaBaBAbAbAB, aBab4aBaBA4B〉

so this has Alexander polynomial ∆G = a2b + ab2 + ab + a + b. Although we cannot
directly apply Brown’s algorithm to G, we can use it for the two groups G1, G2 defined by
only one of these relations. Then a homomorphism of Gi onto Z with finitely generated
kernel will continue to have this property as a homomorphism from G, provided only
that it factors through G. In fact in the second case we see that all homomorphisms are
in Σ except possibly the two homomorphisms (up to sign) χ(a) = ±χ(b) = ±1. Moreover
these have infinitely generated kernel which we can conclude by Proposition 2.1 because
∆G,χ(t), which we know is (t − 1)2 times ∆G evaluated at χ, is not monic and G is a
coherent group. Hence in this case Σ consists of all but these four points of S1. Thus
taking any other surjective homomorphism χ and setting χ(a) = p, χ(b) = q for p, q

coprime we have, for say p ≥ q ≥ 0, that our relative Alexander polynomial

∆G,χ(t) = (t− 1)2∆G(tp, tq) = (t− 1)2(t2p+q + tp+2q + tp+q + tp + tq)

which has degree 2p + 2 so our fibre is of genus p + 1. ¤
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The manifold M in Proposition 4.3 has a lot of fibrations for which the relative
Alexander polynomials are different but have the same degree. Thus the fibres have
the same genus (and we can get a whole range of genera in this way) but the fibre
bundles cannot be weakly equivalent because the respective Alexander polynomials are
the characteristic polynomials of the induced monodromy maps, and these would have
to be conjugate matrices.

Now let us look at 3-manifolds that have cusps, namely torus boundary components.
Suppose that the orientable 3-manifold M has cusps and is fibred with respect to a
particular homomorphism then the fibre will have free fundamental group. It may seem
that although the Alexander polynomial can tell us the rank r of this fibre subgroup,
it cannot tell us the topological type of the fibre, namely the genus g and the number
of punctures p where r = 2g + p − 1. However provided we know the elements of the
fundamental group of each cusp, we can determine g by Dehn filling. Given a cusp T

and a homomorphism χ of π1M onto Z, we define a χ-longitude to be a non-identity
primitive element d of π1T = Z × Z (which will inject into π1M unless M is a solid
torus because M is irreducible) with χ(d) = 0. So in Dehn filling along the χ-longitude
of each cusp, we obtain a 3-manifold N which will be fibred by a closed surface of the
same genus g. To determine this genus, we work out the Alexander polynomial of π1N

with respect to χ, just as we did with π1M , and this will have degree 2g.

Example 5. Let us take the cusped hyperbolic 3-manifold which is the exterior
of the Whitehead link. This is well known to have the twice punctured torus as a fibre,
so let us see it fibred in other ways (compare with [30, Example 1]). Indeed here we are
able to obtain all of its fibres.

Proposition 4.4. The fibres of the Whitehead link exterior are precisely the n-
punctured torus for n ≥ 2.

Proof. We have a presentation for its fundamental group of the form

G = 〈a, b|abaBABabABAbabAB〉

which can be obtained by considering the Whitehead link as a 2-bridge link. Using
Brown’s algorithm to draw out the relator, we find that the homomorphism χ(a) =
p, χ(b) = q for hcf(p, q) = 1 (and without loss of generality q ≥ 0) has finitely generated
kernel except for (p, q) = (1, 0) or (0, 1). We calculate the full Alexander polynomial
∆G(a, b) = (a− 1)(b− 1) so that

∆G,χ(t) = (t− 1)∆G(tp, tq) = (t− 1)(tp − 1)(tq − 1).

This has degree 1 + |p| + q which is at least 3 if p, q 6= 0. Otherwise we have the zero
polynomial but these are exactly the homomorphisms which do not represent fibres, so
the rank of the fibre can be anything from 3 upwards.

We can determine its topological type for a given χ by Dehn filling along both χ-
longitudes to get N and then finding ∆π1N,χ. It is the case that a represents a meridian
of the knot and w = baBABab commutes with a thus this is also in the cusp because
M is a hyperbolic 3-manifold. Hence we see that AbaBABab is trivial in homology
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and so must be one longitude. Moreover by spotting from the relation that the other
meridian b commutes with abABAba, we see that BabABAba is the other longitude.
But as we already know we have the 2-punctured torus as a fibre, on Dehn filling these
χ-longitudes we obtain a torus bundle which can only have a torus as a fibre (for instance
the fundamental group must be solvable). But we have just seen that the longitudes do
not depend on χ so we always obtain the same 3-manifold by this process. This argument
works for any cusped 3-manifold fibred by an n-punctured torus where all the cusps have
rank 1 in homology. ¤

Example 6. One never hears about a once-punctured torus bundle M being fibred
by anything other than a once-punctured torus. Usually we have β1(M) = 1 anyway so
this is the only fibre (as happens for all cases when M is hyperbolic) but an important
non-hyperbolic example where β1(M) = 2 is given by the presentation

