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Abstract. This paper is devoted to the study of rational approximations of the
ratio #(1)/w(2), where w(d) and #(1) are the real period and real quasi-period, re-
spectively, of the elliptic curve y?> = x(x —1)(x — ). Using monodromy principle for
hypergeometric function in the logarithm case we obtain rational approximations of
(n/w)(A) with Ae Q@ and we shall find new measures of irrationality, both in the
archimedean and non archimedean case.

1. Results and notations.

The Gauss hypergeometric function is defined by the power series

1) JF, (a,cb

where (), =1 and (), =a(e+1)(@+2)--- (¢ +n—1) for n> 1.
This series is an analytic solution in |x| < 1 to the differential equation.

(2) x(1=x)y"+c—(a+b+1)x]y' —aby =0
Let E; be the family of elliptic curves
(3) y = x(x = 1)(x —2)

where Ae C*, 0 < || < 1. Legendre notations for the periods of these curves
(i.e. complete integrals of the first kind) and quasi-period (i.e. complete integrals
of the second kind) are, respectively

@ o) d;fngl(l/2,11/2|/1)
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e —1/2,1/2
() ) < 5o (7))
(6) G(2) =n(2)/w(4).
There is no loss of generality in studying the diophantine approximations of
3/2,3/2 1/2,1/2
(7) 2F1(/2/ '/1)/2F1(/1/ '/1)

Indeed, from the contiguous relation, we have

@) 2Fl(3/2,23/2‘0/215,1(1/2,11/2‘1) ::1(1{_1)(G(z)+-1__1%

so we can study equivalently the fraction (7).

We shall denote by @, the p-adic completion of @, where pe {0,
primes p}, in particular @, = R. For an irrational number 0 € Q,, we shall call
the irrationality measure m,(0) of 0 the infimum of the m’s satisfying the fol-
lowing condition: for any ¢ > 0 there exists an Hy = Hy(¢) such that

oo — P/Q|p > H™"E

for any rational P/Q satisfying H = max{|P|,|Q|} > Hy. From now on we
denote m., (0) = m(0). All our measures are effective in the sense that Hy can be
effectively determined. Throughout this paper, we also suppose that A is a
rational number, p a prime number and v,(4) = v the p-adic valuation of 4 = p”-
a/B, aeZ; feZ", pyopf and we set 4|, =p™". We also use the notation

22 if py(a) < 4
u() =9, .
24 if vy(a) >4

In the following theorems let «/f € @ be such that («,8) =1 and fe Z".
In the archimedean case we have

THEOREM 1. Let A =ua/f, A€ [—1,1] satisfy

%[e(l ~V1I-)]* <1

Then G(A) is irrational and

~ Log[B(2e(1 + |21/4))* /u(2)] .
Log[Ble(1 = V1= 1)) /u(2)]

my(G(A)) <1
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As numerical examples we give the following list

my, G(—4/11) < 9,179 --
Let K(k) and E(k) be the complete integrals of the first and second kind
respectively.
Then
K(K) = e = o(k)

10 /1 —k2sin’ g
n/2 1
Ek)y=| /1 —-k%sin*pdyp = 5’7("2)'

0

COROLLARY 1. Let k =1/q, then G(k*) = E(k)/K(k) is irrational for every
integer q > 2.

In the non archimedean case

THEOREM 2. Let p be a prime such that p ¥ f and A = o/f a rational number

1/2,1/2
satisfying |oc|§ < |162u(oc)|p and 2F1< /21 Z) # 0.
LB
Then G(A) is irrational and
LogQ
if OR< 1, where R = |a2/(162u(oc))|p and
4B (1, Y
PP 1
() v <t
= 16¢?
e .
mw, if o/B| > 1.
In particular
2hLogp

h
<
m(Gp(PY)) = e, =2 - dTog2
for all p #2 satisfying p" > 16e.
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2. Derivation of the approximation form.

Let n > 1 be an integer. We want to find a remainder function R,(x) such

that ordy R, > 2n and
a,b
X> - in(x)zFl( . x)

for some polynomials P,(x) and Q,_i(x) of degree n and n — 1, respectively.

a+1,b+1

O R =

LemMmA 1. With the above notations

a+n+1,b+n+1
Ry(x) = C,x™",F ’
() r2 1( c+2n+1 ‘x)

where C, # 0 depends only on a,b,c and n.

