Elliptic curves from sextics

By Mutsuo Ока

(Received Oct. 4, 2000)

Abstract

Let \mathscr{N} be the moduli space of sextics with $3(3,4)$-cusps. The quotient moduli space \mathcal{N} / G is one-dimensional and consists of two components, $\mathcal{N}_{\text {torus }} / G$ and $\mathcal{N}_{\text {gen }} / G$. By quadratic transformations, they are transformed into one-parameter families C_{s} and D_{s} of cubic curves respectively. First we study the geometry of $\mathscr{N}_{\varepsilon} / G$, $\varepsilon=$ torus, gen and their structure of elliptic fibration. Then we study the Mordell-Weil torsion groups of cubic curves C_{s} over \boldsymbol{Q} and D_{s} over $\boldsymbol{Q}(\sqrt{-3})$ respectively. We show that C_{s} has the torsion group $\boldsymbol{Z} / 3 \boldsymbol{Z}$ for a generic $s \in \boldsymbol{Q}$ and it also contains subfamilies which coincide with the universal families given by Kubert $[\mathbf{K u}$ with the torsion groups $\boldsymbol{Z} / 6 \boldsymbol{Z}, \boldsymbol{Z} / 6 \boldsymbol{Z}+\boldsymbol{Z} / 2 \boldsymbol{Z}, \boldsymbol{Z} / 9 \boldsymbol{Z}$, or $\boldsymbol{Z} / 12 \boldsymbol{Z}$. The cubic curves D_{s} has torsion $\boldsymbol{Z} / 3 \boldsymbol{Z}+\boldsymbol{Z} / 3 \boldsymbol{Z}$ generically but also $\boldsymbol{Z} / 3 \boldsymbol{Z}+\boldsymbol{Z} / 6 \boldsymbol{Z}$ for a subfamily which is parametrized by $\boldsymbol{Q}(\sqrt{-3})$.

1. Introduction.

Let \mathcal{N}_{3} be the moduli space of sextics with $3(3,4)$-cusps as in [02]. For brevity, we denote \mathscr{N}_{3} by \mathscr{N}. A sextic C is called of a torus type if its defining polynomial f has the expression $f(x, y)=f_{2}(x, y)^{3}+f_{3}(x, y)^{2}$ for some polynomials f_{2}, f_{3} of degree 2,3 respectively. We denote by $\mathscr{N}_{\text {torus }}$ the component of \mathscr{N} which consists of curves of a torus type and by $\mathscr{N}_{\text {gen }}$ the curves of a general type (= not of a torus type). We denote the dual curve of C by C^{*}. Let $G=$ $\operatorname{PGL}(3, \boldsymbol{C})$. The quotient moduli space is by definition the quotient space of the moduli space by the action of G.

In $\S 2$, we study the quotient moduli space \mathcal{N} / G. We will show that \mathcal{N} / G is one dimensional and it has two components $\mathcal{N}_{\text {torus }} / G$ and $\mathscr{N}_{\text {gen }} / G$ which consist of sextics of a torus type and sextics of a general type respectively. After giving normal forms of these components $C_{s}, s \in \boldsymbol{P}^{1}(\boldsymbol{C})$ and $D_{s}, s \in \boldsymbol{P}^{1}(\boldsymbol{C})$, we show that the family C_{s} contains a unique sextic C_{54} which is self dual (Theorem 2.8) and C_{54} has an involution which is associated with the Gauss map Proposition 2.12).

In section 3, we study the structure of the elliptic fibrations on the components $\mathscr{N}_{\varepsilon} / G, \varepsilon=$ torus, gen which are represented by the normal families C_{s}, $s \in \boldsymbol{P}^{1}(\boldsymbol{C})$ and $D_{s}, s \in \boldsymbol{P}^{1}(\boldsymbol{C})$. Using a quadratic transformation we write these

[^0]families by smooth cubic curves C_{s} and D_{s} which are defined by the following cubic polynomials.
\[

$$
\begin{gathered}
C_{s}: x^{3}-\frac{1}{4} s(x-1)^{2}+s y^{2}=0 \\
D_{s}:-8 x^{3}+1+(s+35) y^{2}-6 x^{2}+3 x-6 \sqrt{-3} y-3 \sqrt{-3} x \\
-6 \sqrt{-3} x^{2}-12 \sqrt{-3} x y+(s-35) x y=0
\end{gathered}
$$
\]

We show that $C_{s}, s \in \boldsymbol{P}^{\mathbf{1}}(\boldsymbol{C})$ (respectively $D_{s}, s \in \boldsymbol{P}^{\mathbf{1}}(\boldsymbol{C})$) has the structure of rational elliptic surfaces X_{431} (resp. X_{3333}) in the notation of [Mi-P].

In section 4, we study their torsion subgroups of the Mordell-Weil group of the cubic families C_{s} and D_{s}. The family C_{s} is defined over \boldsymbol{Q} and D_{s} is defined over quadratic number field $\boldsymbol{Q}(\sqrt{-3})$. Both families enjoy beautiful arithmetic properties. We will show that the torsion group $\left(C_{s}\right)_{\text {tor }}(\boldsymbol{Q})$ is isomorphic to $\boldsymbol{Z} / 3 \boldsymbol{Z}$ for a generic $s \in \boldsymbol{Q}$ but it has subfamilies $C_{\varphi_{6}(u)}, C_{\varphi_{6_{2}(r)}}, C_{\varphi_{9}(t)}$ and $C_{\varphi_{12}(v)}, u, r, t, v \in$ \boldsymbol{Q} for which the Mordell-Weil torsion group are $\boldsymbol{Z} / 6 \boldsymbol{Z}, \boldsymbol{Z} / 6 \boldsymbol{Z}+\boldsymbol{Z} / 2 \boldsymbol{Z}, \boldsymbol{Z} / 9 \boldsymbol{Z}$ and $Z / 12 Z$ respectively. Each of these groups is parametrized by a rational function with \boldsymbol{Q} coefficients which is defined over \boldsymbol{Q} and this parametrization coincides, up to a linear fractional change of parameter, to the universal family given by Kubert in $\mathbf{K u}$.

As for $\left(D_{s}\right)_{\text {tor }}(\boldsymbol{Q}(\sqrt{-3}))$, we show that $\left(D_{s}\right)_{\text {tor }}(\boldsymbol{Q}(\sqrt{-3}))$ is generically isomorphic to $\boldsymbol{Z} / 3 \boldsymbol{Z}+\boldsymbol{Z} / 3 \boldsymbol{Z}$ but it also takes $\boldsymbol{Z} / 3 \boldsymbol{Z}+\boldsymbol{Z} / 6 \boldsymbol{Z}$ for a subfamily $D_{\xi_{6}(t)}$ parametrized by a rational function with coefficients in \boldsymbol{Q} and defined on $\boldsymbol{Q}(\sqrt{-3})$.

2. Normal forms of the moduli \mathcal{N}.

We consider the submoduli $\mathcal{N}^{(1)}$ of the sextics whose cusps are at $O:=(0,0)$, $A:=(1,1)$ and $B:=(1,-1)$. As every sextic in \mathcal{N} can be represented by a curve in $\mathscr{N}^{(1)}$ by the action of G, we have $\mathscr{N} / G \cong \mathscr{N}^{(1)} / G^{(1)}$ where $G^{(1)}$ is the stabilizer of $\mathcal{N}^{(1)}: G^{(1)}:=\left\{g \in G ; g\left(\mathcal{N}^{(1)}\right)=\mathcal{N}^{(1)}\right\}$. By an easy computation, we see that $G^{(1)}$ is the semi-direct product of the group $G_{0}^{(1)}$ and a finite group \mathscr{K}, isomorphic to the permutation group \mathscr{S}_{3} where $G_{0}^{(1)}$ is defined by

$$
G_{0}^{(1)}:=\left\{M=\left(\begin{array}{ccc}
a_{1} & a_{2} & 0 \\
a_{2} & a_{1} & 0 \\
a_{1}-a_{3} & a_{2} & a_{3}
\end{array}\right) \in G ; a_{3}\left(a_{1}^{2}-a_{2}^{2}\right) \neq 0\right\} .
$$

Note that $G_{0}^{(1)}$ is normal in $G^{(1)}$ and $g \in G_{0}^{(1)}$ fixes singular points pointwise. The isomorphism $\mathscr{K} \cong \mathscr{S}_{3}$ is given by identifying $g \in \mathscr{K}$ as the permutation of three singular locus O, A, B. We will study the normal forms of the quotient moduli $\mathcal{N} / G \cong \mathscr{N}^{(1)} / G^{(1)}$.

Lemma 2.1. For a given line $L:=\{y=b x\}$ with $b^{2}-1 \neq 0$, there exists $M \in G_{0}^{(1)}$ such that L^{M} is given by $x=0$.

Proof. By an easy computation, the image of L by the action of M^{-1}, where M is as above, is defined by $\left(a_{1}-b a_{2}\right) y+\left(a_{2}-b a_{1}\right) x=0$. Thus we take $a_{1}=b a_{2}$. Then $a_{1}^{2}-a_{2}^{2}=a_{2}^{2}\left(b^{2}-1\right) \neq 0$ by the assumption.

Lemma 2.2. The tangent cone at O is not $y \pm x=0$ for $C \in \mathscr{N}^{(1)}$.
Proof. Assume for example that $y-x=0$ is the tangent cone of C at O. The intersection multiplicity of the line $L_{1}:=\{y-x=0\}$ and C at O is 4 and thus $L_{1} \cdot C \geq 7$, an obvious contradiction to Bezout theorem.

Let $\mathscr{N}^{(2)}$ be the subspace of $\mathscr{N}^{(1)}$ consisting of curves $C \in \mathscr{N}^{(1)}$ whose tangent cone at O is given by $x=0$. Let $G^{(2)}$ be the stabilizer of $\mathscr{N}^{(2)}$. By Lemma 2.1 and Lemma 2.2, we have the isomorphism:

Corollary 2.3. $\quad \mathscr{N}^{(1)} / G^{(1)} \cong \mathscr{N}^{(2)} / G^{(2)}$.
It is easy to see that $G^{(2)}$ is generated by the group $G_{0}^{(2)}:=G^{(2)} \cap G_{0}^{(1)}$ and an element τ of order two which is defined by $\tau(x, y)=(x,-y)$. Note that

$$
G_{0}^{(2)}=\left\{M=\left(\begin{array}{ccc}
a_{1} & 0 & 0 \\
0 & a_{1} & 0 \\
a_{1}-a_{3} & 0 & a_{3}
\end{array}\right) \in G_{0}^{(1)} ; a_{1} a_{3} \neq 0\right\} .
$$

For $C \in \mathscr{N}^{(2)}$, we associate complex numbers $b(C), c(C) \in \boldsymbol{C}$ which are the directions of the tangent cones of C at A, B respectively. This implies that the lines $y-1=b(C)(x-1)$ and $y+1=c(C)(x-1)$ are the tangent cones of C at A and B respectively. We have shown that $C \in \mathscr{N}_{\text {torus }}^{(2)}$ if and only if $b(C)+c(C)=0$ and otherwise C is of a general type and they satisfy $c(C)^{2}+3 c(C)-b(C) c(C)+3-3 b(C)+b(C)^{2}=0(\S 4,[\mathbf{O 2}])$.