G = 〈a, b, t|taT = ab, tbT = b〉

and indeed all once-punctured torus bundles with β1(M) = 2 have a monodromy matrix
which is conjugate to a power of this one and hence are obtained as cyclic covers of
M . Moreover M is a Siefert fibred space and was the first known example of a compact
3-manifold with a fundamental group which is not subgroup separable, see [11]. We can
eliminate the generator b from the presentation, allowing us to conclude that ∆G(a, t) =
t − 1 and via Brown’s algorithm that all homomorphisms except χ(a) = ±1, χ(t) = 0
represent fibres. Thus the trick above in Example 6 tells us that the fibres are exactly tori
with any (strictly positive) number of punctures. This also applies to the cyclic covers
of M as the Alexander polynomial and BNS invariant will be the same. This leaves only
the trivial once-punctured torus bundle which is dealt with next.

Example 7. As our last example, we return to trivial fibre bundles. If the 3-
manifold M is the trivial fibre bundle with fibre the compact surface S (which is not a
small surface) then we have π1M = F×Z where F = π1S is free or a closed surface group.
Taking a standard generating set a1, . . . , ar, t for π1M , we have an obvious presentation.
Now on being given a homomorphism χ from π1M onto Z that sends (a1, . . . , ar, t)
to (k1, . . . , kr,m), it is not hard to see by projecting ker χ to F that ker χ is finitely
generated if and only if m 6= 0, in which case ker χ is isomorphic to a subgroup of index
|m| in F .

This gives us the result in [31], [21] and [19] that the closed trivial fibre bundle with
fibre a surface Sg of genus g ≥ 1 is also fibred by precisely the surfaces of genus m(g−1)+1
for m ≥ 1, and it also says that if F were free of rank r ≥ 1 then the other fibres would
have fundamental group free of rank m(r−1)+1. To obtain their topological type under
each homomorphism χ we can Dehn fill as above which we now illustrate: suppose that
our surface S has genus g and 1 boundary component so that r = 2g. We can choose
generators for π1S so that the cusp has basis p = a1a2a

−1
1 a−1

2 · · · a2g−1a2ga
−1
2g−1a

−1
2g and

t. We have multivariable Alexander polynomial ∆π1M = (t− 1)r−1 and if χ(t) = m 6= 0
then we Dehn fill the curve p to obtain the closed 3-manifold N because this is always the
χ-longitude. On doing this for the original homomorphism we obviously get N = Sg×S1

so that ∆π1N (a1, . . . , ar, t) = (t− 1)r−2. But we always fill the same curve, giving
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∆π1N,χ(s) = (s− 1)2∆π1N

(
sχ(a1), . . . , sχ(ar), sχ(t)

)
= (s− 1)2(sm − 1)r−2

so that the degree is |m|(r − 2) + 2. This means that under χ the fibre has genus
|m|(g−1)+1 and |m| boundary components, so that unless S is a once-punctured torus,
both the number of boundary components and the genus go to infinity with |m|.

5. Concluding remarks.

The questions we have been considering can be thought of as originating in [28]
which finishes by posing six problems. To end this paper and to show progress has been
made since then, we reproduce these problems along with answers where known. Here
G is a finitely generated group with β1(G) ≥ 2 and fgK(G), fgfK(G), fpK(G) are the
subspaces of finitely generated, finitely generated free and finitely presented kernels in
the space of all kernels of homomorphisms from G onto Z.

Problem 1. The subset fgfK(G) is open in K(G). Find a group theoretic proof
of this (the proof in [28] involved 3-manifold topology).

We can invoke the original group theoretic proof in [28] that fgK(G) is open and combine
it with the results quoted in Theorem 3.4 that fgfK(G) 6=∅ implies both fgfK(G) =
fpK(G) (by [4, Corollary 8.6]) and that fpK(G) = fgK(G) by [15]. But the latter
result could be regarded as proved by geometric considerations, as could the proof in
[16] that fpK(G) is open.

Problem 2. Do all elements of fgK(G) have the same cohomological dimension?

No. Although [4] tells us that only n or n − 1 can occur, where n is the cohomological
dimension of G, and moreover if 1 occurs then this is the only value (see Problem 1), we
showed in Proposition 3.7 that both n and n− 1 can occur for any n ≥ 3.

Problem 3. If fgfK(G) 6=∅ then is fgfK(G) = fgK(G)?

Yes, see Problem 1.

Problem 4. Describe the type of subsets that can occur as fgK(G) when G is a
3-manifold group and in general.

The 3-manifold case is dealt with in [30] and see [6] after Corollary F for the general
case.

Problem 5. Defining fgbK(G) as the set of kernels with finite first Betti number,
is fgbK(G) contained in the closure of fgK(G)?

No (as expected); see Example 2.

Problem 6. Is fpK(G) open and when does it equal fgK(G)?

As mentioned in Problem 1, [16] proves the former. The latter is not true in general,
for instance the direct product of free groups F2 × F2 in Example 3 has fpK(G) = ∅
but the closure of fgK(G) is all of K(G), and F2 × F2 × F2 has fpK(G) 6= ∅ but
fpK(G) 6= fgK(G).
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