
J. Math. Soc. Japan
Vol. 54, No. 2, 2002

Vietoris continuous selections on scattered spaces

By Seiji Fujii, Kazumi Miyazaki, and Tsugunori Nogura
y

(Received Oct. 1, 1999)

(Revised Sept. 11, 2000)

Abstract. We prove that a countable regular space has a continuous selection if

and only if it is scattered. Further we prove that a paracompact scattered space admits

a continuous selection if each of its points has a countable pseudo-base. We also

provide two examples to show that: (1) paracompactness can not be replaced by

countable compactness even together with (collectionwise) normality, and (2) having

countable pseudo-base at each of its points can not be omitted even in the class of

regular Lindelöf linearly ordered spaces.

1. Introduction.

Let X be a topological space, and let FðXÞ be the set of all non-empty

closed subsets of X. Let us recall the definition of the Vietoris topology tV on

FðX Þ. The base for tV is defined by the collection of sets

hVi ¼ F A FðX Þ : F H6 V and F VV 0q for all V A V
� �

where V runs over all finite families of non-empty open subsets of X. If V ¼

fV0;V1; . . . ;Vng is a finite family of open subsets of X, then in some cases, we

shall write hV0;V1; . . . ;Vni instead of hVi. Let FHFðXÞ. A map s : F!X

is a selection for F if sðF Þ A F for every F A F. A selection s : F ! X is a

continuous selection for F if it is continuous with respect to the relative topology

of the Vietoris topology tV on FðXÞ. We say X has (or does not have) a con-

tinuous selection if there is (no) continuous selection for FðX Þ.

Ernest Michael has discovered a simple su‰cient condition for the existence

of a continuous selection on a Hausdor¤ space X: if there exists a linear order <

on X such that the induced order topology is weaker than the original topology

and every non-empty closed subspace of X has <-minimal element, then the space

X has a continuous selection [9]. The selection in this case is constructed by

assigning to each non-empty closed subset of X its <-minimal element. In fact

Michael has proved that this condition is not only su‰cient but also necessary for

connected Hausdor¤ spaces. Later on, van Mill and Wattel have proved the
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same for compact Hausdor¤ spaces [11]. It is still unknown if the condition is

necessary for all regular spaces, that is all presently known regular spaces with

continuous selections satisfy it as well. While this shows that the existence of a

special linear order on a space with continuous selection plays an important role,

mere existence of some linear order does not su‰ce to imply the existence of a

continuous selection: the real line R is a linearly ordered (metric) space without

any continuous selection [4].

In the next section we completely characterize countable regular spaces

which admit a continuous selection by proving that a countable regular space has

a continuous selection if and only if it is scattered, see Theorem 2.4. A space is

scattered if and only if every its non-empty closed subset has an isolated point.

We also give an example of a countable Hausdor¤ scattered space without

any continuous selection (see Example 2.5), thereby demonstrating that the as-

sumption of regularity is essential in the above characterization. Unfortunately,

scatteredness is no longer a su‰cient condition for the existence of a continuous

selection outside of the class of countable spaces. Indeed, in Section 3 we con-

struct an example of a scattered (collectionwise) normal, countably compact, first

countable space which does not have a continuous selection, see Example 3.1.

The first countability is a novel feature of our example, since without it the one

point compactification of an uncountable discrete set provides an example of a

Hausdor¤ compact scattered space without any continuous selection. Further,

in Section 4, we show that scatteredness and linear orderability even combined

together do not guarantee the existence of a continuous selection. This is ac-

complished by constructing an example of a Lindelöf scattered linearly ordered

space without a continuous selection, see Example 4.1. It should be pointed out

that both our examples have size o1, which is the smallest possible cardinality.

Finally, we prove that a paracompact scattered space admits a continuous se-

lection provided that every point has a countable pseudo-base, see Theorem 2.3.

This is a possible approach to investigate relations between order-like conditions

on topological bases and continuous selections for Vietoris hyperspaces (for

similar results in the metric case, see [5]). Concerning the condition of para-

compactness, our Example 3.1 shows that, in Theorem 2.3, paracompactness

cannot be weakened to collectionwise normality.