PrOOF. Let us recall the main ideas of the Riemann’s proof. Linear al-
gebra ensures us of the existence of two non zero polynomials P,(x) and Q,_i(x)
of degree at most n and n — 1 respectively such that the linear form satisfies
ordg R(x) > 2n. The remainder function R,(x) is an holomorphic solution in a
neighborhood of zero of a family of Fuchsian second order linear differential
equation (2).

The non apparent singularities of (2) in P;(C) are 0,1,00. We have to find
the roots of indicial equations of (2) (Exponents of (2)). There is no loss of
generality in assuming that a,b and c¢ are real.

In “0”, lower bounds mod N, for exponents are (2n, —c).

In “1”: (0,c—a—b-1).

In “o0”: (Using local parameter ¢ =1/x), (—n+a+1,—n+b+1).

The problem’s datas and Fuchs’s relation show that (2) doesn’t have ap-
parent singularities and one can conclude that we obtain the following Riemann’s
scheme

0 [oe] 1

(H) Pl 2n —n+a+1 0 X
—c —-n+b+1 c—a—-b-1

The proof above works also when two of the exponents differ by an integer
(Logarithm singularities or reducible case). In this case (2) has no accessory
parameter {[Hu3]. We can transform this Riemann’s scheme into

0 0 1

x2'p 0 n+a+1 0 x|,
—c—2n n+b+1 c—a—->b-1
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)

In the following lemma, we shall compute the monodromy representation of the
hypergeometric series in the logarithmic case (i.e. a+b=c=1).
If g(x) =", gxx", then the notation

which shows us without any calculation that

n+a+1l,n+b+1

Rox) = Gaar (M

g =gt
k=0

is used for the truncated part of g(x).

LemMmA 2. Suppose that a+b =c =1 and let us denote

2n

B (a—n) (b—n)
P(x) = ;; - 2kn)kk! k k.,

Then the polynomials in lemma 1 are given by
i a,b
P,(x)=|(1 — x)P(x)2F1< 1 |>1
. (n)

a+1,b+1
2

0 1(x) = |(1- X)P(x)2F1<

o

_ Fa+n)I'(b+n)l(a+n+1)I'(b+n+1) (a),(b),(a), (D),

I'(2n+ 1)I'(2n+2)I'*(a)I?(b)ab — (2n)!(2n+1)lab

PrOOF. The proof of this lemma is an interesting application of monodromy
method for Fuchsian differential equations and we shall give it in details. A
sketch can be found in [Hu2]. We use a monodromy’s argument to obtain an
analytic continuation of the relation (9) in lemma 1 along the following curve:
Assume that x € C, in a neighborhood of zero, then y is a loop with base point x
which encircles the point “1”” once counterclockwise, cuts the segment |0, 1] and
returns to its starting point. Now, we must compute the action of the mon-
odromy matrix M, for the following hypergeometric series

b 1,b+1 1,b 1
2F1(a, x); 2Fl<a+ 72 + x) and 2F1<a+n+ o 'x)

1 2n+2
when the parameters a,b satisfy a+ b =1 First, we shall solve in this case, the
connection problem, i.e, the analytic continuation of a fundamental system of
solutions of the hypergeometric equation (1) in a simply connected neighborhood
at the origin to another fundamental system at the point “1”.
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Writing the following connection formula [A,S, 559-560] (known since
Gauss in the case a=5b=1/2)
If xe C is such that |1 —x| <1 and |arg(l — x)| < =, then

1) -t ()

1
Using analytic continuation along y, we obtain
P a,b ' g a,b| Y P a,b 5 1 P a,b {
x| = X)= X)=2in——— — X
2 21 2410 nF(a)F(b)z g

1
which yields
X) L 2F1 <Cl,1b X)

(11) oFi (a’ b
+ 2i7z/F(a)2F(b)2{2F1 (“’1]’ x) Logx — %(x)},

1
where ,(x) denotes an analytic function at zero.
To deal with the analytic continuation along y for 2F1<
a+n+1,b+n+1
2F
2n+2
560]. Namely, assuming me N, m > 1,

(10) 2F1<

a+1,b+1 >
) x| and

x), we use another connection formula [A,S, 559-

a, _I'(m)I'(a+p—m) e .
120 (5 ) =T 0= w1
m F(OC—}—ﬁ—WZ)
- (=D I'(o—m)[(f—m)m!
X{2F1<loi;_ﬁm 1_x> LOg(l—X)—lﬁm(l—X)},
where

(o —m)(B—m), 4
Ap_1(x) = X
1) ; (1 = m), k!

and ¥,,(x) denotes analytic function at zero. Using “monodromy” to transform

b )
zFl(a’z x), we obtain by (12),
1.,h+1 1,h+1
2Fl(a+ b+ X>L2F1(a—|— 2 + x>

2
a+Lb+1' )
1 —x

(13)

+2in/I'(a)l(b) '2F1< ’
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)

+%WF@VF@V{UMW—¢A@+4E<

which yields

1.h+1
(14) 2F1(a+ ,2 +

1,b+1
x) _>2Fl(a+ ,2 +

at1,b+1
2

) Logx .