We consider the subspaces:

$$
\mathscr{N}_{\text {torus }}^{(3)}:=\left\{C \in \mathscr{N}_{\text {torus }}^{(2)} ; b(C)=0\right\}, \quad \mathscr{N}_{\text {gen }}^{(3)}:=\left\{C \in \mathscr{N}_{\text {gen }}^{(2)} ; \quad b(C)=c(C)=\sqrt{-3}\right\}
$$

and we put $\mathscr{N}^{(3)}:=\mathscr{N}_{\text {torus }}^{(3)} \cup \mathscr{N}_{\text {gen }}^{(3)}$.
Remark. The common solution of both equations: $b+c=c^{2}+3 c-b c+$ $3-3 b+b^{2}=0$ is $(b, c)=(1,-1)$ and in this case, C degenerates into two nonreduced lines $\left(y^{2}-x^{2}\right)^{2}=0$ and a conic.

Lemma 2.4. Assume that $C \in \mathscr{N}^{(2)}$. Then there exist a unique $C^{\prime} \in \mathscr{N}^{(3)}$ and an element $g \in G^{(2)}$ such that $C^{g}=C^{\prime}$. This implies that

$$
\mathscr{N}_{\text {torus }} / G \cong \mathscr{N}_{\text {torus }}^{(2)} / G^{(2)} \cong \mathscr{N}_{\text {torus }}^{(3)}, \quad \mathscr{N}_{\text {gen }} / G \cong \mathscr{N}_{\text {gen }}^{(2)} / G^{(2)} \cong \mathscr{N}_{\text {gen }}^{(3)}
$$

Proof. Assume that $C \in \mathcal{N}_{\text {torus }}^{(1)}, b+c=0$. Consider an element $g \in G_{0}^{(1)}$,

$$
g^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
1-a_{3} & 0 & a_{3}
\end{array}\right)
$$

The image L_{A}^{g} is given by $y-x+x a_{3}-a_{3}-b x a_{3}+b a_{3}=0$. Thus we can solve the equation $a_{3}(1-b)-1=0$ in a_{3} uniquely as $a_{3}=1 /(1-b)$ as $b \neq 1$. Thus $g \in G_{0}^{(1)}$ is unique if it fixes the singular points pointwise and thus C^{\prime} is also unique. It is easy to see that the stabilizer of $\mathscr{N}_{\text {torus }}^{(3)}$ is the cyclic group of order two generated by τ, as C^{\prime} is even in y (see the normal form below) and $C^{\prime \tau}=C^{\prime}$ for any $C^{\prime} \in \mathscr{N}_{\text {torus }}^{(3)}$. Thus we have $\mathscr{N}_{\text {torus }}^{(2)} / G^{(2)} \cong \mathcal{N}_{\text {torus }}^{(3)}$.

Consider the case $C \in \mathscr{N}_{\text {gen }}^{(2)}$. Then the images of the tangent cones at A, B by the action of g are given by $y-x+x a_{3}-a_{3}-b x a_{3}+b a_{3}=0$ and $y+x-$ $x a_{3}+a_{3}-c x a_{3}+c a_{3}=0$ respectively. Assume that $b\left(C^{g}\right)=c\left(C^{g}\right)$. Then we need to have $a_{3}(1-b)-1=a_{3}(-1-c)+1$, which has a unique solution in a_{3}, if $(\star) b-c-2 \neq 0$. Assume that $c^{2}+3 c-b c+3-3 b+b^{2}=0$ and $b-c-$ $2=0$. Then we get $(b, c)=(1,-1)$ which is excluded as it corresponds to a non-reduced sextic. Thus the condition (\star) is always satisfied. Put $\left(b^{\prime}, c^{\prime}\right):=$ $\left(b\left(C^{g}\right), c\left(C^{g}\right)\right)$. They satisfy the equality $c^{\prime 2}+3 c^{\prime}-b^{\prime} c^{\prime}+3-3 b^{\prime}+b^{\prime 2}=0$ and $b^{\prime}=c^{\prime}$. Thus we have either $b^{\prime}=c^{\prime}=\sqrt{-3}$ or $b^{\prime}=c^{\prime}=-\sqrt{-3}$. However in the second case, $\left(C^{g}\right)^{\tau}$ belongs to the first case. Thus $b^{\prime}=c^{\prime}=\sqrt{-3}$ and $C^{g} \in \mathscr{N}_{\text {gen }}^{(3)}$ as desired.

2.1. Normal forms of curves of a torus type.

In [O2], we have shown that a curve in $\mathscr{N}_{\text {torus }}^{(1)}$ is defined by a polynomial $f(x, y)$ which is expressed by a sum $f_{2}(x, y)^{3}+s f_{3}(x, y)^{2}$ where $f_{2}(x, y)$ is a smooth conic passing through O, A, B and $f_{3}(x, y)=\left(y^{2}-x^{2}\right)(x-1)$.

Proposition 2.5. The direction of the tangent cones at O, A and B are the same with the tangent line of the conic $f_{2}(x, y)=0$ at these points.

This is immediate as the multiplicity of $f_{3}(x, y)^{2}$ at O, A, B are 4. Assume that $C \in \mathscr{N}_{\text {torus }}^{(3)}$, that is, the tangent cones of C at O, A and B are given by $x=0, y-1=0$ and $y+1=0$ respectively. Thus the conic $f_{2}(x, y)=0$ is also uniquely determined as $f_{2}(x, y)=y^{2}+x^{2}-2 x$. Therefore $\mathscr{N}_{\text {torus }}^{(3)}$ is onedimensional and it has the representation

$$
\begin{equation*}
C_{s}: f_{\text {torus }}(x, y, s):=f_{2}(x, y)^{3}+s f_{3}(x, y)^{2}=0 \tag{2.6}
\end{equation*}
$$

For $s \neq 0,27, \infty, C_{s}$ is a sextic with three (3,4)-cusps, while C_{27} obtains a node. If $g \in G^{(2)}$ fixes the tangent lines $y \pm 1=0$, then $g=e$ or τ. As $C_{s}^{\tau}=C_{s}$, this implies that $C_{s}^{g}=C_{s}$. Thus $C_{s} \neq C_{t}$ if $s \neq t$.

2.2. Normal form of sextics of a general type.

For the moduli $\mathscr{N}_{\text {gen }}$ of sextics of a general type, we start from the expression given in $\S 4.1,[\mathbf{O 2}]$. We may assume $b=c=\sqrt{-3}$. Then the parametrization is given by

$$
f_{\text {gen }}(x, y, s):=f_{0}(x, y)+s f_{3}(x, y)^{2}, \quad f_{3}(x, y)=\left(y^{2}-x^{2}\right)(x-1)
$$

where s is equal to a_{06} in $[\mathbf{O 2}]$ and f_{0} is the sextic given by

$$
\begin{align*}
f_{0}(x, y):= & y^{6}+y^{5}(6 \sqrt{-3}-6 \sqrt{-3} x)+y^{4}\left(35-76 x+38 x^{2}\right) \tag{2.7}\\
& +y^{3}\left(-24 \sqrt{-3} x+36 \sqrt{-3} x^{2}-12 \sqrt{-3} x^{3}\right) \\
& +y^{2}\left(-94 x^{2}+200 x^{3}-103 x^{4}\right) \\
& +y\left(24 \sqrt{-3} x^{3}-42 \sqrt{-3} x^{4}+18 \sqrt{-3} x^{5}\right)+64 x^{3}-133 x^{4}+68 x^{5}
\end{align*}
$$

Let $D_{s}:=\left\{f_{\text {gen }}(x, y, s)=0\right\}$ for each $s \in C$. Observe that $D_{0}=\left\{f_{0}(x, y)=0\right\}$ is a sextic with three (3,4)-cusps and of a general type. For the computation of dual curves using Maple V , it is better to take the substitution $y \mapsto y \sqrt{-3}$ to make the equation to be defined over \boldsymbol{Q}. Summarizing the discussion, we have

Theorem 2.8. The quotient moduli space \mathcal{N} / G is one dimensional and it has two components.
(1) The component $\mathcal{N}_{\text {torus }} / G$ has the normal forms $C_{s}=\{f(x, y, s)=0\}$ where $f(x, y, s)=f_{2}(x, y)^{3}+s f_{3}(x, y)^{2}, f_{2}(x, y)=y^{2}+x^{2}-2 x$ and $f_{3}(x, y)=\left(y^{2}-x^{2}\right)$. $(x-1)$. The curve C_{54} is a unique curve in \mathcal{N} / G which is self-dual.
(2) The component $\mathscr{N}_{\text {gen }} / G$ has the normal form: $f_{\text {gen }}(x, y, s)=f_{0}(x, y)+$ $s f_{3}(x, y)^{2}$ where f_{3} is as above and the sextic $f_{0}(x, y)=0$ is contained in $\mathcal{N}_{\text {gen }}$. This component has no self-dual curve.

Proof of Theorem 2.8. We need only prove the assertion for the dual curves. The proof will be done by a direct computation of dual curves using the method of §2, $[\mathbf{O 2}]$ and the above parametrizations. We use Maple V for the practical computation. Here is the recipe of the proof. Let X^{*}, Y^{*}, Z^{*} be the dual coordinates of X, Y, Z and let $\left(x^{*}, y^{*}\right):=\left(X^{*} / Z^{*}, Y^{*} / Z^{*}\right)$ be the dual affine coordinates.
(1) Compute the defining polynomials of the dual curves C_{s}^{*} and D_{s}^{*} respectively, using the method of Lemma 2.4, [O2]. Put $g_{\text {torus }}\left(x^{*}, y^{*}, s\right)$ and $g_{\text {gen }}\left(x^{*}, y^{*}, s\right)$ the defining polynomials.
(2) Let $G_{\varepsilon}\left(X^{*}, Y^{*}, Z^{*}, s\right)$ be the homogenization of $g_{\varepsilon}\left(x^{*}, y^{*}, s\right), \varepsilon=$ torus or gen. Compute the discriminant polynomials $\Delta_{Y^{*}} G_{\varepsilon}$ which is a homogeneous polynomial in X^{*}, Z^{*} of degree 30 (cf. Lemma 2.8, [01]). Recall that the mul-
tiplicity in $\Delta_{Y^{*}} G_{\varepsilon}$ of the pencil $X^{*}-\eta Z^{*}=0$ passing through a singular point is generically given by $\mu+m-1$ where μ is the Milnor number and m is the multiplicity of the singularity $([\mathbf{O 2}])$. Thus the contribution from a $(3,4)$-cusp is 8. Thus if C_{s}^{*} has three $(3,4)$-cusps, it is necessary that $\Delta_{Y^{*}}(G)=0$ has three linear factors with multiplicity ≥ 8.
(3-1) For the curves of a general type, an easy computation shows that it is not possible to get a degeneration into a sextic with 3 (3,4)-cusps by the above reason.
(3-2) For the curves of a torus type, we can see that $s=54$ is the only parameter such that $C_{s}^{*} \in \mathscr{N}$. Thus it is enough to show that $C_{54}^{*} \cong C_{54}$.
(4) The dual curve C_{54}^{*} of C_{54} is defined by the homogeneous polynomial

$$
\begin{aligned}
G\left(X^{*}, Y^{*}, Z^{*}\right):= & 128 X^{* 5} Z^{*}+1376 X^{* 4} Z^{* 2}-192 X^{* 3} Y^{* 2} Z^{*} \\
& +4664 X^{* 3} Z^{* 3}-2 X^{* 2} Y^{* 4}-1584 X^{* 2} Y^{* 2} Z^{* 2} \\
& +7090 X^{* 2} Z^{* 4}+58 X^{*} Y^{* 4} Z^{*}-3060 X^{*} Y^{* 2} Z^{* 3} \\
& +5050 X^{*} Z^{* 5}+Y^{* 6}+349 Y^{* 4} Z^{* 2}-1725 Y^{* 2} Z^{* 4}+1375 Z^{* 6}
\end{aligned}
$$