Throughout this paper, all spaces are assumed to be Hausdor¤.

2. Countable spaces.

We start with the following easy lemma.

Lemma 2.1. Let X be a space which has a disjoint cover fUa : a A kg of

clopen subsets such that each Ua has a continuous selection. Then X has a con-

tinuous selection.

S. Fujii, K. Miyazaki and T. Nogura274



A family U of open subsets of X is a pseudo-base at x A X if 7U ¼ fxg.

Lemma 2.2. Let X be a space and x A X . Let fUn : n A og be a decreasing

pseudo-base at x consisting of clopen subsets of X. Suppose U0 ¼ X . If there

exists a continuous selection sn for FðUn �Unþ1Þ for n A o, then X has a con-

tinuous selection.

Proof. Let En ¼ Un �Unþ1. For F A FðXÞ � ffxgg let nðF Þ ¼ minfn :

F VEn 0qg. Define a selection s : FðXÞ ! X as follows: sðFÞ ¼ snðFÞðF V

EnðFÞÞ provided that F 0 fxg, and sðfxgÞ ¼ x. Now it is easy to check that s is

continuous. r

For every ordinal number a, we define by transfinite induction the a-

derivative of a space X : X ð0Þ ¼ X ;X ðaþ1Þ ¼ ðX ðaÞÞ 0 ¼ fx A X ðaÞ
: x is not an

isolated point of X ðaÞg. X ðaÞ ¼7
b<a

X ðbÞ if a is limit. Notice that X is

scattered if and only if X ðaÞ ¼ q for some ordinal a. For a scattered space X,

the height hðXÞ of X is the smallest ordinal a such that X ðaÞ ¼ q. The set

X ðaÞ � X ðaþ1Þ is called the a-th level of X. For every a, each x A X ðaÞ � X ðaþ1Þ is

an isolated point of X ðaÞ, thus there exists a neighborhood Vx of x such that

Vx VX ðaÞ ¼ fxg.

Theorem 2.3. Let X be a paracompact scattered space such that every point

x A X has a countable pseudo-base. Then X has a continuous selection.

Proof. We prove our theorem using transfinite induction for the height of

a space. If hðX Þ ¼ 1 then X is a discrete space, and so X has a continuous

selection by Lemma 2.1.

Suppose hðX Þ < g implies that X has a continuous selection. Let hðXÞ ¼ g.

Case 1. g ¼ aþ 1 is a successor ordinal. Then X ðaÞ is a closed discrete

subset of X. Since a scattered paracompact space is strongly zero-dimensional,

for every x A X ðaÞ there exists a clopen neighborhood Vx of x such that the

collection fVx : x A X ðaÞg is discrete in X and Vx VX ðaÞ ¼ fxg. Let fUn : n A og

be a decreasing countable pseudo-base at x consisting of clopen sets of X with

U0 ¼ Vx. Since hðUnÞ < a, by inductive hypothesis each Un has a continuous

selection, and so does its closed subspace Un �Unþ1. Therefore Vx ¼ U0 ¼

6
n Ao

ðUn �Unþ1Þ has a continuous selection by Lemma 2.2. Let V ¼ X �

6fVx : x A X ðaÞg. Then V is clopen and hðVÞ < g. Hence V has a continuous

selection by the inductive assumption. Since fVx : x A X ðaÞgU fVg is a discrete

cover of X, X has a continuous selection by Lemma 2.1.

Case 2. g is a limit ordinal. Then X has a discrete clopen cover V

with hðVÞ < g for each V A V. Now X has a continuous selection by Lemma

2.1. r
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In the above theorem paracompactness can not be weakened to collec-

tionwise normality, and countable pseudo-base can not weakened to either having

a nested base of size o1 or linear orderability. The necessary counterexamples

will be provided in later sections. In the case that X is first countable instead of

countable pseudo-base the above theorem was proved in [1].

Theorem 2.4. A countable regular space X has a continuous selection if and

only if it is scattered.

Proof. The ‘‘if ’’ part of our theorem follows from Theorem 2.3 since

regular countable spaces are paracompact and have countable pseudobase at all

points.