In the same manner, using (12) we can see that

y
B ( a+n+1,b+n+1
(

—,F
"Natn+)+b+n+1)-1

2inl’(2n + 2) a+n+Lb+n+11_x
Tla+mI(b+n)”" 2 '

7 a+n+1,b+n+1
ah 2n+2

7 p a+n+1,b+n+1
X | —
o 2n+2

)

According to (12), we find

1,b 1
2F1<a+n+,2 +n+'1_x)

_ a+n+Lb+n+ll .
SN @n+3) - (@n+1)

- r@n+1) . 1
‘r(n+1+a)r(n+1+b)x(2 1)‘42"(’“”<r(a—n)r(b—n)(:zn+1)!>

a+n+1.b+n+1
e M +2

x) Logx — a1 <x>}

hence

P a+n+1,b+n+1
2 2+ 2

y a+n+1,b+n+1
X —
201 2 +2

)

2in(2n)!(2n 4 1)! Az (x)
4_[(a+4ﬂ[Ka+—n+-UIKb+4QIKb4-n+.U' 201

2in
T ras i a—mrbLmlb-n)

. a+n+1,b+n+1
201 42

) Logx = (0 |
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Since the monodromy action leaves the polynomials P, and Q, | invariant,
we obtain the following system
x)

(

a+1,b+1
2

x> — On-1(x)2F] ( a,lb

)

P - b+ 00 (et = 1

P,(x)2Fy (

a+n+1,b+n+1

= G F
9 X21< 42

Azn (x)

+mﬂhwm}

o (2n)!(2n + )T (a)*T'(b)* - C,
" Tla+n)'b+n)l(a+n+1)(b+n+1)

The determinant A(x) of this system

can be transformed into

where ¢(x) is the logarithmic solution of the differential equation (2). Hence
A(x) is a multiple of the Wronskian and satisfies the following differential
equation

2x —1

A'(x) = (0 _X)A(x).

It follows that
A(x) = K/x(1 —x), where K e C".

Since lim, .o x(1 — x)4(x) = K, we can deduce that K = —1/ab.
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y
‘ x) o),
Y

o a+n+1,b+n+1 b
Cux 2F1< 42 x| (x) el

Now the system (14) gives

Azn(x) ,b
X

+ xznl/fznﬂ (x)}zFl (al

(15) ap = i

7 a+n+1.b+n+1
241 2n+2

(16)  4(x)Qn-1(x) = Cr/z{AznT(X) + xznlﬁznﬂ(x)}zFl (a - 1’2b 1

Setting abC, =1, we get our claim.

We note that
a,b
x) — Qn—12F1< '

)

is a formal series identity and may be used also in the p-adic fields Q,, when the
series converge.
In the following, we shall need the non-vanishing of

Py(x)  Oua(x)
Puii(x)  Ou(x)

LemMmA 3. With the above notations, we obtain
A,(x) = Cpx?".

a+1,b+1
Pn(x)2Fl< )

)

a+n+1,b+n+1

= Cx*"yF
v 1( 42

4,09 = |

Proor. Clearly 4,(x) is a polynomial in x of deg4,(x) <2n. We have
An(x) = Puy1(X)Ry(x) — Pp(x)Ryp1(x), thus ord,—o4,(x) >2n and our lemma
follows, by comparing the coefficients.

From now on we set a =b=1/2. O

Lemma 4. If |x| < 1, then
a) [Ry(x)| <ul(1-VT—x)/2",
b) |Pu(x)| < (1 + |x|/4)™,
where u and v denote constants depending on x.

Proor. a) Using the integral representation

B I'(2n+2) o (L1 =)\ (1 - e
Rix) = G 3 arm 1) J()(l—tx) 1" dr
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we find that

n

t(1—1)

R, <
R() o sup| T

ST 32T+ 12"

Jl (21— )7V d
o (1—m)?

which yields

I'n+1/2)I'(n+3/2) - VI

R < 2= 5y

()

and by Stirling formula

Using the truncated series of lemma 2, namely

Po(x) = l(l  P(F, ( 1/2,11/2

yn

It is possible to have elementary bounds for P,(x) and Q,_;(x).