We can see that C_{54}^{*} is isomorphic to C_{54} as $\left(C_{54}^{*}\right)^{A}=C_{54}$ where

$$
A=\left(\begin{array}{ccc}
-4 / 3 & 0 & -5 / 3 \\
0 & 1 & 0 \\
-5 / 3 & 0 & -13 / 3
\end{array}\right)
$$

2.3. Involution τ on C_{54}.

For a later purpose, we change the coordinates of \boldsymbol{P}^{2} so that the three cusps of C_{s} are at $O_{Z}:=(0,0,1), O_{Y}:=(0,1,0), O_{X}:=(1,0,0)$. A new normal form in the affine space is given by $C_{s}: f_{2}(x, y)^{3}+s f_{3}(x, y)^{2}=0$ where $f_{2}(x, y):=$ $x y-x+y$ and $f_{3}(x, y):=-x y$. In particular, C_{54} is defined by

$$
\begin{equation*}
f(x, y)=(x y-x+y)^{3}+54 x^{2} y^{2}=0 \tag{2.9}
\end{equation*}
$$

In this coordinate, C_{54}^{*} is defined by

$$
\begin{aligned}
-28 y^{3} & -17 x^{4} y^{2}-17 x^{2} y^{4}-28 x^{3} y^{3}-2 y^{5}+1788 x^{3} y+1788 x^{2} y \\
& -17 y^{4}-17 x^{4}+262 x y+1788 x^{2} y^{3}-1788 x y^{2}-262 x y^{4}+1788 x y^{3} \\
& -1788 x^{3} y^{2}-8166 x^{2} y^{2}+28 x^{3}+262 x^{4} y-2 x^{5} y-2 x y^{5}+1 \\
& -17 y^{2}-17 x^{2}+2 x^{5}+2 x-2 y+x^{6}+y^{6}=0 .
\end{aligned}
$$

It is easy to see that $\left(C_{54}^{*}\right)^{A_{1}}=C_{54}$ where

$$
A_{1}:=\left(\begin{array}{ccc}
-1 / 3 & 7 / 3 & -1 / 3 \\
7 / 3 & -1 / 3 & 1 / 3 \\
-1 / 3 & 1 / 3 & -7 / 3
\end{array}\right) .
$$

For a given $A \in G L(3, C)$, we denote the automorphism defined by the right multiplication of A by φ_{A}. Let $F(X, Y, Z)$ be the homogenization of $f(x, y)$. Then the Gauss map dual $C_{54}: C_{54} \rightarrow C_{54}^{*}$ is defined by

$$
\operatorname{dual}_{C_{54}}(X, Y, Z)=\left(F_{X}(X, Y, Z), F_{Y}(X, Y, Z), F_{Z}(X, Y, Z)\right)
$$

where F_{X}, F_{Y}, F_{Z} are partial derivatives. We define an isomorphism $\tau: C_{54} \rightarrow$ C_{54} by the composition $\varphi_{A_{1}} \circ$ dual $_{C_{54}}$. Then τ is the restriction of the rational mapping: $\Psi: \boldsymbol{C}^{2} \rightarrow \boldsymbol{C}^{2},(x, y) \mapsto\left(x_{d}, y_{d}\right)$ and

$$
\left\{\begin{array}{l}
x_{d}:=\frac{-y^{3}+4 x^{2}-x^{2} y^{3}+4 x^{3} y^{2}-8 x^{3} y-4 x^{2} y^{2}-8 x y-4 x y^{2}-2 x y^{3}+109 x^{2} y+4 y^{2}+4 x^{3}}{-4 y^{3}+x^{2}-4 x^{2} y^{3}+4 x^{3} y^{2}-8 x^{3} y-109 x^{2} y^{2}-2 x y-4 x y^{2}-8 x y^{3}+4 x^{2} y+y^{2}+4 x^{3}} \tag{2.10}\\
y_{d}:=-\frac{-4 y^{3}+4 x^{2}-4 x^{2} y^{3}+x^{3} y^{2}-2 x^{3} y-4 x^{2} y^{2}-8 x y-109 x y^{2}-8 x y^{3}+4 x^{2} y+4 y^{2}+x^{3}}{-4 y^{3}+x^{2}-4 x^{2} y^{3}+4 x^{3} y^{2}-8 x^{3} y-109 x^{2} y^{2}-2 x y-4 x y^{2}-8 x y^{3}+4 x^{2} y+y^{2}+4 x^{3}} .
\end{array}\right.
$$

Observe that τ is defined over $\boldsymbol{Q} . C_{54}$ has three flexes of order 2 at $F_{1}:=$ $(1,-1 / 4,1), F_{2}:=(1 / 4,-1,1), F_{3}:=(4,-4,1)$ and τ exchanges flexes and cusps:

$$
\begin{cases}\tau\left(O_{X}\right)=F_{1}, & \tau\left(O_{Y}\right)=F_{2}, \tag{2.11}\\ \tau\left(O_{Z}\right)=F_{3} \\ \tau\left(F_{1}\right)=O_{X}, & \tau\left(F_{2}\right)=O_{Y}, \\ \tau\left(F_{3}\right)=O_{Z}\end{cases}
$$

Furthermore we assert that
Proposition 2.12. The morphism τ is an involution on C_{54}.
Proof. By the definition of τ and Lemma 2.13 below, we have ($C:=C_{54}$):

$$
\tau \circ \tau=\left(\varphi_{t_{A_{1}^{-1}}} \circ \operatorname{dual}_{C}\right)^{2}=\left(\operatorname{dual}_{C^{A_{1}}} \circ \varphi_{A_{1}}\right) \circ\left(\varphi_{t_{1}^{-1}} \circ \operatorname{dual}_{C}\right)=\mathrm{id}
$$

as A_{1} is a symmetric matrix.
Let C be a given irreducible curve in \boldsymbol{P}^{2} defined by a homogeneous polynomial $F(X, Y, Z)$ and let $B \in G L(3, C)$. Then C^{B} is defined by $G(X, Y, Z):=$ $F\left((X, Y, Z) B^{-1}\right)$.

Lemma 2.13. Two curves $\left(C^{B}\right)^{*}$ and $\left(C^{*}\right)^{t^{-1}}$ coincide and the following diagram commutes.

Proof. The first assertion is the same as Lemma 2, [O2]. The second assertion follows from the following equalities. Let $(a, b, c) \in C$.

$$
\begin{aligned}
\operatorname{dual}_{C^{B}}\left(\varphi_{B}(a, b, c)\right) & =\left(G_{X}\left(\varphi_{B}(a, b, c)\right), G_{Y}\left(\varphi_{B}(a, b, c)\right), G_{Z}\left(\varphi_{B}(a, b, c)\right)\right) \\
& =\left(F_{X}(a, b, c), F_{Y}(a, b, c), F_{y}(a, b, c)\right)^{t} B^{-1} \\
& =\varphi_{t_{B^{-1}}}\left(\operatorname{dual}_{C}(a, b, c)\right)
\end{aligned}
$$

In section 5, we will show that τ is expressed in a simple form as a cubic curve.

3. Structure of elliptic fibrations.

We consider the elliptic fibrations corresponding to the above normal forms. For this purpose, we first take a linear change of coordinates so that three lines defined by $f_{3}(x, y)=0$ changes into lines $X=0, Y=0$ and $Z=0$. The corresponding three cusps are now at $O_{Z}=(0,0,1), O_{Y}=(0,1,0), O_{X}=$ $(1,0,0)$ in \boldsymbol{P}^{2}. Then we take the quadratic transformation which is a birational mapping of \boldsymbol{P}^{2} defined by $(X, Y, Z) \mapsto(Y Z, Z X, X Y)$. Geometrically this is the composition of blowing-ups at O_{X}, O_{Y}, O_{Z} and then the blowing down of three lines which are strict transform of $X, Y, Z=0$. It is easy to see that our sextics are transformed into smooth cubics for which $X=0, Y=0$ and $Z=0$ are tangent lines of the flex points. Those flexes are the image of the $(3,4)$-cusps. We take a linear change of coordinates so that the flex on $Z=0$ is moved at $O:=(0,1,0)$ with the tangent $Z=0$. Then the corresponding families are described by the families given by $\left\{h_{\text {torus }}(x, y, s)=0 ; s \in \boldsymbol{P}^{1}\right\}$ and $\left\{h_{\operatorname{gen}}(x, y, s)=\right.$ $\left.0, s \in \boldsymbol{P}^{1}\right\}$ where

$$
\left\{\begin{aligned}
C_{s}: & h_{\mathrm{torus}}(x, y, s):=x^{3}-\frac{1}{4} s(x-1)^{2}+s y^{2} \\
D_{s}: & h_{\operatorname{gen}}(x, y, s):=-8 x^{3}+1+(s+35) y^{2}-6 x^{2}+3 x \\
& -6 \sqrt{-3} y-3 \sqrt{-3} x-6 \sqrt{-3} x^{2}-12 \sqrt{-3} x y+(s-35) x y
\end{aligned}\right.
$$

Let $H_{\varepsilon}(X, Y, Z, S, T)=h_{\varepsilon}(X / Z, Y / Z, S / T) Z^{3} T$ for $\varepsilon=$ torus, gen. We consider the elliptic surface associated to the canonical projection $\pi: S_{\varepsilon} \rightarrow \boldsymbol{P}^{1}$ where S_{ε} is the hypersurface in $\boldsymbol{P}^{1} \times \boldsymbol{P}^{2}$ which is defined by $H_{\varepsilon}(X, Y, Z, S, T)=0$.

Case I. Structure of $S_{\text {torus }} \rightarrow \boldsymbol{P}^{1}$. For simplicity, we use the affine coordinate $s=S / T$ of $\{T \neq 0\} \subset \boldsymbol{P}^{1}$ and denote $\pi^{-1}(s)$ by C_{s}. We see that the
singular fibers are $s=0,27, \infty . \quad C_{\infty}$ consists of three lines, isomorphic to I_{3} in Kodaira's notation, $[\mathbf{K 0}] . \quad C_{27}$ obtains a node and this fiber is denoted by I_{1} in [K0]. The fiber C_{0} is a line with multiplicity 3. The surface $S_{\text {torus }}$ has three singular points on the fiber C_{0} at $(X, Y, Z)=(0,1 / 2,1),(0,-1 / 2,1),(0,1,0)$. Each singularity is an A_{2}-singularity. We take minimal resolutions at these points. At each point, we need two \boldsymbol{P}^{1} as exceptional divisors and let p : $\tilde{S}_{\text {torus }} \rightarrow S_{\text {torus }}$ be the resolution map. The composition $\tilde{\pi}:=\pi \circ p: \tilde{S}_{\text {torus }} \rightarrow \boldsymbol{P}^{1}$ is the corresponding elliptic surface. Now it is easy to see that $\widetilde{C_{0}}:=\tilde{\pi}^{-1}(0)$ is a singular fiber with 7 irreducible components, which is denoted by $I V^{*}$ in [K0]. Here we used the following lemma. The elliptic surface $\tilde{S}_{\text {torus }}$ is rational and denoted by X_{431} in $[\mathbf{M i - P}]$.

Assume that the surface $V:=\left\{(s, x, y) \in C^{3} ; f(s, x, y)=0\right\}$ has an A_{2} singularity at the origin where $f(s, x, y):=s x+y^{3}+s x \cdot h(s, x, y)$ where $h(O)=0$. Consider the minimal resolution $\pi: \tilde{V} \rightarrow V$ and let $\pi^{-1}(O)=E_{1} \cup E_{2}$. It is wellknown that $E_{1} \cdot E_{2}=1$ and $E_{i}^{2}=-2$ for $i=1,2$.