To prove the ‘‘only if ’’ part, assume that X is a countable regular space that

is not scattered. Then X has a closed subspace without the Baire property.

(A space has the Baire property if the intersection of countably many open dense

subsets of it is dense.) Theorem 1.2 of [5] now implies that X does not have a

continuous selection. r

The following example shows that Hausdor¤ness is not enough in Theorem

2.4.

Example 2.5. There exists a countable, first countable scattered Hausdor¤

space without a continuous selection.

Let X ¼ Q � f0; 1g, and let Qi ¼ Q � fig for i A f0; 1g where Q denotes the

rational numbers. For x A Q we write x0 ¼ fxg � f0g and x1 ¼ fxg � f1g. Let

the topology t on X be generated by the singletons of Q0 together with all sets

of the form Veðx
1Þ ¼ fx1gU fy0 A Q0 : x� e < y < xþ eg � fx0g, where < is the

usual order of the real line, e > 0 and x A Q. Clearly ðX ; tÞ is a first countable,

scattered, Hausdor¤ space. Since a point y A Q1 and the closed set Q1 � fyg

can not be separated by disjoint open sets, X is not regular. We show that X

has no continuous selection. Suppose that there exists a continuous selection

s : FðXÞ ! X . Let sðQ1Þ ¼ y, and sðSÞ ¼ y 0, where S ¼ Q1 � fyg. Choose

disjoint neighborhoods V of y and W of y 0 such that V VQ1 ¼ fyg. By the

continuity of s we can choose Vietoris open neighborhoods hV0;V1; . . . ;Vni

of Q1 and hW0;W1; . . . ;Wmi of S such that sðhV0;V1; . . . ;VniÞHV and

sðhW0;W1; . . . ;WmiÞHW respectively. Without loss of generality we may as-

sume that V0 HV . This implies V0 VQ1 ¼ fyg. We may also assume that

y B 6m

i¼0
Wi. Since y and S can not be separated by disjoint open sets in X,

there exists z A ð6m

i¼0
WiÞV7fVi : y A VigVQ0. Since S U fzg A hV0;V1; . . . ;VniV

hW0;W1; . . . ;Wmi, we must have sðS U fzgÞ A V VW , a contradiction.
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3. A scattered (collectionwise) normal, countably compact, first countable

example.

According to Theorem 2.3 a compact scattered space with a countable

pseudo-base at each of its points has a continuous selection (hence it must be

linearly orderable by the theorem of van Mill and Wattel [11]). The following

example shows that compactness can not be weakened to countable compactness

and that paracompactness in Theorem 2.3 can not be weakened to collectionwise

normality.

Recall that a subset AHo1 is stationary if A has non-empty intersection

with any closed unbounded subset of o1.

Example 3.1. Let X ¼ o1 � ðoþ 1Þ be the product of the space o1 of count-

able ordinals and the convergence sequence oþ 1. Then X is a scattered, (collec-

tionwise) normal, countably compact, first countable space that does not have a

continuous selection even for F2ðXÞ, where F2ðXÞ ¼ fF A FðXÞ : jF ja 2g.

Proof. Suppose that s : F2ðXÞ ! X is a continuous selection on F2ðX Þ.

For a; b A o1; a < b and n;m A oþ 1, we put

eðF Þ ¼
0; if sðF Þ ¼ ha;mi

1; if sðF Þ ¼ hb; ni;

�

where F ¼ fha;mi; hb; nig A F2ðXÞ, and we define

Wða; bÞ ¼
½0; a� � ðoþ 1Þ; if eðfha;oi; hb;oigÞ ¼ 0

ða; b� � ðoþ 1Þ; if eðfha;oi; hb;oigÞ ¼ 1:

�

Then Wða; bÞ is a neighborhood of sðfha;oi; hb;oigÞ.