Let us consider
=52 )

we see that we only need the first n terms of this polynomial.
But with the notation

0

0100 =3 Jgelx*

We obtain -
|[Pu(x)] < (14 [x[)[|PI(1x])] [zFl(l/z’ll/z ‘MDLH)

An easy computation shows that for 0 <k <n,
n—1/2 2n\ .k
< 2%,
()= ()

n

2n k 2n
P|(|x < x/4" < (1+ |x/4])7".
1Py = 3 oot = 0+ )

We thus get
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It follows that
[Pu(x)] < C(x) - (1+[x/4)* and |Q,1(x)| < C(x) - (1+ |x/4])™".

This ends the proof. ]

ReEMARK. Finding the asymptotic formula |[P,(x)| ~ |(1 + V1 —x)/2*" re-
quires a more delicate analysis. In the following we shall give a sketch of its
poof. Recall the formula in the proof of lemma 2

n+3/2,n+3/2 y n+3/2,n+3/2
2F1< 42 |X>_>2F1 m+2 |

3/2 3/2
+2in r@n+2) Fl(n+ [2n+3) ‘l—x)

rn+1/2)?° 2

Using the proof of lemma 2, we see that the asymptotics for |P,(x)| comes from
the behaviour of

Fr(izj ;222& <n + 3/2,211 + 3/2‘ . X).

For this, we need another integral formula for the hypergeometric function [B,E,
60, formula 2]

3/2 3/2
2F1<n+ /,211—|- / ‘l—x>

_ I'(2)expin(n—1/2) J (1/2n(] )12 t
S 2r(1/2+4m) (/2= n)sina(1/2—n) ), (1 — (1 — x))"32

where y denotes a closed counter-clockwise contour enclosing the ¢t =1 of the
integrand, which do not enclose the pole 1/1 —x. (Suitable determinations for
112, (1= 0", (1= t(1 - x))"? are choosen).

Now we may apply the saddle-point method as described for example by
Dieudonné [Dieu, Chapter IX]| to estimate the main part of

J [1/2+ndt
) (1 . t)n+1/2(1 . [(1 _x))n+3/2 ’

If we use asymptotic formula, |P,(x)| ~ |(1 + T+ x)/2|*, (see also [Rie])
then we must do a slight modification of the irrationality measures in the
Theorems I and II, but in this case measures are not completely effective.
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3. Estimation of the denominator D,,.

Let D, be the denominator of the polynomials P,(x) and Q, i(x) i.e.
DnPn(x)a DnQn—l(X) € Z[X].
First we shall determine the denominator of the polynomial

-5 /)

using “‘the divisibility criterion” Lemma 8 of [He Ma,Vil)].

Therefore we use for r € Q the notation p|r or r =0 (mod p), if p is a prime
such that v,(r) > 1. Furthermore, if v,(r) >0, then there exists a unique 7€
{0,1,...,p—1} satisfying 7=r (modp). Let now r=R/SeQ, (R S)=1,
vy(r) >0, max;<; <,k {|R+ (j— 1)S|} < p? and k = Ap + k, then

(17) p|<£> iff 74+1<k.
LEMmA 5. Let n>2, D, =4DyD;16", where
Dy=lem(1,2,...,[V2n]) and Dy= [ »p,

n<(p—-1)/2
m<p£2n

o)/ (1) <

for all 0 <k <2n and (asymptotically)

then

log D, ~ nlog(4e?).

Proor. If p is a prime such that v2n < p < 2n and
2
a ( :) then by (17) we get

(18) n+1<k.

Let us also suppose

i
+

(19)

N
\Y2
.

Then (18) and (19) give

2ii—p+1<k,
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which is equivalent to

(20) R L

Using again we get from

/l /l

(21) n—1/2+1<k.

So by (17)
» <n—kl/2>.

Thus the primes p e (v/2n,2n] in the denominator of

n—1/2\* /(2n
k k
which do not divide the numerator satisfy

__p-1
22 <
(22) s

and therefore we need the factor D;.
If we set n =n— Np, then the primes

cIo — 2n+1 n
PEN=ONTI'N

satisfy for all Ne Z". For D, these intervals imply the asymptotic

exp( 3 10gp)~exp§<210gp>

n<(p—1)/2 N=1 \pely
V2n<p<2n

N 1
eX1[”1{ZN+1N+3/2}

N=0
— expn{y(3/2) — ¥(1)} = exp(2 — 2log 2)n,

where i/ denotes the digamma function [A,S].
It is known [Beu,Ma,Vi] that

lcml(’;><z><2)1 divides lem[1,2, ... 1]

and so we need the factor Dy. Analogously to the works [A,R] and [He,Ma,Vil],
we get an asymptotic relation



970

Hence,

Set now

M. HUTrTNER and T. MATALA-AHO

log(DoD1) ~ nlog(e?/4).

log D, ~ nlog(4e?).