Lemma 3.1. Consider a linear form $\ell(s, x, y)=a s+b x+c y$ and let L^{\prime} be the strict transform of $\ell=0$ to \tilde{V}.
(1) Assume that $b=c=0$ and $a \neq 0$. Then $\left(\pi^{*} \ell\right)=3 L^{\prime}+2 E_{1}+E_{2}$ and $L^{\prime} \cdot E_{1}=1$ and L^{\prime} does not intersect with E_{2}, under a suitable ordering of E_{1} and E_{2}.
(2) Assume that abc $\neq 0$. Then we have $\left(\pi^{*} \ell\right)=L^{\prime}+E_{1}+E_{2}$ and $L^{\prime} \cdot E_{i}=$ 1 for $i=1,2$.

The proof is immediate from a direct computation.
Case II. Structure of $S_{\text {gen }} \rightarrow \boldsymbol{P}^{1}$. Now consider the elliptic surface $S_{\text {gen }}$. Put $D_{s}=\pi^{-1}(s)$. The singular fibers are at $s=-35,-53+6 \sqrt{-3},-53-6 \sqrt{-3}$ and $s=\infty$. The fiber $s=\infty$ is already I_{3} and $S_{\text {gen }}$ is smooth on this fiber. On the other hand, $S_{\text {gen }}$ has an A_{2}-singularity on each fiber $D_{s}, s=-35,-53+6 \sqrt{-3}$, $-53-6 \sqrt{-3}$. Let $p: \tilde{S}_{\text {gen }} \rightarrow S_{\text {gen }}$ be the minimal resolution map and we consider the composition $\tilde{\pi}:=\pi \circ p: \tilde{S}_{\text {gen }} \rightarrow \boldsymbol{P}^{1}$ as above. Then using (2) of Lemma 3.1, we see that $\tilde{\pi}: \tilde{S}_{\text {gen }} \rightarrow \boldsymbol{P}^{1}$ has four singular fibers and each of them is I_{3} in the notation [K0]. This elliptic surface is also rational and denoted as X_{3333} in [$\mathbf{M i}-\mathbf{P}$].

4. Torsion group of C_{s} and D_{s}.

Consider an elliptic curve C defined over a number field K by a Weierstrass short normal form: $y^{2}=h(x), h(x)=x^{3}+A x+B$. The j-invariant is defined by $j(C)=-1728(4 A)^{3} / \Delta$ with $\Delta=-16\left(4 A^{3}+27 B^{2}\right)$. We study the torsion group of the Mordell-Weil group of C which we denote by $C_{\text {tor }}(K)$ hereafter.

Recall that a point of order 3 is geometrically a flex point of the complex curve $C([\mathbf{S i}])$ and its locus is defined by $f(x, y)=\mathscr{F}(f)(x, y)=0$ where $f(x, y)$ is the defining polynomial of C and $\mathscr{F}(f):=f_{x, x} f_{y}^{2}-2 f_{x, y} f_{x} f_{y}+f_{y, y} f_{x}^{2}=0$ (O1]). In our case, $\mathscr{F}(f)=24 x y^{2}-18 x^{4}-12 x^{2} A-2 A$. The unit of the group is given by the point at infinity $O:=(0,1,0)$ and the inverse of $P=(\alpha, \beta) \in C$ is given by $(\alpha,-\beta)$ and we denote it by $-P$. For a later purpose, we prepare two easy propositions. Consider a line $L(P, m)$ passing through $-P$ defined by $y=$ $m(x-\alpha)-\beta$. The x-coordinates of two other intersections with C are the solution of $q(x):=f(x, m(x-\alpha)-\beta) /(x-\alpha)$ which is a polynomial of degree 2 in x. Let $\Delta_{x} q$ be the discriminant of q in x. Note that $\Delta_{x} q$ is a polynomial in m.
(A) When does a point $Q \in C$ exist such that $2 Q=P$.

Assume that a K point $Q=\left(x_{1}, y_{1}\right)$ satisfies $2 Q=P$. Geometrically this implies that the tangent line $T_{Q} C$ passes through $-P$.

Proposition 4.1. There exists a K-point Q with $2 Q=P$ if and only if m is a K-solution of $\Delta_{x} q(m)=0$ and x_{1} is the multiple solution of $q(x)=0$. If P is a flex point, $\Delta_{x} q(m)=0$ contains a canonical solution which corresponds to the tangent line at P and $m=-f_{x}(\alpha, \beta) / f_{y}(\alpha, \beta)$. For any K-solution m with $m \neq$ $-f_{x}(\alpha, \beta) / f_{y}(\alpha, \beta)$, the order of Q is equal to $2 \cdot$ order P.
(B) When does a point $Q \in C$ exist such that $3 Q=P$.

Assume that a K-point $Q=\left(x_{1}, y_{1}\right)$ satisfies $3 Q=P$. Put $Q^{\prime}:=2 Q$ and put $Q^{\prime}=\left(x_{2}, y_{2}\right)$. Let $T_{Q} C$ be the tangent line at Q. Then $T_{Q} C$ intersects C at $-Q^{\prime}$. Then $-3 Q$ is the third intersection of C and the line L which passes through Q, Q^{\prime}. Thus three points $-P, Q, Q^{\prime}$ are colinear. Write L as $y=$ $m(x-\alpha)-\beta$. Then x_{1}, x_{2} are the solutions of $q(x)=0$. Thus we have

$$
\begin{equation*}
x_{2}=-\operatorname{coeff}(q, x) / \operatorname{coeff}\left(q, x^{2}\right)-x_{1}, \quad y_{1}=m\left(x_{1}-\alpha\right)-\beta \tag{4.2}
\end{equation*}
$$

where coeff $\left(q, x^{i}\right)$ is the coefficient of x^{i} in $q(x)$. Let $L_{Q}(x, y)$ be the linear form defining $T_{Q} C$ and let $R(x)$ be the resultant of $f(x, y)$ and $L_{Q}(x, y)$ in y. Put $R_{1}(x):=R\left(-\operatorname{coeff}(q, x) / \operatorname{coeff}\left(q, x^{2}\right)-x\right)$. Then by the above consideration, $x=x_{1}$ is a common solution of $q(x)=R_{1}(x)=0$. Let $R_{2}(m)$ be the resultant of $q(x)$ and $R_{1}(x)$. Note that if $\Delta_{x} q(m)=0, L$ is tangent to C at Q and $R_{2}(m)=0$. In this case, $2 Q=P$.

Proposition 4.3. Assume that there exists a K-point Q with $3 Q=P$ and order $Q=3 \cdot$ order P and let m be as above. Then $R_{2}(m)=0$ and $\Delta_{x} q(m) \neq 0$. Moreover x_{1} is given as a common solution of $q(x)=R_{1}(x)=0$.

Actually one can show that $R_{2}(m)$ is divisible by $\left(\Delta_{x} q\right)^{2}$.

4.1. Cubic family associated with sextics of a torus type.

We have observed that the family C_{s} for $s \in \boldsymbol{Q}$ is defined over \boldsymbol{Q}. First, recall that C_{s} is defined by

$$
\begin{equation*}
C_{s}: x^{3}-\frac{1}{4} s(x-1)^{2}+s y^{2}=0 \tag{4.4}
\end{equation*}
$$

and the Weierstrass normal form is given by $C_{s}: y^{2}=x^{3}+a(s) x+b(s)$ where

$$
\begin{equation*}
a(s)=-\frac{1}{48} s^{4}+\frac{1}{2} s^{3}, \quad b(s)=-\frac{1}{24} s^{5}+\frac{1}{4} s^{4}+\frac{1}{864} s^{6} . \tag{4.5}
\end{equation*}
$$

Put $\Sigma:=\{0,27, \infty\}$. This corresponds to singular fibers. We have two sections of order 3: $\quad s \mapsto\left((1 / 12) s^{2}, \pm(1 / 2) s^{2}\right)$. Put $P_{1}:=\left((1 / 12) s^{2},(1 / 2) s^{2}\right)$. Thus the torsion group is at least $\boldsymbol{Z} / 3 \boldsymbol{Z}$. By [Ma], the possible torsion group which has an element of order 3 is one of $\boldsymbol{Z} / 3 \boldsymbol{Z}, \boldsymbol{Z} / 6 \boldsymbol{Z}, \boldsymbol{Z} / 2 \boldsymbol{Z}+\boldsymbol{Z} / 6 \boldsymbol{Z}, \boldsymbol{Z} / 9 \boldsymbol{Z}$, or $\boldsymbol{Z} / 12 \boldsymbol{Z}$. The j-invariant of C_{s} is given by

$$
\begin{equation*}
j\left(C_{s}\right):=j_{\text {torus }}(s), \quad j_{\text {torus }}(s):=s(s-24)^{3} /(s-27) \tag{4.6}
\end{equation*}
$$

(1) Assume that $\left(C_{s}\right)_{\text {tor }}(\boldsymbol{Q})$ has an element of order 6, say $P_{2}:=\left(\alpha_{2}, \beta_{2}\right) \in$ $C_{s} \cap \boldsymbol{Q}^{2}$. We may assume that $P_{2}+P_{2}=P_{1}$. By Proposition 4.1, this implies that $x=\alpha_{2}$ must be the multiple solution of

$$
q(x):=s^{4}-36 s^{3}-72 m s^{2}-6 x s^{2}-6 s^{2} m^{2}+72 m^{2} x-72 x^{2}=0 .
$$

As $-f_{x}\left(-P_{1}\right) / f_{y}\left(-P_{1}\right)=-s / 2$, we must have $m \neq-s / 2$ and thus

$$
\begin{equation*}
\Delta_{x}^{\prime} q:=\Delta_{x} q /(2 m+s)=s^{3}-32 s^{2}-2 m s^{2}-4 m^{2} s+8 m^{3}=0 . \tag{4.7}
\end{equation*}
$$

The curve $\Delta_{x}^{\prime}(q)=0$ is a rational curve and we can parametrize $\Delta_{x}^{\prime} q=0$ as $s=\varphi_{6}(u), m=\varphi_{6}(u) u$ where

$$
\begin{equation*}
\varphi_{6}(u):=32 /(1+2 u)(2 u-1)^{2} . \tag{4.8}
\end{equation*}
$$

The point P_{2} is parametrized as

$$
\begin{equation*}
P_{2}=\left(\frac{128}{3} \frac{-1+12 u^{2}}{(2 u+1)^{2}(-1+2 u)^{4}}, \frac{512(6 u+1)}{(-1+2 u)^{5}(2 u+1)^{2}}\right) \tag{4.9}
\end{equation*}
$$

where $u \in \boldsymbol{Q}$. We put $A_{6}:=\left\{s=\varphi_{6}(u) ; u \in \boldsymbol{Q}\right\}$ and $\Sigma_{6}:=\varphi^{-1}(\Sigma)$. Note that $\Sigma_{6}=\{-1 / 2,1 / 2,5 / 6,-1 / 6\}$.
(1-2) Assume that we are given $s=\varphi(u)$ and we consider the case when (4.7) has three rational solutions in m for a fixed s. This is the case if $\varphi_{6}(u)=\varphi_{6}(v)$ has two rational solutions different from u. This is also equivalent to $\left(C_{s}\right)_{\mathrm{tor}}(\boldsymbol{Q})$ has $\boldsymbol{Z} / 2 \boldsymbol{Z}+\boldsymbol{Z} / 2 \boldsymbol{Z}$ as a subgroup. The equation is given by the conic

$$
\begin{equation*}
Q: 4 u^{2}-2 u+4 u v-1-2 v+4 v^{2}=0 \tag{4.10}
\end{equation*}
$$