For a; b A o1, a < b and n A o, we use the following notations:

Vða; b; nÞ ¼ ða; b� � ðfm : mb ngU fogÞ;

Vða;o1; nÞ ¼ ða;o1Þ � ðfm : mb ngU fogÞ:

By the continuity of s, for every a; b A o1 with a < b there exist three ordinals

rða; bÞ, lða; bÞ, nða; bÞ such that rða; bÞ < aa lða; bÞ < b, nða; bÞ < o and

sðhVðrða; bÞ; a; nða; bÞÞ;Vðlða; bÞ; b; nða; bÞÞiÞHWða; bÞ:

Hence, by using the pressing down lemma and a well-known fact that every

countable union of non-stationary sets of o1 is non-stationary, for every a < o1

we can choose four ordinals rðaÞ; lðaÞ; nðaÞ; iðaÞ and a stationary set Sa of o1

such that

rðaÞ < aa lðaÞ < o1; nðaÞ < o; iðaÞ < 2
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and

rða; bÞ ¼ rðaÞ; lða; bÞ ¼ lðaÞ; nða; bÞ ¼ nðaÞ; eðfha;oi; hb;oigÞ ¼ iðaÞ

for every b A Sa.

Therefore we have eðFÞ ¼ iðaÞ for every F A hVðrðaÞ; a; nðaÞÞ;VðlðaÞ;o1;

nðaÞÞi and every a < o1.

Again by the pressing down lemma, we obtain the following fact:

Fact. There exist three ordinals r0, n0, i0 and a stationary set S of o1 such

that

r0 < o1; n0 < o; i0 < 2

and

rðaÞ ¼ r0; nðaÞ ¼ n0; iðaÞ ¼ i0

for all a A S.

This fact implies that

eðFÞ ¼ i0 for every F A hVðr0; a; n0Þ;VðlðaÞ;o1; n0Þi and a A S:ð1Þ

Let D be the set of accumulating points of S in o1, and put

D0 ¼ fb A D : lðgÞ < b for any g < bg:

Then it is easily seen that D0 is a closed unbounded set of o1, so we pick a

b A D0. We choose s; t A o satisfying n0a s, n0a t and s0 t. We now suppose

sðfhb; si; hb; tigÞ ¼ hb; si. Then, by the continuity of s, there exists an a0 A o1

such that r0 < a0 < b and

sðhða0; b� � fsg; ða0; b� � ftgiÞH ðr0; b� � fsg:ð2Þ

By the definitions of D and D0, we can find an a A S so that a0 < aa lðaÞ < b.

Now we choose an E A F2ðX Þ with EH fa; bg � fs; tg which leads us to a

contradiction, as follows. Set

E ¼
fha; ti; hb; sig; if i0 ¼ 0

fha; si; hb; tig; if i0 ¼ 1:

�

Case 0: i0 ¼ 0. By (1) and a < b we get sðEÞ ¼ ha; ti. On the other

hand, by (2), sðEÞ ¼ hb; si, a contradiction.

Case 1: i0 ¼ 1. By (1) and a < b we get sðEÞ ¼ hb; ti. On the other

hand, by (2), sðEÞ ¼ ha; si, a contradiction. r

Remark. If one glues together the first point 0 of two copies of the long

line, then the resulting space is a linearly ordered, collectionwise normal, count-
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ably compact, first countable and it does not have a continuous selection [7].

However, unlike Example 3.1, the space is not scattered.

4. A scattered linearly ordered example.

As we described in the introduction, orderability is the key notion for

the existence of continuous selections. Since scattered metrizable spaces are 0-

dimensional and complete, such spaces have continuous selections [2], [4] because

of topological well-orderability. However linear orderability is not enough to

guarantee the existence of continuous selections even for Lindelöf scattered

(hence 0-dimensional) spaces. Example 4.1 shows that Lindelöf scattered linearly

ordered spaces need not have continuous selections.

Let M be the quotient space obtained from the product space o1 � f0; 1g

by identifying the points ho1; 0i and ho1; 1i to a single point y (we consider

the discrete topology on f0; 1g). For convenience of explanation we write a0 ¼

ha; 0i and a1 ¼ ha; 1i for a A o1, and y ¼ o0
1 ¼ o1

1 . We consider a natural

order on M which induces the same topology on M, that is: a0 < b1 for

a; b A o1, and a0 < b0 and a1 > b1 for a < b < o1 þ 1. We define ½a0; b1� ¼

fg A M : a0a gao0
1 or o1

1b gb b1g. The other notations are somewhat

standard, for instance ½a0; b0� ¼ fg A M : a0a ga b0g, ½b1
; a1� ¼ fg A M : b1

b

gb a1g, etc.