We shall show that p,(x),¢,(x) € Z|x].
Let us set moreover

where

and

Consequently

Py(x) = | (1 = x) Zfipmj xt
I =0 \itj=k

) - ) ]

0= |(1-03 [ 37w |t
I =0 \itj—k

Flx) = m(l/z’ll/z x) _ io fir'

F(x) :2F1(3/ 2’23/ 2 x) = f: fix!,
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The coefficients of these polynomials have a common denominator D, and more
precisely we have

. 2iN> (n—=1/2\ / /2
|aniPn | =4. 16nilDODl .l " ) / l’l e4. 16”71{2

for all i+ j=k <n and

. . 242N/ n—1/2\ / /2
u)nf,~Pn,j|:16"l(z‘Jrl)z)oz)l(lf+ )(” j/ )/(;)616""2

for all i+j=k<n-—1. Thus
Pu(x), qn(x) € Z[x].
and when D, is replaced by
D =4-16"DyD; [u(x)"
we get

pn=D:B"Py(2/B) € Z, qn=D;B"0(afB)eZ.

4. Proofs.

1) Proof of the archimedean case (Theorem 1).
gives the nonvanishing property of the determinant

DPnn1 — Pny1qn—1 # 0

and from Lemmas 4 and 5 we get bounds for ¢,,D, and the remainder term
r,. We apply Lemma 3 of [AR] to deduce the irrationality measure given in
Theorem 1.

2) Proof of the non archimedean case (Theorem 2).
By Lemma 1 we have the following formula for the remainder

ra(x) = pa(X)F(x) = ga(x)F ().

Using the fact that p,;, g, ;€ Z, it is possible to estimate the remainder term
when |x| , < 1. In the p-adic case we need polynomial bounds also when |x| > 1.

LemMAa 6. Let R(p) = ]x/16]§ <1, then
-1 n
[ (X)], < 4], R(p)".
Let |x| > 1, then

max{|pa(x)], 14 (x)[} < (16e%)""“|x|".
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Proor. For the coefficients of r,(x) we have the upper bound

2\
i), 40+ (2j+2)2
J+1/,
—1y1 4|~ (2n+k
< 4], "|16], 2
and using the assumption |x|, <[16], we get

2n k
|r”(x)|p < |x|p 1%128'5({|rn,2n+k|p|x|p}

2nyp41—1 —2n -1 n
S |x|p |4|p |16|p2 = |4|p R(p) :

The coefficients of the polynomials can be estimated elementary as follows

. 2iN/n—=1/2\* / /2
osmzwnn (272 /(2)

< 16" 1eV2Ha) (62 14) 42 < (16e242)", (it j =k < n),

which gives
[Pu(x)] < 2n°(16€%)"|x]".
Also |¢,(x)| has a similar bound and we achieve
max{|pa(x)], |ga(x)]} < (16e%)"|x|"
where ¢ = ¢(n), lim,_, &(n) = 0.

To prove we shall apply Lemma 7 of [He,Ma,Vil], which gives
for the p-adic number an irrationality measure

log O
m,(0) <1 — fog OR’

OR < 1,

when max{|pal, |} < Q" |ral, < R"™* and 4, = pugui1 = gupar1 # 0 in the
approximation formulae ¢,0 —p, =r,, pn,qg.€Z (n=1,2,...). Let now x =
a/feQ*, pypeZ, |oc|§ < |162u(oc)|p and in this case from the lemmas 4, 5 and
6 we shall get



Diophantine approximations for a constant related to elliptic functions 973

|Pul = [Duf" Pu(2/ B) fu(2)"]

< (e (gt (14 U)

if Ja/B] <1 and if |a/B| > 1 |pa] < (4e?)""*(B/u(e))"(4|a|/p)". These bounds are
valid also for |g,]|.
Further

[7ul, = [DuB" Ru(oe/ B) Ju(er)"],
B
4],

IA

|2 /16%u(x) e

Hence we may take Q and R given in theorem 2.
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