By an easy computation, Q is rational and it has a parametrization as follows.

$$
\begin{equation*}
u=\varphi_{2}(r):=\frac{-36+5 r^{2}}{6\left(12+r^{2}\right)}, \quad v(r):=-\frac{1}{6} \frac{\left(r^{2}+24 r-36\right)}{\left(12+r^{2}\right)} \tag{4.11}
\end{equation*}
$$

The generators are P_{2} of order 6 and $R=(\gamma, 0)$ of order 2 where

$$
\gamma:=-\frac{81}{4} \frac{\left(r^{4}-48 r^{3}+72 r^{2}-432\right)\left(12+r^{2}\right)^{4}}{\left(r^{2}-36\right)^{4} r^{4}}
$$

Put $\varphi_{6,2}(r):=\varphi_{6}\left(\varphi_{2}(r)\right)$, which is given explicitly as

$$
\varphi_{6,2}(r)=27\left(12+r^{2}\right) / r^{2}(r-6)^{2}(r+6)^{2}
$$

We define a subset $A_{6,2}$ of A_{6} by the image $\varphi_{6,2}(\boldsymbol{Q})$. Put $\Sigma_{6,2}:=\varphi_{6,2}^{-1}(\Sigma)$. It is given by $\Sigma_{6,2}=\{0, \pm 2, \pm 6\}$.
(2) Assume that there exists a rational point $P_{3}=\left(\alpha_{3}, \beta_{3}\right)$ of order 9 such that $3 P_{3}=P$. By Proposition 4.3, this is the case if and only if

$$
\begin{aligned}
R_{3}(m, s):= & 512 m^{9}+768 m^{8} s-512 m^{6} s^{3}-1536 m^{6} s^{2}-192 s^{4} m^{5} \\
& -6144 m^{5} s^{3}-6528 m^{4} s^{4}+96 s^{5} m^{4}-12288 m^{3} s^{4} \\
& -2048 m^{3} s^{5}+64 s^{6} m^{3}+480 s^{6} m^{2}-15360 s^{5} m^{2} \\
& -6144 s^{6} m+384 s^{7} m-6 s^{8} m+56 s^{8}-512 s^{6}-768 s^{7}-s^{9}=0
\end{aligned}
$$

has a rational solution. Here R_{3} is $R_{2} /\left(\Delta_{x} q\right)^{2}(s+2 m) s^{4}$ up to a constant multiplication. Again we find that the curve $\left\{(m, s) \in \boldsymbol{C}^{2} ; R_{3}(m, s)=0\right\}$ is rational and we can parametrize this curve as $s=\varphi_{9}(t), m=\psi_{9}(t)$ where

$$
\left\{\begin{array}{l}
\varphi_{9}(t):=-\frac{1}{8} \frac{\left(-1+9 t^{2}-3 t+3 t^{3}\right)^{3}}{t^{3}(t-1)^{3}(t+1)^{3}} \tag{4.12}\\
\psi_{9}(t):=\frac{1}{16} \frac{\left(-1+9 t^{2}-3 t+3 t^{3}\right)^{2}\left(-t+t^{3}+1+7 t^{2}\right)}{t^{3}(t-1)^{3}(t+1)^{3}}
\end{array}\right.
$$

The generator $P_{3}=\left(\alpha_{3}, \beta_{3}\right)$ is given by

$$
\left\{\begin{array}{l}
\alpha_{3}=\frac{1}{768} \frac{\left(1-18 t+15 t^{2}-12 t^{3}+15 t^{4}+30 t^{5}+33 t^{6}\right)\left(9 t^{2}-1+3 t^{3}-3 t\right)^{4}}{(t-1)^{6}(t+1)^{6} t^{6}} \\
\beta_{3}=-\frac{1}{512} \frac{\left(1+3 t^{2}\right)\left(9 t^{2}-1+3 t^{3}-3 t\right)^{6}}{(t-1)^{5}(t+1)^{7} t^{8}}
\end{array}\right.
$$

We put $A_{9}:=\left\{\varphi_{9}(t) ; t \in \boldsymbol{Q}\right\}$ and $\Sigma_{9}:=\varphi_{9}^{-1}(\Sigma)=\{0,1,-1\}$.
(3) Assume that $s \in A_{6}$ and $\left(C_{s}\right)_{\text {tor }}(\boldsymbol{Q})$ has an element $P_{4}=\left(\alpha_{4}, \beta_{4}\right) \in C_{s} \cap$ \boldsymbol{Q}^{2} of order 12. Then we may assume that $P_{4}+P_{4}=P_{2}$. This implies that the tangent line at P_{4} passes through $-P_{2}$. Write this line as $y=n\left(x-\alpha_{2}\right)-\beta_{2}$. By the same discussion as above, the equality $\Gamma\left(n_{1}, u\right)=0$ holds where Γ is the polynomial defined by

$$
\begin{align*}
\Gamma\left(u, n_{1}\right):= & -786432 u^{4}-98304 n_{1} u^{3}-524288 u^{3}+393216 u^{2} \tag{4.13}\\
& -16384 n_{1} u^{2}-3072 n_{1}^{2} u^{2}+131072 u+24576 n_{1} u \\
& +4096 n_{1}+16384+256 n_{1}^{2}+n_{1}^{4}
\end{align*}
$$

and $n=n_{1} /(2 u+1)(2 u-1)^{2}$. Again we find that $\Gamma=0$ is a rational curve and we have a parametrization: $u=u(v)$ and $n_{1}=n_{1}(v)$ where

$$
\begin{equation*}
u(v)=-\frac{1}{2} \frac{\left(v^{4}+2 v^{2}+5\right)}{\left(v^{4}-6 v^{2}-3\right)}, \quad n_{1}(v)=-16 \frac{\left(2 v^{2}-4 v^{3}-4 v+v^{4}-3\right)}{\left(v^{4}-6 v^{2}-3\right)} \tag{4.14}
\end{equation*}
$$

$$
\begin{equation*}
s=\varphi_{12}(v):=\varphi_{6}(u(v)), \quad \varphi_{12}(v):=-\frac{\left(v^{4}-3-6 v^{2}\right)^{3}}{(v-1)^{4}(1+v)^{4}\left(1+v^{2}\right)} . \tag{4.15}
\end{equation*}
$$

The generator of the torsion group $Z / 12 Z$ is $P_{4}=\left(\alpha_{4}, \beta_{4}\right)$ where

$$
\left\{\begin{array}{l}
\alpha_{4}:=\frac{1}{12} \frac{\left(v^{8}-12 v^{7}+24 v^{6}-36 v^{5}+42 v^{4}+12 v^{3}+36 v-3\right)\left(v^{4}-6 v^{2}-3\right)^{4}}{(v-1)^{8}(v+1)^{8}\left(v^{2}+1\right)^{2}} \\
\beta_{4}:=-\frac{1}{2} \frac{\left(v^{4}-6 v^{2}-3\right)^{6} v\left(v^{2}+3\right)}{(v-1)^{7}(v+1)^{11}\left(v^{2}+1\right)^{2}} .
\end{array}\right.
$$

We put $A_{12}:=\left\{\varphi_{12}(v) ; v \in \boldsymbol{Q}\right\}$. By definition, $A_{12} \subset A_{6}$. The singular fibers $\Sigma_{12}:=\varphi^{-1}(\Sigma)$ is given by $\{0, \pm 1\}$. Summarizing the above discussion, we get

Theorem 4.16. The j-invariant is given by $j_{\text {torus }}(s)=s(s-24)^{3} /(s-27)$ and the Mordell-Weil torsion group of C_{s} is given as follows.

$$
\left(C_{s}\right)_{\operatorname{tor}}(\boldsymbol{Q})=\left\{\begin{array}{l}
\boldsymbol{Z} / 3 \boldsymbol{Z}, \quad s \in \boldsymbol{Q}-A_{6} \cup A_{9} \cup \Sigma \\
\boldsymbol{Z} / 6 \boldsymbol{Z}, \quad s=\varphi_{6}(u) \in A_{6}-A_{6,2} \cup A_{12}, \quad u \in \boldsymbol{Q}-\Sigma_{6} \\
\boldsymbol{Z} / 6 \boldsymbol{Z}+\boldsymbol{Z} / 2 \boldsymbol{Z}, \quad s=\varphi_{6,2}(r) \in A_{6,2}, \quad r \in \boldsymbol{Q}-\Sigma_{6,2} \\
\boldsymbol{Z} / 9 \boldsymbol{Z}, \quad s=\varphi_{9}(t) \in A_{9}, \quad t \in \boldsymbol{Q}-\Sigma_{9} \\
\boldsymbol{Z} / 12 \boldsymbol{Z}, \quad s=\varphi_{12}(v) \in A_{12}, \quad v \in \boldsymbol{Q}-\Sigma_{12}
\end{array}\right.
$$

4.2. Comparison with Kubert family.

In $\lfloor\mathbf{K u}]$, Kubert gave parametrizations of the moduli of elliptic curves defined over \boldsymbol{Q} with given torsion groups which have an element of order ≥ 4. His family starts with the normal form:

$$
\begin{equation*}
E(b, c): y^{2}+(1-c) x y-b y=x^{3}-b x^{2} \tag{4.17}
\end{equation*}
$$

We first eliminate the linear term of y and then the coefficient of x^{2}. Let $K_{w}(b, c)$ be the Weierstrass short normal form, which is obtained in this way. The j-invariant is given by

$$
j(E(b, c))=\frac{\left(1-8 b c^{2}-8 c b-4 c+16 b+6 c^{2}+16 b^{2}-4 c^{3}+c^{4}\right)^{3}}{b^{3}\left(3 c^{2}-c-3 c^{3}-8 b c^{2}+b-20 c b+c^{4}+16 b^{2}\right)}
$$

For a given elliptic curve E defined over K with Weierstrass normal form $E: y^{2}=$ $x^{3}+a x+b$ and a given $k \in K$, the change of coordinates $x \mapsto x / k^{2}, y \mapsto y / k^{3}$ changes the normal form into $y^{2}=x^{3}+a k^{4} x+b k^{6}$. We denote this operation by $\Psi_{k}(E)$.

1. Elliptic curves with the torsion group $\boldsymbol{Z} / 6 \boldsymbol{Z}$. This family is given by a parameter c with $b=c+c^{2}$.
2. Elliptic curves with the torsion group $\boldsymbol{Z} / 6 \boldsymbol{Z}+\boldsymbol{Z} / 2 \boldsymbol{Z}$. This family is given by a parameter c_{1} with $b=c+c^{2}$ and $c=\left(10-2 c_{1}\right) /\left(c_{1}^{2}-9\right)$.
3. Elliptic curves with the torsion group $\boldsymbol{Z} / 9 \boldsymbol{Z}$. The corresponding parameter is f and $b=c d, c=f d-f, d=f(f-1)+1$.
4. Elliptic curves with the torsion group $\boldsymbol{Z} / 12 \boldsymbol{Z}$. The corresponding parameter is τ and $b=c d, c=f d-f, d=m+\tau, f=m /(1-\tau)$ and $m=$ $\left(3 \tau-3 \tau^{2}-1\right) /(\tau-1)$.