A space is a GO-space if it is homeomorphic to a subspace of a linearly

ordered space.

Example 4.1. Let SHo1 be a stationary set such that o1 � S is also

stationary (such a set exists; see [8]). Let L ¼ fa i A M : a A S; i ¼ 0; 1gU fyg be

a subspace of M. Then L is a regular Lindelöf scattered GO space which has no

continuous selection.

Proof. Assume that there exists a continuous selection s : FðLÞ ! L.

Claim 1. For every a A S there exist bðaÞ A S and gðaÞ A S such that

(i) aa bðaÞ < gðaÞ < o1, and

(ii) sð½a0; d�VLÞ ¼ bðaÞ0 for d A ½gðaÞ0; gðaÞ1�.

Let A¼ ðo1�SÞV ða;o1Þ. Note that for each d AA one has sð½a0; d0�VLÞ<

d0 because d0 is not in L.

Since A is stationary, by the pressing down lemma, there exists bðaÞ such

that B ¼ fd A A : bðaÞ0 ¼ sð½a0; d0�VLÞg is stationary. By the continuity of s,

sð½a0;o0
1 �VLÞ ¼ bðaÞ0. Again by the continuity of s at the point ½a0;o0

1 �V

L A FðLÞ, for each d < bðaÞ there exists an open set Vd ¼ hV d
0 ;V

d
1 ; . . . ;V

d
nd
i of

FðLÞ such that sðVdÞH ðd; bðaÞ0�. Let Vd ¼ 6
iand

V d
i . Since o0

1 ¼ o1
1 A Vd,

there exists gd < o1 such that ½a0; g�VL A Vd for all g A ½g0d ; g
1
d �. Let gðaÞ ¼
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supfgd : d < ag. Then sð½a0; g�VLÞ ¼ bðaÞ for g A ½gðaÞ0; gðaÞ1�. The proof of

Claim 1 is complete.

The same claim holds for a1.

Claim 2. For each a A S there exist zðaÞ A S and hðaÞ A S such that

(i) aa zðaÞ < hðaÞ, and

(ii) sð½d; a1�VLÞ ¼ zðaÞ1 for d A ½hðaÞ0; hðaÞ1�.

Let Ca ¼ ½gðaÞ;o1Þ and Da ¼ ½hðaÞ;o1Þ for a A S, and Ca ¼ Da ¼ o1 for a A

o1 � S. We take the diagonal intersection E ¼ fd : d A Ca VDa for each a < dg

of Ca VDa’s. Then E is a closed unbounded set in o1 (see [8]). Choose points r

and an in S VE such that a0 < a1 < � � � < an < � � � and r ¼ limn!y an. Since

r A E and an < r, it follows that r A Can . Hence sð½a0n ; r
1�VLÞ ¼ bðanÞ

0.

Keeping in mind this fact, we can prove sð½r0; r1�VLÞ ¼ sðlimn!y½a0n ; r
1�VLÞ ¼

limn!y sð½a0n ; r
1�VLÞ ¼ limn!y bðanÞ

0 ¼ r0. On the other hand, by the same

argument, we have: sð½r0; r1�VLÞ ¼ sðlimn!y½r0; a1n �VLÞ ¼ limn!y zðaÞ1 ¼ r1,

a contradiction. r

There is a standard way (see for instance [12]) to embed a GO-space X as

a closed subspace in a linearly ordered space X � which, in turn, is a subspace

of the linearly ordered space X � Z equipped with the lexicographical order

of X and Z, here Z denotes the set of integers. In our case the resulting

linearly ordered space X � is automatically Lindelöf and scattered. Therefore

there exists a Lindelöf scattered linearly ordered space which has no continuous

selection.
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