Proposition 4.18. Our family $C_{\varphi_{6}(u)}, C_{\varphi_{6,2}(r)}, C_{\varphi_{9}(t)}, C_{\varphi_{12}(v)}$ are equivalent to the respective Kubert families. More explicitly, we take the following change of parameters to make their j-invariants coincide with those of Kubert and then we take the change of coordinates of type Ψ_{k} to make the Weierstrass short normal forms to be identical with $K_{w}(x, y)$.

1. For $C_{\varphi_{6}(u)}$, take $u=-(c-1) / 2(3 c+1)$ and $k=c^{2}(c+1) /(3 c+1)^{2}$.
2. For $C_{\varphi_{6,2}(r)}$, take $r=-12 /\left(c_{1}-3\right)$ and $k=4\left(-5+c_{1}\right)^{2}\left(c_{1}-1\right)^{2} /\left(c_{1}^{2}-\right.$ $\left.6 c_{1}+21\right)^{2} /\left(c_{1}-3\right)\left(c_{1}+3\right)$.
3. For $C_{\varphi_{9}(t)}$, take $t=-f /(f-2)$ and $k=f^{3}(f-1)^{3} /\left(f^{3}-3 f^{2}+1\right)^{2}$.
4. For $C_{\varphi_{12}(v)}$, take $v=-1 /(2 \tau-1)$ and $k=(\tau-1) \tau^{4}\left(-2 \tau+2 \tau^{2}+1\right)(-1+$ $2 \tau)^{2} /\left(6 \tau^{4}-12 \tau^{3}+12 \tau^{2}-6 \tau+1\right)^{2}$.

We omit the proof as the assertion is immediate from a direct computation.

4.3. Involution on C_{54}.

We consider again the self dual curve $C:=C_{54}$ (see $\S 3$). The Weierstrass normal form is $y^{2}=x^{3}-98415 x+11691702$. Note that $54 \in A_{6}-A_{12} \cup A_{6,2} \cup$ Σ. In fact, $54=\varphi_{6}(1 / 6)$ and $54 \notin A_{12} \cup A_{6,2}$. The j-invariant is 54000 and the torsion group $C_{\text {tor }}(\boldsymbol{Q})$ is $\boldsymbol{Z} / 6 \boldsymbol{Z}$ and the generator is given by $P=(-81,4374)$.

Other rational points are $2 P=(243,-1458), 3 P=(162,0), 4 P=(243,1458)$, $5 P=(-81,-4374)$, and $O=(0,1,0)(=$ the point at infinity $)$. Recall that C has an involution τ which is defined by (2.10) in §3. To distinguish our original sextic and cubic, we put

$$
C^{(6)}:(x y-x+y)^{3}+54 x^{2} y^{2}=0, \quad C^{(3)}: y^{2}=x^{3}-98415 x+11691702 .
$$

The identification $\Phi: C^{(3)} \rightarrow C^{(6)}$ is given by the rational mapping:

$$
\Phi(x, y)=(-2916 /(27 x-5103-y), 2916 /(y+27 x-5103))
$$

and the involution $\tau^{(3)}$ on $C^{(3)}$ is given by the composition $\Phi^{-1} \circ \tau \circ \Phi$. After a boring computation, $\tau^{(3)}$ is reduced to an extremely simple form in the Weierstrass normal form and it is given by $\tau^{(3)}(x, y)=(p(x, y), q(x, y))$ where

$$
\begin{equation*}
p(x, y):=81 \frac{2 x-567}{x-162}, \quad q(x, y):=-19683 \frac{y}{(x-162)^{2}} . \tag{4.19}
\end{equation*}
$$

Note that C has another canonical involution l which is an automorphism defined by $l:(x, y) \mapsto(x,-y)$. We can easily check that $\tau^{(3)} \circ l=l \circ \tau^{(3)}$. Note that $\tau^{(3)}(P)=2 P, \tau^{(3)}(2 P)=P, \tau^{(3)}(3 P)=O, \tau^{(3)}(O)=3 P, \tau^{(3)}(4 P)=5 P, \tau^{(3)}(5 P)=$ $4 P$. Let $\eta: C \rightarrow C$ be the translation by the 2 -torsion element $3 P$ i.e., $\eta(x, y)=$ $(x, y)+(162,0)$. It is easy to see that $\tau^{(3)}$ is the composition $l \circ \eta$. That is $\tau^{(3)}(x, y)=(x,-y)+(162,0)$ where the addition is the addition by the group structure of C_{54}. Thus

Theorem 4.20. The involution τ on sextics $C^{(6)}$ is equal to the involution $\tau^{(3)}$ on $C^{(3)}$ which is defined by (4.19) and it is also equal to $(x, y) \mapsto(x,-y)+$ $(162,0)$.

4.4. Cubic family associated with sextics of a general type.

We consider the family of elliptic D_{s} curves associated to the moduli of sextics of a general type with three $(3,4)$-cusps. Recall that D_{s} is defined by the equation:

$$
\begin{aligned}
D_{s}: & -8 x^{3}+1+s y^{2}+35 y^{2}-6 x^{2}+3 x-6 \sqrt{-3} y-3 \sqrt{-3} x \\
& -6 \sqrt{-3} x^{2}-12 \sqrt{-3} x y+(s-35) x y=0 .
\end{aligned}
$$

This family is defined over $\boldsymbol{Q}(\sqrt{-3})$. We change this polynomial into a Weierstrass normal form by the usual process killing the coefficient of y and then by killing the coefficient of x^{2}. A Weierstrass normal forms is given by $y^{2}=x^{3}+a(s) x+b(s)$ where

$$
\left\{\begin{align*}
a(s): & :=-\frac{1}{768}(s+47)(s+71)\left(s^{2}+70 s+1657\right) \tag{4.21}\\
b(s): & =\frac{1}{55296}\left(s^{2}+70 s+793\right)\left(s^{4}+212 s^{3}+17502 s^{2}\right. \\
& +648644 s+9038089)
\end{align*}\right.
$$

The singular fibers are $s=-35,-53+6 \sqrt{-3},-53-6 \sqrt{-3}$ and $s=\infty$. Put $\Sigma=\{-35,-53 \pm 6 \sqrt{-3}, \infty\}$. In this section, we consider the Modell-Weil torsion over the quadratic number field $\boldsymbol{Q}(\sqrt{-3})$. First we observe that this family has 8 sections of order three $\pm P_{3, i}, i=1, \ldots, 4$ where $P_{3, i}$ are given by

$$
\begin{align*}
& \text { (4.22) } P_{3,1}:=\left(x_{3,1}, y_{3,1}\right), \quad\left\{\begin{array}{l}
x_{3,1}:=5041 / 48+71 s / 24+s^{2} / 48 \\
y_{3,1}:=2917 / 4+53 s / 2+s^{2} / 4
\end{array}\right. \tag{4.22}\\
& \text { (4.23) } \quad P_{3,2}:=\left(x_{3,2}, y_{3,2}\right), \quad\left\{\begin{array}{l}
x_{3,2}:=-2209 / 16-47 s / 8-s^{2} / 16 \\
y_{3,2}:=\sqrt{-3}\left(s^{2}+106 s+2917\right)(s+35) / 144,
\end{array}\right. \\
& (4.24) \quad P_{3,3}:=\left(x_{3,3}, y_{3,3}\right), \quad\left\{\begin{array}{l}
x_{3,3}:=s^{2} / 48+793 / 48+35 s / 24+(s+35) \sqrt{-3} / 2 \\
y_{3,3}:=(-1+\sqrt{-3})(s+35)(s+6 \sqrt{-3}+53) / 8,
\end{array}\right. \\
& \text { (4.25) } \quad P_{3,4}:=\left(x_{3,4}, y_{3,4}\right), \quad\left\{\begin{array}{l}
x_{3,4}:=s^{2} / 48+793 / 48+35 s / 24-(s+35) \sqrt{-3} / 2 \\
y_{3,4}:=-(1+\sqrt{-3})(s+53-6 \sqrt{-3})(s+35) / 8 .
\end{array}\right.
\end{align*}
$$

Thus they generate a subgroup isomorphic to $\boldsymbol{Z} / 3 \boldsymbol{Z}+\boldsymbol{Z} / 3 \boldsymbol{Z}$. We can take the generators $P_{3,1}, P_{3,2}$ for example. Thus by $[\mathbf{K e - M o}],\left(D_{s}\right)_{\text {tor }}(\boldsymbol{Q}(\sqrt{-3}))$ is isomorphic to one of the following.
(a) $\boldsymbol{Z} / 3 \boldsymbol{Z}+\boldsymbol{Z} / 3 \boldsymbol{Z}$,
(b) $\boldsymbol{Z} / 3 \boldsymbol{Z}+\boldsymbol{Z} / 6 \boldsymbol{Z}$ and
(c) $\boldsymbol{Z} / 6 \boldsymbol{Z}+\boldsymbol{Z} / 6 \boldsymbol{Z}$.

By the same discussion as in 5.1, there exists $P \in D_{s}$ with order 6 and $2 P=P_{3,1}$ if and only if

$$
\begin{aligned}
\Delta(s, m):= & s^{3}+85 s^{2}-4 m s^{2}-568 m s+1555 s-16 m^{2} s \\
& -1136 m^{2}-15465-20164 m+64 m^{3}=0
\end{aligned}
$$

Fortunately the variety $\Delta=0$ is again rational and we can parametrize it as

$$
\begin{align*}
& s=\xi_{6}(t), \quad \xi_{6}(t):=-\left(27 t^{3}-1304 t^{2}+17920 t-71680\right) /(t-8)(t-16)^{2} \tag{4.26}\\
& m=\psi(t), \quad \psi(t):=-\left(-128 t^{2}+3 t^{3}+1536 t-6144\right) /(t-8)(t-16)^{2} \tag{4.27}
\end{align*}
$$

It turns out that the condition for the existence of $Q \in D_{s}$ with $2 Q=P_{3,2}$ is the same with the existence of $P, 2 P=P_{3,1}$. Assume that $s=\xi_{6}(t)$. Then by an easy computation, we get $P=\left(x_{6,1}, y_{6,1}\right)$ and $Q=\left(x_{6,2}, y_{6,2}\right)$ where

$$
\begin{aligned}
& x_{6,1}:=-\frac{1}{3} \frac{\left(-3072 t^{5}+11796480 t^{2}+86016 t^{4}-1327104 t^{3}-56623104 t+113246208+47 t^{6}\right)}{(t-8)^{2}(t-16)^{4}}, \\
& y_{6,1}:=\frac{-4 t^{3}\left(t^{2}-24 t+192\right)\left(7 t^{2}-144 t+768\right)}{(t-16)^{5}(t-8)^{2}}, \\
& x_{6,2}:=\frac{1}{3} \frac{\left(37 t^{6}-2016 t^{5}+40704 t^{4}-294912 t^{3}-1179648 t^{2}+28311552 t-113246208\right)}{(t-8)^{2}(t-16)^{4}}, \\
& y_{6,2}:=-\frac{8}{7} \frac{\sqrt{-3}(t-12)(t-12-4 \sqrt{-3})(7 t-72+8 \sqrt{-3})(7 t-72-8 \sqrt{-3}) t(t-12+4 \sqrt{-3})}{(t-16)^{3}(t-8)^{3}} .
\end{aligned}
$$

It is easy to see by a direct computation that $3 P=3 Q=(\alpha, 0)$ where

$$
\alpha:=-\frac{2}{3} \frac{\left(t^{2}-48 t+384\right)\left(13 t^{4}-528 t^{3}+8064 t^{2}-55296 t+147456\right)}{(t-8)^{2}(t-16)^{4}}
$$

and $Q-P=P_{3,3}$. Now we claim that
Claim 1. $\left(D_{s}\right)_{\mathrm{tor}}(\boldsymbol{Q}(\sqrt{-3}))=\boldsymbol{Z} / 3 \boldsymbol{Z}+\boldsymbol{Z} / 6 \boldsymbol{Z}$ with generators $P_{3,3}$ and P.
In fact, if the torsion is $\boldsymbol{Z} / 6 \boldsymbol{Z}+\boldsymbol{Z} / 6 \boldsymbol{Z}$, there exist three elements of order two. However $f_{0}(x):=f(x, 0)$ factorize as $(x-\alpha) f_{0,0}(x)$ and their discriminants are given by

$$
\begin{aligned}
& \Delta_{x} f_{0}:=\frac{2048 t^{6}(t-12)^{3}\left(t^{2}-24 t+192\right)^{3}\left(7 t^{2}-144 t+768\right)^{6}}{(t-8)^{9}(t-16)^{18}} \\
& \Delta_{x} f_{0,0}:=165888(t-12)^{3}\left(t^{2}-24 t+192\right)^{3}(t-8)^{7}(t-16)^{8}
\end{aligned}
$$

Consider quartic $Q_{4}: g(t, v):=165888(t-12)\left(t^{2}-24 t+192\right)(t-8)-v^{2}=0$. Thus D_{s} has three two torsion elements if and only if the quartic $g(t, v)=0$ has $\boldsymbol{Q}(\sqrt{-3})$-point $\left(t_{0}, v_{0}\right)$ with $t_{0} \neq 8,16,12,12 \pm 4 \sqrt{-3}$. The proof of Claim is reduces to:

Assertion 1. There are no such point on Q_{4}.
Proof. By an easy birational change of coordinates, $g(t, v)=0$ is equivalent to the elliptic curve $C:=\left\{x^{3}+1 / 16777216-y^{2}=0\right\}$. We see that C has two elements of order three, $(0, \pm 1 / 4096)$ and three two-torsions $(-1 / 256,0),(1 / 512-$ $1 / 512 \sqrt{-3}, 0)$ and $(1 / 512+1 / 512 \sqrt{-3}, 0)$. Again by $[\mathbf{K e - M o}], C_{\text {tor }}(\boldsymbol{Q}(\sqrt{-3}))=$ $\boldsymbol{Z} / 2 \boldsymbol{Z}+\boldsymbol{Z} / 6 \boldsymbol{Z}$. As the rank of C is $0([\mathbf{S}-\mathbf{Z}])$, there are exactly 12 points on
C. They correspond to either zeros or poles of $\Delta_{x}\left(f_{0}\right)$. This implies that the quartic Q_{4} has no non-trivial points and thus C does not have three 2-torsion points. This completes the proof of the Assertion and thus also proves the Claim.

Now we formulate our result as follows. Let $A_{6}=\left\{s=\xi_{6}(t) ; t \in \boldsymbol{Q}(\sqrt{-3})\right\}$ and $\Sigma_{6}:=\xi_{6}^{-1}(\Sigma)$ is given by $\Sigma_{6}=\{8,16,0,12,12 \pm 4 \sqrt{-3},(72 \pm 8 \sqrt{-3}) / 7\}$.

Theorem 4.28. The Mordell-Weil torsion of D_{s} is given by

$$
\left(D_{s}\right)_{\mathrm{tor}}(\boldsymbol{Q}(\sqrt{-3}))= \begin{cases}\boldsymbol{Z} / 3 \boldsymbol{Z}+\boldsymbol{Z} / 3 \boldsymbol{Z} & s \in \boldsymbol{Q}(\sqrt{-3})-A_{6} \cup \Sigma \\ \boldsymbol{Z} / 6 \boldsymbol{Z}+\boldsymbol{Z} / 3 \boldsymbol{Z} & s=\xi_{6}(t) \in A_{6}, \quad t \in \boldsymbol{Q}(\sqrt{-3})-\Sigma_{6}\end{cases}
$$

The j-invariant is given by

$$
j\left(D_{s}\right)=\frac{1}{64} \frac{(s+47)^{3}(s+71)^{3}\left(s^{2}+70 s+1657\right)^{3}}{(s+35)^{3}\left(s^{2}+106 s+2917\right)^{3}} .
$$

4.5. Examples.

(A) First we consider the case of elliptic curves C_{s}. In the following examples, we give only the values of parameter s as the coefficients are fairly big. The corresponding Weierstrass normal forms are obtained by (4.5).

1. $s=54$. The curve C_{54} with torsion group $\boldsymbol{Z} / 6 \boldsymbol{Z}$ has been studied in $\S 4.3$.
2. Take $r=3, s=\varphi_{6,2}(3)=343 / 9$. Then the torsion group is isomorphic to $\boldsymbol{Z} / 6 \boldsymbol{Z}+\boldsymbol{Z} / 2 \boldsymbol{Z}$ with generators $P_{2}=(-55223 / 972,-588245 / 486)$ and $R=$ $(88837 / 972,0)$. The j-invariant is given by $7^{3} \cdot 127^{3} / 2^{2} \cdot 3^{6} \cdot 5^{2}$.
3. Take $t=-3, s=\varphi_{9}(-3)=1 / 216$. Then the torsion group is isomorphic to $\boldsymbol{Z} / 9 \boldsymbol{Z}$ and the generator $P_{3}=(289 / 559872,-7 / 419904)$. The j-invariant is $71^{3} \cdot 73^{3} / 2^{9} \cdot 3^{9} \cdot 7^{3} \cdot 17$.
4. Take $v=3, s=\varphi_{12}(3)=-27 / 80$. Then the torsion is isomorphic to $\boldsymbol{Z} / 12 \boldsymbol{Z}$ with generator $P_{4}=(-2997 / 25600,-6561 / 102400)$. The j-invariant is $-11^{3} \cdot 59^{3} / 2^{12} \cdot 3 \cdot 5^{3}$.
(B) We consider elliptic curves D_{s} defined over $\boldsymbol{Q}(\sqrt{-3})$. The normal form is given by (4.21).
5. Take $s=1$. Then $\left(D_{1}\right)_{\operatorname{tor}}(\boldsymbol{Q}(\sqrt{-3}))=\boldsymbol{Z} / 3 \boldsymbol{Z}+\boldsymbol{Z} / 3 \boldsymbol{Z}$ and the generators are $\left(x_{3,1}, y_{3,1}\right)=(108,756)$ and $\left(x_{3,2}, y_{3,2}\right)=(-144,756 \sqrt{-3})$. The j-invariant is $2^{15} 3^{3} / 7^{3}$.
6. Take $t=4$ and $s=-299 / 9$. Then the torsion is isomorphic to $\boldsymbol{Z} / 6 \boldsymbol{Z}+$ $\boldsymbol{Z} / 3 \boldsymbol{Z}$. The generators can be taken as $\left(x_{6,1}, y_{6,1}\right)=(-2351 / 243,-532 / 243)$ and $\left(x_{3,3}, y_{3,3}\right)=(8 \sqrt{-3} / 9-2171 / 243,-680 / 81+248 \sqrt{-3} / 81)$. The j-invariant is given by $5^{3} \cdot 17^{3} \cdot 31^{3} \cdot 2203^{3} / 2^{6} \cdot 3^{6} \cdot 7^{3} \cdot 19^{6}$.

4.6. Appendix: Parametrization of rational curves.

Parametrizations of a rational curve are always possible and there exist even some programs to find a parametrization on Maple V. For the detail, see [Ab-Ba] and $[\mathbf{v H}]$ for example. In our case, it is easy to get a parametrization by a direct computation. For a rational curve with degree less than or equal four is easy. For other case, we first decrease the degree, using suitable birational maps. We give a brief indication. We remark here that the parametrization is unique up to a linear fractional change of the parameter.
(1) For the parametrization of $s^{3}-32 s^{2}-2 m s^{2}-4 m^{2} s+8 m^{3}=0$, put $m=u s$.
(2) For the parametrization of

$$
\begin{aligned}
R_{3}(m, s):= & 512 m^{9}+768 m^{8} s-512 m^{6} s^{3}-1536 m^{6} s^{2}-192 s^{4} m^{5} \\
& -6144 m^{5} s^{3}-6528 m^{4} s^{4}+96 s^{5} m^{4}-12288 m^{3} s^{4}-2048 m^{3} s^{5} \\
& +64 s^{6} m^{3}+480 s^{6} m^{2}-15360 s^{5} m^{2}-6144 s^{6} m+384 s^{7} m \\
& -6 s^{8} m+56 s^{8}-512 s^{6}-768 s^{7}-s^{9}=0
\end{aligned}
$$

put successively $s=s_{1} / m_{1}$ and $m=1 / m_{1}$, then put $n_{1}=n_{2} / s_{1}^{2}$, then $s_{1}=s_{2}-2$ and $n_{2}=n_{4} s_{2}$. This changes degree of our curve to be 6 . Then $s_{2}+s_{3}-4$ and $n_{4}=n_{5}+2$ and $n_{5}=n_{6} s_{3}$. This changes our curve into a quartic. Other computation is easy.

4.7. Further remark.

We would like to thank to Professor A. Silverberg who has kindly communicated us about the papers $[\mathbf{R}-\mathbf{S 1}]$ and $[\mathbf{R}-\mathbf{S 2}]$. In $[\mathbf{R}-\mathbf{S 1}]$, a universal family for $\boldsymbol{Z} / 3 \boldsymbol{Z}+\boldsymbol{Z} / 3 \boldsymbol{Z}$ over $\boldsymbol{Q}(\sqrt{-3})$ is given as follows. $A(u): y^{2}=x^{3}+a_{0}(u) x+$ $b_{0}(u)$ where

$$
a_{0}(u)=-27 u\left(8+u^{3}\right), \quad b_{0}(u)=-54\left(8+20 u^{3}-u^{6}\right)
$$

and the subfamily, given by $u=\left(4+\tau^{3}\right) /\left(3 \tau^{2}\right)$, describes elliptic curves with torsion $\boldsymbol{Z} / 6 \boldsymbol{Z}+\boldsymbol{Z} / 3 \boldsymbol{Z}([\mathbf{R}-\mathbf{S} 2])$. Again by an easy computation, we can show that by the change of parameter $s=-47+12 u$ we can identify D_{s} and $A(u)$. Our subfamily for $\boldsymbol{Z} / 6 \boldsymbol{Z}+\boldsymbol{Z} / 3 \boldsymbol{Z}$ is also the same with that of [R-S2] by the fractional change of parameter: $\quad t=8(\tau-2) /(\tau-1)$.

We would like to thank H . Tokunaga for the valuable discussions and informations about elliptic fibrations and also to K. Nakamula and T. Kishi for the information about elliptic curves over a number field. I am also gratefull to SIMATH for many computations.

4.8. Appendix: Computation of dual curves C_{s}^{*} and D_{s}^{*}.

In Theorem 2.8, the dual curves C_{s}^{*} and D_{s}^{*} are defined by the following polynomials. C_{s}^{*} is defined by $g(x, y)=0$ where:

$$
\begin{aligned}
g:= & -4 s^{3}-729-4374 x-837 s+2187 y^{2}-8748 x^{2}-864 s x^{4}-27 s y^{6} \\
& +16 s^{3} x y^{2}-32 s^{2} x^{5}-112 s^{2} x^{4}-24 s^{3} x^{2}-4 s^{3} x^{4}-2187 y^{4} \\
& -16 s^{3} x^{3}-16 s^{3} x+8 s^{3} x^{2} y^{2}-24 s^{2} x^{2} y^{2}+729 y^{6}-5832 x^{3} \\
& -2673 s x^{2}-2214 s x-2160 s x^{3}-260 s^{2} x^{3}-424 s^{2} x^{2}-356 s^{2} x \\
& -112 s^{2}+68 s^{2} x^{3} y^{2}-36 s^{2} x y^{4}+972 s x y^{2}+27 s x^{2} y^{4}-1080 s x^{3} y^{2} \\
& -810 s x^{2} y^{2}+1242 s x y^{4}+8 s^{3} y^{2}-4 s^{3} y^{4}+144 s^{2} y^{4}-783 s y^{4} \\
& -32 s^{2} y^{2}+8748 x y^{2}-4374 x y^{4}+8748 x^{2} y^{2}+1647 s y^{2}-120 s^{2} x y^{2} .
\end{aligned}
$$

For the dual curve of D_{s}, we first change the coordinates by $y \mapsto \sqrt{3} I$ so that D_{s} is defined by $f_{1}(x, y)=0$ where

$$
\begin{aligned}
f_{1}:= & 162 y^{5} x-216 y^{3} x+324 y^{3} x^{2}-72 y x^{3}-108 y^{3} x^{3}+126 y x^{4}-54 y x^{5} \\
& -12 y^{2} x^{3} s-27 y^{6}-162 y^{5}+64 x^{3}-133 x^{4}+68 x^{5}+s x^{6}+315 y^{4} \\
& +9 y^{4} s-684 y^{4} x+342 y^{4} x^{2}-600 y^{2} x^{3}+309 y^{2} x^{4}+x^{4} s-2 x^{5} s \\
& -18 y^{4} x s+9 y^{4} x^{2} s+282 y^{2} x^{2}+6 y^{2} x^{4} s+6 y^{2} x^{2} s
\end{aligned}
$$

and the dual curve D_{s}^{*} is defined by

$$
\begin{aligned}
& 59011092000 y^{5} x+6633394206750 y^{3} x+2758312645200 y^{3} x^{2} \\
& +19978762090770 y x^{3}+3718476720000 y x^{4}+442161486099 \\
& +14031749711565 x+1533079825101 y+57301070400 y^{6} \\
& +327874701312 y^{5}+36043875529317 x^{2}+33637736054772 x^{3} \\
& +13114936771650 x^{4}+1875661200000 x^{5}-147317217894 s \\
& +1495218073320 y^{3}+840892247884 y^{4}+2027895885759 y^{2} \\
& -9 s^{7}-19567881 s^{4}-792758961 s^{3}-17398899090 s^{2}-284688 s^{5} \\
& -2376 s^{6}+892912667112 x s-891 s^{6} y-297 s^{6} y^{3}+18099072 s^{3} y^{5} \\
& +1641408380640 y^{4} x+40192740000 y^{4} x^{2}+5014174998000 y^{2} x^{3}
\end{aligned}
$$

$$
\begin{aligned}
& +13471184352354 y^{2} x^{2}+624708869400 y^{2} x^{3} s-260721 s^{5} y^{2} x \\
& +313980192 s^{3} y^{3} x^{2}+25325395200 s^{2} y x^{4}+1111553560851 s y^{2} x \\
& +17158062 s^{4} y^{2} x^{2}+447680160 s^{3} y^{3} x+1839668382 s^{3} y x^{2} \\
& +349513914 s^{3} y^{2} x+310125896640 s y^{3} x^{2}+48690 s^{5} y^{2} x^{2} \\
& +1255966935678 s y x+13061376 s^{4} y^{2} x^{3}+651732480 s^{3} y x^{4} \\
& +3109968 s^{4} y^{4} x+13930477632 s^{2} y^{3} x^{2}+41472 s^{5} y x^{4}+22680 s^{5} y^{4} x \\
& +227913552 s^{3} y^{4} x+857351568 s^{3} y^{2} x^{3}-258309 s^{5} y x^{2} \\
& +31851986040 s^{2} y^{2} x^{3}+8284032 s^{4} y x^{4}-12 s^{7} y^{2} x+23328 s^{4} y^{5} x \\
& -891648 s^{5} x+576 s^{6} x^{5}+136512 s^{5} x^{5}-36 s^{7} x-8649 s^{6} x \\
& -5193 s^{6} x^{3}-36 s^{7} x^{3}+123193007676 s^{2} x^{2}+100685283444 s^{2} x^{4} \\
& +48478194 s^{4} x^{4}+366309 s^{5} x^{4}-54 s^{7} x^{2}+3855993059241 x^{3} s \\
& +1053 s^{5} x^{3}+15541496150580 y x+3825792 s^{3} y^{5} x+87264 s^{4} y^{4} x^{2} \\
& +6924960 s^{3} y^{4} x^{2}+1553580078 s^{3} y^{2} x^{2}+102908891178 s^{2} y x^{3} \\
& -594 s^{6} y x^{3}+2243063232 s^{3} y x^{3}-2823 s^{6} y^{2} x-8212278 s^{4} y^{2} x \\
& +193245024024 y^{4} x s+5241726000 y^{4} x^{2} s+1514133147270 y^{2} x^{2} s \\
& +3070054921815 s x^{2}+3414088023336 x^{2} s-195210 s^{5} y+432 s^{5} y^{5} \\
& +1972998 s^{4} y x^{2}+25533064350 s^{2} y^{3} x-442098 s^{5} y x-750 s^{6} y^{2} x^{2} \\
& +68554643454 s^{2} y^{2} x^{2}+29808 s^{5} y x^{3}+270950400 s^{2} y^{4} x^{2} \\
& +6 y^{7} y^{2} x^{2}+408 s^{6} y^{2} x^{3}+109656 s^{5} y^{2} x^{3}+72 s^{6} y^{4} x+3568752 s^{4} y^{3} x^{2} \\
& -2079 s^{6} y x^{2}+117157642245 s^{2} y x^{2}-470102076 s^{3} y x-2376 s^{6} y x \\
& +26298260280 s^{2} y x+663862307760 s y^{3} x+2280870105552 s y x^{3} \\
& -198 s^{6} y^{3} x-15120 s^{5} y^{3} x+36673809381 s^{2} y^{2} x+487202688000 s y s^{4} y-s^{7} y^{4}
\end{aligned}
$$

$$
\begin{aligned}
& +212975424 s^{2} y^{6}+36864 s^{4} y^{6}+5608648080 s y^{6}-5371866 s^{4} y^{3} \\
& +976651446 s^{2} y^{4}+144 s^{5} y^{6}+3956832 s^{3} y^{6}-2051776 s^{4} y^{4} \\
& -43410095 s^{3} y^{4}-442882878 s^{3} y^{2}-13456455885 s^{2} y+74417206602 s y^{2} \\
& -718361460 s^{3} y-5373594108 s^{2} y^{2}-1662 s^{6} y^{2}-1576652661 s^{2} y^{3} \\
& -13156989 s^{4} y^{2}+76562957565 s y^{3}+144288 s^{4} y^{5}-30512884194 s y \\
& -202446 s^{5} y^{2}-290 s^{6} y^{4}-35175 s^{5} y^{4}+30086432208 s y^{5}-64503 s^{5} y^{3} \\
& +62584308983 y^{4} s+1784396469555 x^{4} s+298204200000 x^{5} s \\
& -15510231 s^{4} x^{2}-11106 s^{6} x^{2}-835704 s^{5} x^{2}+2996734833 s^{3} x^{4} \\
& -9 s^{7} x^{4}+216 s^{6} x^{4}+1651193118 s^{3} x^{2}+181976491107 s^{2} x^{3} \\
& +4757584653 s^{2} x+13305600 s^{4} x^{5}+48152898 s^{4} x^{3}-48064977 s^{4} x \\
& -1179136260 s^{3} x+4348482318 s^{3} x^{3}+684432000 s^{3} x^{5} \\
& +19633320000 s^{2} x^{5}+12117831538440 y^{2} x+30098845732644 y x^{2}
\end{aligned}
$$

References

[Ab-Ba] S. S. Abhyankar and C. L. Bajaj, Automatic parametrization of rational curves and surfaces III: Algebraic plane curves, Comput. Aided Geom. Design, 5 (1988), 309-321.
[B-K] E. Brieskorn and H. Knörrer, Ebene Algebraische Kurven, Birkhäuser, 1981, Basel-Boston-Stuttgart.
[D] A. Degtyarev, Alexander polynomial of a curve of degree six, J. Knot Theory Ramifications, Vol. 3, No. 4, 439-454, 1994.
[vH] M. van Hoeij, Rational parametrizations of algebraic curves using a canonical divisor, J. Symbolic Comput., 11 (1996), 1-19.
[Ke-Mo] M. A. Kenku and F. Momose, Torsion points on elliptic curves defined over quadratic fields, Nagoya Math. J., Vol. 109 (1988), 125-149.
[Ko] K. Kodaira, On compact analytic surfaces II, Ann. of Math., 77 (1963), 563-626 and III, Ann. of Math., 78 (1963), 1-40.
$[\mathrm{Ku}] \quad$ D. S. Kubert, Universal bounds on the torsion of elliptic curves, Proc. London Math. Soc. (3), 33 (1976), 193-237.
[Ma] B. Mazur, Rational isogenies of prime degree, Invent. Math., 44 (1978), 129-162.
[Mi-P] R. Miranda and U. Persson, On Extremal Rational Elliptic Surfaces, Math. Z., 193 (1986), 537-558.
[N] M. Namba, Geometry of projective algebraic curves, Decker, New York, 1984.
[O1] M. Oka, Flex Curves and their Applications, Geom. Dedicata, Vol. 75 (1999), 67-100.
[O2] M. Oka, Geometry of cuspidal sextics and their dual curves, to appear in Adv. Stud. Pure Math., 29 (2000), Singularities and arrangements, Sapporo-Tokyo, 1998.
[R-S1] K. Rubin and A. Silverberg, Families of Elliptic Curves with Constant mod p Representations, in: Conference on Elliptic Curves and Modular Forms, Hong Kong, December

18-21, 1993, International Press, Cambridge, MA, 1995, 148-161; Second edition: Elliptic Curves, Modular Forms, \& Fermat's Last Theorem, 1997.
[R-S2] K. Rubin and A. Silverberg, Mod 6 representations of elliptic curves, pp. 213-220 in: Automorphic Forms, Automorphic Representations, and Arithmetic, Proceedings of Symposia in Pure Mathematics, vol. 66, Part 1, eds. Robert S. Doran, Ze-Li Dou, George T. Gilbert, AMS, 1999.
[S-Z] U. Schneiders and H. G. Zimmer, The rank of elliptic curves upon quadratic extension, Computational number theory, 1989, 239-260.
[Si] J. H. Silverman, The Arithmetic of Elliptic Curves, Grad. Texts in Math., 106, Springer, New-York, 1986.
[W] R. Walker, Algebraic curves, Dover Publ. Inc., New York, 1949.
$[Z] \quad$ H. G. Zimmer, Torsion of elliptic curves over cubic and certain biquadratic number fields, Arithmetic geometry, 203-220, Comtemp. Math., 174, Amer. Math. Soc.

Mutsuo Oka
Department of Mathematics Tokyo Metropolitan University Minami-Ohsawa, Hachioji-shi
Tokyo 192-0397
Japan
E-mail: oka@comp.metro-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 14H10; Secondary 14H52, 14H20.
 Key Words and Phrases. Sextics, dual curves, elliptic curves, Mordell-Weil torsion.

